
Inferring Depth Maps from

2-Dimensional Laser Ranging Data

in a Simulated Environment

Viljar Rúnarsson

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of

Science in Technology.

Espoo 24.4.2018

Supervisor

Prof. Ville Kyrki

Advisors

Dr. Francesco Verdoja

M.Sc. Jens Lundell

Copyright © 2018 Viljar Rúnarsson

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Viljar Rúnarsson

Title Inferring Depth Maps from 2-Dimensional Laser Ranging Data in a Simulated
Environment

Degree programme Automation and Electrical Engineering

Major Control, Robotics and Autonomous Systems Code of major ELEC3025

Supervisor Prof. Ville Kyrki

Advisors Dr. Francesco Verdoja, M.Sc. Jens Lundell

Date 24.4.2018 Number of pages 39+10 Language English

Abstract

Depth estimation plays a key role in mobile robotics for applications including scene
understanding, navigation and mapping. Recently, deep learning methods have
proven effective in estimating depth maps from a combination of different sources
such as 3D LiDAR or RGB images. However, they face two challenges; the lack
of dense ground truth data and the depth input sparsity which ranges from 4-10%
pixel density on an input image. This thesis explores the feasibility of inferring a full
depth map from extremely sparse 2D LiDAR measurements via neural network. To
address the lack of ground truth data, a simulation tool is created for data gathering.
The results show that from our sparse input of 0.024% pixel density on input images,
the tested network infers shapes but struggles with blurry boundaries on objects.

Keywords Depth Completion, Deep Learning, Robotic Simulation, Convolutional
Neural Networks

4

Preface

I want to thank Professor Ville Kyrki and my instructors Dr Francesco Verdoja and
Jens Lundell for their invaluable assistance and expertise.

Otaniemi, 24.4.2018

Viljar Runarsson

5

Contents

Abstract 3

Preface 4

Contents 5

Symbols and abbreviations 6

1 Introduction 7

1.1 Problem Statement . 8
1.2 Structure of the Thesis . 10

2 Background: Depth Completion 11

2.1 Challenges in Depth Completion . 12
2.2 Methods in Depth Completion . 12
2.3 Impact of RGB images . 14

3 Tools and Methods 15

3.1 Simulation Software Description . 17
3.1.1 Requirements and Challenges 17

3.2 Data Collection . 20
3.3 Neural Network Structure . 22

3.3.1 Metrics . 22

4 Experiments and Results 24

4.1 Experiment Settings . 24
4.2 Results . 26

4.2.1 Validation on a Known Environment 26
4.2.2 Validation on an Unknown Environment 30

4.3 Discussion . 33

5 Conclusions 37

References 38

A Appendix 1

6

Symbols and abbreviations

Symbols

FN Coordinate frame with annotation N

TNK Transformation from coordinate frames N to K

Abbreviations

absREL Absolute Relative Error
API Application Programming Interface
CNN Convolutional Neural Network
FOV Field of View
fps Frames per Second
iMAE Mean Absolute Error of the inverse depth [1/km]
I/O Input / Output
iRMSE Root Mean Squared Error of the inverse depth [1/km]
LiDAR Light Detection and Ranging
MAE Mean Absolute Error [mm]
RGB Red Green Blue
RMSE Root Mean Squared Error [mm]
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
SRS Software Requirements Specification
TF Transformation
UAV Unmanned Aerial Vehicle

1 Introduction

The term hallucination is defined as “an experience involving the apparent perception
of something not present.” [18]. This might not seem relevant to robots, seeing as
hallucination has implicit human connotations. In the context of this thesis however,
the definition seems appropriate. Imagine the world as humans perceive it; we are
constrained by our senses such as vision, hearing and touch. These senses are the
means by which we interact with our environment. Now imagine a world from the
perspective of a robot; it too is constrained by its senses. In this context, the robots
senses are comprised of the sensors given to it; cameras with different modalities or
range finders. For example, a robot equipped only with a gray scale camera cannot see
color; it does not exist from its perspective. But what if it could infer color? The hal-
lucinating analogy stems from this case. This work aims to investigate if robots would
be able to perceive something that, to them, is not there. Specifically, we want to
explore whether inferring full resolution depth maps from 2D LiDAR scans is possible.

Most, if not all mobile robots come equipped with a range finding devices, usu-
ally LiDARs which can range from 2D to 3D versions. LiDARs have high accuracy
and a long sensing range, and as such have been incorporated in a wide range of
robots, autonomous vehicles and even UAVs [2,14]. The 3D version tends to suffer
from low framerate [9] while the 2D versions boast a relatively fast scan rate, capable
of much higher frames per second (fps) than regular cameras along with a 360° Field
of View (FOV). Given that 2D LiDAR scanners are generally cheaper and have a
lower data dimensionality, they have become the dominating device for localization,
mapping and navigation on various indoor mobile ground platforms [3]. In tandem
with LiDAR scanners becoming more common and with the advent of deep learning,
research into ascertaining more information from them has also grown, specifically
completing sparse depth images. The motivation for this research is autonomous
scene recognition to use in obstacle avoidance, robot grasping and image classification.
The conventional approach for robots to faithfully recognize their surroundings is to
use either a camera in conjunction with a 2D/3D LiDAR, a high resolution depth
camera or a stereo camera, although the latter two methods are expensive and less
robust, respectively [9]. Information is then gathered through sensor fusion, using
the different modalities to obtain a variety of information about a given scene. Due
to the higher data dimensionality brought on by utilizing different sensor modalities
and the information redundancy that goes along with it, the computational costs of
processing this information rises.

The approach explored in this thesis aims to enable scene and shape detection
to be used in indoor obstacle avoidance. It would greatly reduce the amount of data
and the cost of sensing equipment currently required to safely navigate a mobile
platform. In addition, the 360° FOV of 2D LiDARs would enable corresponding
scene reconstruction which would otherwise be very cost prohibitive. Due to the low
data dimensionality, this approach could also prove useful in tele-operation, since
a single vector of distances could be used to reconstruct a scene as opposed to a

8

stream of images.

Recent works use deep learning to take on the sparse-to-dense task [1,2,3,14,15].
They use sparse 3D LiDAR depth data points, sometimes in conjunction with RGB
images to complete a full resolution depth map of a scene. The main challenge faced
here is the lack of dense ground truth data to train the deep learning networks on.
We intend to both address the lack of ground truth data and attempt to complete
depth images with a much lower input data density than has previously been tried.
We will develop an indoor simulation software capable of generating training data
and we will apply this data to an autoencoder and explore the performance.

1.1 Problem Statement

Many mobile robots use 2D LiDAR scans for navigation and obstacle detection.
These scans are accurate, have a small data dimensionality and a large FOV [1,3].
Their main drawback however is their inability to provide distances to obstacles
that have a greater occupancy than the 2D LiDAR can measure, such as glass
panels, tables, chairs or plants [3]. This thesis intends to explore the feasibility of
inferring a depth image from a corresponding 2D LiDAR scan for the purposes of
indoor navigation and obstacle detection. We will utilize and adapt deep learning
architectures which have been successful in sparse-to-dense depth prediction [1,3,4].

Deep learning methods require large amounts of data [7] and the selection of datasets
that include 2D LiDAR scans along with dense depth images are few and far between.
Gathering a large enough dataset with sufficient variance from the real world would
be too time consuming. Thus, one of the key components of this thesis is developing a
simulation environment capable of gathering the amount of data needed. A simulated
robot (Care-O-bot 4) will be the platform used to gather data. The robot has a 2D
LiDAR just above ground level which yields a 2D point map around its perimeter.
The software tools that will be used include ROS, Gazebo and Python. The core
problem for an automated simulation such as this is accurately representing an indoor
environment while maintaining the necessary variance to generate good training
data. The main software requirements then include random pathing of the robot
and pseudo-random obstacle placement.

Depth prediction is a well studied problem in computer vision and has grown with
the advent of deep learning [1,5,7]. The depth prediction problem is usually tackled
by combining different sensor modalities such as a 3D LiDAR complimented by an
RGB image, monocular camera image or stereo camera image [1, 2, 8] although
sparse-to-dense methods do exist with only a sparse depth image as an input [5,12,13].
Since these methods are optimized and designed to generate images from images,
we opt to project the LiDAR point rays onto the depth camera frame. This projec-
tion effectively creates a sparse depth image, making this an extreme case of the
sparse-to-dense problem, allowing us to utilize existing neural network architectures
that have proved effective in solving similar problems. It should be noted that this

9

problem is non-trivial since the pixel population of the depth images used in the
aforementioned methods ranges from 4 to 10 % of the image [2,15] while our average
pixel population rests at around 0.024 %.

To more accurately frame the problem, let us consider a 2D LiDAR and a depth
camera positioned on a robot. The LiDAR takes readings in a horizontal disk around
the perimeter of the robot. Let the coordinate frame of the robots base link be

⃗
FB,

let the coordinate frame of the LiDAR be
⃗
FL and let the coordinate frame of the

depth camera be
⃗
FC . The transformation from the coordinate frame of the camera

to the coordinate frame of the LiDAR will then be a 3x4 transformation matrix
TCL consisting of a 3x3 rotation matrix RCL and a 3x1 translation vector tCL. Let
us then define the output of the LiDAR that has N points as a vector pL in the
coordinate frame

⃗
FL such that

pL = [xi, yi, zi]
N
i=0

(1)

Where the points xi, yi and zi represent the euclidean coordinates of each point i

in the lasers scan range. Our goal is to explore if a mapping G can be found that
projects the LiDAR points pL to fill an image frame that corresponds to our ground
truth images. This will be discussed in more detail in 3.2.

To approximate this mapping G, a deep regression neural network is proposed.
Given the exploratory nature of this work, we are particularly interested in the
generalization capabilities of the trained network. To this end, we will qualita-
tively compare performance in simulated situations that differ from the training
environment. We will discuss the strengths and weaknesses of both the simulated
environment and the neural network and analyze the possible reasons for the varia-
tions in performance. From this analysis, further augmentation of the network or
simulation will be proposed.

In summary, this thesis:

• Discusses the problem of depth prediction and its various methods in detail.

• Contributes simulation and data processing tools to aid in data gathering
for indoor environments, grating access to a diverse set of situations for both
testing and training.

• Explores the feasibility of inferring depth maps from sparser data than state-
of-the-art methods.

• Proposes a method for inferring depth maps from 2D LiDAR scans.

• Provides experiments to evaluate the performance of the method and analyzes
its strong and weak points.

10

1.2 Structure of the Thesis

The thesis is structured as follows. Section 2 discusses related background literature,
covering challenges and approaches in the sparse-to-dense completion field. Section
3 will discuss in detail the tool usage, software construction and various design
concerns regarding the data acquisition in addition to introducing the tested neural
network structure and metrics. Section 4 presents the experiment settings and results,
consisting of tables containing error metrics, images to illustrate performance along
with an analysis of the results. Finally, Section 5 will present conclusions based on
the results analysis, literature review and software design. Suggestions will be given
on which aspects improve performance.

11

2 Background: Depth Completion

Depth prediction without sparse depth measurements is well studied. For example,
RGB-based depth prediction has been studied for over a decade while still being far
from practical [1]. For the purposes of this review, we will focus on methods that
include sparse depth measurements. A comparison will be made of performance of
state-of-the-art methods and a discussion of the impact, strengths and limitations
of augmenting sparse depth data with different sensor modalities. The discussion
will include two types of depth completion. The former relies on combining depth
data with either an RGB image or a monocular/stereo camera image. The latter
type utilizes only sparse depth scans. Although most works include methods for
both types, we will briefly discuss the impact of including RGB images. At this
time, there are no works that attempt a full resolution depth prediction using data
that has similar sparsity to ours and without a guiding RGB image. It is however
important to review available methods that aspire to achieve the same thing as us; an
accurate depth estimation from sparse data. In addition we will also look at the most
common datasets used in the field, namely the KITTI, Make3D and NYU datasets.
For reference, the top performing depth-completion methods with RGB-guidance
and depth-only are listed in Table 1. Non-published methods are omitted. We will
focus on comparing and evaluating approaches that are currently top performing on
the KITTI and NYU datasets since they provide a good benchmark.

Table 1: Top performing published methods on the KITTI dataset [21]. Each
algorithm performance is measured in terms of iRMSE (Root Mean Square Error of
the inverse depth), iMAE (Mean Absolute Error of the inverse depth), RMSE (Root
Mean Square Error) and MSE (Mean Absolute Error).

Ranking Method iRMSE iMAE RMSE MAE RGB

1. Sparse-to-Dense (gd) [2] 2.8 1.21 814.73 249.95 yes
2. HMS-Net v2 [14] 2.73 1.13 841.78 253.47 yes
3. Spade-RGBsD [15] 2.17 0.95 917.64 234.81 yes
4. HMS-Net [14] 2.93 1.14 937.48 258.48 no
5. Sparse-to-Dense (d) [2] 3.21 1.35 954.36 288.64 no
6. CSPN [10] 2.93 1.15 1019.64 279.46 yes

Note that the top methods propose approaches such that RGB-assistance is
optional. Obviously, the RGB-assisted variants tend to outperform the depth-only
ones, since the RGB images contain detailed shape information.

12

2.1 Challenges in Depth Completion

The task of predicting depth can be classified in to three categories; depth prediction,
depth upsampling and depth completion. Depth prediction is the task of inferring
the depth of a scene, most commonly an image, by utilizing sensor modalities that
do not yield depth measurements. Depth upsampling is the term for completing
non-sparse depth images. Finally, depth completion is the task of inferring the
depth of a whole scene by utilizing sparse depth measurements, often referred to as
inpainting. Both depth upsampling and depth completion may utilize RGB images
to improve accuracy.
The top performing methods mentioned in Table 1 all use some variant of a CNN
architecture to tackle the depth completion problem. These CNNs are classified
as deep learning networks and, as such, require a large amount of data to be effec-
tive [7]. The biggest problem depth completion faces is the lack of dense ground
truth data [1,2]. This is due to the nature of the most common sensors involved
in registering depth information, namely LiDARs. These are active sensors which
emit light and register the corresponding reflection, measuring travel time to obtain
distance. Currently, state-of-the-art sensors such as the Velodyne HDL-64e only
generates around 5% pixel density when its output is projected onto an image plane
as described in 3.2 [12]. Specifically, it only has a vertical and angular resolutions
of 0.4°and 0.8°, respectively. Furthermore, such sensors are expensive with the
aforementioned Velodyne sensor costing $75k [2]. In addition to the inherent sparsity
of depth data, these sensors typically have a long scanning time; a typical LiDAR
will produce detailed images at 10 fps as opposed to 60 fps on most cameras [9]. As
a consequence, the availability of dense ground truth depth data is scarce since it is
expensive and time-consuming to gather.

The sparse depth points also tend to be irregularly spaced [2,5]. Since common CNNs
do not discriminate between pixels that contain actual information or not, they tend
to be sensitive to sparse inputs, specifically they do poorly when finding a depth map
that is consistent with the sparse input [5]. Recent works have provided solutions
to this problem by developing sparsity invariant convolution methods [13, 14, 15].
Conversely, [2, 10] propose using classical CNNs with guiding frameworks to solve
the sparsity sensitivity while [12] proposes implementing a CNN with normalized
convolutional layers in tandem with traditional convolutions to deal with sparse
depth data and dense RGB images, respectively.

2.2 Methods in Depth Completion

With the advent of deep learning facilitated by increased computing power in latter
years, depth prediction via RGB has improved immensely since one of the first
proposed methods in 2006 [17]. However, we will constrain our review to methods
that utilize depth data since they outperform any RGB-only method and are more
relevant to this work. We will systematically review the top methods utilizing RGB
and sparse depth images in Table 1.

13

Currently, [2] is the top performing method and proposes a deep regression model.
Its architecture is that of a bottleneck autoencoder where the encoder consists of
four 34-layer ResNet [11] blocks and the decoder is made up by six 3x3 transposed
convolution blocks. Unlike in our structure, the output of each ResNet block is skip-
connected to its corresponding decoder block [2]. If RGB images are available, Ma et
al. also propose a self-supervised training framework which uses an additional spa-
tially nearby RGB image to provide supervision signals. Because of the network depth
and skip connections, it acquires greater detail than other top performing methods [2].

Instead of a guiding framework, [15] proposes a convolution that explicitly evaluates
observed pixels, i.e. pixels containing information, and shows that it outperforms
regular convolutional layers across sparsity levels. This convolution can be formulated
as in [14] such that output features at each location z(u, v) are generated by

z(u, v) =
Σk

i,j=−kmx(u + i, v + j)w(i, j)x(u + i, v + j)

Σk
i,j=−kmx(u + i, v + j) + ϵ

+ b (2)

where w is the convolution kernel, b is a bias vector, trained via back-propagation.
Then x is a sparse depth image and m is a trained sparsity mask that records
the existence of input features at each location (u, v). In addition to the sparse
convolution operator, [14] also proposes additional sparsity invariant operations such
as summation, upsampling and concatenation. In their work, [14] attains the second
best ranking on the KITTI dataset, but it is to be noted that [2] uses additional
temporal information in their supervision scheme and [14] outperforms [2] when
utilizing depth-only approaches. For our work, both approaches seem to have utility.
Since using extra temporal information decreases the sparsity of data used to generate
each full depth image and the sparsity invariant operations address it directly.
The approach presented in [12] proposes implementing a CNN with normalized
convolutional layers in tandem with traditional convolutions to deal with sparse
depth data and dense RGB images, respectively. They also claim that traditional
CNNs cannot generalize when the sparsity level is changed, which is challenged by [15].

The fifth ranked method on the KITTI benchmark however claims that the sparsity
invariant method, more specifically the mask input, might be redundant and propose
a solution which uses generic CNNs, claiming that they can simply learn where valid
input data exists [15]. They state that the masking approach is that since valid
outputs are scaled, the mask becomes entirely valid at deeper layers in the network,
making it redundant. The method [15] proposes is a slightly adapted version of
NASNet [16] and incorporates a sparse training strategy that varies sparsity of the
inputs during training. At the time of publishing, they were ranked first on the
KITTI benchmark. This approach is interesting since it shows that conventional
CNNs can be effectively utilized while even preserving sharp edges in predicted
images while being simpler to design.

The eighth ranked method proposes a slightly different approach from the rest,
where the bulk of their information comes from an RGB image. They introduce a

14

convolutional spatial propagation network which embeds sparse depth data into the
propagation process, preserving input depth values in the final predicted depth map
[10]. This method attained a significant 30% improvement, at the time of publishing,
over the state-of-the-art methods while also being faster. Currently, this method is
outperformed in both accuracy and speed.

Completing depth map via 2D LiDAR has only been attempted with the aid of
RGB images [8]. Thus, relevancy of the background literature stems from solutions
presented specifically to tackle sparsity of depth inputs. In [8], a novel approach
for depth estimation via 2D laser scanner is introduced. Although this work is old
compared to the state-of-the-art methods discussed, it is still worth a note since it is
the only method that proposes a 2D LiDAR, albeit in conjunction with RGB images,
to estimate a depth map. Based on the approach in [17] the method proposed in [8]
stretches the sparse depth values vertically over the whole image and concatenates it
with an RGB image before running the inputs through a ResNet-based autoencoder.
They showed a substantial improvement over using previous RGB-only methods.

2.3 Impact of RGB images

As can be seen in Table 1, we see that using an RGB image in tandem with the
sparse depth data consistently outperforms versions that use depth only. This makes
sense intuitively since a full resolution RGB image contains a lot of information
regarding shape. As such, all of the methods discussed use RGB for guidance or
have a framework that offers the option. This, however may not always be the
case. Results from [1] indicate a decreasing performance gap between RGB guided-
and depth only versions of their network as the number of depth samples increases,
showing that RGB+depth and depth-only variants have the same performance at
around 1.5% pixel density of the sparse depth input. This finding is corroborated
by [15] who show a similar performance gap decrease when performing their own
ablation study. They do however, introduce early- and late-fusion schemes in which
RGB images are incorporated into their network and the results show that an early
fusion of RGB causes the network to almost completely ignore the information from
an RGB image [15].

15

3 Tools and Methods

This chapter discusses development of the simulation software, its auxiliary scripts
and the chosen network structure. We will discuss the tool choices, justify them and
propose viable alternatives if they are available. The data processing will also be
discussed along with some methods and assumptions that make training the network
easier. A comprehensive list of the tools used and their functions can be found in
Table 2.

Table 2: Software tools and their function

Care-o-bot 4 A mobile robot designed as an assistant. We use a simulated
model equipped with virtual sensors such as a 2D LiDAR and
depth camera.

Gazebo A robot simulation software capable of simulating user-created
environments, complete with a physics engine, graphical in-
terface and a programmatic interface for ROS. Used to build
environments and populate them with objects.

Matlab Numerical computation software. Used for pre-processing
inputs to the simulation environment.

Python High-level programming language with which the simulation
and post-processing are built.

PyTorch An open source machine learning library for Python.
ROS A framework for writing robot software. Used for data gather-

ing, environment mapping and automatic path planning within
the simulation.

The open source Robotic Operating System (ROS) is the de-facto standard framework
for robotics. Gazebo is a simulation environment developed to work directly with
ROS. We decided to use these tools for the breadth of functionality and popularity
within the robotic community. However, the main drawback of these tools is their
volatility; some APIs have functions that are not supported, the documentation can
be poor and interfacing with the python language is unstable.

ROS has support and APIs for C++, Python and Matlab. Since there are no
real-time concerns with this software, which would have made C++ the more sensible
choice, we chose to use python because it is easy-to-use and more flexible than
Matlab. Pytorch was chosen for its ease of use compared to the TensorFlow library
which is its main alternative. Particularly, Pytorch was chosen because of its data
loading scheme which allows for easier customization and manipulation of training
data.
The products of this thesis include many scripts with different functionalities. For
reference, they are listed below in table 3. For more a detailed user guide, control
flow scheme and API, see Appendix A.

16

Table 3: Created scripts, their inputs/outputs and functions

Name Input Output Description
extract_from_bag.py .bag file I/O tu-

ples of
depth- and
projected
laser point
images

Reads depth images and laser scans,
synchronizes them and projects the
laser points on the depth camera im-
age frame.

make_train_csv.py Paths to
depth and
laser image
locations

.csv files
containing
paths to
I/O tuples
for train-
ing and
validation

Splits depth and laser image tuple loca-
tions into training and validation .csv
files.

run_robot.py .csv files
containing
allowed co-
ordinates
for goals
and objects

N/A Core of the simulation control flow.
Handles object spawning, goal broad-
casting, camera facing and the robot
state

prepmap.m .pgm pic-
ture of a
map

dilated
.pgm pic-
ture of the
map

Dilates boundaries and colors pixels
within them.

getcoords.m .pgm
picture
marked
with al-
lowable
nav coordi-
nates and
.yaml file

.csv file Converts marked pixels to spatial co-
ordinates for navigation in ROS and
Gazebo

17

3.1 Simulation Software Description

The reason for building a simulation software stems from the lack of comprehensive
indoor data sets with appropriate sensor modalities and the prohibitive time cost
of gathering such data with the real Care-o-Bot 4. An advantage of a simulation
environment such as this is the access to near on-demand testing environments. This
is particularly useful when investigating the performance of neural networks that
are trained in this type of simulation. The software allows a user to generate and
customize differing environments in order to see if a trained network has generalized
and also facilitates user-testing. A drawback is that the training data and resulting
networks are not immediately transferable to the real-world. This problem concerns
the discipline of transfer learning, but is out of the scope if this work.

In this context, it is worth mentioning the recently released Gibson environment
[20]. It includes detailed scans of over 1400 indoor floor spaces and 572 full buildings
with numerous sensor modalities including dense depth images. It does not include
LiDAR scans but this can be worked around by sampling the depth image to create
a “fake” LiDAR scan. In our case, we utilize 2D LiDAR scans and project the
points on to the image plane as is described in 3.2. The Gibson environment is
detailed and comes with a variety of robot models but it lacks customization potential
as the environments are scanned from the real-world and are static. The Gibson
environment boasts many enticing qualities, but we do not use it since the release
was after the start of this work and support for it is lacking because of how new it is.

3.1.1 Requirements and Challenges

This Section will discuss the software design, covering functionality, usage and
challenges for all components of the system. The functionality is such that given
a known map to navigate, the software shall spawn a number of obstacles with
either pseudo-random or completely random placements. An option for a static,
predetermined map configuration shall also be available. The robot shall then be
given a random point on the map to navigate towards, keeping its camera facing the
same direction it is driving. Once the robot either reaches its goal or stops moving,
the current obstacles shall be deleted and new ones spawned with pseudo-random or
completely random placements. The robot shall then be given a new random point
on the map to navigate towards.

To facilitate these requirements, we utilize ROS in tandem with Gazebo and
a Python script issuing commands. The main issues that had to be solved when
making this system include random goal points, random obstacle placement, the
robot’s camera facing, catching instances where the robot gets stuck in the simulation
due to collisions and working around the limitations of the built-in functions. Below,
we will discuss these problems, their cause and how they were ultimately solved.

Random goal points

ROS offers a rudimentary automatic path planner which enables broadcasting a set
of coordinates for the robot to navigate towards. The path planner consists of a
global and local planner where the global one plans a preliminary path to the goal

18

and the local planner continually plans a path in the robots near vicinity, re-planning
according to obstacles. The global path planner requires the robot to have complete
information about the map to be navigated. Because of this, a user must build a
map in Gazebo and manually navigate the robot through it using SLAM to acquaint
the system with the map. This SLAM mapping produces an image of the map along
with a .yaml file that specifies coordinate origin and resolution.

If the path planner is given an unreachable goal, it will throw an error and send
the robot into a time consuming recovery mode, overriding all other commands while
it is being executed. Since we want the robot to move while gathering data we can
never issue coordinates that the robot cannot reach. To solve this, we made a Matlab
script that takes in the outputs of the initial SLAM mapping mentioned above. It
dilates boundaries on the image to close off open doors or paths and then translates
all pixels that are inside the boundaries to coordinates using resolution information
from the .yaml file. This script also facilitates a user manually marking allowed
pixels (using GIMP for example) which can be advantageous if more customization
is required.

Random obstacle placement

The goal here is to facilitate obstacles spawning randomly in the simulation. Given
the context in which we are designing the software, the problem here is completely
random obstacle placement. Such placement is not realistic and would not produce
good training data. Instead, we want the obstacle placement to be random, but
within reasonable bounds. This is an ambiguous requirement but we can define
it as random placement of objects within areas where humans would put them,
accompanied by a few completely random placements for variance of obstacle views.
So the problem becomes: how to identify areas in which furniture and obstacles are
likely to appear? One option is to have a software learn object placements from
floor maps. The unavailability of such maps, however, prompted us to have a human
stipulate where furniture and obstacles should appear. This is done by having a
person mark the desired places and feeding the resulting image to the getcoords.m

script shown in Table 3. After some preliminary testing we noted that objects had
a tendency to spawn inside walls and each other. This is because Gazebo sets the
default object state to static which means that the objects become unmovable in the
simulation causing collisions to have no effect. This is a problem since both cases
represent unrealistic scenarios, i.e. stacked furniture is rare enough to discard as a
possibility and a table passing through a wall is unlikely (although the probability is
non-zero [19]). Setting the object state to non-static allows the physics engine to
resolve collisions and causes objects to bounce off each other in case they occupy the
same space. To prevent any objects from spawning on top of each other, we simply
keep track of all positions and force the software to re-generate a position if it is too
close to any already-chosen positions.

Camera Facing

ROS does not incorporate functionality that keeps robot models facing toward their
trajectories, save for non omni-directional robot models. For this problem, consider

19

the xy-plane to be the floor and the robot facing to be an arbitrary vector with an
angle around the z-axis. To solve this we employ a thread that runs when the robot
has been issued a goal. This thread periodically registers the robot position xr, yr and
the robot facing θr. It then calculates a vector spanning from the previous position
to the new position. This vectors angle around the z-axis is then calculated and
compared to the current robot facing θr. A yaw-command is then issued accordingly.
One thing to note is that while the yaw-command is being issued, the robot stops
all other movement. This happens because any user-issued movement command
overrides the path planner.

Collisions

During initial testing of the software we noted that a robot-to-obstacle collision
would cause a positional mismatch between ROS and Gazebo. This is likely due
to ROS using the wheel rotation for position while Gazebo uses the robot models’
absolute position. This causes the global path planner to fail since the robot can
no longer localize itself. In order to avoid colliding, ROS utilizes a cost map which
takes in appropriate sensor modalities and creates an area around detected obstacles
which the robot will try to avoid. Simply put, the path planner receives a numeric
cost for any path segment it plans, depending on how close it goes to an obstacle.
By default, the only sensor used to create a cost map is the 2D LiDAR. In our
case, we noted that a cost map consisting of only the 2D LiDAR would fail when
navigating past obstacles that have a greater occupancy than the laser can detect.
The laser is positioned at around shin-height and will only see the legs of tables for
example. According to a cost map generated with only this info, the robot might
plan a path between the legs of a table. Simply increasing the cost map dilation is
insufficient since it closes off otherwise accessible paths leading to the same global
path planner failure that we want to avoid. The solution is incorporating the robots
depth camera into the cost map. This requires modifying the navigation configuration
of the virtual Care-o-bot 4 model. The cost map can include different layers and this
solution simply adds a voxel layer which takes its observation source as the robots
depth camera. We will not go into the details of this modification. For reference,
all parameter modifications are marked as such in their respective .yaml files and a
further information about the modifications can be found in Appendix A.

Built-in Function Limitations

This simulation uses an in-built client (SimpleActionClient) to publish navigation
goals to the robot. This client has a major drawback in that it does not handle
instances where the global path planner fails. This is because the method that
publishes a goal to the robot initiates a thread that blocks all other execution until
the robot has reached its goal. Thus, it does not handle situations where the robot
is blocked from navigating towards its goal, i.e. a corridor may be blocked by an
obstacle. In order to solve this, we created our own version of a blocking thread. This
thread is the same one as is mentioned above under Camera Facing. The exit-criteria
for this thread is simply to exit if the robots current and previous positions have
not diverged over a two second period. For reference, a simple illustration of the

20

control-flow can be found in Appendix A.

Limitations of Gazebo

Two major drawbacks encountered when setting up simulations in Gazebo are the
lack of support for obstacle shapes and its Python API volatility. Namely, Gazebo
freezes Python when calling the delete_model service. This produces no error and
the software simply freezes for an indefinite time. This is still an open issue on the
ROS forums. Also, most complex models found for Gazebo do not present correctly
in simulation when scanned by the LiDAR. For all of the non-stock models tested,
the LiDAR simply sees their bounding boxes and not the actual legs of tables or
chairs.

3.2 Data Collection

In this work, we gather data from two virtual sensor modalities, full-resolution depth
images and 2D LiDAR scans. These two data types have different dimensions, 3D
and 2D, respectively. The sparse-to-dense problem is conventionally tackled by
utilizing neural network structures that map images to images. The depth infor-
mation used is usually obtained from a conventional (3D) LiDAR or by sampling
a full-resolution depth image, barring the approach in [8] which uses a 2D LiDAR
scanner. A well performing neural network structure could be rewritten to take a
vector containing all distances from a 2D LiDAR as an input. This approach would
require time-consuming modification of any network structure that is to be tested in
addition to manually fitting the LiDAR’s FOV to the camera’s. Also, in this case,
the network would have to learn how to project the laser scan points onto an image
plane since the LiDAR output is just a vector with numbers representing ranges from
each scan angle. So the network would have to learn the depth camera parameters
and the transformations from the depth camera coordinate system to the LiDAR
coordinate system. So the above mentioned approach is not only time consuming
but also makes the neural network training more difficult.

Luckily, we have access to the information needed to project the laser points onto an
image that corresponds to the images taken by the depth camera. Consider a single
laser scan pL given in eq.(1) that consists of 3D points in the laser coordinate frame

⃗
FL. Let us also define the parameters of the depth camera with a coordinate frame

⃗
FC as a pinhole model where the camera matrix A is given as

A =

⋃

⎢

⨄

fx 0 cx

0 fy cy

0 0 1

⋂

∑

⎦
(3)

where fx, fy and cx, cy are the cameras focal lengths and principal point offsets,
respectively. The distortion coefficients d for the camera are assumed to be zero.
Recall that the transformation from the camera coordinate frame to the LiDAR
coordinate frame is TCL = [RCL|tCL]. The projection of the 3D points pL onto the

21

depth camera image plane is then given by

s

⋃

⎢

⨄

u

v

1

⋂

∑

⎦
= ATCL

[

pL 1
]T

(4)

Where u, v are the pixel coordinates of the image and s is some arbitrary scal-
ing factor. Note that the raw data from the laser comes in the form of a vector
containing the range in meters where each cell increment corresponds to a rotation
of the laser beam around the z-axis. We can then simply insert the range value
into their corresponding pixel coordinates as the intensity and normalize the image.
The projection described in eq. (3) is facilitated by the cv2 library for python. All
parameters necessary for this transformation can be obtained via the ROS tf-tree
and camera topics which are recorded during simulation.

In this context, it is worth mentioning that the simulation gathers laser scans
at a much higher frequency than depth images. The extract_from_bag.pyscript
used to get the images gathers time stamps of each depth image and laser scan to
synchronize them. Because of the higher frequency of the laser scan it might be
feasible to associate each depth frame with more than one laser frame for training a
neural network. For example associating a ground truth depth image with ten laser
scans, gathered before and after the depth image. Given the extreme sparsity of the
input data, an approach like this would multiply available input data points by up
to tenfold. This approach is however, out of the scope of this work.

23

These metrics are widely used and well defined. This work utilizes one more metric
which is described as "δk: percentage of predicted pixels where the relative error is
within a threshold" [1]. Defined as

δk =
card({ŷi : max{ ŷi

yi

, yi

ŷi

} < 1.25k})

card({yi})
(9)

where card is the cardinality of a set. δk ranges from 0 to 1 where 1 is the best
prediction [1].
These metrics are documented during training and validation for each ground truth
and prediction image pairs. The MSE criterion was used during training. Section
4.3 will discuss and analyze the efficacy of these and attempt to shed light on which
metric performs well or poorly in different situations.

24

4 Experiments and Results

Up until now we have reviewed state-of-the-art methods in depth completion, defined
and discussed the simulation, data processing and network structure. Let us explore
the performance and ascertain whether it is feasible to infer depth maps from the
extremely sparse data we use. This chapter will discuss the network training on a
dataset gathered via eleven simulation runs, each lasting for 12 hours. We will also
evaluate the performance on two validation sets, utilizing the simulation software’s
flexibility to quickly build new and different environments.

These experiments are made to answer questions of performance. Particularly,
we want to gain insight into how the network structure handles the sparse input data
and if the training set is sufficient in both detail and scene variance. To this end,
we will use the metrics described in Section 3.3.1 and evaluate predicted images in
the context of visual inspection, i.e. we will look at the predicted images, determine
if the metrics are good or poor and analyze if some of them fail when compared
to visual appraisal. Furthermore, we will inspect chosen cases where the predicted
images are either poor or good and give an analysis based on both the metrics and
network structure.

4.1 Experiment Settings

The training data was gathered in the simulation software described in Section 3. A
map layout was designed in Gazebo to mimic an indoor office space, hereafter referred
to as the TUAS world. The exploratory nature of this work pushed us to gather
training data in a static environment to ascertain whether the auto encoder could
even learn a simple setting. The simulations yielded 59741 I/O tuples consisting of
time-synchronized projected laser and depth images with a resolution of 640x480.
The set was randomly split into training and validation tuples numbering 53841 and
5900, respectively. The training tuples were then randomly horizontally mirrored
during training, effectively doubling the set. An epoch represents one forward and
one backward pass of all training I/O tuples. This means that with a batch size of
10 and roughly 50 thousand I/O tuples, one epoch would take 5000 iterations to
complete. After preliminary runs of the network, we found that the metrics (MSE,
RMSE, MAE, etc.) plateaued after around 170 epochs as can be seen in Figure 3.
The chosen network parameters are presented in Table 4.

25

Table 4: Network parameters. *Learning rate decays by a factor of 10 every 40
epochs.

Number of epochs 200
Batch size 10
Number of workers 4
Learning rate 0.01*
Momentum 0
Weight decay 0.0001
Criterion MSE
Optimizer Adam
ResNet layers 18
Decoder upconv

Figure 2: Metric progression during training.

To analyze the network performance, two validation testing sets were generated.
One was generated in the same manner as the training set with different robot goals
and trajectories. The other validation set, hereafter referred to as the Sandbox world,
was generated in a smaller map layout with different obstacle placements and corridor
width.

27

Table 5: Summary of error metrics for each figure

fig MSE RMSE absREL MAE δ1 Visual
4 0.2730 0.5225 2.5208 0.4422 0.2425 Bad
5 0.0786 0.2803 5.5107 0.2418 0.1268 Bad
6 0.0046 0.0681 0.0286 0.0208 0.9766 Good
7 0.0331 0.1820 0.2994 0.1115 0.5121 Very bad
8 0.0056 0.0748 0.0555 0.0353 0.9261 Good, details lacking
9 0.0266 0.1631 0.3024 0.1055 0.5805 Ghost obstacle
10 0.0201 0.1417 0.0855 0.06019 0.8602 Overdraw
11 0.0618 0.2486 0.3047 0.1423 0.7611 Very bad
12 0.0065 0.0805 0.0736 0.0305 0.9065 Good
13 0.0090 0.0947 0.0265 0.0193 0.9850 Good
14 0.0104 0.1018 0.0907 0.0585 0.9270 Low contrast
15 0.0060 0.0774 0.0842 0.0381 0.8792 Training artifact

10 cm which is a good margin given the environment scale. The variances are all
an order of magnitude lower than the average except for the absREL metric. This
indicates that the environment might be too monotonous such that scenes are very
similar. The worst and best values however indicate that there is at least one scene
that the network cannot handle. Indeed, these cases are more than one and will be
discussed below.

Table 6: Results for TUAS validation

Metric average variance worst best
MSE 0.0154 9.4885e-04 0.2730 2.1247e-04
RMSE 0.0992 0.0056 0.5225 0.0146
absREL 0.1876 0.2212 5.5107 0.0112
MAE 0.0528 0.0045 0.4422 0.0052
δ1 0.8603 0.0409 0.0051 0.9997

Below, we will present predicted depth frames with the input and ground truth
for reference. The images are chosen both by the numerical metrics and by visual
appraisal such that both good and bad cases are shown. Every image contains, from
left to right; input, ground truth, prediction.

34

Figure 16: Histogram of the MSEs of TUAS and Sandbox environments. The image
count has been normalized.

Figure 16 shows that the high error cases do occur more frequently in the TUAS
environment. To confirm that these are close-up cases, we can inspect points of high
error in the MSE for the TUAS environment.

Figure 17: High MSE error cases in the TUAS environment.

The images belonging to peaks marked red in Figure 17 were inspected and
confirmed to be cases of close-up images which produce this high error. We also see
a large number of images with 0.1 MSE errors. These images are numerous so an
exhaustive visual check cannot be done on all of them. Looking at a few of them
however, we can hypothesize them to be scenes of corridors. So we have shown that
the difference in performance has a reasonable explanation.

Looking at the images, we can see that the network is able to generate walls and
corridors well, and, given that the laser’s range is longer than the camera’s, it has
also learned that points extending a certain range are to be interpreted as black or

35

unknown. In high contrast cases such as this (a black background), the network is
able to infer an approximate occupancy of obstacles as seen in Figures 6, 12 and 13,
since it knows that everything above a certain pixel value is out of range. Although
in low contrast cases, it performs more poorly as seen in 14. The explanation for this
might stem from the training environment not containing many of these cases since
obstacles were placed alongside walls and the robot always moves parallel to them,
rarely obtaining data points that encompass a view like this. The low contrast issue
is also characterized by blurry boundaries, [1] suggests that fine details are lost in
the bottleneck architecture of the network. This indicates that a greater breadth of
data is required and that skip connections might be warranted since they preserve
details in bottleneck architectures [3].
Figures 7 and 11 illustrate the visually worst kind of errors; prediction of gaps in a
solid background. Indeed, the RMSE is a good metric to go by when catching bad
predictions like this, since it penalizes large pixel errors more. It does however fail
when appraising an object that is close to the robot such that the difference between
a black background and the falsely predicted object becomes small.
In this context it is worth mentioning the nature of our ground truth data; the virtual
depth camera has a limited range and represents out-of-view parts of its output as
black pixels. Thus, it will produce images that contain a large portion black pixels
when viewing an open area for example. The implication of this is that the error
metrics include missing information, i.e. they calculate the difference between a
predicted pixel and a ground truth pixel that essentially contains no information.
This is a problem when calculating an error of false predictions that are very close
to the robot but where the ground truth has a black background. The prediction is
false, but the error becomes very small. This case is illustrated in Figure 15, note
the below average RMSE. This is also a problem when the network produces noise
and artifacts where the background is supposed to be black. This indicates that
representing unknown pixels as zeros is inadequate for this application, since it causes
any metric to produce low errors for close, falsely predicted obstacles.

Note that none of our error metrics take into account that some errors are worse than
others, i.e. overdrawing an obstacle into a column is not that bad for tele-operation,
but incorrectly placing black/unknown pixels into walls or obstacles is worse. Here,
an error metric that is sensitive to the error direction (i.e. is the predicted value
greater or lesser than the ground truth) might be warranted. However, placing black
holes or tears such as in Figure 12 in a prediction is likely a result of the training
environment where such features were inserted freely to mimic windows and open
doors. To strengthen the claim that a more diverse dataset is in order and that the
network has over fitted some characteristics of the training environment, Figure 15
shows a remnant of the training data set. Here we can see a prediction of windows
and doorways in the TUAS environment, which are not present in the unknown
environment. This case happens numerous times in the unknown validation set.

In light of the above discussion, we can say that the models reliability rests on
the training environment and the constraints of the laser range. The model con-

36

sistently produces correct predictions of hallways and corridors. Given unobscured
views, it also infers obstacle occupancy to a certain degree. Although it does not
predict obstacle occupancy to such a degree that even a human operator would never
collide. The model also struggles where a part of the view contains no information
because of the minimum range of the LiDAR, as seen in Figure 12. In the simulations,
we did not incorporate any model for noise in the LiDAR measurements. So this
model would not be transferable to the real world. The model also produces artifacts
from the training environment when applied to the unknown environment. From this
we gather that it generalizes poorly since it was trained on a static environment and as
such has low external validity. This indicates that a greater breadth of environments
and scenes is warranted.

37

5 Conclusions

In this thesis, we went over the motivations and problem structure for depth comple-
tion via 2D LiDAR. We reviewed relevant literature and assessed the state-of-the
art methods according to performance on two well known benchmarks. A simulation
environment was built, capable of flexible indoor data gathering and customization.
We tested an existing deep regression network, with a few modifications, to explore
the feasibility of inferring such complex scenes from such sparse data. The results
were evaluated and based on them, conclusions and suggestions regarding future
direction will now be discussed.
To answer the original question; is it feasible to infer depth maps from 2D LiDAR
data in a simulated environment? For a static environment, the answer is yes. The
results also indicate that this approach could be generalized to more varying envi-
ronments. The network tested in this thesis is relatively simple when compared to
state-of-the-art networks and still performed better than expected; it could learn
shapes of obstacles to an impressive extent when the input data sparsity is considered.
There are still some challenges to consider though.
Our results indicate that the network has over-learned some characteristics which is
not surprising considering that it was trained on data from a static environment for
exploratory purposes and because of the software limitations discussed in Section
3.1.1. We also note that our ground truth images have a limited range and set
unknown pixels to zero, while a lower pixel value indicates a shorter distance. Thus,
common error metrics cannot correctly identify possibly serious errors. Finally, the
blurriness of obstacle boundaries suggest that the bottleneck architecture of the
network may be discarding detail.

To address these challenges, let us discuss some propositions. The obvious so-
lution to over-fitting is increasing the data set variance. Sadly, the chosen software,
namely Gazebo does not facilitate this as is discussed in Section 3.1.1, also prior
to starting this work, we had no knowledge of how unstable the python API is.
When reviewing the current build of the software, it might be feasible to rewrite the
simulator script in C++. To circumvent these challenges, there are three possible
solutions: building custom obstacles that are compatible with virtual laser scanning
in Gazebo, using a more powerful simulator than Gazebo or utilizing the recently
released Gibson environment [20]. To address the unknown pixel value issue we
suggest inverting the ground truth images during training and then convert the
outputs back to the conventional format afterwards. Finally, to address the lost
details in the bottleneck network architecture, we add skip connections between each
corresponding encoding/decoding layers [3].

Given the increased interest in depth sensing for mobile platforms and the wide
availability of cheap 2D LiDARs, the motivation to delve further into this topic is
apparent. This thesis has provided a precursor to the infrastructure required for it
and a heading regarding the methods needed. We are still a ways off to practical
implementation but who knows? Maybe future robots will all hallucinate via laser.

38

References

[1] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse depth
samples and a single image,” IEEE International Conference on Robotics and

Automation, pp. 1–8, 2018.

[2] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-to-dense:
Self-supervised depth completion from lidar and monocular camera,” arXiv

preprint arXiv:1807.00275, 2018.

[3] J. Lundell, F. Verdoja, and V. Kyrki, “Hallucinating robots: Inferring obstacle
distances from partial laser measurements,” arXiv preprint arXiv:1805.12338,
2018.

[4] B. Yang, S. Rosa, A. Markham, N. Trigoni, and H. Wen, “Dense 3d object
reconstruction from a single depth view,” IEEE transactions on pattern analysis

and machine intelligence, vol. abs/1802.00411, 2018.

[5] N. Chodosh, C. Wang, and S. Lucey, “Deep convolutional compressed sensing
for lidar depth completion,” arXiv preprint arXiv:1803.08949, 2018.

[6] A. Eldesokey, M. Felsberg, and F. S. Khan, “Propagating confidences through
cnns for sparse data regression,” arXiv preprint arXiv:1805.11913, 2018.

[7] X.-W. Chen and X. Lin, “Big data deep learning: challenges and perspectives,”
IEEE access, vol. 2, pp. 514–525, 2014.

[8] Y. Liao, L. Huang, Y. Wang, S. Kodagoda, Y. Yu, and Y. Liu, “Parse geometry
from a line: Monocular depth estimation with partial laser observation,” in
IEEE International Conference on Robotics and Automation, pp. 5059–5066,
2017.

[9] L.-K. Liu, S. H. Chan, and T. Q. Nguyen, “Depth reconstruction from sparse
samples: Representation, algorithm, and sampling,” IEEE Transactions on

Image Processing, vol. 24, no. 6, pp. 1983–1996, 2015.

[10] X. Cheng, P. Wang, and R. Yang, “Depth estimation via affinity learned with con-
volutional spatial propagation network,” in European Conference on Computer

Vision, pp. 108–125, Springer, Cham, 2018.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770–778, 2016.

[12] J. Hua and X. Gong, “A normalized convolutional neural network for guided
sparse depth upsampling.,” in International Joint Conferences on Artificial

Intelligence, pp. 2283–2290, 2018.

[13] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger, “Sparsity
invariant cnns,” arXiv preprint arXiv:1708.06500, 2017.

39

[14] Z. Huang, J. Fan, S. Yi, X. Wang, and H. Li, “Hms-net: Hierarchical multi-
scale sparsity-invariant network for sparse depth completion,” arXiv preprint

arXiv:1808.08685, 2018.

[15] M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and F. Nashashibi, “Sparse
and dense data with cnns: Depth completion and semantic segmentation,” in
2018 International Conference on 3D Vision, pp. 52–60, IEEE, 2018.

[16] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” Computing Research Repository,
vol. abs/1707.07012, 2017.

[17] C. Cadena, A. R. Dick, and I. D. Reid, “Multi-modal auto-encoders as joint
estimators for robotics scene understanding.,” in Robotics: Science and Systems,
vol. 12, pp. 1–9, 2016.

[18] “Google dictionary.” https://www.google.com/search?client=ubuntu&hs=

T1&channel=fs&q=Dictionary#dobs=hallucination. Accessed: 2018-10-20.

[19] D. Griffiths, Introduction to Quantum Mechanics. Pearson international edition,
Pearson Prentice Hall, 2005.

[20] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese, “Gibson env:
real-world perception for embodied agents,” in Computer Vision and Pattern

Recognition, IEEE, 2018.

[21] “Kitti depth completion ranking.” http://www.cvlibs.net/datasets/kitti/

eval_depth.php?benchmark=depth_completion. Accessed: 2018-10-24.

https://www.google.com/search?client=ubuntu&hs=T1&channel=fs&q=Dictionary#dobs=hallucination
https://www.google.com/search?client=ubuntu&hs=T1&channel=fs&q=Dictionary#dobs=hallucination
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion

1

A Appendix

This Appendix is intended to document the software functions, classes and usage.
The general structure of the software will be covered along with usage guidance and
pitfalls. To use the software, the following step-by-step guide is presented along with
an illustration shown in Figure A1. The reader is assumed to have rudimentary
knowledge of ROS and Gazebo.

1. Design a map layout in Gazebo. This can be done via drawing freely or
importing an image as a template. Save the resulting map as a .world file.

2. SLAM the .world file in Rviz. This is done by loading the map in Rviz and
manually navigating the robot around the environment until it has gathered
data points that encompass its operating space. Save a .png picture of the map
and a .yaml file that contains resolution and coordinate origin information.

3. Make copies of the .png picture from the SLAM and mark allowable coordinates
for goals and different obstacle types using software such as GIMP. Run the
Matlab script getcoords.m to get .csv files that contain allowable coordinates.
Conversely, if the user wants an automatically generated list of goal coordinates,
run the script perpMap.m and then getcoords.m.

4. Launch Gazebo and Rviz with the .world, .png and .yaml files. A launch file
env_world.launch is provided. Once the simulators are running, provide the
run_robot.py script with paths to the coordinate .csv files and run it via the
rosrun command for testing or via launch file record_data.launch. It will
run until interrupted.

5. Given that the launch file record_data.launch was used to initialize, an output
.bag file is available after simulation. Provide the script extract_from_bag.py

with appropriate paths to the .bag file, topics to monitor and output directories.
It will extract and synchronize depth images and laser data projected onto an
image plane that corresponds to the depth images.

4

Figure A3: Examples of marking coordinates on SLAM mapped image. Top: original
map, middle: marked goals, bottom: marked furniture placements.

5

run_robot.py

This script automates goal broadcasting and object spawning/deletion for a simulation
in ROS/Gazebo. It needs to be supplied with paths to .csv files of allowable robot
goal coordinates and any coordinates for various obstacle types such as tables, chairs,
clutter, etc. These .csv files are generated via the getcoords.m script, described
below in this document.

class Block:

Encapsulates format for models in Gazebo.

• Class functions:

• def __init__(self, name, relative_entity _name)

– USAGE: Block(name, relative_entity _name)

– INPUT: name is a valid model name as it appears in Gazebo. rela-
tive_entity_name is a custom name.

– OUTPUT: Constructs a Block class, encapsulating a format for models
in Gazebo.

class ModelPos:

Class that gets and manages model coordinates and orientation in Gazebo. Add
models by inserting a valid Gazebo model name into the _blockListDict list.

• Class functions:

• def show_gazebo_models (self)

– USAGE: models = show_gazebo_models ()

– INPUT: N/A. _blockListDict must contain at least one valid model

– OUTPUT: Returns the x- and y- coordinate position (in meters) and
orientation (around the z-axis in degrees) of all models in _blockListDict
such that [x,y,θ]

class Blocker:

Class that encapsulates position and orientation change of the robot and initializes a
thread conditioned on those parameters.

• Class functions:

• def __init__(self)

– USAGE: Blocker()

– INPUT: N/A.

6

– OUTPUT: N/A. Initializes a threading condition

• def pathcatcher(self, goal)

– USAGE: catch = pathcatcher(goal)

– INPUT: A list where the first two values list[0] and list[1] contain x- and
y- coordinates, respectively, in meters.

– OUTPUT: Blocks execution of other functions until exit. Returns False
if robot is mobile. Returns True if robot is immobile.

Global functions

• def movebase_client()

– USAGE: run = movebase_client()

– INPUT: N/A

– OUTPUT: N/A. Selects random goals and coordinates for robot and
obstacles, publishes them. Repeats this operation everytime the robot
stops moving.

• def spawn_items(item_name, prodXml, numItems)

– USAGE: models = spawn_items(name, prodXml, numItems)

– INPUT: name is a list of model names. prodXml is a list of corresponding
model Xml file paths. numItems is either the number of objects to be
spawned or None. If None, the GENERALIZE?

• def delete_items(item_name)

– USAGE: delete_items(item_name)

– INPUT: A list of item names.

– OUTPUT: N/A. Deletes models contained in input list item_name.

• def getrandompoint()

– USAGE: goal, idx = getrandompoint()

– INPUT: N/A. Reads a global list of allowed goal coordinates for the
robot.

– OUTPUT: selected random goal and its list index.

• def spawn_items()

– USAGE: spawnedModels = spawn_items(item_name, prodXml, nu-
mItems)

7

– INPUT: item_name is a list containing names of items, prodXml is a list
containing paths to those items, numItems is the number of items desired.
If numItems is None, all items in item_name will be spawned.

– OUTPUT: A list of items spawned. This function will not spawn items
of the same type in close proximity to one another. It will also spawn
20% of objects in abnormal coordinates, which is a .csv file that the user
provides.

• def getobstaclepoint()

– USAGE: goal, idx = getobstaclepoint()

– INPUT: N/A. Reads a global list of allowed coordinates for a given model
type.

– OUTPUT: selected random obstacle coordinates and their list index.

• def proximitycheck(idx, selection)

– USAGE: isclose = proximitycheck(idx, selection)

– INPUT: idx is a list containing coordinate list indices of already-spawned
models, selection is an index from the same coordinates list.

– OUTPUT: True if selection is close to any index in idx. False otherwise.

8

extract_from_bag.py

This script extracts 2D LiDAR readings and depth images from a rosbag, synchronizes
them and returns corresponding image tuples. It contains only one method and is
used in the following way:

python extract_from_bag.py arg1 arg2 arg3

Where arg1 is the path to a .bag file to be extracted, arg2 is the name of the
depth camera ros topic and arg3 is the name of the laser ros topic.

• def find_nearest(array, value)

– USAGE: idx = find_nearest(array, value)

– INPUT: array is a sorted array of numbers and value is a number.

– OUTPUT: idx is the index of the number in array that is closest to value.

9

getcoords.m

This script is intended to generate a .csv file of xy-coordinates (in meters) from a .pgm
image of a map and a corresponding .yaml file. The script will read a chosen pixel
value which is marked by the user via Gimp and translate each pixel to coordinates.
To run this script, supply it with the following items:

• A path to a .pgm image of a map that is manually marked with allowable
coordinates (This .pgm image is an output from SLAM in Rviz)

• The resolution and origin coordinates from a .yaml file that corresponds to the
map (Also an output from SLAM in Rviz)

• Pixel value of the gray scale color used to mark allowable spots on the .pgm
image

• Name of output .csv file

prepMap.m

This script is intended to automatically identify a bounding box for an indoor floorplan
and generate a set of coordinates withing that bounding box. It will generate a .pgm
image containing the allowable coordinates of the map provided. To run this script,
supply it with the following items:

• A path to a .pgm image of a map with no manual markings (This .pgm image
is an output from SLAM in Rviz)

• The resolution and origin coordinates from a .yaml file that corresponds to the
map (Also an output from SLAM in Rviz)

• Name of output .csv file

10

Modifications

This section touches on the costmap modifications made to avoid obstacle collision
in simulation. By default, the costmap that ROS generates for the Care-o-bot 4
includes only its 2D LiDAR. Below is a list of parameter files that were modified
such that the costmap also considers the depth camera input. This enables the robot
to avoid colliding with objects such as tables. In each of these files, the changes are
clearly commented.

Table A1: Modified configuration files

/cob_ws/src/cob_navigation/cob_navigation_config/robots/cob4/nav/costmap_common_params.yaml
/cob_ws/src/cob_navigation/cob_navigation_global/config/global_costmap_params.yaml
/cob_ws/src/cob_navigation/cob_navigation_global/config/local_costmap_params.yaml
/cob_ws/src/cob_navigation/cob_navigation_local/config/global_costmap_params.yaml
/cob_ws/src/cob_navigation/cob_navigation_local/config/local_costmap_params.yaml

