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The European Organization for Nuclear Research (CERN) has agreed on a com-
mitment to minimize the environmental impact of the wide range of activities
the Laboratory carries out. A key measure is waste heat recovery (WHR), as
approximately 75 % of the power consumed in the electricity intensive particle
accelerator complex, is dissipated to the sky as waste heat by cooling towers.

A project for installing waste heat recovery to the cooling system of the Large
Hadron Collider (LHC) at LHC point 8 has started and is expected to be opera-
tional in the beginning of 2020, after the second LHC long shutdown in 2018-2019.
The operation of WHR causes a risk of temperature transients in case of unex-
pected WHR shutdowns. A dynamic simulation model of the cooling towers is
needed to verify robustness against these temperature transients. In this Thesis, a
thorough literature review of existing evaporative cooling tower modeling methods
is performed, and the hybrid modeling method presented by Jin et al. (2007), is
implemented to simulate the cooling towers at LHC point 8. The developed model
is validated against real operational data. To the authors knowledge, this study is
the first published use case of this evaporative cooling tower modeling method.

A selection of anticipated sudden WHR shutdown scenarios are simulated in virtual
commissioning environment with real programmable logic controller (PLC) to
verify robustness of the cooling system against sudden temperature transients. A
conclusion is that the cooling towers and their current control scheme is sufficient
in dampening the anticipated temperature transients. This knowledge allows the
WHR installation project to proceed.

Keywords: cooling tower, waste heat recovery, dynamic modeling, parameter
optimization, CERN
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Euroopan hiukkasfysiikan tutktimuskeskuksella CERN:illä on tavoitteenaan mini-
moida laboration aktiviteettien ympäristövaikutukset. Tämän tavoitteen saavut-
tamisessa lämmön talteenotto (LTO) on tärkeässä roolissa, sillä energiaintensii-
visessä hiukkaskiihdytinkompleksissa noin 75 prosenttia käytetystä sähkötehosta
haihdutetaan taivaalle jäähdytystornien kautta hukkalämpönä.

Toisen pitkän käyttökaton aikana vuosina 2019 - 2020 suuren hadronitörmäyttimen
(LHC) pisteelle 8 asennetaan lämmön talteenottojärjestelmä. Lämmön talteeno-
ton käyttö aiheuttaa riskin lämpötilavaihteluiden syntymiselle, jos hukkalämmön
vastaanotto katkeaa äkillisesti. Dynaaminen jäähdytystornien simulaointimalli
tarvitaan suuren hadronitörmäyttimen toiminnan kannalta kriittisen jäähdytysjär-
jestelmän luotettavuuden varmistamiseksi. Tässä diplomityössä esitellään kattava
kirjallisuuskatsaus jäähdytystornien mallinusmenetelmistä ja implementoidaan
Jin et al. (2007) julkaisema hybridi-menetelmä LHC pisteen 8 jäähdytystornien
simuloimiseksi. Malli validoidaan järjestelmästä mitattua dataa vasten. Tehdyn
kirjallisuusselvityksen perusteella tämä diplomityö on ensimmäinen julkaisu, jossa
tätä jäähdystornien mallinusmenetelmää sovelletaan käytössä olevan järjestelmän
simuloimiseen.

Järjestelmän lämpötilatransienttien vaimmenuskyvyn tutkimiseksi jäähdytystorni-
mallilla simuloidaan eri vuodenaikoina odetettavissa olevia lämmön talteenoton
pysähtymisiä virtual commissioning -ympäristössä, jossa todellinen ohjelmoitava
logiikka (Programmable Logic Controller PLC) ohjaa mallia. Simulointien tulok-
set osoittavat, että nykyinen jäähdytyskapasiteetti ja ohjauslogiikka vaimentavat
odotettavissa olevia transientteja tehokkaasti. Tämän tiedon perusteella lämmön
talteenottoprojekti voi edetä.

Avainsanat: jäähdytystorni, lämmön talteenotto, dynaaminen mallintaminen,
paramterioptimointi, CERN
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1 Introduction

Dynamic modeling is a common tool to solve engineering and business problems.
It involves building models, defining quantitative relations between variables and
interpreting phenomena by running numerical simulations on the models. In this
Thesis a dynamic cooling tower model is created and simulations ran to gain knowledge
of the effect of retrofitting waste heat recovery to the cooling system of the Large
Hadron Collider (LHC). Due to the complex and critical nature of the cooling system,
thorough understanding of the robustness is required, and only way to gain this
knowledge is a dynamic simulation study. In section 1.1 the problem is introduced,
and section 1.2 presents how the key concepts of this thesis, process simulation and
virtual commissioning are addressed in the literature. The objective of this Thesis is
discussed in section 1.3.

1.1 Problem

To minimize the environmental impact of the wide range of activities CERN carries
out in the course of its research on fundamentals of physics, an environmental
commitment has been agreed on (CERN 2018c). Due to the energy intensity of
activities related to high energy physics, waste heat recovery is a key measure to
increase the energy efficiency (Claudet 2017). Preparations have started for installing
waste heat recovery on the cooling sites, and the project is starting with a pilot at
LHC point 8, providing heat released by the LHC magnets and LHCb experiments
magnets for the use of the nearby french municipality of Ferney-Voltaire (Claudet
2017). At the early design phase of the heat recovery compatibility refit, CERN has
faced questions which raised an interest towards a simulation study: What is the
ability of the cooling towers and current control configuration to damp fluctuations
in the cooling water temperature caused by external disturbances to the waste heat
recovery plant and if any changes on the control configuration are required? The
cooling towers supply primary cooling water to cryogenic refrigeration plants, which
are complex and sensitive systems and critical for the LHC operations. A simulation
model is needed for verification of the existing/updated control system configuration
under a possible event of temperature transients caused by a sudden loss of the waste
heat recovery.

1.2 Literature survey

Process simulation and virtual commissioning are widely discussed and researched
in the literature, supplied as commercial software tools and applied in wide range
of industrial applications. Process simulation is an important tool in engineering in
different domains. In order to conduct simulation studies, a model is needed, which
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builds quantitative relations between inputs and outputs such as flows, distances,
costs or temperatures. Simulation is a numerical experiment done with the model.
In dynamic simulations models, which output values depend on the past values, are
simulated over time, giving and receiving continuous or discrete values or a mixture
of them. (Ljung and Glad 1994).

Process simulations consisting of models that require chemical and thermal properties
as parameters or variables, can have them incorporated in the simulation software as
property models. Property models provide values for densities, enthalpies etc. during
the simulation (Gani and Pistikopoulos 2002). Simulation software tools such as
EcosimPro, provide property models in libraries including property databases, which
can be applied by the modelers in their own models (EcosimPro 2018). Process
simulation is used as a tool in many areas of engineering and business. In his Master’s
Thesis, El Geneidy (2016-06-13) presents a discrete event simulation study of an
energy system of a passengers ship. The models and simulations were created to test
and analyze overall effect and cost savings of different types of technologies which
increase the energy efficiency of a large scale diesel electric marine power system.

Basic idea of virtual commissioning is to connect a real control system with a
simulation model of the real system. This practise allows engineers to detect errors
and debug programmable logic controller (PLC) -code, which makes the actual
commissioning with the real system easier. In manufacturing of products in large
scales and under constant pressure to reduce manufacturing costs, many corporations
have found virtual commissioning as an effective tool to analyze and optimize processes.
Lee and Park (2014) provide an overview of virtual commissioning in manufacturing
processes. They identified that the main obstacle for wider application of virtual
commissioning is the model building, which requires in depth expertise, both in
modeling and control engineering, as the model needs to communicate with the real
control system.

For large scale and highly complex systems with large number of correlated variables,
dynamic models and complete virtual twins are the only way to improve knowledge
of the system. Bradu, Philippe Gayet, and Niculescu (2009) present a process and
control simulator of cryogenic refrigeration plants of the Large Hadron Collider. Their
model is designed for virtual commissioning, it can fully replace the real system and
connect with the existing control and supervision system in use. Thus the simulations
can be used for operator training or testing and verifying control algorithms. For
critical systems virtual commissioning of control algorithms and programmable logic
controller (PLC) -code is a preferred practise (Booth et al. 2018). In their paper
Booth et al. (2018) present a study of virtual commissioning procedure applied for
a heating, ventilation and air conditioning (HVAC) system of the Compact Muon
Solenoid (CMS) cavern, which is one of the four LHC experiments.
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1.3 Objective

The objective of this Thesis is to develop a simulation model for the cooling towers
which allows virtual commissioning simulations, that are used to study if the control
scheme is able to survive a sudden loss of the heat recovery sufficiently. In order to
reach this objective two major areas are researched in this Thesis:

1. Develop a simulation model of the cooling towers which dynamically simulates
the output water temperature given the input variables that can be used for
virtual commissioning

• Compare published methods and implement a suitable solution
• Validate the developed model against real operational data

2. Study if the current control scheme is sufficient in keeping the output tempera-
ture nominal in the case of sudden loss of heat recovery

• Simulate the system response under control of a Programmable Logic
Controller (PLC) containing the current control configuration

The study is carried out together with Industrial controls and Safety Group at Beams
Department (BE-ICS-AP) at CERN, Geneva, Switzerland. In order to accomplish
these objectives this Thesis will present the theory and previous research on the
heat and mass transfer phenomena in an evaporative counter flow cooling tower,
and review modeling methods available in the literature. A model is implemented
in EcosimPro -simulation software based on a modeling method presented in the
literature. The model is parameterised and validated with the data available from
CERN cooling towers. The Thesis presents results of the simulations run with
the model parameterised for the cooling system at LHC point 8. The validation
of the model concludes that the developed model is accurate and can be reliably
used for virtual commissioning simulations to study the overall cooling tower system
robustness. From the simulations results it is concluded that the current installed
capacity and control algorithm is able to manage the anticipated transients with the
waste heat recovery.
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2 Background

This chapter presents some key activities and technologies at CERN. The methods
to accomplish the key task of CERN, provide head to head collisions of particles
traveling at high energy, and obtain and maintain a high luminosity, i.e. the rate of
collisions in the experiments, are introduced briefly. Energy intensity of the activities
related to high energy physics is discussed, and major contributors to high energy
consumption are introduced. The cooling system used at CERN and the project of
installing waste heat recovery are presented. The use of waste heat in other similar
facilities and the project of installing waste heat recovery to the cooling system at
LHC point 8 is presented. Also further possibilities of heat recovery in larger scale
in the future are discussed. The motivation for the need of transient cooling tower
simulation is presented.

2.1 CERN

CERN, the European Organization for Nuclear Research, founded in 1954, nowadays
a collaboration of 22 member states, is a laboratory studying the fundamental
structure of the universe (CERN 2018f). At CERN, the biggest machine in the world,
the Large Hadron Collider (LHC), among with some of the world’s largest and most
complex scientific instrumentation are used to accelerate and collide particles close to
the speed of light. The LHC, is a 27 km long circular particle collider that accelerates
particles in bunches and rotates them in the LHC ring in both directions. The
particles are steered to collide head to head in the ATLAS, CMS, LHCb and ALICE
experiments. In the collisions energy is transformed into mass and new particles
are formed. The detectors in the experiments capture clues of information of the
collisions produced by the LHC. (CERN 2018a)

2.1.1 Research at CERN

Particle physics is the main area of research and activities at CERN. The funda-
mentals of our knowledge of physics and the universe have been predicted by the
Standard model of physics since the 1970’s, proposing the few basic building blocks
of all that exists in the universe and stating the forces keeping them together. The
results from LHC and experiments at CERN, now show that the predictions of the
Standard model are correct, and it is today considered as a well-tested physics theory.
(CERN 2018e)

It is estimated that the Standard model only describes 4 % of the known universe,
and beyond this theory there are numerous other theories needed to describe the
questions not yet answered, and the phenomena that currently is unobservable. The
LHC and the experiments, are used to produce these conditions and detectors are
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used to observe them. These are conditions that need high energies, like during the
big bang, and can be produced by making particles travel at high energies close to
speed of light to collide with each other. Particles collide at the experiments, where
novel instrumentation is used to record clues of the phenomena during the collisions.
Four main experiments are located around the LHC ring: Atlas, Compact Muon
Solenoid (CMS), LHCb and Alice. The Atlas experiment hall, which houses the
cavern used for building the experiment underground, is seen in figure (1). (CERN
2018e)

Figure 1: 3:4 Mural on the wall of the Atlas control center at CERN, illustrating
the detector lying beneath the ground (Atlas Collaboration 2015).

2.1.2 The accelerator complex

The layout of the CERN accelerator complex is shown in figure (2). The protons
colliding in the experiments on the LHC ring, originate from a bottle of hydrogen at
the beginning of the chain of particle accelerators. Protons are stripped out from
the hydrogen atoms and accelerated to energy of 50 MeV in Linear Accelerator 2
(LINAC 2). The mass of the protons increase by 5 % in LINAC 2, following the
Theory of relativity by Albert Einstein, as the speed of the protons approaches the
speed of light. Energy of the beam in MeV is for a single proton. The proton beam
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Figure 2: The CERN accelerator complex including linear accelerators, circular
accelerators and colliders. The largest circular accelerator, the Large Hadron Collider
(LHC), is in a tunnel 100 meters below ground. (CERN 2015).

is then injected in to the Proton Synchrotron Booster (PSB), a circular accelerator,
further increasing the energy to 1.4 GeV. From PSB, the beam continues to the
Proton Synchrotron (PS), which accelerates the protons to 25 GeV, followed by Super
Proton Synchrotron (SPS), which pushes the beam to 450 GeV. Finally the protons
are transferred into the two beam pipes travelling opposite direction in the LHC,
100 meters below the ground with parts of it in France and Switzerland. In each
beam pipe, the protons travel in 2808 bunches forming what is called the particle
beam, every bunch containing 1.15e1011 protons. A bunch is about 30 cm long and
there are 7.5 metres or 25 nano seconds between the bunches. The LHC accelerates
the beam for 20 minutes to reach the maximum energy of 6.5 TeV. Total energy of
the two beams is about 724 MJ, enough to melt a ton of copper (CERN Outreach
-). The beam then circulates for many hours providing continuous collisions in the
experiments on the LHC ring, before a new injection of protons from the SPS is
again required.

The LHC consists of 16 radio frequency cavities and 2000 dipole magnets. The radio
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frequency cavities produce an electric field that is accelerating the particles. The
electric field is oscillating (switching direction) at 400Hz, as the bunches come one
clockwise after another counter clockwise. This way the cavities alternate between
accelerating bunches coming from both directions. The speed and energy of the
particles are restricted by two factors, the curvature of the circular accelerator and
the magnetic force bending the trajectory of the beam. The dipole magnets produce
a magnetic field in to each beam pipe to keep the beam on the circular track. The
superconducting dipole magnets reach 8.3 tesla magnetic field, strong enough to bend
the trajectory of a high energy beam. The cryogenic temperature conditions at 1.9
Kelvins allow the magnets to carry current of 11,000 amperes with zero resistance,
to generate the strong magnetic field. (CERN 2018b)

2.1.3 CERN’s impact on society

"My message was that science has no passport, no gender, no race, no culture,
no political party. I said that science can play a key role in connecting people
and creating a shared future in a fractured world, because science is universal and
unifying.” -Fabiola Giannotti, director general of CERN, at World Economic Forum
2018, Davos, Switzerland (The New York Times 2018).

Existence of CERN is driving innovation, collaboration, education, open access
science, everything extremely important for creating long term circumstances, where
our understanding of the physics, and the universe, may enhance. This development
has an impact on the society, which will push forward also other domains. At CERN
a knowledge transfer group works to promote the technological and human capital
developed at CERN, to transfer the knowledge into the society and find applications
for CERN innovations outside particle physics. The development driven by ambitions
in particle physics, has wide range of applications for example in medicine and
bio-medical engineering or aerospace applications. (CERN 2018d)

2.2 Cooling at CERN

This section presents the centralized cooling systems at CERN, that are used to man-
age the large heat load produced by the accelerator complex and smaller instruments.
Cryogenic systems are discussed briefly, and water systems in more detail.

Particle physics as an industry is very electricity intensive. At 2017, the total
electricity consumption of CERN accounted for 1132 GWh. This contributes yearly
to an electricity bill more than 80 M Swiss francs. Electricity is used in the accelerating
equipment, bending magnets and cryogenic cooling installations around the 27 km
LHC ring as well as in smaller accelerators, SPS and PS, and linear accelerators
feeding the protons to the accelerator complex. Most of the energy used as electricity
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is converted into heat losses in various activities. Majority of the electricity is used
in science instrumentation and only about 10 % of the total electricity consumption
accounts for conventional facilities. The cooling circuits equipped with evaporative
cooling towers, are used to dissipate the excess heat generated and keep the equipment
in the accelerators and experiments cool. Total heat dissipated by the cooling towers
at 2017 was 835.9 Gwh, 74 % of the total electrical energy consumed. Heat dissipation
contributors shown in table (1). (CERN Engineering Department 2017b)

Table 1 Sources of waste heat at CERN. (CERN Engineering Department 2017a)

Users Location of the cooling network Power dissipated (GWh), 2017
LHC and Experiments Point 1 (Atlas), 2, 5 (CMS), 6, 8 and 1.8 512
SPS Point 1 115
North Area CERN Prévessin site 112
PS and other equipment CERN Meyrin site 86.9

2.2.1 Cryogenic cooling networks at CERN

To accelerate and keep the particle beams on the circular trajectory, an intensity of
8.3 T magnetic field is required to bend the trajectory of proton traveling 0.999999991
times the speed of light. Such strength of the magnetic field is achieved by creating
conditions so cold, that the wiring in the coils of the electric magnets reach supercon-
ductivity. The dipole magnets and the strong magnets needed in the experiments,
are cooled down to 1.9K throughout the whole LHC ring and in smaller accelerators.
The refrigeration process consists of multiple stages of heat exchange and cryogenic
heat pumps using first water, then a mixture of helium and oil and finally superfluid
helium in 1.9 Kelvin. Water is used to cool the cryoplants, with temperature change
of approximately 24 ◦C - 34 ◦C. The cooling towers are used to dissipate this thermal
energy to the atmosphere and return the cooling water at approximately 24 ◦C.
(CERN 2018h) (CERN 2018g)

Cryogenic cooling networks, each having a cryoplant and one to six cooling towers
on ground, are situated at the LHC points 1, 2, 5, 6, 8, and 1.8 around the LHC ring.
The eight cooling networks are capable to function autonomously. The distributed
architecture helps to manage and detect faults and reduces the scale of the problems.
The LHC points and underground facilities are presented in figure (3). At LHC
points, vertical cavities connect the underground facilities to surface. Each cryogenic
refrigeration network distributes the superfluid helium to a ring sector of about 3.3
km. (Blanco and Ph Gayet 2007)
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Figure 3: Vertical cavities connect large caverns to surface facilities. The cavers house
the experiments which record particle collisions. Cavities where used to construct
the experiments like a ship in bottle is made. (CERN Technology Department 2015).

2.2.2 Cooling tower water distribution at LHC point 8

CWER cooling water systems operate primary cooling water and demineralised
cooling water. The demineralised cooling water is in a closed circuit and is cooled
via a heat exchanger by the primary cooling water. Demineralised water is used
to cool the accelerator systems. Primary water is cooled in the towers to design
temperature of 24 ◦C, while the temperature may vary between 20 ◦C and 26 ◦C
depending on ambient wet-bulb temperature. The primary cooling water circuit
is a closed circuit, however periodically raw water is required to add in order to
compensate the evaporation in the cooling towers. Raw water is sourced from the
Lake Geneva by a pumping station located in Vengeron, Switzerland. The primary
water also requires treatment: electric heating to prevent freezing in the winter during
shutdown, filtering to remove small particles and Legionella preventive treatment.
(Brüning et al. 2004)

At LHC point 8 the primary water circuits connected to the cooling towers in figure
(4) are:

I. Circuits for supplying the underground and surface installations
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II. Filter circuit using sand filters

III. Anti-freeze circuit

IV. Blowdown circuit

V. Backup circuit

The cooling station at LHC point 8 / LHCb experiment, provides average cooling
power of 10 megawatts by five counter flow forced draft evaporative cooling towers,
providing total cooling capacity of 47.5 MW (CERN Engineering Department 2017b).
Main clients of the cooling at LHC point 8 are cryogenics for cooling down the
LHC (I), cryogenics for cooling the magnets at LHCb experiment and other smaller
applications requiring cooling (II). The cooling towers have been built on site in two
phases. First tower and the machine hall in the early 1980s, and the remaining four
towers in the early 1990s. The dimensions of the towers are similar. Currently a tent
has been installed in front of the towers, that covers some of the air flow entering
the towers. The tent is due to be removed during long shutdown 2 (2019 - 2020), as
it reduces the cooling capacity of the towers.

Each cooling tower has a water basin (B) below the tower, and below the cooling
tower basins in the machine hall, there is a common basin (C) smaller in volume
compared to the tower basins combined. The primary cooling water is feed to the
cooling circuits from the common basin. The cooling rate of the cooling tower is
controlled by two factors, the cooling towers statues and fan speed. The cooling
towers statuses include bypass status, shower status and ventilation status. In bypass
mode the input water is passed straight into the cooling tower basin. In showering
mode, the input water is lead to the shower nozzles, but the fan is of and air flow
is driven by the warm air buoyancy in the tower, i.e. natural draft. In ventilation
status i.e. mechanical draft mode, the fan is switched on and the speed of the fan
is controlled by the control system. The control configuration is based on feedback
control, where mean of the basin temperatures is the controlled value.

Reliability has been a key feature in designing the system. Circuits that supply
critical systems, are equipped with a back up pump (indicated with * in figure (2.2.2).
During long shutdown 1 (2013 - 2014), two back up cooling towers were added.

Several sensors and indicators are installed to the cooling towers and the control
system. The control system is based on UNICOS (Unified Industrial Control System),
a control framework developed at CERN. The readings are used for control and
supervision of the cooling towers and the primary cooling water circuits. The readings
from the sensors are logged to the archive, where it is available since October 2013,
also for use of this thesis. (CERN Industrial Controls and Safety Group (ICS) 2018)

Sensors indicated in the figure 4:

T1 Water temperature before the cooling towers, ◦C
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Figure 4: Cooling system at LHC point 8. The common basin collects cooled
primary cooling water, from where the cooling water is distributed to clients. (CERN
Engineering Department)
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Figure 5: Cooling towers at LHC point 8 close to the Geneva Airport and the
border of France and Switzerland. A tent has been blocking part of the airflow into
the towers, which have increased the primary cooling water temperature during the
hottest days.

T2 Cooling tower basin temperatures, ◦C

V̇w Volumetric flow in each of the cooling circuits supplying installations, m3/h

A Fan speed signal indicator, %

Temperature sensors for the basin temperatures (B), are located in the cooling
tower basins approximately 50 centimeters below the surface. This temperature is
approximately same as the temperature of the water that leaves the cooling tower
basin. Volumetric flow entering the cooling towers is not measured directly, but it
can be calculated from the sum of the three flows in the three circuits supplying
primary cooling water to the installations and returning it to the cooling towers.
The water is then distributed equally to all five towers, given none of the towers is
defunct. The cooling power can be calculated from the temperature difference in
cooling towers as Q = ṁwcp∆T . cp is the specific heat capacity of water (kJ/kg) in
respective temperature and ṁw is the mass flow of water (kg/s) calculated using the
density of water in respective temperature.
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2.3 Waste heat recovery

Many big high energy physics laboratories with similar excess heat management as
in CERN, are build before the new millennial during an era when the environmental
issues where not as high on agenda as today.

2.3.1 Waste heat recovery at European Spallation Source (ESS), Lund,
Sweden

The ESS, European Spallation Source, of which constructions started in 2013 and are
due to finish in 2025, claims to be the first large scale physics laboratory of its kind
to install waste heat recovery (ESS 2013). A 4-5 km long district heating pipeline
will be build to connect the cooling system of the ESS to the district heating network
of the city of Lund. For the ESS, the installation of the waste heat recovery, has been
a design feature since the early stages of the project. The cooling system and the
cryoplants there, are designed to optimize the efficiency of the heat recovery. This is
done by cooling the equipment at as high temperature as possible. The configuration
there will be consisting of high, medium and low temperature cooling loops. The
high temperature loop, will allow the use of a heat exchanger between the district
heating water and ESS cooling water, instead of only using heat pumps, which have
lower efficiency due to the need of electricity driving them. (Jurns, Bäck, and Gierow
2014)

2.3.2 Waste heat recovery at CERN

CERN has an environmental commitment to minimize the environmental impact of
the wide range of activities the Laboratory carries out in the course of its research.
Several actions are in practise at this moment to increase the awareness of CERN
employees in their everyday work to minimize the environmental impact on use of
resources. However at CERN, buildings and conventional facilities represent for
only about 10% of total electricity consumption, and the rest is used in the physics
research instruments. The majority of this electricity used transforms to waste heat,
which is managed by the cooling networks. Designs and agreements together with
the surrounding municipalities of the first steps towards waste heat recovery has
started at CERN. (Claudet 2017)

The municipality of Ferney Voltaire, which is located about 2 km to the east from the
LHC point 8, is collaborating with CERN to recover up to 10 MW of the waste heat.
The area has developed a lot, partially due to its proximity of the United Nations
quarters and other big employers of Geneva, and high demand on housing in Geneva.
A new area for housing and commercial services has been planned right next to the
Swiss border in Ferney. The project, La Zone d’Aménagement Concertée (ZAC),
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will include construction of 412 000 square meters of estate for housing, services and
offices (Mairie de Ferney-Voltaire 2018). The project will also include installation of
a grid of 200 meters deep geothermal U-tubes and heat pump facilities to provide
clean and renewable heat source for the new quarters. The heat pumps needed
for geothermal heating system allow the use of low temperature waste heat from
CERN. The collaboration with CERN significantly reduces the amount and cost of
geothermal U-tubes needed at ZAC. During the summer months when heating is
not needed, the heat from CERN can be stored to the ground. (Mertens 2018)

An incentive to pilot and develop experiences and a proof of concept now on a smaller
scale, is the long term future of circular colliders. It has been identified, that to go
even further and to study even smaller particles outside the standard model of physics,
the energy of the collisions needs be increased. The high performance and success of
the LHC machine has lead to discovery of the Higgs Boson, but to go further, the
project FCC, Future Circular Collider, has been established. The power of magnetic
field is a boundary for accelerating particles to even higher energies, thus increasing
the diameter of the circular collider is a valid option. The energy consumption
and amount of excess heat generated, would be enormous in the FCC, if being 100
kilometers long as planned. The FCC would go below the high populated areas
of Geneva and French Annemasse, providing a great possibility for cooling system
optimized for heat recovery similar to the solution currently under construction at
the ESS. (Mertens 2018)

2.4 Motivation for developing a dynamic cooling tower model

The simulation model is needed to study the reliability and robustness of the cooling
towers for minimizing downtime. At CERN, as in any industrial facility, factory
or power plant, downtime is a serious issue. Availability of the LHC machine each
year is a percentage of the time excluding technical stops, when the machine was
producing stable beams for physics research, or the time planned between the fills.
In 2017, the proton physics run was in total 218 days, with availability of 49 %,
operations 30 % and downtime 19 % (Todd et al. 2017). Operations includes
all planned machine phases carried out in between fills, when the machine is not
in downtime or stable beams. Downtime is the unplanned time lost because of
faults somewhere in the accelerator complex. In 2017, cryogenics was the second
biggest fault causing equipment, with a contribution of 13 % (Todd et al. 2017).
Stable primary cooling water supply from the cooling towers is vital for the nominal
operation of the cryogenics. One of the key features of the heat recovery project is,
that it must be applied without compromising on the reliability of the cooling supply.

After installing heat recovery, the ZAC will start to absorb some of the waste heat
at LHC point 8. This will mean that the cooling towers can operate on lower cooling
rate. However CERN can’t rely on ZAC to provide a constant and secure heat
absorption, and CERN has to be able to absorb the heat load immediately, if the
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heat recovery stops for any reason. In the case of a sudden stop of heat recovery, the
cooling towers will receive a temperature transient back to the normal cooling water
return temperature, and it will be the cooling towers responsible for dampening
this transient to an acceptable level. It is estimated that delta T of more than five
degrees Celsius in ten minutes or temperature more than 25 degrees Celsius are the
hard limits for the underlying cryogenic cooling systems. The concern if the towers
are able to increase the cooling power effectively enough to damp the temperature
transient without risking the cryogenic conditions at the LHC and the experiments.
A dynamic cooling tower model enables simulations to study this event.

The installed hardware will determine if the cooling towers will have the reserve
capacity to damp the transients, and a simulation model is used to reveal this, but
another equally important matter is the software, the control configuration that
controls the cooling towers. It needs to be verified, that the control configuration is
able to detect and react to the possible temperature transient efficiently, and ensure
that fluctuations will be managed and do not start to oscillate out of control. At
CERN, virtual commissioning is used as a tool to evaluate control configuration
performance. Commissioning a control configuration coded into a programmable
logic controller (PLC) with a simulation model instead of the real system, is called
virtual commissioning. Virtual commissioning is a proven way to test upgrades to the
control configuration or changes to the real system prior the actual commissioning.
Virtual commissioning minimizes the delays and ensures a seamless start-up after
a technical stop or a long shutdown, the periods reserved for maintenance and
upgrading of the LHC machine and the experiments (Booth et al. 2018). To enable
virtual commissioning simulations which study the LHC point 8 cooling stations
ability to manage temperature transients, a dynamic model of the cooling towers is
developed in this thesis.

Model requirements:

• Model represents well the dynamics of the real cooling towers for control design
and verification purposes

• Model can be implemented in EcosimPro and operated in the virtual commis-
sioning environment with a real Programmable Logic Controller (PLC).

• Model performs well under ventilation, but also have representation of the free
convection mode and bypass mode including smooth transitions between them

• Model is validated with real data
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3 Literature review on modeling of evaporative
cooling towers

The literature review in this chapter explains the theory on evaporative cooling in
cooling towers, and reviews existing research on modeling methods of evaporative
cooling towers, to give reader understanding of the context and common approaches
to cooling tower modeling and different assumptions made.

Majority of the publications study static modeling cases, and only a few publications
presenting dynamic methods were found. Static models able to predict the cooling
tower heat dissipation rate in different operating points are able to answer most
common problems the designers or operators may have. They are useful for selecting
a cooling tower with correct properties for a certain application, as they can estimate
the cooling power in different conditions. For transient studies, when information of
the cooling tower functioning is needed during a transition from a typical system
steady state to another, model is required to have dynamic capabilities to model the
response of the cooling tower. (Jin 2011)

At CERN the interest is towards dynamic modeling, as the model will be used for
analyzing alternative control strategies, and to validate control algorithms coded
into a PLC prior deployment.

3.1 Evaporative cooling towers

Evaporative cooling tower is a device for dissipating excess heat to the outside
air. The term cooling tower includes also dry cooling systems, that exchange heat
between the process liquid and ambient air, without a direct exposure. This thesis
and the publications reviewed here focus on evaporative cooling towers, which have
the distinct characteristic of mass transfer to the ambient airflow due to evaporation.
Evaporative cooling towers are widely used in industry wherever there is processes
that produce vast amounts of heat, and where there are no cold natural water
resources available. Close to cold lakes, rivers or seas, cooling is traditionally assessed
with flowing natural water, and no additional systems are needed. The most well
known cooling tower application is big fossil fuel and nuclear power plants, which
are located inland. In the nuclear industry, recent accidents and thus demand on the
increase of security level, has led to installation of cooling towers as back up cooling
systems also to power stations that have natural water cooling available (Viljakainen
2013). Smaller scale cooling towers are used in various industrial operations and in
heating, ventilation and air conditioning (HVAC) -systems to dissipate the waste
heat from process to the atmosphere.

Heat transfer in evaporative cooling towers is both convection at the air-water
interface and heat absorbed by the evaporating process water due to mass transfer.
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Evaporative cooling is very effective, due to the latent heat transfer during the phase
transition from water to vapor. Latent heat transfer means the thermal energy
transfer in a constant temperature process. The cooling water evaporation rate
is only between 1-2 per cent, but it plays a big role in the heat dissipation. The
evaporation needs to be compensated by adding new process water. As a result of
the evaporation, a theoretical minimum for the leaving cooling water temperature is
ambient wet-bulb temperature, and often temperatures less than ambient dry-bulb
temperatures are reached. (Gesellschaft 2010)

Evaporative cooling tower consists from the top to bottom: fan, drift eliminators,
water spray, cooling tower fill, shower area and basin. Fan is powered by an electrical
motor and is used to increase the air flow in the tower to increase cooling capacity.
Drift eliminator prevents the smallest mist escaping the cooling tower. The sprays
are used to create small droplets in order to increase the convection and evaporation
area, and to equally distribute the water across the cooling tower cross section. The
cooling tower fill is used to slow down the water and increase time of contact and
area with the counter flowing air. (Gesellschaft 2010)
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Figure 6: Mechanical draft counter flow evaporative cooling tower. Figure shows the
components inside the cooling tower, which are needed to increase cooling capacity
and prevent water from escaping the cooling tower. (Gesellschaft 2010).

The large often 100 meters high hyperboloid shaped cooling towers used at power
plant applications are natural draft cooling towers. The warm moist air has lower
density than the cool and dry outside air, which creates a natural upward current
in the cooling tower. The shape and height of the tower are designed for optimal
natural draft air flow. The advantage is increased energy efficiency due to the lack
of the fan, but natural draft cooling towers are far less compact than the mechanical
draft cooling towers.
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3.2 Theory of evaporative cooling in cooling towers

Here the theory on evaporative cooling is explained as in Kloppers and Kröger (2005).

The mass balance for the control volume in Figure 7a is

dṁw = ṁadw (1)

where w is the humidity ratio of air, kg water vapor/kg dry air.

The energy balance in Figure 7b:

ṁadima − ṁwdiw − iwdṁw = 0 (2)

Figure 7: (a) Dashed lines is the control volume for the counter flow. (b) Dashed
lines is the control volume for the air side. (Kloppers and Kröger 2005)

The energy balance for the control volume in figure 7a is:

madima −mwdiw − iwdmw = 0 (3)

In Figure 7 the heat transferred at the water-air interface is the sum of enthalpy
transfer due to the difference in air vapor concentration and enthalpy transfer due to
convection.

dQ = dQm + dQc (4)

The mass transfer at the interface is
dṁw = hd(wsw − w)dA (5)
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where hd is the mass transfer coefficient, wsw is the humidity ratio in air-water
interface temperature and w is the humidity ratio of the air prior entering the control
volume.

Then energy transferred due to mass transfer is
dQm = ivdṁw = ivhd(wsw − w)dA (6)

and the energy transferred due to convection in Figure 7b is
dQc = h(Tw − Ta)dA (7)

Temperature difference between water and air can be expressed using enthalpy
differences when small differences in specific heat capacities in different temperatures
are neglected. (Kloppers and Kröger 2005)

Tw − Ta = imasw − ima
cpma

− (wsw − w)iv
cpma

(8)

where cpma = cpa + wcpv, specific heat capacity of air and vapor mixture.

Substituting Eq. (6) and Eq. (7) into Eq. (4) leads after rearrangement to

dQ = hd
[ h

cpmahd
(imasw − ima) +

(
1− h

cpmahd

)
iv(wsw − w)

]
dA (9)

where h
cpmahd

is the Lewis number, rate of thermal diffusivity to mass diffusivity.

Equation (9) is the energy transfer in evaporative cooling on the air-water interface
expressed by the difference of air enthalpies and humidity rations before and after the
cooling tower. When also input water temperature and flow are known, the equation
can be used to solve the output water temperature and flow.

The air-vapor mixtures flow in the cooling tower through the geometries of the cooling
tower fill and shower area, and the heat transfer between these fluids, are very complex
and hard to model. The equation (9) is a first principles representation of the heat
transfer in evaporative cooling tower, but it contains parameters and variables that
are very hard, if not impossible, to measure accurately, such as coefficients for thermal
and mass diffusivity, or the area of the air-water interface. Different simplifying
assumptions for solving the equation (9), empirical methods to obtain unknown
parameters, or completely different approaches for estimating this phenomenon, are
proposed in the literature. Publications studying this area of research are reviewed
in the following section.

3.3 Modeling methods presented in the literature

Friderich Merkel was the first to present a calculation model for evaporative cooling
towers. The publication from Merkel dates at 1925, and is still used in applications
today.
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Merkel makes three critical assumptions to simplify the water-air film energy balance
equation (9).

1. Lewis number h
hdcpma

equals 1

2. The outlet air is saturated

3. Evaporation rate relative to water mass flow is negligible

The simplified equation (10) for energy transferred into to the air flow is obtained,
where imasw is the enthalpy of saturated air in water surface temperature and ima is
the enthalpy of air-water mixture flowing pass the water surface. (Gesellschaft 2010)

dQ = ṁwcpwdTw = hd(imsaw − ima)dA (10)

By integrating from equation (10), the formula for a coefficient known as Merkel
number is obtained:

∫ hddA

ṁw

=
∫ cpwdTw
imasw − ima

(11)

∫ hddA
ṁw

is known as the Merkel number Me, containing the tower specific variables of
mass transfer coefficient hd and the characteristic heat and mass transfer area dA.
These are not easy to evaluate due to the complexity of the flow in water films in
the cooling tower fill and different sizes of droplets falling through the cooling tower
shower area. The variables on the right hand side of the equation (11) are possible
to obtain, and are used to calculate the Me.

After having obtained the Me, which is often determined separately for the fill and
shower areas, Merkel’s equation is solved by iterative procedure from an initial guess
for the model variables. Merkel method is essentially a steady state method, as alone,
it does not calculate the response of the system. In the masters thesis by Viljakainen
(2013), the computational iterative solving procedure for Merkel method is discussed
in detail, and an approach for dynamic cooling tower modelling is discussed using
Merkel method for heat transfer calculations combined with computational fluid
dynamics (CFD) modeling of the two-phase fluid dynamics in the tower components,
such as drift eliminators, nozzles, fill material, shower area and basin. It is stated
that applying the Merkel method for dynamic modeling is not trouble-free, as the
steady-state numerical iteration procedure would need to run on every simulation
step.

Poppe method is a more accurate modification of Merkel’s method with no assump-
tions regarding the evaporative mass flow or outlet air saturation. Poppe method is
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able to predict the mass flow evaporation rate and leaving airflow properties, and
is useful in application where makeup water flow rate of plume visibility is needed
to evaluate. Plume is the exhaust cloud of mist of the cooling towers. The model
uses number of transfer units approach to eliminate the need for neglecting the mass
flow, and an equation proposed by Bosnajacovik, to calculate the Lewis factor. Simi-
larly to Merkel method, Poppe mehtod is iteratively solved, but is computationally
more complex than Merkel method. In the iterative procedure for Poppe method,
initial guess for outlet air humidity ratio is also required. Numerical Runge-Kutta
-integration procedure can be applied together with iterative calculation steps to
derive the outlet water temperature. (Gesellschaft 2010)

Fisenko, Brin, and Petruchik (2004) propose a mathematical model of mechanical draft
cooling tower performance prediction. In their work, the cooling tower performance
is predicted by describing the change of velocity, speed and temperature of the
water droplets inside the cooling tower. In their approach to calculate evaporative
cooling, the decrease of the droplet size during fall is estimated, and initial size
distribution of the water droplets is needed. In a study conducted by Al-Nimr (1998)
a mathematical model using an overall heat transfer coefficient, which is assumed
constant, is proposed to describe the transient behavior of cooling towers. The
temperatures of air and water with respect to time and space as height in the cooling
tower is represented as second order differential equations. Using a perturbation
technique, a transient solution is obtained. In the publication the performance of
the transient model is not experimentally verified.

Neural networks are increasingly popular for solving different problems in all possible
areas of research. Their development have accelerated as the computing power is
becoming more and more accessible as the hardware and cloud services develop.
Neural networks imitate the natural brain to learn patterns from experimental data.
The training of the neural network requires vast amounts of data and computing
power. Qi et al. (2016) proposes a wavelet neural network (WNN) based model for
predicting the evaporative cooling tower performance. They use steady state data
from experimental evaporative cooling tower for training the model including air
dry-bulb temperature, humidity of the inlet air stream, inlet water temperature, air
velocity, water-air mass flow rate ratio, height of the tower and the average droplet
diameter.

A combination of physical formulation and empirical parameters is a practical
and commonly used engineering approach for complex problems. Hybrid modeling
effectively solves problems that are affected by a physical phenomenon too complex
to model completely by using first principle physical modeling techniques. Methods
applying a combination of physical formulation and empirical parameters, are called
hybrid methods or hybrid modeling. Jin et al. (2007) proposes a hybrid method for
steady state cooling tower modeling in “A simplified modeling of mechanical cooling
tower for control and optimization of HVAC systems”. Their approach is based
on the analogy of counter flow evaporative cooling tower to a typical counter flow
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heat exchanger. In their work a physical formula is constructed from the principle
of heat resistance between the air and water flow interface in the tower. They
propose a function for the heat resistance with air and water mass flow rates as
its variables. Parameters of the function, which characterize the complex geometry
needed to determine the heat resistance and heat transfer area, are optimized against
real operational data of steady state operation points or manufactures data. The
model originally presented by Jin et al. (2007) is later further extended for dynamic
modeling in the PhD thesis by Jin (2011).

3.3.1 Summary

Most of the relevant publications found in literature study methods, that are only
applicable for steady state analysis. The greater interest towards steady state
modeling than dynamic, is explained by the fact, that they can answer the most
common questions and problems that designers and operators of the cooling towers
have. The typical operation of cooling towers is steady, and if there are any transients,
they are slow and damped by the thermal inertia in the basins, which are often large.
Steady state models provide valuable information of the cooling tower performance
in different operation conditions in order to design and operate the towers optimally.
Correctly sized towers can be chosen when their performance in the applications
conditions can be estimated apriori, and the control system can operate the towers
at smaller marginal for energy savings.

Also the nature of Merkel and Poppe methods is steady-state, and they require
initial guesses and iterative computation to solve the model outputs. As stated
by Viljakainen (2013), it is possible to apply iterative steady state computation
of the heat transfer in a dynamic simulation supported by dynamic models of the
flow components, but the iteration procedure needs to run on every simulation step,
thus attention is required for evaluating the complexity and feasibility of the higher
computational cost.

To the authors knowledge, the model presented in Jin (2011), is the only dynamic
cooling tower model available in the literature, which is validated against dynamic
real data. Al-Nimr (1998) presents a mathematical model to describe the dynamic
thermal behaviour of cooling towers, however no experimental results are presented
to evaluate the accuracy of the model. Majority of the methods found in literature
require estimations or detailed geometries often regarding the heat transfer area or
amount and size of the water droplets in the towers. These kinds of measures may
be possible to acquire in a laboratory environment, but not practical to apply in
practise. The method presented by Jin et al. (2007), was identified to best suit the
data and information available of the cooling towers at LHC point 8, and was shown
in Jin (2011) to work satisfactorily predicting the cooling tower transients. Only the
air mass flow requires an estimation, while other variables are directly measured by
the CERN LHC logging system.
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4 Data and methodology

The first section in this chapter describes the available documentation of the cooling
towers and the available data from the LHC data logging system. In the second
section, the reasoning of the model selection and theory of the chosen model for
simulating the cooling towers are presented.

Careful studying and search for all sources providing useful information of the real
system, is important part of model selection and model development (Ljung and Glad
1994). Main sources for this information have been the CERN EDMS - Electronic
Document Management System, that contains CERN and subcontractor documents
of the installed devices in digital form, if they have originally been stored or created.
Main source for empirical data is the LHC logging system, where all sensors and
feedback signals are archived, with a short description of the measured variable. The
measurement data from sensors and feedback signals of the cooling towers at LHC
point 8, is comprehensively archived to LHC logging as part of UNICOS integrated
system (Roderick et al. 2009).

The available documentation and data strongly guided the model selection. The
cooling towers at CERN are old and unique custom build devices, and detailed
manufacturers specifications are not available. However a lot of operational data is
available in LHC logging. Finally, the hybrid method using empirical parameters
optimized against real operational data, presented by Jin et al. (2007), was found to
best suit the purpose of this study, available technical data and measured variables.

4.1 Available data

The model steady state parameter identification requires cooling tower operation
points to form the set of observations for the non-linear least squares optimization
to obtain the three steady state parameters (Jin et al. 2007). Dynamic data sets are
required to identify the dynamic parameter and to validate the model performance to
predict transients (Jin 2011). The operation points for steady state identification can
be obtained either from the manufacturer data, from historic operational data or by
conducting tests (Jin et al. 2007). For cooling towers at SF8, it was soon discovered,
that no sufficient manufactures data is available for these decades old on site custom
built cooling towers. On the other hand, a lot of precise historic operational data is
available in the archive. Testing with different fan speeds was possible, but altering
other variables was not, as the towers are continuously under operation and need to
provide a constant cooling power.

In this section the available raw data and forming of the cooling tower data sets,
that contain the needed variables, are explained. A simple algorithm for finding
steady operation points from the dynamic historical data is developed. For air mass
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flow there is no direct measurement, and a model is needed to estimate the air mass
flow from the fan speed signal. The method for estimating the air mass flow and
the necessary assumptions are presented. Uncertainties related to the air mass flow
estimation are discussed.

4.1.1 CERN data acquisition system

A CERN-made framework for industrial control applications, UNICOS - Unified
Industrial Control System, is used at CERN for supervision and control of many
computer controlled systems. (CERN Industrial Controls and Safety Group (ICS)
2018)

The supervision of the control system includes saving data from the sensors and feed
back signals connected to the system. The data from the LHC point 8 cooling towers
is not saved at regular time interval as it is produced event-based at the source. If the
sensor reading goes beyond a certain threshold compared to the last saved reading,
a new reading is saved, or if a certain time limit with no change in the reading is
passed a new reading is also saved. (Bille, Perty, and Marczukajtis 2002)

The logged data can be queried with Timber, a Java application with a graphical
interface where users can search for sensors and select data and time window for a
query. Timber provides a possibility to obtain fixed time step averaged data, but for
such large data sets, it was computationally faster to only make queries for the raw
data, and modify the data with scripts written in R - programming language. (Bille,
Perty, and Marczukajtis 2002)

4.1.2 Cooling tower data sets

For parameter optimization and model validation, data sets containing measured input
variable and output variable are needed. Output primary cooling water temperatures
and fan speed signals are measured directly, while water mass flows in each tower and
ambient wet-bulb temperature are calculated as a result from indirect measurements.
For air mass flow no direct measurement or a way to calculate it without assumptions
exists. Approach for estimating the air mass flow is discussed later in chapter (4.1.4).

Timber was used to make queries of data for both towers during the LHC run 2017
and 2016. Eighth months worth of logged data for both towers and both years. The
resulting query is a comma separated data table, with an irregular date-time column,
and a column for each measurement. Each row only contains one value, which is for
the measurement that triggered the logger. Values for other variables on the row are
empty.

A continuous 1 Hz time series is obtained by resampling from the raw data set.



26

Resampling is done in a way, that a close representation of the occurred real signals
is obtained. First the data table is filled with empty rows between the irregular
time-stamps, to make the date column continuous with one second time step. Then
all empty values are replaced by repeating previous saved non empty value resulting
to a square form signals. Error of the re sampled values is the trigger threshold of
each variable. The thresholds of the data logger are well justified, and the square
form data shows well the events and transients that occurred, as when ever there
are relevant slopes in the data, the density of the time-stamps increase due to the
thresholds triggering the saving of new readings.

Ambient wet-bulb temperature is a factor of ambient dry-bulb temperature, relative
humidity and pressure. Ambient wet-bulb temperature is calculated with a function
wetbulb.temp found in R-library bigleaf (Knauer et al. 2018). The function calculates
wet-bulb temperatures from measured ambient dry-bulb temperatures, humidities
and pressures. Water mass flows are calculated from the sum of the measured flows
in the three client circuits divided by number of five towers as in figure (2.2.2) on
page 9. Individual cooling tower data sets for each of the towers are constructed
from the common and individual measured and calculated variables listed in table
(2). A cooling tower data sets from different time windows are referred in many
occasions in this thesis, as they are the base source data for parameter identification
and validation. A short snippet of a cooling tower data set is given in table 3.

Table 2 Common data for the five cooling towers.

Measured variable Symbol Range (unit)

Individual

Status STATUS 0-6
Speed signal SPEED 0-100 (%)
Basin temperature T2 15-25 (◦C)

Common

Flow to user 1 F1 0-300 (m3/h)
Flow to user 2 F2 0-300 (m3/h)
Flow to user 3 F3 0-300 (m3/h)
General return temperature T1 24.0-32.0 (◦C)

Ambient

Dry-bulb temperature Tdb 0-35 (◦C)
Relative humidity RH 0-100 (%)
Pressure P 950-1050 (mbar)
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Table 3 Snippet of cooling tower time-series data set.

Datetime T1 (◦C) ṁw (kg/s) Twb (◦C) T2 (◦C) SPEED (%) STATUS ṁa (kg/s)

2018-07-03 12:59:10 28.08 114.69 20.00 21.16 79.74 4.00 123.26
2018-07-03 12:59:11 28.08 114.69 20.00 21.16 81.97 4.00 123.95
2018-07-03 12:59:12 28.08 114.69 20.00 21.16 81.97 4.00 123.95
2018-07-03 12:59:13 28.08 114.69 20.00 21.16 84.33 4.00 124.69
2018-07-03 12:59:14 28.08 114.69 20.00 21.16 84.33 4.00 124.69
2018-07-03 12:59:15 28.08 114.69 20.00 21.16 86.55 4.00 125.39

4.1.3 Steady state extraction

A simple algorithm was developed to extract steady states from the dynamic historical
data (appendix). The algorithm runs in R and goes through the data and finds steady
periods of user defined limitations for "steady" for each variable. The algorithm then
calculates the averages over time windows where all of the variables were steady and
saves the result as a steady state. The definition for a system steady state is always
a case specific matter and varies on the application and accuracy required.

Steady states are found by running the steady state extraction algorithm over
the cooling tower time series data sets. To obtain well performing cooling tower
parameters, and to validate them, a wide range of different steady states are required
for both identification and validation.

Data from the LHC run in 2017 is used for identification of the model steady state
parameters and data from 2016 LHC run is used for steady state validation, from
May to December for both of the towers and both years, to obtain 4 time series data
sets each containing data from 8 months in total. The cooling systems runs also
outside the LHC run with less load due to limited activities, but the data tends to
have more faults and missing values during these technical stops. These data sets
are large, each containing 21 168 000 rows, and are heavy to manage for a normal
desktop computer. Thus the data was split in to half and the steady states where
extracted for shorter periods and then combined.

Table 4 Snippet of cooling tower steady state data set.

Datetime T1 (◦C) ṁw (kg/s) Twb (◦C) T2 (◦C) SPEED (%) STATUS ṁa (kg/s)

2017-05-01 15:29:59 27.38 136.46 7.97 23.06 0.00 3.00 38.57
2017-05-02 08:38:59 27.54 120.68 7.14 23.27 0.00 3.00 32.33
2017-05-02 09:16:59 27.40 121.57 7.38 23.18 0.00 3.00 32.80
2017-05-02 11:19:59 27.40 120.98 8.08 23.02 0.00 3.00 34.69
2017-05-02 13:48:59 27.32 122.81 8.56 23.47 0.00 3.00 31.70
2017-05-02 17:52:59 27.35 121.30 7.76 23.80 0.00 3.00 27.99
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Table 5 ETR-880.

mw(kg/s) T1(◦C) T2(C◦) Twb(C◦) SPEED (%) STATUS Count

Identification, 2017
Entire set 100.7 - 181.3 25.1 - 31.5 12.2 - 29.1 0.4 - 23.7 0 - 100 3 - 4 900
Twb higher half 102.3 - 180.9 26.3 - 31.5 17.8 - 29.1 16.2 - 23.7 0 - 100 3 - 4 450
Twb lower half 100.7 - 181.3 25.1 - 29.7 12.2 - 27 0.4 - 16.2 0 - 100 3 - 4 450

V alidation, 2016
Entire set 114.1 - 167.9 24.7 - 31.3 19.8 - 27.6 -0.5 - 24.2 0 - 100 3 - 4 800
Twb higher half 114.6 - 160.8 25.9 - 31.3 19.8 - 27 16.2 - 24.2 0 - 100 3 - 4 400
Twb lower half 114.1 - 167.9 24.7 - 29.7 21.7 - 27.6 -0.5 - 16.2 0 - 0 3 - 3 400

Table 6 ETR-881.

mw(kg/s) T1(◦C) T2(C◦) Twb(C◦) SPEED (%) STATUS Count

Identification, 2017
Entire set 100.7 - 181.2 25.1 - 31.4 14.5 - 27.6 -0.5 - 23.7 0 - 100 3 - 4 700
Twb higher half 102 - 181.2 26.3 - 31.4 18 - 27.6 15.9 - 23.7 0 - 100 3 - 4 350
Twb higher half 100.7 - 180.8 25.1 - 29.6 14.5 - 27.4 -0.5 - 15.9 0 - 100 3 - 4 350

V alidation, 2016
Entire set 113.7 - 167.6 24.8 - 31.3 14 - 24.5 1 - 24.2 0 - 100 3 - 4 600
Twb higher half 113.7 - 160.9 25.7 - 31.3 18.1 - 24.5 15.9 - 24.2 100 - 100 4 - 4 300
Twb lower half 114.5 - 167.6 24.8 - 29.7 14 - 22 1 - 15.9 0 - 100 3 - 4 300

The steady state extraction algorithm is run for the data sets and resulting ranges
of steady states are presented in tables (5) and (6). The time window to define a
steady condition is 30 minutes. The length of the steady time window was chosen as
30 minutes, to avoid detection of false steady states, as the dynamics of the basin are
slow - it takes about 10 minutes on average for the water to completely change in
the cooling tower basin, and between 30 and 45 minutes for the temperature to fully
stabilize after big transients in the input variables. To identify as a global system
steady state, all variables are required to declare as steady for the period of the time
window. Consecutive steady states are discarded as they are similar to each other.

4.1.4 Air mass flow estimate

In the monitoring system for the cooling towers, no air flow meter or output tem-
perature sensor is included, and thus a way to estimate the airflow is required. Jin
et al. (2007) proposes that the air flow through the tower can be estimated from
the frequency driving the motor. The rotations per minute (RMP) of an alternating
current electric motor follows proportionally the frequency of the variable frequency
drive (VDF). According to the fan affinity laws, flow is proportional to the shaft
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RPM (Engineering ToolBox 2003). This information is not yet enough to calculate
the air mass flow through the tower, but enough to state that the flow is linear to
the frequency driving the motor, thus linear to the fan speed signals available in the
cooling tower data sets. The magnitude of the flow is determined by the geometry
of the fan. Jin et al. (2007) do not provide further details, how the air mass flow
estimate is calculated and which assumptions are needed.

At LHC point 8, the variable frequency drive is controlled by a fan speed signal of
0-100 %. The frequency output of the VFD is proportional to the speed signal and
between 33-50 Hz. According to sources at CERN, the reduction gear used between
the engine and fan, does not allow very low speeds, thus the minimum frequency has
been needed to set at 33 Hz. They also agreed that this is shame, as the range of
adjustment under forced convection flow is now smaller. The minimum fan speed is
high, and the difference to the free convection mode is large.

Using the assumption of Merkel, that the output air is saturated, and an additional
assumption, that the output air temperature is close to the water input temperature,
the approximate air mass flow in the tower is obtained from the moist air flow - water
flow energy balance Eq. (10) on page 21. Using a set of steady state air flow estimate
- fan speed signal -data points, the parameters for the linear model between the fan
speed control signal and air flow can be obtained by an ordinary linear regression for
ETR-880 and ETR-881.

Parameters k and c for a linear model, Eq. (12), for the air mass flow - speed signal,
are obtained by linear regression from a set of historical air mass flow estimate -
speed signal steady operation points. For tower ETR-880, x steady states and for
ETR-881 x steady states from May - December 2017 where used as data for fitting
the linear model.

ṁa = k ∗ SPEED + c (12)

The set of data points is separated into two subsets, the other containing all the points
when fan is off and the tower is in free convection mode, and the other containing
points fan being on. First set is used to find a median of the air mass flow estimate
under free convection mode, and the second is used to identify the air mass flow
estimation model parameters.

The assumption of air temperature being close to the water input temperature, is a
rough approximation and not widely used in the literature. It is recognized in the
literature, that the output air temperature is close to the input water temperature,
but when the air flow increases, or if the ambient temperature decreases, the output
air temperature decreases and is not strictly regulated by the input water temperature
(Naphon 2005). In this study however, it is not important to find the exact validated
airflow, but rather use the best possible estimate for the relation between the fan
speed control signal and the air mass flow. The assumption of fully saturated air at
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Figure 8: Linear model fit for air mass flow in towers ETR-880 (a) and ETR-881
(b). Plots clearly show the large step in airflow at fan start up.

the air outlet is widely used in the literature.

The sensitivity of the temperature assumption was examined by lowering the tem-
perature and calculating the air mass flow estimation and air flow parameters for the
steady states used for steady state parameter identification and validation. Lowering
the air flow output temperature below the T1 temperature by 5 or 10 % showed very
little or no improvement on validation root mean squared error (RMSE) for warm
temperatures, and 0.05 - 0.1 C improvement for cool temperatures. Further decrease
of the temperature estimate started significantly increasing the RMSE. This supports
the hypothesis that the temperature assumption is accurate on warm weather and
decreases in accuracy in chilly weather, as the air in the tower does not heat up as
high as the input cooling water temperature T1. Based on testing the estimation of
air flow is feasible and leads to acceptable accuracy of the cooling tower model. The
resulting air mass flow estimation model also supports the recognized characteristic
of the towers, that the air flow increases significantly, when switching from free
convection mode to forced draft mode, due to the high minimum speed of the fan.

4.2 Chosen model

In the work by Jin et al. (2007), a static model for cooling tower modeling is
developed based on the analogy between cooling tower and a classical counterflow
heat exchanger. The approach proposes that the convective and evaporative heat
transfer in the cooling tower can be described by overall heat resistance. They
propose that the overall heat resistance is a function of air and water mass flows.
Parameters of the function are optimized against real data.
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Pros:

+ Simple method, possible to implement in the available time frame of technical
student internship at CERN and resources (data and competences required)

+ Based on the results presented in the literature, the method has good potential
to be applied successfully for the use case at CERN

+ No need to CFD model flow components, such as nozzles, cooling tower fill and
basin

+ No iterative computation needed for solving the equations, fast computing
times, well suited for using EcosimPro as a development platform

Cons:

− The publication does not describe in detail the measurement set up used for
air flow properties

− Uncertainties in the airflow estimate expected to affect the model accuracy

− Paramter identification restricted to the available operational data

4.2.1 Steady state cooling tower model

The heat dissipation rate can then be calculated using the overall heat resistance R
as

Q = T1 − Twb
R

(13)

where the overall heat resistance R consist on heat resistance of the water side and
heat resistance of the air side.

R = Rw +Ra (14)

According to Jin et al. (2007), the heat transfer at the water-air film can be considered
as forced convection, and equations for calculating the heat resistances Rw, Ra are
proposed as:

1
Rw

= ṁe1
w

[
4e1C

πe1
·
Ce2
pw · k1−e2

µe1−e2 ·D1+e1

]
Aw = b1ṁ

e1
w (15)
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1
Ra

= ṁe1
a

[
4e1C

πe1
·
Ce2
pa · k1−e2

µe1−e2 ·D1+e1

]
Aa = b2ṁ

e1
a (16)

Substituting equations (15) and (16) into equation (13) an equation for the heat
transfer is obtained:

Q = b1ṁ
e1
w · b2ṁ

e1
a

b1ṁe1
w + b2ṁe1

a

(T1 − Twb) = c4ṁ
l
w

1 + c3
ṁw

ṁa

l (T1 − Twb) (17)

where c4 = b1, c3 = b1
b2

and l = e1 are model parameters.

Thus Jin et al. (2007) are proposing that the heat resistances Rw and Ra are functions
of the mass flows ṁw and ṁa respectively. They propose and experimentally validate,
that the equation (17) can be used to estimate steady state heat dissipation rate of a
counter flow evaporative cooling tower. Method for optimizing the model parameters
c3, c4 and l against manufactures steady state performance data, or real operational
steady state data as in Jin et al. (2007), is studied in detail in section 4.3 at page 34.

4.2.2 Dynamic cooling tower model

In a PhD thesis by Jin (2011), the steady state model by Jin et al. (2007) is revisited
and the model is further developed for dynamic modeling. Jin (2011) proposes that
the dynamic change of temperature for an infinitesimal water element in the cooling
tower, can be expressed as

ρwVwCpw

(
∂Tw
∂t

+ uw
∂Tw
∂z

)
= −q (18)

where the heat exchange quantity q for an infinitesimal water element is expressed
as a function of the temperature change in time and space.

The temperature of the water element inside the cooling tower is measured in different
heights, and based on this work, the change of temperature for the cooling water in
the cooling tower is linear to the height of the cooling tower and can be expressed by:

Tw = T1 −
T1 − T2

H
z (19)

By derivation with respect to z we obtain the change of temperature in space for the
cooling tower with boundary variables:
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∂Tw
∂z

= −T1 − T2

H
(20)

Combining this into equation (18), we have the cooling tower heat rejection qct as a
function of change of temperature in time over the height of the cooling tower H:

ρwVwCpw(dTw
dt
− uw

T1 − T2

H
) = −qct (21)

And after rearrangement

dTw
dt

= −qct
ρwVwCpw

− uw
T2 − T1

H
(22)

where qct is substituted by the static cooling tower model Eq. 17.

dTw
dt

= − c2ṁ
l
w(t)

1 + c3

[
ṁw(t)
ṁa(t)

]l [T1(t)− Twb(t)]− uw
T2 − T1

H
(23)

where c2 = c4
ρwVwCpw

= c1
c4
Cpw

.

Also uw/H is substituted with c1ṁw(t) resulting:

dT2(t)
dt

= − c2ṁ
l
w(t)

1 + c3

[
ṁw(t)
ṁa(t)

]l [T1(t)− Twb(t)]− c1ṁw(t)[T2 − T1] (24)

where, c1 = 1
HpwAw

, c2 = bwAw

pwVwCpw
, c3 = bwAw

baAa
and l are model parameters.

dT2

dt
= c1φ(t) (25)

where,

φ(t) = −
c4
Cpw

ṁl
w(t)

1 + c3

[
ṁw(t)
ṁa(t)

]l [T1(t)− Twb(t)]− ṁw(t)[T2(t)− T1(t)] (26)

where c1, l, c3 and c4 are parameters optimized against operational data.

In the engineering model proposed by Jin (2011), leaving wet-bulb temperature Twb,o
and leaving cooling water temperature T2 are used as boundary conditions for the
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heat rejection rate term qct instead of using entering cooling water temperature T1 and
ambient wet-bulb temperature Twb. Commonly in practice, sensors are only installed
and maintained for readings that are necessary for the control and monitoring of the
cooling tower performance, and leaving air conditions are not important to measure.
These practices are also recognized by the authors of Jin et al. (2007), and they
obtain the heat rejection rate by using T1 and ambient Twb as boundary conditions.
At CERN sensors for the leaving air conditions do not exist, thus the model is
implemented and characterized by using boundary conditions similar to Jin et al.
(2007).

4.3 Parameter identification

This section presents the procedure for identifying the unknown parameters of the
model. First is presented the method used in Jin et al. (2007) for optimizing the
steady state parameters of the model. Then is presented the method used in Jin
(2011) for identifying an optimal dynamic parameter c1.

4.3.1 Steady state parameter identification

When stating that dT2(t)
dt

= 0 we can rewrite the equation 11 as:

ṁw(T2 − T1) = −
c2
c1
ṁl
w

1 + c3

[
ṁw

ṁa

]l (T1 − Twb) (27)

The cooling tower heat dissipation rate can be calculated with the following equation:

Q = Cpwṁw(T2 − T1) (28)

thus:

Q = Cpw

c2
c1
ṁl
w

1 + c3

[
ṁw

ṁa

]l (T1 − Twb) (29)

where:

c4 = Cpw
c2

c1
(30)
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We obtain the steady state model expression as in Jin et al. (2007):

Q = c4ṁ
l
w

1 + c3

[
ṁw

ṁa

]l (T1 − Twb) (31)

Jin et al. (2007) proposes that the the parameters c3, c4 and l are empirically
determined by minimizing the sum of squared residuals:

MIN
N∑
i=1

(Residual)2 = MIN
N∑
i=1

(
c4ṁ

l
w

1 + c3

[
ṁw

ṁa

]l (T1 − Twb)−Qobservation

)2

(32)

Eq. (32) is a non-linear least squares problem, a non-linear unconstrained optimization
problem. Solving non-linear optimization problems is not a simple task as they
may have multiple local optimums. Jin et al. (2007) uses Levenberg-Mardquardt
algorithm (LMA) for finding an optimal solution. Levenberg-Mardquardt algorithm
is commonly used for solving non-linear least squares problems. The LMA method
combines Newton’s algorithm and steepest descent algorithm, which safeguards
against faults occurring while using only either of the algorithms alone. The resulting
algorithm is slower, but more robust method for finding the optimum. (Bazaraa,
Sherali, and Shetty 2006)

[εkI +H(xk)](xk+1 − xk) = −∇f(xk) (33)

In LMA method, Eq. (33), H(xk) is the Hessian matrix of the objective function,
the parameter εk defines the weight of steepest descend algorithm versus Newton’s
algorithm. When εk large, LMA will behave similar to the steepest descent algorithm,
and when ε is small, the LMA will reduce to Newton’s algorithm Eq. (34). (Bazaraa,
Sherali, and Shetty 2006)

xk+1 = xk −H(xk)−1∇f(xk) (34)

4.3.2 Dynamic parameter identification

After identifying the steady state parameters, in Jin (2011) ordinary linear least
squares method is used to identify the dynamic parameter c1 from step response test
data. Parameter c1 determines how fast the dependent output variable T2 responses
to the changes in any of the input variables.
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Ordinary linear least squares method (36) fits a linear model (35) to measured real
data by finding the parameter θ that minimizes the sum of squared residuals.

y = Xθ̂ (35)

θ̂ = (XTX)−1XTy (36)

Applying the OLS for the cooling tower model, the left hand side of the equation
(38) forms the vector y and right hand side forms the vector X multiplied by scalar
Ts

2 θ̂. Ts is the one second sampling inter wall.

nTs∫
0

dT (t)
dt

dt = θ̂

nTs∫
0

φ(t)dt (37)

T (nTs)− T ((n− 1)Ts) ≈
Ts
2 θ̂[φ(nTs) + φ((n− 1)Ts)] (38)

where n = 1, 2, 3, ...

The resulting factor θ̂, is the optimal value for parameter c1, that gives the optimized
modeled response for the step response in the data, compared to the real response.

4.4 Model assumptions and uncertainties

The method used as an engine for calculating the heat transfer and the dynamics of
a cooling tower in the model developed in this thesis, is a simplified representation
of the real system, that applies empirical parameters. The accuracy should not be
compared to cases modeled by physical modelling techniques, which applies first
principle calculations of the physics that describe the phenomena and the system,
and can predict the process exactly how it is in reality. However in practise, such
accuracy is often not required or all the information required to build such model
are too expensive to acquire.

The parameters of this model are determined empirically, by iteratively optimizing the
resulting model output compered to real observed values, to find optimal parameters.
The algorithm used for steady state parameter optimization is not able to find the
global optimum for the parameters, but is shown in the publication by Jin et al.
(2007) to reach satisfactory results.

Necessary assumptions regarding estimating the air mass flow are needed. The
estimate decreases in accuracy when ambient temperature lowers or fans speed
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increases. The estimate anticipated to have more uncertainty under free convection
mode, as air flow in the tower is more exposed to factors outside the scope of the
data such as wind, while the fan is not regulating the air flow.
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5 Cooling tower model, LHC point 8

This chapter includes construction of a model for the five cooling towers at LHC point
8 based on the theory presented in the section (4.2) and applying of the parameter
identification methods described in section (4.3), for parametrisation of the model.
A validation against real operational data is presented, and sensitivity of the model
variables and parameters are studied. The model of the five towers is constructed
from two differently parameterised towers. All the five towers are similar in their
dimensions, but ETR-880 was build and has started operating before the four newer
towers, and has slightly different setting in the fan blade inclination. For three of the
four newer towers the air flow is restricted due to the tent, which is currently installed
in front of the air inlets. However it is not necessary to parameterise each tower
separately, as the four new towers are the same in their dimensions and performance.
Thus the parameter identification is carried out for ETR-880 and ETR-881, while
ETR-882, ETR-883 and ETR-884 are treated as identical to ETR-881.

The validation procedure presented in this chapter includes two different approaches
to validate the model and parameter selection, and to analyze the model error. Model
steady state performance is studied by collecting a set of steady states outside the
parameter identification time window, and calculating root mean squared residuals
and mean residual, and by visualizing the histogram of the residuals, to study residual
normality. Dynamic validation for validating the model performance for capturing
dynamics in the real system, is done by visualizing real observed and simulated basin
temperatures and calculating root mean squared error under transients in general
return temperature or fan speed signals found from historical operation data.

Model sensitivity is studied by a classical one-by-one spider plots. Each model
variable and parameter is multiplied by a factor and the effect on model output is
visualized in the plots.

5.1 Characteristics of the model

The cooling tower model created here has been designed to optimize the modelling
effort and simplicity relative to available research and methods found in the literature,
and the questions and problems where the model is hoped to give answers. The model
should be able to predict transients in the cooling tower output temperature with
an accuracy sufficient for control design. After studying the problem regarding loss
of heat recovery and resulting transients, data and methods available, it was stated
that most critically the model would need to be able to predict the cooling tower
basin temperatures while the fan is on and increase of cooling capacity resulting
from ramping up fans. It was recognized that modeling the free convection mode
is far more complex, and it was accepted that with the chosen approach the model
accuracy will be reduced when the fan is off. Ramping up fans is the action that
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the control system can execute for damping temperature transients, and is also an
action which can be dynamically validated due to its frequent occurrence in the
historical operation data. Fast temperature transients are not available in the data,
and the model can not thus be validated in really fast temperature transient, only a
slower transient for dynamic validation of the model under temperature transients
was found.

For operating as a virtual twin of the cooling network for control verification, the
model will also need to comply with setting towers to bypass. The bypass mode is
modelled as energy balance assuming perfect mixing. The dynamic calculation of the
basin temperature thus consists of two alternate models, the model for calculating
the evaporative cooling, in the tower while showering, and the model for calculating
the energy balance and temperature rise of the basin when switched to bypass.

5.2 Model implementation in EcosimPro

Figure 9: Model in EcosimpPro with signal sources in orange. EcosimPro allows
user to define ports for the components, which are then connected using the graphical
interface.

EcosimPro allows users too freely write their own components in their EL-programming
language, and to define symbols for these components. Simulation models are created
in EcosimPro in user friendly graphical interface, where components are added and
connected to each other via ports. A simulation model schematic of the system in
LHC point 8 with connections is shown in figure (9).

The engine for calculating the evaporative cooling in the cooling_tower -component
are the equations (25) and (26) written in EL-language into the CONTINUOUS -part
of the component code as:

CONTINUOUS Tout’ = c1 * phi

phi = -((c4 / Cp) * (mw ** l)) / (1 + c3 * ((mw / ma) ** l)) * (Tin
- Twb) - mw * (Tout - Tin)
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The component has two flow inlet ports, for shower and bypass, and three signal
inlet ports for ambient wet-bulb temperature, fan speed signal and fan on - off switch
signal. The component has two output ports, one for the flow leaving the cooling
tower basin, and one for transmitting the temperature signal of the cooling tower
basin.

The perfect mixing cooling tower basin model for calculating the output temperature,
and an estimate of the dynamics, is based on the energy balance:

M_l * Cp_b * Tb’ = f_in_bypass.mh - mh_b_out

where mh is power or enthalpy flow, M_1 is mass of water in the basin, Cp_b is the
specific heat capacity of the water in the basin and Tb’ is the rate of change of
temperature in the basin.

An IF -sequence is used for alternating between the evaporative cooling and bypass
calculation:

shower_flow = delay(f_in_shower.m, 1)
SEQUENTIAL
IF (shower_flow > 0) THEN
f_out.T = Tout

ELSE
f_out.T = Tb

END IF
END SEQUENTIAL

In order for the component to smoothly switch between the two alternate dynamic
calculation methods for the basin temperature, the current basin temperature is
passed from one to another when a change from bypass to showering or vice versa is
detected. For this a similar sequence is also written into the DISCRETE -part of the
component code:

DISCRETE
--Detecting weather water is entering through shower of bypassed
WHEN (f_in_shower.m > 0) THEN
Tout = Tb

END WHEN

WHEN (f_in_bypass.m > 0) THEN
Tb = Tout

END WHEN
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While the code in continuous part will apply in every simulation step, the code
in discrete part only runs once in the event of a certain action. In this case, the
detection of (f_in_shower.m > 0) or (f_in_bypass.m > 0), triggers the passing
of the current basin temperature from the model to another, and then continues from
there again in the continuous part. This detail ensures smooth transitions between
bypass and showering.

Additionally the component code contains definitions of its ports and all its variables
and initial values in parts PORTS, DATA, DECLS and INIT.

The model can be used in two ways: by feeding in real data and comparing the
model output for real basin tamperature T2 for validating the model, or by feeding
in simulated data that is inside the range of model validation, for simulations.

The SourceDataFile -component in the CONTROL -library by EcosimPro, is used to
read the cooling tower data sets for simulating real data. First the data set has been
modified in R to contain a time column in seconds and saved as a space separated
text files, which the SourceDataFile -component reads. The simulation can then
run in EcosimPro and read values for the model variables each second from the source
text data file. AnalogSource -component can be used to simulate steps, ramps or
constant signals to be fed for the cooling_tower -components. The simulation
results are plotted by EcosimPro or saved in a csv -table, for further analysis.

5.3 From data to model parameters

5.3.1 Optimization of the steady state parameters

The optimization of the steady state parameters was carried out using the method
proposed in Jin et al. (2007) and described in the steady state parameter optimization
section. Data used are the steady operation points identified by the steady state
extraction algorithm.

Table 7 Identified steady state parameters. Warm temperature parameters are
used for wet-bulb temperatures above 17 ◦C, and low temperature parameters for
below 17 ◦C.

ETR-880 Entire set Twb higher half Twb lower half
c3 0.94 0.70 0.71
c4 0.80 0.47 0.61
l 1.43 1.53 1.45
RMSE (◦C) 0.90 0.59 0.75

Parameters identified are shown in tables (7) and (8). The RMSE, is the root mean
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Table 8 Identified steady state parameters. Warm temperature parameters are
used for wet-bulb temperatures above 17 ◦C, and low temperature parameters for
below 17 ◦C.

ETR-881 Entire set Twb higher half Twb lower half
c3 0.49 0.59 0.57
c4 0.23 0.22 0.40
l 1.63 1.66 1.52
RMSE (◦C) 0.65 0.62 0.54

squared residuals between modelled steady state cooling water output temperatures
and observed cooling water output temperatures, for the steady states used for
optimization.

5.3.2 Dynamic parameter: a step response test

For identifying the dynamic parameters, step response tests were carried out on
3.7.2018 for the towers ETR-880 and ETR-881. Tests included fan speed ramp ups
from off to 50 %, 50 % to 100 %, off to 100 % and 0 to 100 %. When the fan is
off, the air flow in the tower is due to natural convection. Fan at 0 %, is for 33 Hz
variable frequency drive output and 100 % is 50 Hz. The increase in air flow from off
to 0 % is large compared to the increase from 0 % to 100 %. This was noticed during
the testing, as the temperature of the basin had a large drop after off to 0% and
smaller drop after 0 % to 100 %. After this discovery, more effort where put in to
studying the relation between air flow and speed signal, which eventually lead to use
of the linear model for airflow - speed signal, instead of feeding the pure speed signal
to the model. It was stated earlier, that the fan ramp up from off to 100 %, is the
most interesting event regarding the cooling tower verification analysis. Therefore
off to 100 % is selected as the event for identifying the dynamic parameter c1.

The test was carried out manually at the cooling site of LHC point 8. The testing
was possible, due to little influence of a single tower on the cooling water temperature
returned by the the tower complex, as long as the the test for the two towers where
carried out one by one. The operator of the cooling system at LHC point 8, could
manually take control of the fans over the control system. The system needs to reset
in steady state before and after the transient to obtain sufficient data. The time
available for testing was limited, and before the transient the steady state is short.
30-45 minutes was waited before and after the transient, which is enough for the
system to reach the steady state. Other variables: water mass flow, ambient wet-bulb
temperature and entering cooling water temperature, stayed approximately constant
during the testing.
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Figure 10: Ecosim model of single cooling tower for val-
idating towers ETR-880 and ETR-881. REALTout −
componentreadsdataofmeasuredoutputtemperatureforvalidatingthemodel.

The data was then parsed and subset to cooling tower data sets for both towers
ETR-880 and 881. For both towers, the dynamic parameter c1 was then obtained
with a identification procedure explained in section 4.3.2. Results are presented in
table (9). The root mean squared error (RMSE) is the simulated step response, with
the identified parameter c1. Simulation results are presented in figures (11).

Table 9 Identified dynamic parameters.

Tower c1 RMSE
ETR-880 9.26e-06 0.72
ETR-881 8.01-06 0.68
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Figure 11: (a) Step response test for ETR-880, (b) Step response test for ETR-881.
Plots of the real step response and the output of the identified dynamic model.

The figures (11a) and (11b) show that the model is able to imitate the transients well,
and predict the steady states before and after the cooling towers with accuracy of
approximately 1 degree Celsius. The good imitation of the transient phase indicates
that the data from the tests contains sufficient information to describe the inertia of
the system, and the linear model parameter c1 regression works well.

5.4 Model validation

Model validation is a very important and valuable analysis for parties making
conclusions based on the simulations run with this cooling towers model. The
transients simulated by the model aim to represent the real system, and it is important
to study and understand the reliability of this representation. The accuracy of the
model needs to be presented clearly and with transparency, to avoid false conclusions
of the simulation results.
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Key measures of the model accuracy are steady state root mean squared error (RMSE),
steady state residual distribution and dynamic RMSE. As model relies on parameter
optimization against real operational data, it is important not to use same data for
parameter identification and model validation. A cross-validation approach is used,
and all validation data are outside the time frame used for parameter identification,
May - December 2017.

5.4.1 Dynamic validation

For dynamic model validation, periods of data containing transients were simulated
and visualized. The figures contain three plots from top to bottom fan speed signal,
cooling tower status and temperatures. Temperatures include real input and output
temperatures and modeled output temperature. Here three time periods are simulated
with both towers ETR-880 and ETR-881.



46

0

25

50

75

100

18:00 21:00 00:00 03:00

Fa
n
sp
ee
d
(%

)

Fan

Fan speed signal

18:00 21:00 00:00 03:00

Shower
Ventilation

Cooling tower status

10

15

20

25

30

18:00 21:00 00:00 03:00
Time (HH:MM)

Te
m
pe

ra
tu
re

(◦ C
)

T1

T2 Real
T2 Modeled

Primary cooling water temperatures

Figure 12: Validation plot ETR-880, rmse = 0.5488 ◦C, mean Twb = 17.58 ◦C. As
seen, the T2 Modeled represents the T2 Real accurately during fan speed dynamics.
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Figure 13: Validation plot ETR-881, rmse = 0.8157 ◦C, mean Twb = 17.19 ◦C. It
is seen that the model represents the dynamics well while having occasional offset of
1 ◦C.
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Figure 14: Validation plot ETR-880, rmse = 0.4905 ◦C, mean Twb = 13.57 ◦C. The
model captures the dynamics well with minor offset.
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Figure 15: Validation plot ETR-881, rmse = 0.6464 ◦C, mean Twb = 13.57 ◦C. Low
wet-bulb temperature validation plot showing the model performance after dynamics
in the input temperature.
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Figure 16: Validation plot, rmse = 1.26 ◦C, mean Twb = 0.83 ◦C. The dynamics of
the bypass is modeled well, while the offset is due to the uncertainty related to free
convection air flow.
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Figure 17: Validation plot, rmse = 1.04 ◦C, mean Twb = 0.83 ◦C. It is seen that
the model represents well dynamics related to both bypass and fan speed.

Simulations with real data in figures (16), (17), (14), (15), (12) and (13) show that
the model is able to predict the output water temperature T2 well with RMSE less
than 1 ◦C. The model is able to predict well the response of the dynamics in the input
temperature as in figure (14). The response of the control actions, changes in fan
speeds signals or cooling tower status, is reproduced with very good accuracy. The
figures show that the temperature dynamics followed by the fan start ups or speed
signal variations are captured well. In figures (12) and (13) the effect of switching
between bypass and showering is captured well. In general all the dynamics are
imitated well as the shapes of the T2 Real and T2 Modeled are very similar, while
some small offset is almost always present. Bigger errors up to 2.5 ◦C exist in figure
(13). These errors may be due to measurement error in the cooling tower basin and
imperfections in the mixing of the basin or uncertainty regarding the fixed air mass
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low estimation for showering mode.

5.4.2 Steady state validation

By examining the steady state performance of the model, a wider understanding
of the model reliability in the frames of available data can be obtained. Visual
evaluation of the model residual normality, is a common way to study the feasibility
of the model or parameter selection. Unnormally or uncontinuously distributed
residuals indicate errors that may be explained by some reoccurring event in the
data. Residuals which distribution is approximately bell shaped, indicate that the
model and parameter selection is correct and error is explained as random noise, and
does not have problems related to model selection.
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Figure 18: ETR-880 residual normality test showing the approximately bell shaped
histogram for model residuals for both identification and validation data sets and
both high and low wet-bulb temperature parameters.
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Figure 19: ETR-880 residual normality test showing the approximately bell shaped
histogram for model residuals for both identification and validation data sets and
both high and low wet-bulb temperature parameters.

The model residual densities of towers ETR-880 and ETR-881 are presented in (18)
and (19). The density histograms are presented separately for warm and chilly
temperatures and identification and validation steady state data sets. The upper
row contains the steady states extracted from year 2017 for parameters identification
and the second row contain the steady states extracted from year 2016 for validating
the identified parameters. Use of different time period to obtain data for parameter
identification than data for validation, is called cross-validation. The model is
expected to have better accuracy for the identification data and worse but sufficient
accuracy for the validation data.

Bases on the results presented in figures (18) and (19), the steady state accuracy is
good. The residuals have highest occurrences between -1 and +1 ◦C and the error is
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never much higher than +2 or -2 ◦C. Both figures indicate a minor systematic error
to the negative side, meaning the model tends to slightly underestimate the cooling
performance on average. The residual density histograms are approximately bell
shaped. This shows that the model selection is correct, model is able to represent
the characteristics of the real system and the error is random, and is not explained
by some missing feature in the model architecture.

Table 10 Steady state RMSE.

ETR-880 Entire set Twb higher half Twb lower half
Identification RMSE (◦C) 0.90 0.59 0.75
Validation RMSE (◦C) 0.95 0.69 0.78

Table 11 Steady state RMSE.

ETR-881 Entire set Twb higher half Twb lower half
Identification RMSE (◦C) 0.65 0.62 0.54
Validation RMSE (◦C) 0.82 0.63 0.61

The resulting root mean squared error (RMSE) is the mean of the squared residuals
over a steady state data set. The tables (10) and (11) present the different RMSE
obtained for different sets. In general the RMSE is very satisfying, indicating that
the overall model steady state accuracy is good and the parameters obtained work
well. It is is seen that as expected, the error is higher for the cross-validation data
which is outside the parameter identification time frame. It was found useful to
identify two separate parameters for low and high temperatures, as this decreases
the model error. In tables (10) and (11) the Twb higher half and lower half RMSE
are lower than the Entire set RMSE.

5.5 Sensitivity Analysis

The uncertainties and possible systematic errors in the sensor readings contribute
to the modeling error, not only the errors resulting from the simplifications in the
modeling approach. While the sensors measuring the system can be considered
accurate, it is useful to study the model outputs sensitivity to each of these variables.
Main sources for these uncertainties are the measurement errors in the model variables
Twb, T1, ṁw and in the estimation of ṁa. The sensitivity of the steady state parameters
is also examined. Sensitivity analysis aims to study the influence of these uncertainties
relative to each other.
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To illustrate the sensitivity of the model, classical one-by-one spider charts are
presented to show the absolute change in model estimation T2, when model input
variables or parameters are changed by multiplying them one-by-one by factors from
0.9 to 1.1. The y axis shows the absolute change in the output variable T2.

Spider charts visualize the correlation between each variable and model output. All
the variables show linear or close to linear effect. T1 and Twb are strictly linear with
a correlation of exactly 1 to the dependent variable, but ṁw and ṁa show small
non-linearity with a correlation slightly below 1. All but variables ṁa have positive
correlation.
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Figure 20: Model sensitivity for both towers ETR-880 and ETR-881 at 21 ◦C Twb.
Model is most sensitive to wet-bulb temperature and parameter l.



57

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10

0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10

Relative change in input variable Relative change in input variable

Relative change in model parameter Relative change in model parameter

C
ha

ng
e
in

ou
tp
ut

va
ria

bl
e
T

2
(◦ C

)
C
ha

ng
e
in

ou
tp
ut

va
ria

bl
e
T

2
(◦ C

)
ṁw
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Figure 21: Model sensitivity for both towers ETR-880 and ETR-881 at 21 ◦C Twb.
Model is most sensitive to air mass flow and parameter l.

The spider plots show clear order in the relevancy of each parameter and the ambient
wet-bulb temperature having highest relevancy in warm weather. On low tempera-
tures the order of relevancy is changed and the air flow becomes the most relevant.
It follows the hypothesis that the towers output temperature range that the operator
is able to control is much wider in low temperatures, when the wet-bulb temperature
is not limiting the lower limit of this range very high. As shown by the spider plots,
air flow has increased relevancy on low temperatures. From model parameters, the l
has clearly the highest relevancy. This is due to l being an exponent in the model
algorithm. All parameter sensitivities become higher in low temperatures, thus the
model is more sensitive to poor parameter selection in low temperatures.
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6 Simulation of sudden heat recovery loss

The resulting accuracy of the cooling tower model developed in this thesis was studied
in the previous chapter. It was found that the model imitates the real system well
and can be used for simulations where the model variables are kept within the model
validation ranges (tables 5 and 6). This chapter shows the use of the model in
practice, by presenting results from simulations run with the model for studying the
cooling towers robustness against input temperature fluctuations. The simulations
are run both in open and closed control loop manner. In the open control loop
simulations, manually selected control actions are used to react to the temperature
transients immediately. In the closed control loop simulations, a real PLC running
current control algorithms is controlling the cooling towers in a virtual commissioning
environment. The observed phenomena in the simulations is the output cooling
water temperature from the cooling tower complex, mean T2, which is supplied to
the cooling clients. Most importantly the simulation study the response in mean
T2 to a temperature step in T1. It is estimated that that in mean T2 a delta T of
more than five degrees Celsius in ten minutes or temperature more than 25 degrees
Celsius are the hard limits for the underlying cryogenic cooling systems.

Conditions for the simulations are based on anticipated scenarios of sudden loss of
heat recovery. Scenarios are defined by an engineering team at CERN responsible
of waste heat recovery installation. The scenarios define anticipated operating
conditions of the clients and waste heat recovery, and expected maximum worst
case wet-bulb temperatures for each season. Clients are users of the primary cooling
water at LHC point 8, which are the Large Hadron Colliders (LHC) and LHCb
experiments cryogenic refrigeration stations. Client heat load defines the increase
of the primary cooling water temperature at client side and WHR absorption rate
defines the decrease of the temperature in the WHR heat exchanger, before the water
enters the cooling towers. The anticipated heating requirement and use of WHR by
the municipality is lower during the summer, thus the temperature steps to expect
during summer time are smaller, Primary cooling water flow is kept stable at the
design value. WHR -loss scenario that generates most pressure for the cooling towers
and the control system is during high WHR -absorption, and when the clients are
at full power and ambient wet-bulb temperature is high. Then less reserve cooling
capacity is available and the step up transient in temperature of the primary cooling
water the towers receive after a WHR -loss event is high.

6.1 Open loop simulation in EcosimPro

Open control loop simulations were run on scenarios, which don’t require active
control to keep the basin temperatures steady within 20-24 C nominal range. Open
control loop simulation has no connection to the PLC, and control actions to damp
the temperature transient are taken manually. With open control loop simulations
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model functionality could be verified and understanding of the towers ability to
damp transients could be gained already prior to implementation of the virtual
commissioning environment.

For the simulations, a simplified representation of the client flow circuit was created
in EcosimPro, with constant client heat load QLHC with no thermal inertia or time
constants. The time constant, the time for the cooling water to run through the
circuit, can be neglected in this context, as it is fast compared to the volume and
circulation time of the cooling tower basins. A simple component for the heat recovery
heat exchanger was created, which takes a power QWHR from the general return
primary cooling water and stops at a given time, creating a temperature step up in
the general return temperature T1.

The simulation model used is shown in figure (22). The cooling tower model pa-
rameters are set as attributes of the cooling_tower -component in EcosimPro. In
EcosimPro, simulations are declared by creating an .exp -experiment file in EL
-language for the simulation model. The simulation model can contain components,
that do actions of which time of occurrence (seconds from start of the simulations),
can be declared in the component attributes. These actions or anything that the
user wants to occur during the simulation, can also be programmed in to the experi-
ment .exp -file, which also declares the start an stop times and initial values of the
simulation.

Figure 22: Schematic of the cooling tower complex in EcosimPro used in the open
control loop simulations.

The design power of the heat recovery installation is 10 MW, which would contribute
to a 3.2 ◦C reduction in the hot primary cooling water temperature at design primary
water flow of 2709 m3/h. The simulation model consists of circuit with the cooling
towers, clients contributing a constant power to the cooling water and heat recovery,
that stops at the time of 00:30. The resulting transient is a step up of 3.2 ◦C in the
temperature to the state where the system would operate without the heat recovery.
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Table 12 Likely scenarios for a loss of waste heat recovery (WHR) -event. ∆Ts
under design flow of 2709 m3/h.

Client WHR
Scenario Season Twb (◦C) Q (MW ) ∆T (◦C) Q (MW ) ∆T (◦C)

M1 Mid 12 20 6.4 6.3 2.0
M2 Mid 12 15 4.8 6.3 2.0
S1 Summer 21 20 6.4 1.6 0.5
S2 Summer 21 15 4.8 1.6 0.5
S3 Summer 21 10 3.2 1.6 0.5

Scenarios simulated (12) are based on a request from a team working with designing
of the WHR installation. The scenarios represent anticipated operating conditions
of the clients and waste heat recovery, and expected maximum worst case wet-bulb
temperatures for each season. The worst case is high WHR with high client load at
high ambient wet-bulb temperature. Clients are users of the primary cooling water
at LHC point 8, which are the Large Hadron Collider (LHC) and LHCb experiment
cryogenic refrigeration stations. Client heat load defines the delta T of the primary
cooling water at client side. WHR load defines the cooling delta T of the waste heat
recovery heat exchanger. Primary cooling water flow is kept stable at the design
value.

Table 13 Initial system states and manual actions taken to maintain a sufficient
supply temperature in a simulated WHR loss event.

Initial number of towers at:

Scenario Bypass Shower Ventilation (Speed %) Action after heat recovery

M1 0 4 1 (50%) Ramp the first fan to full, start a second fan
M2 1 3 1 (0%) Set bypass to showering, start a second fan
S1 0 0 5 (one at 50 %) No action needed
S2 0 0 5 (0%) No action needed
S3 0 1 4 (0%) No action needed
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Figure 24: Simulation result plot for mid season scenario M2.
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Figure 25: Simulation result plot for summer scenario S1.
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Figure 26: Simulation result plot for summer scenario S2.
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Figure 27: Simulation result plot for summer scenario S3.
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Simulation results for each scenario are shown in figures, 23, 24, 25, 26 and 27.
Figures include from top to bottom fan speed signals, cooling tower statuses, modeled
responses in cooling tower basin temperatures T2 for each of the tower basins and
input T1 - output Mean T2 temperatures of the cooling tower complex. Changes in
fan speed signals and in cooling tower statuses are control actions for damping the
temperature step in general return temperature T1. Identical lines are slightly offset
vertically to make them visible. The simulations show that the cooling towers can
easily damp the anticipated temperature transients, and the capacity nor the speed
of the hardware itself is not a problem. If the actions defined in table (13) are taken
right at the moment of WHR -loss without major delay, the towers would damp the
transients very efficiently.

6.2 Virtual commissioning

Control configurations coded into a PLC can be tested and verified connecting the
PLC with a simulation model of the real system, for which the control configurations
is needed. This is called virtual commissioning, which is useful for systems which are
critical or if the time available for commissioning and testing with the real system is
limited or not possible (Booth et al. 2018).

In the closed control loop simulations presented here, the EcosimPro simulation is
connected through the Open Platform Communication Unified Architecture (OPC
UA) interface to a PLC in the lab, that runs a copy of the currently commissioned
PLC code, which controls the real cooling towers. OPC is a standard for reliable
exchange of data in the industrial automation context, developed and maintenanced
by the OPC foundation (OPC Foundation 2018b). OPC-UA is a protocol which
integrates all the functionalities of the independent OPC classic specifications (OPC
Foundation 2018a).

The heat recovery loss event is simulated as in the open control loop simulations, but
instead of manual initial system state and manual control actions, the real control
algorithm running on a PLC is dynamically determining the cooling tower statuses
and fan speeds. Virtual commissioning simulations here show how the current control
configuration reacts to fast temperature transients in the input cooling water, and
what is the magnitude and slope of the resulting response at the output water
temperature.
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Table 14 Likely scenarios for a loss of WHR -event simulated in virtual
commissioning environment. ∆Ts under design flow of 2709 m3/h.

Client WHR
Scenario Season Twb (◦C) Q (MW ) ∆T (◦C) Q (MW ) ∆T (◦C)

W3 Winter 10 10 4.8 10 3.2
M1 Mid 12 20 6.4 6.3 2.0
S1 Summer 21 20 6.4 1.6 0.5
S3 Summer 21 10 3.2 1.6 0.5
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Figure 28: Scenario W3. Virtual commissioning control actions from real PLC for a
winter scenario. It is seen that the control system switches from bypass to showering
less than 5 minutes after the heat recovery loss event.
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Figure 29: Scenario M1. Virtual commissioning control actions from real PLC for
a winter scenario. It is seen that a new ventilator is started 5 minutes after the loss
of heat recovery and the output temperature remains nominal.
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Figure 30: Scenario S1. The step in input temperature T1 is insignificant compered
to the normal oscillation of the system.
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Figure 31: Scenario S3. The step in input temperature T1 is insignificant compered
to the normal oscillation of the system.
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WHR -loss scenarios simulated are presented in figures (28), (29), (30) and (31).
It is clear from the results that the fluctuations are damped well and do not raise
concerns of the ability of the current control configurations performance. In figure
(29) it is seen that the control system does not react immediately, but lets the basin
temperatures go up for more than 5 minutes, before ramping up one more fan. Still
the fluctuations are small and at acceptable level in the cooling water temperature
Mean T2 returned by the cooling tower complex.

In figures (30) and (31) the fluctuations are as small as the normal oscillation of the
system. The oscillation seen in Mean T2 and control actions are very similar as the
normal operation and oscillation in the real system. The oscillation, which the model
reproduces well, is due to the discrete steps in the cooling capacity when starting or
shutting down cooling tower fans. The airflow at minimum fan speed is much higher
than the free convection air flow during showering mode, thus the control region of
the cooling rate is non-continuous. This forces the control system to oscillate around
the setpoint.



73

7 Conclusions and development proposals

This chapters discusses and concludes the model developed in this thesis, the model
reliability analysis and the results of the simulations. The results of the validation
study, model accuracy in predicting the behaviour of the real system was presented
in chapter (5). The results of simulations of heat recovery loss scenarios where
presented in the chapter (6), and in section (6.2) the use of the model in the virtual
commissioning environment, was shown to work satisfactory.

7.1 Model reliability, sensitivity and limitations

This Thesis presents how the evaporative cooling tower modeling method presented
by Jin (2011) has been successfully implemented for an industrial application. The
model validation shows that the model selection is good and it represents the real
system well, and the model can thus be used to simulate the cooling towers at LHC
point 8 for control system testing and verification purposes. The model was validated
both against observed steady operation points and real dynamic data.

The data for model validation was extracted from the LHC logging system, where
data was available from the last 5 years. The quality of the data was good and
contained little or no outliers. The data had been archived using dead band filtering,
which preserves major dynamics of the real signal but the smallest oscillations smaller
than the dead band threshold are not included. After query, the data was re-sampled
to 1Hz time series using forward filling, and was found to work well for both steady
state and dynamic parameter identification.

The data was split into training and test data sets. Training data set was used to
optimize the model steady state parameters and test data set was used to validate
the parameters. The steady operation point validation showed minor systematic
error, mean residual is 0.2 - 0.3 ◦C below the observed basin temperatures, with
approximately normally distributed residuals. Approximately normally distributed
residuals indicate that the model is able to represent the characteristics of the real
system and the error is random, and is not explained by some missing feature in the
model.

Transient events available in the historical data were used to validate the dynamic
performance of the model. In section 5.4.1 figures show the model estimate versus
observed output temperatures. The model reproduces the dynamics in output
temperature very well with root mean squared error (RMSE) between 0.75 and 1.25
◦C in the simulated scenarios. The accuracy is not as good as what was reached in Jin
(2011), which was expected as applying the method for an industrial application will
be more challenging than for a smaller scale system with more thorough measurement
instrumentation. This is affected by the restrictions in the available data and the
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necessary assumptions made, mainly the air mass flow estimation.

The model, which in the original publication is used only for mechanical draft mode,
was found to perform well also under free convection mode, and the model validation
was conducted regardless the fan being on or off. Model validation showed root mean
squared error of close to 1 ◦C. However under free convection mode the model has
more uncertainty regarding the air mass flow, as the fan is not regulating the flow.
If the model parameter optimization would be restricted to mechanical draft mode,
or more accurate estimation of the air mass flow under free convection mode would
be used, the accuracy of the model would get better. Bypass is modeled as a perfect
mixing volume of water size of the LHC point 8 cooling tower basins. The dynamic
validation scenarios show that the model also imitates the bypass mode well.

Alternative modeling approach would be to only use a steady state model for the
cooling towers, and use a CFD simulation for the cooling tower basins. It’s a more
extensive modeling work compared to the approach of this thesis, but could possibly
lead into more accurate results. This alternative approach would presumably predict
the dynamics in the cooling towers well, as the cooling tower shower dynamics can
be considered very fast compared to the dynamics in the basin.

7.2 The data

Gathering and working with the data, developing scripts to parse the data and
identify steady operation points, has been a major part of the whole work, and has
helped to build understanding of the system behaviour. The LHC-logging has proven
very valuable, as all available data was easily accessible. The data was gathered to
cooling tower data sets, which included the available ambient and system variables
for each of the cooling towers. These data sets could be used early on to test the
first prototypes of the model, and to monitor how the model accuracy got better
after improvements.

The data also revealed a few important and interesting characteristics of the real
system. The events in the data show that the towers react to transients very slowly,
which was identified to be due to the large volume of water in the cooling towers
basins. It was also noticed that there is a big step in the heat dissipation rate,
between free convection mode and fan at minimal speed. This was later tracked down
to an original design feature of the control system forced due to a high minimum
speed limitation of the ventilator unit, resulting to frequency range of 33Hz - 50Hz
or 990 - 1500 motor RPM.
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7.3 Findings from the simulations

After comprehensive study on the available data, modeling methods proposed in the
literature and model implementation and validation, the model could be used in
simulations of the sudden loss of heat recovery, with a simplified representation of
the heat load from the LHC and the experiments and heat absorption of the waste
heat recovery in closed loop circuit. Different scenarios of the sudden loss of heat
recovery were simulated, while applying selected manual control actions to increase
the cooling capacity on the event of heat recovery loss. The closed loop simulation
results show that the cooling towers have the capacity to damp the anticipated
transients hardware wise.

The virtual commissioning was also proven to work satisfactorily. The model is able
to handle all inputs of the control system in a right form and it provides all the
necessary outputs for the control system. In the virtual commissioning environment
the model reproduces well the slow oscillation experienced in the real system around
the temperature set point, which further increases the confidence on the models
ability to imitate the real system.

The virtual commissioning simulations show and verify that the current control
algorithm is sufficient in damping anticipated temperature transients which may
result after the operation of the heat recovery starts in 2020. Based on the results of
the simulations run with model developed in this thesis, the engineers responsible
for heat recovery project can go on with the installation and deployment knowing
the current control configurations will work also after the introduction of waste heat
recovery.

A recommended follow up and next use case of the model, is a more detailed look in
to the current control configuration, and design of upgrades. The current control
system is solely a proportional–integral–derivative (PID) feedback controller from the
basin temperatures. The control is slow and allows oscillations and frequent fan start
ups and shutdowns visible in the data and in the virtual commissioning simulations.
The use of the model in control design allows exploring possibilities, fast prototyping,
and more efficient and robust control configuration could be achieved. For example
including the input temperature as a feed-forward signal would reduce oscillations,
increase energy efficiency and improve robustness against temperature fluctuations
in the input temperature. The model developed in this thesis can be then used to
verify the upgraded control configuration and PLC -code prior to commissioning
with a real system, to ensure reliable supply of primary cooling water to the LHC
machine and the experiments.



76

8 Summary

In this thesis a dynamic evaporative cooling tower model is implemented based on
the work of Jin (2011) and used in simulations of sudden temperature transients. The
validation study shows that the developed model imitates the real system well. To
the authors knowledge this Thesis is a first publication where this modeling method
is applied for simulating real cooling towers. It is thus shown that the method can
be successfully applied not only for the laboratory instrumentation but also for real
industrial cooling towers. The virtual commissioning simulations conducted with the
model show that the current cooling system and control configuration in use at LHC
point 8 are sufficient in dampening the anticipated temperature fluctuations caused
by the introduction of waste heat recovery (WHR).

After the installation and introduction of WHR in the cooling system in LHC long
shutdown in 2018 - 2019, the WHR will start to absorb portion of the heat load
from the LHC cryogenic cooling systems. The recovered waste heat is provided to a
party outside the operations of CERN, the municipality of Ferney Voltaire. Thus
CERN has to be able to adapt its cooling tower heat dissipation capacity in case of
any malfunction by quickly absorbing the heat load, to ensure nominal cooling water
temperature for sensitive and critical cryogenic cooling systems.

The literature review in this thesis is conducted to provide a basis for comparing
and selecting an evaporative cooling tower modeling method that best fits the case.
The author went through numerous relevant articles, and selected research studies
on evaporative cooling and cooling towers are reviewed. It was found that the
vast majority of the publications study cooling tower modeling only in steady state
regime, and to the authors knowledge only one method was directly suitable for
dynamic modeling. This hybrid modeling method combining physical formulation
and empirical parameter optimization presented in Jin et al. (2007) and Jin (2011)
is implemented in this Thesis. The method was chosen as it is well validated by the
authors and can be accurately applied on a system which has historical operational
data available for parameter optimization. This Thesis serves as a first publicly
available proven use case of this modeling method.

The objective of developing a simulation model for the cooling towers at LHC point
8 is reached by developing a simulation model based on the work by Jin et al. (2007),
and training it for the cooling towers at LHC point 8. To train the model by optimizing
its four parameters, observations are needed for all of the four input variables and
the output variable. Output variable, the cooling water output temperature, and
input variables ambient wet-bulb temperature, input water temperature and flow
are obtained from the LHC data logging archive. The fourth input variable, air mass
flow, is not measured directly, and a linear regression model is used to estimate air
mass flow from the fan speed control signal. The model is implemented in EcosimPro
simulation software. The scripts for data mining, data visualization and parameter
optimization are written in R-programming language. The model is cross-validated
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by separating the data to training set for parameter optimization and testing set for
model validation. The model is found to imitate the real system well.

To study the event of sudden loss of waste heat recovery, simulations are run in virtual
commissioning environment. Virtual commissioning is a practise in which a system
consisting of programmable logic controller (PLC) and a physical process, the real
process is replaced by a simulation model running on a computer. It is concluded that
the current control configuration is sufficient in damping the temperature transients
also after the introduction of waste heat recovery. Simulations presented in this
Thesis are simulated in EcosimPro which connects through an OPC UA interface
to a PLC that contains a copy of the control code that is currently commissioned
controlling the real cooling tower complex. These virtual commissioning simulations
with a well performing model and real control actions determined by a PLC, gives a
realistic picture of the system overall.
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