-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Aaltodoc Publication Archive

Aalto University
School of Science
Master’s Programme in Security and Mobile Computing

Dmitri Tsumak

Securing BGP using blockchain tech-
nology

Master’s Thesis
Espoo, November 12, 2018

Supervisors: Professor Tuomas Aura, Aalto University
Professor Panagiotis Papadimitratos, KTH

https://core.ac.uk/display/162137833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A' Aalto University
|
Aalto University

School of Science ABSTRACT OF
Master’s Programme in Security and Mobile Computing MASTER’S THESIS

Author: Dmitri Tsumak

Title:

Securing BGP using blockchain technology

Date: November 12, 2018 Pages: 61
Major: Security and Mobile Computing

Supervisors: Professor Tuomas Aura

Professor Panagiotis Papadimitratos

The Border Gateway Protocol (BGP) is an important routing protocol used to
exchange routing information among autonomous systems on the Internet. The
BGP version 4 does not include specific protection mechanisms against attacks
or deliberate errors that could cause disruptions of routing behavior. There were
several securing solutions developed to mitigate security issues of BGP. In this
thesis, current secure solutions are reviewed and evaluated against a list of secu-
rity and deployment requirements. Furthermore, a new BGP securing solution is
proposed which uses blockchain technology and smart contracts to exchange in-
formation required for messages validation among peers. This allows to decouple
security-related data from the protocol itself and fix the problems introduced in
other BGP solutions.

Keywords: border gateway protocol, security, blockchain, smart con-
tracts, networking

Language: English

Contents

1 Introduction

2 Background
2.1 Border Gateway Protocol L
2.2 Requirements e e

3 Related Work

3.1 Secure Border Gateway Protocol
3.2 Secure Origin Border Gateway Protocol
3.3 Interdomain Route Validation
3.4 BGP MDS authentication
35 BGPSec e
3.6 Secure Blockchain Trust Management system (SBTM)
377 Summary ... oL e e e

4 Methodology

4.1 Smart contracts e e e e e e e
42 QUOTUM v v o et e e e e e e e e
4.3 Solution OVEIVIEW v o v i e e e e e e
4.4 Accountmanagement e e e e e
4.5 Registrycontract e e
4.6 AScontract e
477 Pathvalidation e
4.8 Deployment
49 Futurework

5 Analysis

5.1 Security e
5.2 Deployment
5.3 Performance L

13

15
15
19
24
26
26
27
27

6 Conclusion
Appendices
A Implementation code

B Demonstration

55

59

60

61

List of Figures

2.1

3.1
32
33
3.4
3.5
3.6

4.1
42
4.3
4.4

5.1
5.2
5.3

Autonomoys system path advertisement 11
Path attestation in S-BGP (based on the Figure 5 from [14]) 17
Web of trust for entity certificates (based on Figure 1 from [21]) 20
Authorization certificate distribution (based on the Figure 2 from [21]) . . 21
Example of AS policy certificate usage (based on the Figure 3 from [21]) 22
IRV servers withing ASes (based on the Figure 6 from [14]) 25
BGP secure solutions evaluation L. 27
AS creation by registry owner. oL 34
Prefix allocation to AS by registryowner 35
AS owner disables AS contract while it is compromised. 39
Quorum deploymentin ASes. L. 43
Daily BGP v4 Update activity for AS131072 [13]. 50
IPv4 average AS Path length [13]. 51
The number of ASes in BGP network [13]. 52

Listings

4.1 Quorum node permissioned nodes list 30
4.2 Create, list and unlock ethereum account 32
4.3 Registry contract owner initialization 33
4.4 AScontractcreationo e e 34
4.5 Prefix allocationto AS 35
4.6 AScontract constructoro 36
477 ASownermodifier L 37
48 ASadminmodifier L. 37
4.9 Addingandremoving ASpeers. 37
4.10 Disabling and enabling AS contract 39

Chapter 1

Introduction

The systems of IP networks managed by one or more Internet service providers are called
autonomous systems. They have common routing policies with the Internet and usually
consist of routers and switches interconnected with each other. There are two types of
protocols used in autonomous systems: IGP and EGP.

Interior Gateway Protocols (IGP) are used to redistribute routing information within
an autonomous system. Examples of such protocols are RIP, EIGRP, OSPF, IS-IS. They
distribute routes based on link quality, such as bandwidth and latency, or are used for load
balancing. They make routers aware of routes to different subnets in a network.

By contrast, exterior gateway protocols (EGP) are used to redistribute routing infor-
mation between autonomous systems. The only EGP protocol used nowadays is a Border
Gateway Protocol (BGP). BGP v4 is currently the latest version and is a standard protocol
for Internet routing. It is used by all of the Internet service providers (ISPs) to exchange
routing information [11]. BGP is referred to interior BGP (iBGP) when the routes are
exchanged within an AS and exterior BGP (eBGP) when they are exchanged between
different ASes. This research focuses on the concepts of eBGP.

BGP was not designed with security in mind. As a result, it is vulnerable to multiple
attacks and is not able to deal with errors coming from outside that could cause disruptions
of routing behavior. Most of such attacks are based on the fact that there is no way in BGP
to validate the messages coming from its peers and they are considered valid by default.
This issue still persists and there were many hijacking accidents recorded which have
caused a large amount of damage. There were several solutions developed to mitigate the
security issues of BGP. However, they address the issues in different ways and have some
performance, deployability and security tradeoffs. In spite of the large variety of different
secure solutions, the BGP attacks have still occurred. For example, the last attack on Iran
Telecommunication Company (AS58224) hijacked 10 prefixes of Telegram Messenger.
As a result, the existing solutions do not provide full protection against hijacking attacks
and there is still some space for work to be done.

In this thesis, a new design is proposed for fixing problems introduced in BGP and its

modifications. The solution uses blockchain and smart contracts to exchange information
required by BGP protocol to validate the messages between autonomous systems. It aims
to fix the issues introduced in other secure BGP solutions by decoupling the data required
for BGP UPDATE messages verification from protocol to smart contracts. This allows
ASes to share the data instantly and other ASes can upon synchronizing the changes
be confident in the validity and integrity of the data stored in a blockchain. In combi-
nation with Quorum blockchain platform and the topology similar to IRV protocol, the
deployment of such approach does not require much effort and the performance is very
promising. The flexibility of smart contracts allows ASes to share any kind of information
with other ASes in a network.

The thesis consists of six chapters. The first chapter is the current one. The second
chapter gives a background about the BGP protocol, summarizes the security, deployabil-
ity requirements. The third chapter reviews existing BGP secure solutions and evaluates
them against the requirements. The fourth chapter gives a detailed description of a de-
veloped solution. The fifth chapter evaluates the security, deployment and performance
properties of a new solution. The last chapter gives the summary of the conducted re-
search and gives an overview of the future work.

Chapter 2

Background

This chapter gives an overview of Border Gateway Protocol and lists the requirements for
its modified versions.

2.1 Border Gateway Protocol

Border Gateway Protocol (BGP) is a routing protocol used to exchange network routing
and reachability information among routers between different ASes. It is classified as a
dynamic protocol which means it can route the traffic based on a network conditions or
traffic properties. It does not require knowledge of the whole network topology and, as a
result, is classified as an exterior gateway protocol (EGP). It is a critical requirement to
make inter-domain routing scalable and efficient. The BGP is also called a path vector
protocol (PVP) which means that it can manage dynamic paths information, detect and
prevent loops in routing paths. The protocol which is classified as EGP and PVP has the
following characteristics:

o flexibility of router filtration system
e protection against routing loops

e management of routing priorities

¢ high stability

The initial version of BGP was proposed in 1989 [10] and was improved up to the fourth
version released in 2006 [12]. BGP is also largely used in scalable private IP networks
and for connecting hosts to multiple networks for a better network redundancy.

IP prefixes and AS numbers

Each AS has its own 16-bit or 32-bit unique identification number called ASN. These
numbers can be received from Regional Internet Registry (RIR) or Local Internet Registry
(LIR), which are globally managed by the Internet Assigned Numbers Authority (IANA).
It is a nonprofit organization which controls global IP address allocation, root zones in
DNS, and other IP-related values.

The public AS numbers are in the range of 1 to 64511 and are advertised by ASes on
the Internet [14]. The private AS numbers are in the range of 64512 to 65535 and are
used by public ASes for identifying underlying managed ASes. The ASN of the private
AS is replaced with its parent public ASN during the path advertisement to other public
ASes [14]. In addition, IANA and its delegated registries are responsible for assigning
and managing IP prefixes for ASes. For example, if ISP wants to get a new IP prefix, it
should apply for it to IANA authorities. These prefixes can be split into smaller sizes and
assigned to ISP’s managed networks.

Protocol concept

BGP forwards and routes the data packets based on policies defined by network adminis-
trators. The policies are applied based on packet size, list of connected ASes or any other
criteria. The exchanged routing information is used to construct paths to all other ASes on
the Internet. It fills the routing table with gateways to other networks by receiving paths
from the neighbor ASes. If there are multiple paths to the same network, it chooses the
best based on some criteria like distance in hops, network policies, or rule-sets configured
by a network administrator. The path is a chain of ASes which have to be traversed to
reach the desired network. The best paths, located in a routing table, are appended with
current AS number and advertised to peers, so they could know how to reach other net-
works on the Internet. The routers which advertise the path to their AS are called BGP
speakers.

10

123.0.0.0 -> AS_PATH: 300

123.0.0.0

J

123.0.0.0 -> AS_PATH: 300, 200

Figure 2.1: Autonomoys system path advertisement

In Figure 2.1 the AS300 is advertising its prefix 123.0.0.0/24:

1. AS300 advertises its prefix 123.0.0.0/24 to the peer called AS200 and sends its AS
number as a final destination.

2. AS200 checks that it is the best path it knows to this network, adds path’s gateway
(received in the same message as the path) to the routing table.

3. AS200 advertises the new path to its peer AS100 and appends its AS number.

4. AS100 adds the gateway to 123.0.0.0/24 (it will point to AS200) to its routing table
and is able to send packets to the network 123.0.0.0/24.

The connection between peers is established in the following way :

e BGP peers start working in IDLE mode.

e BGP speakers listen to incoming connections and initiate connections to its peer.
This state is called CONNECT. BGP uses TCP protocol to make connections reli-
able.

e BGP changes state to ACTIVE when the router finds it peers. In ACTIVE state
peers try to establish a TCP connection.

11

o After the connection is established routers change the BGP state to OPEN and start
to negotiate BGP parameters, such as protocol version, Hold and Keepalive timers.
In this state, they also check whether the ASN of the peer is the same as preconfig-
ured on a router and whether its router ID is different.

e In case router encounters some error, it sends NOTIFICATION message and returns
to the IDLE state. If there are no issues in negotiating the parameters, routers
change their state to ESTABLISHED and start to exchange UPDATE messages.
KEEPALIVE messages are used to confirm connectivity between peers.

e ROUTE REFRESH messages are used to query peers for all the routers without
restarting of BGP protocol.

When the connection is established, peers start to exchange UPDATE messages. These
messages contain the following routing information:

e AS PATH - shows AS numbers in the route.
e NEXT_HOP - the gateway for this path.
e ORIGIN - shows the nature of the route.

e Network Layer Reachability Information - contains information about what net-
works can be reached with this path. For example, 123.0.0.0/24.

Prefix and ASN hijacking

BGP has no mechanism to check the correctness of UPDATE messages sent by the peers.
Namely, peers can advertise any prefix and any AS number and they will not be checked
at the receiving AS. The dishonest peer could also advertise a more specific prefix than
the one advertised by an honest AS.

ASes receiving invalid announcement may select the invalid routes and direct traffic

towards malicious AS. As a result, packets will not reach the destination or can be dropped
which could lead to the black hole.

Path hijacking

The attacker announces incorrect paths to other ASes. As a result, attacker’s peers will
send packets to this malicious AS if its announced path is shorter or more preferred.

BGP lacks integrity, confidentiality, and timeliness. BGP does not have proper route
selection mechanism, which makes it difficult to detect and reject bad routes. This makes
it vulnerable to various Man in the middle and Denial of Service attacks [14]:

12

o Attacker can inject, modify BGP packets exchanged between ASes. This could lead
to the invalid routing table, connection dropouts or DoS.

e Attacker can disable an AS by using a DDoS attack on TCP. As a result, AS will
not be able to accept any incoming connection and will force other ASes to traverse
their traffic through different paths.

e Attacker can influence path selection by changing MED term or ORIGIN term value
in UPDATE messages. Victim’s network policies can take into account these at-
tributes and prefer different paths.

o Attacker can perform replay attacks by storing the UPDATE messages sent by ASes
and resubmit them again to modify paths based on his preferences.

e Attacker can use one of the attacks above as part of another attack.

Summary

BGP is a fundamental protocol which makes routing between ASes on the Internet pos-
sible. However, it was not designed with security in mind and requires network adminis-
trators to use other tools and/or protocols to regulate that.

2.2 Requirements

This section lists security and deployment requirements for BGP modified solutions [7].

Security

S-1 The BGP announcement receiver must be able to determine that the first AS in the
received path was authorised to announce the prefix. Namely, it should be able to
check that there is connection between the first AS number and IP prefix in a path.

S-2 Replay of BGP UPDATE messages should not be possible. However, there could
be some mechanism for setting up a window during which the message is still valid.

S-3 The secure version of BGP UPDATE messages should provide up to date informa-
tion about paths between ASes.

S-4 The secure version of BGP UPDATE messages should provide up to date informa-
tion about prefix allocations.

13

S-5 The secure version of BGP should be able to verify whether applied path is still
valid.

S-6 The secure version of BGP should be able to verify whether applied path prefix still
belongs to the same AS.

S-7 The secure version of BGP should provide link layer integrity between peers. Namely,
packets injection, deletion, modification or replay should be prevented.

S-8 The secure version of BGP should reveal information to peers only required to
ascertain the correctness of messages. As a result, it should reveal peering, cus-
tomer/provider relationships as less as possible.

S-9 The secure version of BGP should signal or emit logs about security exceptions
which are important for network operators.

S-10 The storage of routing information database should be secured by authentication
and imply periodic reauthentication.

S-11 The secure version of BGP should use secure crypthographic algorithms.

S-12 The secure version of BGP should be resistant to downgrade attacks.

Deployment

D-1 The secure version of BGP must be backward compatible with BGP and other ver-
sions of secure BGP so that it could be deployed incrementally.

D-2 The secure version of BGP must be backward compatible with the way messages
are formatted, processed and transmitted, so they could be parsed in environments
with mixed BGP versions.

D-3 The secure version of BGP should not possess large memory, storage and CPU
overhead on routers.

D-4 The secure version of BGP should allow peers to configure use of security mecha-
nism on per-peer basis.

D-5 The secure version of BGP should allow peers to apply their custom routing policies
on received paths to determine the preferred one.

D-6 The secure version of BGP should be easy to deploy, maintain and remove.

14

Chapter 3

Related Work

In the following sections, a survey of several BGP modified solutions will be given. Each
solution will be evaluated against the requirements defined in the previous chapter and the

missing ones will be marked with X

3.1 Secure Border Gateway Protocol

Secure Border Gateway Protocol (S-BGP) is a modification of the BGP protocol targeted
to fix its security issues. S-BGP uses digital signatures and X.509 certificates to generate
and validate BGP UPDATE messages advertised by ASes [14]. Its security mechanisms
prevent a malicious AS from hijacking invalid paths and routing data to other ASes on the
Internet [20].

S-BGP consists of three major security elements:

e Public key infrastructure (PKI)
e Attestations (Address and Route)

¢ Internet Protocol Security (IPSec)

Each of these elements will be reviewed in the following sections.

Public key infrastructure

S-BGP uses public key infrastructure (PKI) and digital signatures to authorize ASes, their
BGP speakers, IP prefixes and their AS numbers. S-BGP uses PKI and digital signatures
to establish the authenticity of the binding between a public key and its owner.

Each entity in S-BGP has a private, public key pair. IANA is the root certificate
authority which has a self-signed certificate and is trusted by all other entities. IANA

15

allocates AS numbers, address blocks to Regional Internet Registries (RIRs), includes
them in the certificates requests and signs with its private key. RIRs, in turn, perform
the same action for Local Internet Registries (LIRs) and sign their certificate requests by
their private keys. RIRs are responsible for issuing certificates for ASes, which in turn
can allocate certificates for their routers as their representatives [20]. As a result, S-BGP
certificates can be represented in form of a tree, where the root is IANA and leaves are
routers of ASes.
Each S-BGP certificate includes at least the following information:

e AS number of certificate owner.

e [P blocks assigned to it by the certificate issuer.
e Public key of certificate owner.

e Digital signature of the certificate issuer.

AS receives a signed UPDATE message from its peer and can verify the authenticity of
the message by validating AS’s certificate and checking whether the message signature
corresponds to the public key in the certificate.

Attestation

Attestations are used to verify the authenticity and integrity of the data. They encap-
sulate digital signatures within UPDATE messages [19]. The integrity of the message is
achieved by checking the digital signature in the UPDATE message and verifying whether
it corresponds to sending AS certificate. Attestations are also used to verify the path and
IP prefixes authenticity.

Path attestation

Path attestations are used to verify the authenticity of the advertised routes. Each AS signs
paths it sends to its peers, so they could verify that AS was really authorized to advertise
them. In order to advertise the path further, receiving AS adds its AS number to the path
and signs previously attached signature. The receiving AS validates the route by checking
the signature and verifying that it corresponds to the certificate of source AS. Signatures
are checked recursively for each AS in path. As a result, the following information is
verified:

e There were no ASes added or removed from/to the path.

e The order of ASes in a path was not modified.

16

Path attestations are included in UPDATE message as an optional attribute to make ASes
which do not speak S-BGP backward compatible with their peers.

Signature

AS 1 “AS2
AS 3
12| |4
-
~p— ~p—
: »
IS~
12| |3]|]|5
AS 4 AS 5

Figure 3.1: Path attestation in S-BGP (based on the Figure 5 from [14])

In figure 3.1 UPDATE messages are passed between peers. The peers validate mes-
sages and sign them before sending to other neighbors.

Prefix attestation

Prefix attestations verify whether the advertised prefix in an UPDATE message actually
belongs to the AS. The attestation is a digitally signed statement which is distributed
using BGP or any other way [14]. They prove the delegation of the prefix from one AS
to another. The validation is done by checking the signatures chain from IANA to the
advertising AS.

Internet Protocol Security

Internet Protocol Security (IPSec) is a protocol used to secure routing over Internet Pro-
tocol (IP) networks. It authenticates and encrypts packets sent over a network using PKI.

17

The cryptographic keys are negotiated during session establishment and used until the
end of it. IPsec can be used to secure connection between hosts, gateways or hosts and
gateways.

IPSec provides point-to-point security for traffic between BGP routers. It prevents
DoS, replay attacks, ensures integrity and confidentiality of messages on the IP level.

Problems

S-BGP is one of the best BGP securing solution. It eliminates most of the security prob-
lems in the BGP protocol and provides better security for exchanging the messages be-
tween ASes. However, it still lacks timeliness which means it is exposed to replay attacks
on UPDATE messages (requirement S-2). Namely, malicious AS can resend an old UP-
DATE message which was withdrawn before or it can suppress UPDATE messages for its
peers, so they will not be able to get the correct paths (requirements S-5,6). In addition,
the malicious peer can remove signatures from the messages and further ASes will not be
able to verify them (requirement S-12).

One of the biggest issues with S-BGP is its complexity. It is expensive to adopt this
protocol and the performance is reduced due to attestations and signatures’ calculation
for each UPDATE message (requirement D-3). According to survey [14], ASes exchange
paths two times slower with S-BGP compared to BGP. However, it is possible to reduce
the time required for path convergence by validating only paths which are selected as
preferred. Also, S-BGP has some storage requirements for route attestations which makes
its usage more complex (requirement D-6).

X Security: S-2, S-5, S-6, S-12

X Deployment: D-3, D-6

Summary

S-BGP provides the most comprehensive guarantees for secure BGP communications
[14]. The exchanged paths and IP prefixes are validated and proved to be valid at desti-
nation ASes by using attestations. Also, update integrity and confidentiality is achieved
by using the IPSec protocol. However, high S-BGP security has some tradeoffs. Namely,
its storage requirements for attestations and reduced performance due to signatures vali-
dation on every UPDATE message can discourage ISPs from deploying it on their ASes.

18

3.2 Secure Origin Border Gateway Protocol

Secure Origin Border Gateway Protocol (soBGP) is a BGP modification intended to fix
BGP security problems and make communication between peers more reliable. Similarly
to S-BGP, it uses PKI to authenticate and authorize entities in the network [14]. The
solution was proposed by Cisco Systems in 2002 and intended to validate and authorize
the data carried within BGP and protect against misconfiguration or malicious insertion
of invalid data into the Internet routing system [21].

soBGP uses four types of certificates to verify prefixes and paths of peers:

o Entity Certificate

e Authorization Certificate
e Prefix Policy Certificate
e AS Policy Certificate

The purpose of these certificates will be described in the following sections.

Entity Certificate

Entity Certificate (EntityCert) is an X.509v3 format certificate which binds AS public key
to its ASN. The private key is stored in ASes and used to sign certificates [21] delegated
to child entities such as routers and customers. AS has to store the private key in a most
secure way (probably offline) to ensure nobody has an access to it. If the private key is
compromised, the attacker can issue trusted certificates for malicious entities in a network
which will be trusted by other peers.

EntityCert is signed by a third party which validates whether the key pair actually
belongs to an ASes. Similarly to S-BGP, there are several certificate authorities managed
by IANA which are trusted by default and their certificates are not validated by network
entities. As a result, SOBGP forms a web of trust (see figure 3.2) which starts with a
top-level service provider [21] and ends with AS border routers.

19

Key Signature Key Signature
EntityCert

&
T
5
&
EntltyCen
AS Key Signature Key Signature Key Signature
&)
3 >
S
‘?ép /'
EntltyCert EntltyCert
Key Signature Signature

Key

EntityCert

Figure 3.2: Web of trust for entity certificates (based on Figure 1 from [21])

Authorization certificate

Authorization certificate (AuthCert) is used to authorize AS prefixes. Namely, it checks
whether an AS is eligible to advertise allocated prefixes. The certificate contains IP pre-
fixes(s), AS number and a public key of certificate owner, AS number and signature of
certificate signer.

20

EntityCert

AS Key Signature
AS Key authorizer signature
6500 10.0.0.0/8 AS signature

EntityCert
[AuthCet | 6500 Key | Signature

AS Key authorizer signature
6501 10.0.0.0/16 6500 signature

L AuthCert | 8501 | Key |Sianahwe

AS Key authorizer signature
6502 10.0.0.0/24 6501 signature

Figure 3.3: Authorization certificate distribution (based on the Figure 2 from [21])

In Figure 3.3 top level AS has authorized AS6500 to use 10.0.0.0/8 prefix. In order to
do that, it issued a certificate for AS6500 which is signed by its private key. As a result,
AS6500 can assign sub-prefixes to ASes managed by it in a similar manner. For example,
AS65001 was authorized to use 10.1.0.0/16 prefix and allocated prefixes with a smaller
range to its children. The AuthCert can include multiple prefixes to reduce cryptographic
processing requirements and the number of certificates in a network [21].

In order to validate AuthCert, an AS has to look up the public key of certificate signer
and verify that the signature of AuthCert is valid. If the signature is correct, then AS is
authorized to use prefixes specified in AuthCert [21]. Each soBGP speaking entity has to
maintain a local mapping between ASes and prefixes they are authorized to advertise. The
table is used to check the receiving UPDATE messages to ensure that AS is authorized to
advertise specific prefix.

21

Prefix Policy Certificate

Prefix Policy certificate (PrefixPolicyCert) wrap AuthCert with network policies applied
per prefix. AuthCerts are not advertised independently but within PrefixPolicyCerts [21].
PrefixPolicyCerts are issued by AS which assigns prefixes to another AS and apply rules
the receiving AS should follow. ASes can apply any policies to prefixes. For example, the
policy can be a list of ASes that must not or must be in the AS Path of routes for certain
prefix. However, the problem is to enforce the receiving AS to apply these policies.

AS Policy Certificate

Previous three certificates are responsible for verifying whether an AS is authorized to
advertise prefixes, what network policies it should apply and whether the AS number it
claims to have actually belongs to it. AS Policy Certificate (ASPolicyCert) is used to
verify that the advertised path is valid.

Each AS attached to the network creates an ASPolicyCert which contains a list of
peer AS numbers which this AS belongs to. The certificate is signed by AS it is issued by
(self-signed). As a result, the topology of the network could be built by verifying the AS
Policy certificates.

Connected to Connected to
AS6501 AS6501, AS6505

T

Connected to
AS6501

Connected to
AS6500, AS6502,
AS6594

Connected to
AS6502, AS6503

Connected to
AS6501, AS6505

Figure 3.4: Example of AS policy certificate usage (based on the Figure 3 from [21])

22

In Figure 3.4 AS6505 receives an UPDATE message from AS6502 which claims to
have a path to AS6500 through AS6501. AS6505 performs the following checks to verify
that the path is valid:

e Check ASPolicyCert of AS6502 to verify that it is connected with AS6501.
e Check ASPolicyCert of AS6501 to verify that it is connected with AS6502.
e Check ASPolicyCert of AS6501 to verify that it is connected with AS6500.

e Check ASPolicyCert of AS6500 to verify that it is connected with AS6501.

In case AS advertises path that is incorrect, the receiving AS can identify the issue
by verifying ASPolicyCerts of ASes in a path. In addition, ASPolicyCert can include AS
specific statements, etc., a specific peer is not a transit, not advertising certain peers [21].

Certificates management

soBGP has three different certificates (EntityCert, PrefixPolicyCert, ASPolicyCert) which
have to be exchanged between peers for path verification. The certificates are exchanged
using a new type of BGP messages called SECURITY. The messages can be exchanged
in four different ways [21]:

e Certificates are exchanged and validated between peers from different ASes. The
exchange is performed by AS border routers which validate received certificates,
exchange them with other peers and store in a local database. The database is used
to validate incoming UPDATE messages.

o Certificates are exchanged between peers from different ASes, but validation is del-
egated to other servers within an AS. When routers receive an UPDATE message,
they query those servers for the validity of the received PATH.

o Certificates are exchanged over a multihop session. Servers within ASes process the
certificates and border routers of different ASes query them to verify the validity of
paths in UPDATE messages.

Problems

soBGP tackles not all of the BGP security problems. It has much weaker path authen-
tication compared to S-BGP. The main difference between approaches taken by soBGP
and S-BGP is that S-BGP provides dynamic path attestation. It means that S-BGP peers
have a real-time view of the topology and path taken by the message. In contrast, soBGP
uses databases which provide a static view of the topology and paths in it. The topology

23

changes can be taken into account by reissuing ASPolicyCert. As a result, when an UP-
DATE message is received, it could have a path from changed topology which was not
yet reflected in the soBGP database (requirements S-3,4,5,6).

soBGP requires a database to be deployed on AS side and the certificates distribution
could cause some deployability issues (requirement D-6). The fact of having an addi-
tional message type, SECURITY message, can introduce some difficulties for protocol
deployment and backward compatibility (requirement D-1) [21].

X Security: S-3, S-4, S-5, S-6, S-12

X Deployment: D-1, D-6

Summary

soBGP provides more flexible and lightweight solution than S-BGP to tackle BGP secu-
rity problems. Administrators can configure the protocol in a way that it will trade off
security and protocol overhead. However, it does not provide hop integrity, good origin
authentication and attacker can still intrude into the path. Also, it has a weak mechanism
for protecting path authenticity and PKI keys distribution.

Furthermore, path and policy validation requires additional databases which makes
the deployment more complex and it is more difficult to manage distributed trust.

3.3 Interdomain Route Validation

Interdomain Route Validation (IRV) is a receiver-driven protocol proposed by G. Goodell
in 2003 [9]. It is the least centralized solution among others for securing BGP [14].

Every AS in a network contains an IRV server (see figure 3.5). Upon reception of
an UPDATE message, the BGP speaker will contact IRV server in its AS to verify the
correctness of the received message. The IRV server will validate the received request by
querying IRV server from AS mentioned in an AS_PATH. In order to validate all ASes
in AS_PATH, IRV server will have to query all respective IRV servers [14]. It can be
adjusted to query only certain subsets of ASes in the path or cache results for future usage
to improve the performance.

Similarly to S-BGP, IRV can use TLS or IPsec for securing TCP/IP communications.
As a result, messages exchanged between IRV servers are ensured authenticity, integrity,
and confidentiality. IRV servers can tailor responses to queries based on the requesting
entities [14]. This makes the IRV to control the exposure of sensitive routing data such as
policy and peering relationships.

24

AS6500

AS6501

IRV query

AS6502

IRV query
1
]
]
]

Figure 3.5: IRV servers withing ASes (based on the Figure 6 from [14])

Problems

The main problem of IRV is that it has to have connectivity to IRV servers in other ASes
to verify the path [14]. This makes IRV server setup more complicated and maintenance
tedious (requirement D-6) as it has to keep connectivity with other IRV servers. In ad-
dition, deploying IRV server requires separated virtual machine or bare metal server and
AS administrators have to make it highly available and resistant to failures (requirement
D-3).

Moreover, if IRV server will be compromised, it could lead to incorrect behavior of
AS and its peers.

X Deployment: D-3, D-6

Summary

Unlike S-BGP and soBGP, IRV’s operations are independent of the routing protocol [14].
Its security verification is completely detached from BGP protocol which allows more
flexibility and makes it backward compatible with BGP. However, there are some issues
with deploying and maintaining IRV server which could make this solution not optimal
for real-life scenarios.

25

3.4 BGP MD5 authentication

Message Digest5 (MDS5) authentication can be used to secure the connection between
BGP peers [1]. In order to do that, peers have to agree on the same password, otherwise,
they will not be able to establish a connection. MD35 authentication verifies each segment
of TCP connection between peers. Each packet exchanged between peers includes MD5
digest which is calculated by sender [1]. The receiving entity calculates the hash of the
packet and verifies that it is the same as included in the packet. As a result, messages
exchanged between peers cannot be modified or injected.

e Security: BGP MDS5 authentication provides a secure connection between peers,
but does not validate UPDATE messages.

e Deployment: BGP MDS5 authentication is easy to deploy and to setup. It is a very
lightweight solution.

3.5 BGPSec

BGPSec is a standard BGP securing protocol proposed in September 2017 [8]. It is an
extension to BGP which makes sure the advertised path between ASes is correct. BGPSec
uses RPKI and conceptually is very similar to S-BGP. However, there are some differences
compared to S-BGP [8]:

e BGPSec replaces AS_PATH in UPDATE messages with BGPsec_PATH which con-
tains 1 or 2 signature blocks. Usually, one signature block is used. However, for
backward compatibility with cryptographic algorithms second block can be used.

e Signatures of ASes in a path contain not only signed AS number but also the AS
number of the peer to which the path should be advertised.

e In case peers are not able to communicate in BGPSec, then BGPSec replaces its
BGPsec_PATH with AS_PATH of BGP protocol.

Similarly to S-BGP, BGPSec allows malicious peers to remove signatures from the mes-
sages and further ASes will not be able to verify them. (requirement S-12).

BGPSec eliminates most of the yet known path hijacking attacks on BGP. However, it
is still expensive to adopt this protocol and the performance is reduced due to signatures’
calculation for each UPDATE message (requirements D-3,6).

X Security: S-12

X Deployment: D-3, D-6

26

3.6 Secure Blockchain Trust Management system (SBTM)

SBTM can be used to instantiate a blockchain-based PKI for secure BGP modifications
[4]. Tt could be used by ASes to store and share data required by secure routing protocols
such as S-BGP, soBGP, BGPsec to validate UPDATE messages. It aims to reduce the
operational cost and ease the deployment of secure BGP protocols.

As aresult, it can be used in combination with existing BGP secure solutions to make
their deployment and management more secure and user-friendly. However, it does not
provide any protection against common BGP attacks such as ASN and prefix hijacking.

3.7 Summary

Origin authentication Path authentication
Overhead Overhead
Securlty Securlty

Proposal

Hierarchical PKI Signatures

Strong Low High Strong High High

local memory in messages
Hierarchical PKI Topology
soBGP separate database Strong Low Low map Low Low Low
IRV Separate IRV Distributed

Strong Low Low Medium High Low

servers database

Figure 3.6: BGP secure solutions evaluation

This section reviewed only several secure BGP proposals. However, there were more
research performed in secure routing area (e.g. [15]). The reviewed protocols have their
own tradeoffs (Figure 3.6) and are not optimal for all the scenarios. For example, S-BGP,
BGPsec (has the same results as S-BGP), and IRV have solid security but have some per-
formance and deployment issues. On the other hand, soBGP and MDS5 authentication are
easier to deploy, but they are lacking some of the security properties or are not backward
compatible with BGP. As a result, there is still space to improve and come up with a
better, more robust and secure solution.

27

Chapter 4

Methodology

The smart contracts based design aims to eliminate problems encountered in BGP secure
modifications described above. It demonstrates how smart contracts can decouple the
information required to validate the UPDATE messages and distribute it among peers in
a secure, robust way.

This chapter gives an overview of securing BGP using smart contracts. Firstly, it
reviews the main tools used in a described solution such as smart contracts and Quorum
blockchain platform. Next, it provides a detailed description of a Registry and AS smart
contracts used to check the correctness of UPDATE messages exchanged among BGP
peers. Finally, it describes future work that could be done to improve the solution.

4.1 Smart contracts

Smart contracts are programs which execute in a decentralized platform such as Ethereum.
They are written in Solidity programming language, which is Turing complete, and are
executed inside Ethereum virtual machines (EVM). Before pushing the contract to the
P2P network, it has to be compiled and the application binary interface (ABI) has to be
extracted. The ABI stores signatures of contract functions and is used to call them and
interact with a contract. Before a contract can be used, it has to be mined into a block
and synchronized among peers. Each contract change is called a transaction and has to
go through the process of validation and adding to block by the blockchain platform. The
contracts have a separate storage which is used to store their state. Each change to that
state requires to be added to block and synchronized among peers.

When the contract is pushed to the blockchain, it cannot be changed anymore. How-
ever, there are mechanisms which allow to upgrade it, e.g. proxy contract. The advantage
of using a smart contract is that it cannot be changed by anyone and works exactly the
way it was written. They are executed by each peer of the network and their state can only
be modified by using functions listed in ABIL.

28

The smart contract has the following features [2]:

e Transparency. All the contracts stored in a blockchain are visible and can be ac-
cessed by all the network peers.

e Security. All the transactions are signed by the private key of the issuer. As a
result, if a third-party would modify the transaction, then the signature will not be
valid anymore. In addition, the blockchain concept allows to store and exchange
transaction in a most secure way [6].

e Speed. Blockchain platforms use peer to peer connections to exchange data. As
a result, when a new block is added to the blockchain by one of the peers, it gets
synchronized among them with no delay.

4.2 Quorum

Quorum [17] is a blockchain platform developed by J.P. Morgan. It is an Ethereum fork
which has a different consensus mechanism and contract privacy. The primary extensions
of Quorum compared to Ethereum are following:

e Quorum supports transaction and contract privacy. Namely, it is possible to create
contracts or transactions which could only be accessed by address owners specified
during contract or transaction creation.

e In public blockchains such as Ethereum, anyone can become a peer and synchronize
blockchain database. In Quorum it is possible to create a permissioned network.
Namely, each node can specify with what peers it wants to synchronize blocks.
This way only trusted nodes can become part of the network and communicate.

e Ethereum uses proof of work consensus mechanism. It means that in order to fi-
nalize block, mines have to perform heavy computations. Quorum, however, offers
Raft-based and Istanbul BFT consensus mechanisms, which are more suitable for
permissioned peer to peer network.

e Quorum has significantly better performance compared to the Ethereum.

Permissioned nodes

The Quorum would fit BGP needs much better than Ethereum or any other blockchain
platform. It does not require ether (Ethereum cryptocurrency) or mining in order to main-
tain a consensus of the blockchain. However, each peer in the BGP network has to keep a
JSON file which maintains a list of nodes in the format:

29

W W=

"enode://remotekeyl@ipl:portl",
"enode://remotekeyl@ip2:port2",
"enode://remotekeyl@ip3:port3",

Listing 4.1: Quorum node permissioned nodes list

The list specifies what nodes can connect to a given node and also to which nodes
the given node can dial out to. It should be specified when starting the node using
--permissioned flag. This way blocks will be only synchronized among permissioned
nodes. For example, if AS 1 is connected to AS 2 and 3, then it has to specify enodes of
those ASes and enode of IANA. From each AS it is connected to, it has to retrieve remote
key (generate at node startup), IP address and port (usually all the nodes have the same).
When AS connects to the new peer, it can add the enode of this AS dynamically without
rebooting the node. In addition, if peer disconnects from current AS, then its enode can
be removed from the list.

Another way of modifying the list of permissioned nodes is to use JS console. An
admin can issue raft.removePeer(raftId) to remove the node from peers, where
raftId is the number of the node you wish to remove. To add a node to the list of peers,

issue raft.addPeer (enodeld), where enodeld is in format remotekey@odeIP:nodePort.

The drawback is that each AS has to keep a list of nodes it wants to synchronize with.
In the future release of Quorum, the list of nodes will be moved to a smart contract and
would not require AS to keep this list.

Consensus mechanism

Quorum has two different consensus mechanisms: Raft-based and Istanbul BFT. Both of
them have their own advantages and disadvantages, but, in general, they are quite similar.
The Raft-based consensus mechanism has got more popularity in Quorum community
due to its performance and block addition mechanism which ensures there will not be
forks in a blockchain. In Raft-based consensus mechanism, Byzantine fault tolerance is
not a requirement due to the permissioned list of peers who maintain the blockchain.

There are several differences of Raft consensus mechanism compared to traditional
proof of work used in Ethereum:

e In Raft miners do not submit blocks simultaneously, instead, there is one leader
which is elected using Raft protocol. It mines the transactions and submits them
into blocks. It is called a leader.

e The leader does not need to perform heavy computations and provide proof of work,
instead the transactions are submitted immediately. This allows Raft-based consen-
sus to gain significant performance compared to the Ethereum proof of work.

30

e When a leader is about to submit a new block, it first shares the block with peers
and the block is applied synchronously. As a result, there will be no forks that could
occur in proof of work when multiple miners submit blocks.

e Raft-based consensus has a speculative mining mechanism which optimizes syn-
chronization and simultaneous insertion of the new blocks into the chain. It makes
the process of transaction propagation across the network faster.

o [f the leader is not emitting new blocks or behaves incorrectly, it stops to be a leader
and the network elects a new leader using Raft protocol.

4.3 Solution overview

BGP UPDATE messages can be validated using smart contracts running on a blockchain
platform. When an UPDATE message is received by AS, it could make a query to a
blockchain to validate attributes of the UPDATE message. In order to interact with a
blockchain and participate in a peer to peer network, each AS border router has to run a
blockchain node.

There are two types of smart contracts: Registry and AS. Each AS after registering
with TANA receives a smart contract which is used by itself and other ASes to validate
connections between ASes in AS_PATH of the UPDATE message. Registry contract is
used to keep track of prefix allocations, ASes, and their contract addresses. It can be used
to retrieve the contract address of AS or to validate whether prefix belongs to specific AS.

In the following sections, registry and AS smart contracts will be described in more
details. In addition, accounts management used to make transactions into the blockchain,
will be explained. Furthermore, it will be described how exactly AS_PATH validation is
performed and how contracts could be extended, improved in the future.

4.4 Account management

Each smart contract state modification is represented as a transaction. The transaction has
to be signed by account’s private key. As a result, in order to interact with a blockchain, an
account has to be generated. Each account is represented as a public, private key pair. The
address of an account is a public key which went through multiple hashing algorithms.
It can be shared with anyone and is used to distinguish entities in a blockchain. When
the contract is created, its address is generated based on the public key of an issuer and
additional nonce.

The private key of the contract is only used to sign transactions and should never be
shared with anyone. It is usually protected with a passphrase and stored in a most secure,
private way. The private key should be unlocked before making any transactions to the

31

N =

O 00O B~ W

blockchain. A user has to specify passphrase and, optionally, the time period the accounts
should be unlocked for.

There were multiple CLI tools developed by Ethereum community to interact with a
blockchain such as web3 and geth. These tools can be used to generate accounts. The
Appendix A includes Python script which uses web3 and geth to create, list and unlock
accounts (see Listing 4.2).
$ python3 account.py --ipc-path=$IANA_IPC create owner secretPassphrase
Account with name owner and address 0

xa2b03306C6074Be3e834F39b24b8BB6be8752A45 has been successfully

created.
0xa2b03306C6074Be3e834F39b24b8BB6be8752A45

$ python3 account.py --ipc-path=$IANA_IPC list
owner: 0xa2b03306C6074Be3e834F39b24b8BB6be8752A45

$ python3 account.py --ipc-path=$IANA_IPC unlock owner secretPassphrase
Account with name owner has been successfully unlocked.

Listing 4.2: Create, list and unlock ethereum account

4.5 Registry contract

A "Registry" is a name for the smart contract which can be used by IANA to keep track
of ASes and prefix allocations in a network. In addition, ASes and other network entities
could use the Registry contract to validate whether specific prefix was allocated to the AS
or to receive the address of an AS contract (explained below). In the following sections,
IANA will be referenced as a Registry contract owner. However, the Registry contract
could be created by any node in a blockchain network.

In order to deploy a Registry contract, the following steps must be performed:

1. TANA creates an account (keypair) for making transactions in a blockchain.

2. TANA issues a contract deployment transaction which is signed by a private key of
the account created in a previous step.

3. Blockchain node adds a transaction to the transactions pool and it gets synchronized
among network peers.

4. When transactions will be mined (added to the block and included to the blockchain)
by one of the peers, the new block will be synchronized among peers.

IANA has to create an owner account before deploying the contract (see 4.4). Only Reg-
istry contract owner can modify the Registry contract state. Note, that the private key used

32

—_

O O 00NN W

to sign the Registry contract deployment transaction should be stored in the most secure
way and only be used when creating other transactions for the Registry contract. If the
private key is compromised, the deployed Registry contract cannot be trusted anymore.
The account address (public key) is saved during contract initialization:

address public owner;

constructor () public {
owner = msg.sender;

}

modifier onlyOwner () {
require (msg.sender == ownher) ;

Listing 4.3: Registry contract owner initialization

In Listing 4.3 the modifier is created for registry owner. This modifier could be used
in other functions to allow their executions only for registry owner. For example, func-
tion with definition function assignPrefix() external onlyOwner {} will only
be executed in case transaction was signed by private key which corresponds to a public
key (address) stored in owner variable.

When the Registry contract is created, it will be assigned a unique address. The ad-
dress is a unique identifier for smart contracts running in a blockchain. The contract
address is computed from the public key of the contract owner and the number of his
transactions in a blockchain. The address should be stored somewhere and used to iden-
tify the registry. If the address of a registry is lost, it could be recovered by checking
transactions in a blockchain executed by the owner. Each blockchain peer is able to ac-
cess a registry from its local copy of a blockchain.

33

[

SO O 00NN B W

AS registration

2. Deploy AS

Quorum node

A
1. - owner address v P2P synchronization
- admin address

. B

- 5. Manipulate AS

AS

4. AS address

Quorum node

Figure 4.1: AS creation by registry owner.

When the Registry contract is deployed, IANA can register ASes (see Figure 4.1). In
order to do that, each AS has to generate an owner account (see 4.4) which they could
use to interact with their AS contract in future. When AS generates this account, it shares
an account address (public key) with the IANA. After receiving an owner address, [ANA
generates a unique AS number and creates a transaction to the Registry contract by calling
createAS contract function:

mapping (uint32 => address) private ASes;

function createAS(uint32 number, address ASowner) external onlyOwner {
require (ASes[number] == address(0));
ASes[number] = new AS(ASowner);

3

function getAS(uint32 number) public view returns (address) {
return ASes[number];

}
Listing 4.4: AS contract creation

The Registry contract stores a mapping between an AS number and its contract ad-
dress. Therefore, any blockchain network participant can retrieve an AS contract address
by using getAS function and specifying its number. The AS contract is used by AS to
store the information that it wants to share with other ASes. The AS contract will be
described in more details in following sections.

34

W N =

[l I SRV I

11
12

13
14

Prefix allocation

IANA can use a Registry smart contract to assign and remove prefixes.

2. Assign 100.0.0.0/16 to AS 1

~S. Assigned successfully
IANA

A Quorum node
1

A
: v P2P synchronization
4. Your prefix is 1. Prefix request

100.0.0.0/16

€----=----

&P

AS Quorum node

Figure 4.2: Prefix allocation to AS by registry owner

After processing a request from AS to allocate prefix to it, IANA makes a request
to registry smart contract by calling assignPrefix function and specifying AS number
and prefix (see Figure 4.2). The prefix should be available, otherwise, the transaction
would be reverted. When a prefix is allocated to AS, it is saved in a mapping of the
Registry contract (see Listing 4.5) and synchronized across all the peers. Other ASes can
check whether prefix really belongs to a certain AS by calling hasPrefix function and
specifying AS number and prefix they want to check a connection between. When IANA
would like to remove the prefix from an AS, it will issue removePrefix contract function
and the connection between AS and prefix will be removed (see Listing 4.5).

mapping (bytes32 => uint32) private prefixes;

function assignPrefix(bytes32 prefix, uint32 asNumber) external
onlyOwner {
require (ASes[asNumber] != address(0) && prefixes[prefix] == 0);
prefixes[prefix] = asNumber;

}

function removePrefix(bytes32 prefix) external onlyOwner {
delete prefixes[prefix];

3

function hasPrefix(bytes32 prefix, uint32 asNumber) external view
returns (bool) {
return prefixes[prefix] == asNumber;

Listing 4.5: Prefix allocation to AS

35

0NN AW~

4.6 AS contract

An AS contract represents each autonomous system in a BGP network. The contract must
be created by IANA which registries new AS in a network (see 4.5). As a result, each AS
in a BGP network has its own contract in a blockchain.
contract AS {

address private owner;

address private admin;
address public registry;

bool private disabled;
mapping (uint32 => bool) private peers;

constructor (address _owner) public {
owner = _owher;
admin = _owner;
registry = msg.sender;
disabled = false;

Listing 4.6: AS contract constructor

When the AS contract is created by IANA, its constructor (see Listing 4.6) is called
with the owner address which was received by IANA from the AS. The constructor sets
permanently an owner address and initializes other variables which are described in fol-
lowing sections. The IANA address is also stored in a contract in registry variable. Itis
a public variable and can be used by AS to retrieve information about prefixes and other
AS addresses from the IANA registry.

An AS has to store the address of the created contract in order to interact with it. If
AS has lost its contract address, it can retrieve it by calling getAS of the registry contract
and specifying its AS number.

Permissions

Each AS contract stores information about two types of users: owner and admin. The
owner is initialized during contract creation and is usually passed by IANA. This user has
the highest permission rank in the contract. It can execute all the contract functions:

e Change admin account address.
e Disable and enable AS contract.

e All the action that could be performed by admin account.

36

[

A WO =

AW N =

SO OO0 NN N B W

The owner contract should be stored in a most private way and used only for extreme
actions such as first two listed above. For all the other actions admin account should be
used. The contract functions allowed only to owner include following modifier:
modifier onlyOwner () {

require (msg.sender == ownher) ;

Listing 4.7: AS owner modifier

The admin account should be used on a daily basis to add and remove peers to/from the
contract (described in details below). All the functions which can be executed by admin
are protected with following modifier:
modifier onlyAdminOrOwner () {

require(msg.sender == admin || msg.sender == owner);

Listing 4.8: AS admin modifier

From the modifier in Listing 4.8 it could be seen that all the functions which could be
executed by admin can also be executed by the owner. Note, that owner and admin
accounts should be stored on separate machines for security reasons.

There is also a number of read-only functions described below which can be accessed
by any peer in a network. They do not have any modifier applied to them.

Peers

Each AS in the BGP network has peers directly connected to it and exchanging UPDATE
messages. The routing between AS and its peers is set up manually by AS administrators.
In order to make other ASes aware of connections between peers, each AS keeps track
of AS numbers it is connected to its smart contract. As a result, peers can query the AS
contract to verify the path in an UPDATE message.

Peers can only be modified by admin or owner account. Other accounts can only
verify whether specific AS number is in a list of AS’s peers in its contract.

mapping (uint32 => bool) private peers;
function addPeer (uint32 number) external onlyAdminOrOwner {

peers[number] = true;

3

function removePeer (uint32 number) external onlyAdminOrOwner {
delete peers[number];

}

37

11
12
13

function hasPeer (uint32 number) external view returns (bool) {
return peers[number];

}
Listing 4.9: Adding and removing AS peers

In order to add a peer to a list of peers in AS contract, AS admin has to execute the
addPeer function. After that, the AS number will be stored in a mapping peers. All
the other peers could verify whether the AS claims to be connected to another peer in
a network, by issuing hasPeer function. The connections between two peers could be
considered valid if both of them claim to be connected in their smart contracts.

If the connection between peers is not valid anymore or there are connectivity issues,
the AS could issue removerPeer function to remove peer from peers list. The mapping
will be updated respectively and all peers will be aware of that.

Enabling and disabling AS contract

An AS owner can disable or enable contract when needed. There can be several reasons
to do that. For example, an AS could be disabled in case it was compromised (see Figure
4.3). In order to prevent a malicious entity from adding invalid AS numbers to peers
mapping in contract or listening to traffic, an AS owner can disable AS contract. As a
result, all its peers could see that change from the blockchain and redirect traffic from it to
different paths. When AS would get into normal state, an AS owner can make a query to
change the contract admin address, enable AS and the traffic can be traversed as before.

In addition, AS can be disabled for maintenance. When AS border router is not avail-
able, AS can notify other peers to traverse the traffic another way by disabling the contract.

Lastly, when AS wants to not participate in blockchain anymore, it can disable AS
permanently, so the peers will not rely on the data in the contract.

38

0NN AW~

—_—
W = O o

AS 4

Figure 4.3: AS owner disables AS contract while it is compromised.

An AS contract is enabled by default. In order to disable it, the owner has to call
disable function (see Listing 4.10). When transaction will be synchronized by peers,
they could see that the AS is disabled by calling isDisabled function. When AS owner
wants to enable AS contract back, the enable function should be called.

bool private disabled;

function disable() external onlyOwner {
disabled = true;

3

function enable() external onlyOwner {
disabled = false;
}

function isDisabled() external view returns (bool) {
return disabled;

}
Listing 4.10: Disabling and enabling AS contract

4.7 Path validation

BGP peers use UPDATE messages to inform network entities about prefix reachabil-
ity. Each UPDATE message contains AS_PATH which consists of AS numbers and net-

39

work layer reachability information which contains the prefix UPDATE message is ad-
vertising. For example, AS 4 receives UPDATE message with AS_PATH=1, 3 and pre-
fix 100.0.0.0/16. It means that it could send all the packets with IP from prefix
100.0.0.0/16 to AS 3, which in turn will redirect packets to AS 1, the owner of the
prefix.

However, the malicious entity could hijack the path or prefix and make AS to apply
an invalid route. As a result, AS should be able to validate the received path and prefix in
an UPDATE message. It could be done using Registry and AS contracts.

Prefix validation

The first step to validate path advertisement received by AS from its peers is to check
whether prefix belongs to first AS in the path. In order to do that, it has to perform the
following steps:

1. Getregistry address from owned AS contract. An AS has to get a value of registry
variable from the contract.

2. Use the registry address to locate Registry contract in a blockchain.

3. Call hasPrefix function in Registry contract with specifying advertised IP prefix
and first AS number in a received path. For example, to check whether AS 3 owns
100.0.0.0/16 prefix hasPrefix("100.0.0.0/16", 3) should be called.

4. Based on the output decide whether to reject the AS_PATH or continue validation.

Due to the fact that prefixes mapping is stored in registry contract and controlled only by
IANA, there is no way any AS can modify it. In addition, peer to peer synchronization
allows peers to see the changes in a contract as soon as they will be added to block and
synchronized among nodes (see performance evaluation below).

Path validation

After first AS in the AS_PATH proved to be the owner of the prefix, there should be a
mechanism to validate whether ASes in a path are connected with each other. When AS
receives UPDATE messages from its peer, it can validate connections between ASes in a
path using the following algorithm:

1. Getregistry address from owned AS contract. An AS has to get a value of registry
variable from the contract.

2. Use the registry address to locate Registry contract in a blockchain.

40

. Call the getAS function of the registry contract to get the contract address of AS

under the review. The AS number has to be specified as an argument. For example,
to get the contract address of AS 3, getAS(3) should be called. If the contract
address was not returned, it means that AS was not registered and path validation
has failed.

Use the contract address received from the previous step to locate the AS contract
in a blockchain.

. Check whether AS contract from the previous step is not disabled by calling the

isDisabled function. If the output will be true, then validation has failed.

Check whether AS numbers in AS_PATH which are before and after the AS number
under the review, are its neighbors. In order to do that, hasPeer function has to be
called. For example, if AS_PATH=1, 3,4 and AS 3 is under the review, then both
hasPeer (1) and hasPeer(4) has to return true.

. If the previous step was successful, then continue with next AS number in AS_PATH

from step 3. Otherwise, the validation has failed.

The described algorithm ensures that both ASes in a path that goes one after another,
claim to be connected using smart contracts. For example, path 1, 3, 4 is valid only in
a case following checks will succeed:

1.
2.

3.

AS 1 contract: isDisabled() -> False and hasPeer(3) -> True

AS 3 contract: isDisabled() -> False and hasPeer (1) -> True and hasPeer(4)
-> True

AS 4 contract: isDisabled() -> False and hasPeer(3) -> True

This way it can be validated whether both ASes claim to be connected and prevent the
case when one of the ASes was compromised and sends malicious UPDATE messages,
where it claims to be connected with some other ASes. An AS could also listen to emitted
events when new blocks arrive and make relative changes. For example, there could be
an event emitted when one of the ASes has removed its peer. Other ASes could check
whether this change affects their routing information and apply changes if so.

4.8 Deployment

Quorum nodes can be deployed on the AS border router’s side. Specifically, each border
router will have its own Quorum node running and will perform paths validations against
it. Due to the fact that the node is running on the same machine, path validations will

41

be fast. In addition, it will increase blockchain security as there will be more peers in a
network and harder to perform attacks on a network. However, there are several major
drawbacks of such approach:

1. It will increase memory and space usage for border routers. As a result, not all the
routers will be capable of running and synchronizing distributed ledger. Further-
more, it would be possible to perform DoS attacks on such border routers.

2. Block synchronization speed will decrease. Namely, each block mined by the leader
would reach peers slower with a higher number of peers in a network.

3. It will dramatically decrease maintainability of each AS as each router would have
to set up and maintain Quorum node.

Another way of deploying Quorum nodes in ASes is similar to how it is done in IRV
3.3. Namely, each AS could have one or several Quorum nodes running on dedicated
servers which will be responsible for syncing the ledger and validating UPDATE mes-
sages (Figure 4.4).

42

AS 6501
X
| ez |

" Validate UPDATE message

P L

AS 6502

UPDATE message

Figure 4.4: Quorum deployment in ASes.

The connection between border routers and Quorum nodes could be secured using
existing tools such as IPsec or TLS. In addition, it is possible to deploy multiple Quorum
nodes to make them highly available and load balance the traffic. As soon as the Quorum
leader will mine the block, it will be synchronized among peers (ASes) and applied to the
local copy of the ledger simultaneously. As a result, there is no possibility of having a
fork inside the blockchain as well as a race condition.

The procedure for the border router to validate the new UPDATE message will be the
following:

1. Border router receives an UPDATE message from the peering AS.
2. Border router establishes the secure connection with the Quorum node.

3. Border router makes a request to Quorum node to validate the UPDATE message.

43

4. Quorum node performs UPDATE message validation as described in 4.7.
5. Quorum node returns the response to the border router.

6. Border router decides whether to update routing information or not based on the
response.

Lastly, it is possible to configure Quorum nodes in a way that they will track changes
in a ledger and push updates to the border routers that would be affected by such changes.
However, such an approach is quite complicated and requires further investigation.

4.9 Future work

Currently, smart contracts include only the bare minimum required for validating AS_PATH.
It is possible to extend them with more functionality and, as a result, provide a more secure
and flexible solution. For example, Registry and AS contracts does not support upgrad-
ing. Namely, it is impossible to fix bugs in them or extend with functionality dynamically.
The proxy contract can be used which will track the latest contracts and redirect requests
to them.

In addition, all the transactions that change the state, such as adding a prefix to AS
or AS is removing its neighbor from the contract, could emit events. Those events will
appear on each blockchain node as soon as they will synchronize the block. As a result,
they could monitor those events and make certain routing changes if any of the events are
related to them.

Furthermore, it is a good practice to document all the lines in a contract. It would
provide users a better understanding of how they work.

Registry contract

The current implementation supports only top-level registries such as IANA. However,
ASes could also deploy their own Registry contracts and allocate prefixes to their cus-
tomers. It will reduce load from the IANA registry and ASes could allocate smaller pre-
fixes from prefix allocated to them by IANA to their own customers. One of the possible
solutions for that could be the following:

e Each registry stores list of siblings. Those are other registry addresses which should
be passed to each AS constructor. For example, if AS 1 has its own registry, its
sibling will be IANA registry address. As a result, when AS contract will be created
both IANA and AS 1 registry addresses will be passed to its constructor.

44

e AS constructor should take a list of registries as an input and save them inaregistries

variable.

e When AS receives a new UPDATE message, it will try to find the address of the
AS contract from all the registries specified in registries variables and fail only
if none of them has registered AS in a path.

In addition, Registry contract does not check whether prefixes it wants to allocate are not
part of another prefix. For example, currently, prefix 100.0.0.0/16 and 100.0.0.0/24
are considered by IANA registry different. However, prefix 100.0.0.0/24 is part of
100.0.0.0/16 prefix and should not be assigned to any AS.

Furthermore, registries could have the same owner, admin permission model as ASes.
It will make them more resistant to the compromisations.

Lastly, Registry contract could distinguish between ASes which have set up their in-
frastructure to run a node and maintain their smart contract and the ones which have not.
As a result, if the AS has not set up the Quorum node yet, its validation will be skipped
by other ASes.

AS contract

Currently, AS only include information about their neighboring ASes in order to validate
AS_PATH. However, they could specify additional information which could be used by
other ASes. For example, they could specify network policies for the prefixes they are
advertising or default gateways for different prefixes.

45

Chapter 5

Analysis

This chapter evaluates the security, deployment and performance properties of a solution
described in a previous chapter.

5.1 Security

The security of blockchain based BGP is validated against twelve requirements specified
in Section 2.2.

S-1: The BGP announcement receiver must be able to determine that the first AS in the
received path was authorized to announce the prefix. Namely, it should be able to check
that there is a connection between the first AS number and IP prefix in a path.

Solution: In order to verify whether the first AS in a path is the owner of the prefix,
the UPDATE message receiver will make a query to a Registry contract (see Section 4.7)
and check whether the prefix belongs to the AS number of the first AS in the received path.

S-2: Replay of BGP UPDATE messages should not be possible. However, there could
be some mechanism for setting up a window during which the message is still valid.

Solution: When a malformed AS is performing a replay attack on an AS border router by
suppressing the valid UPDATE messages and resending the ones which were valid some
time ago, it will not affect the victim AS. Due to the fact, that the victim AS will validate
the path specified in an UPDATE message by querying the AS contracts in a ledger (see
Section 4.7) and verifying that received the UPDATE message is not valid anymore.

S-3: The secure version of BGP UPDATE messages should provide up to date infor-
mation about paths between ASes.

Solution: All the latest information about AS connections are accessible through the
ledger. When any AS has modified its peers in a contract, the transaction is immediately
synchronized through the peer to peer network and when the leader has announced a new

46

block, it will be applied by all the peers in a networks simultaneously. Namely, the change
in a topology (AS peers modification) will be known by all the ASes at the same time.

S-4: The secure version of BGP UPDATE messages should provide up to date infor-
mation about prefix allocations.

Solution: Similarly to S-3, when IANA assigns or removes prefix to/from AS in Reg-
istry contract, this information will be immediately synchronized through the ledger and
known by all the network participants.

S-5: The secure version of BGP should be able to verify whether an applied path is still
valid.

Solution: Each AS stores a blockchain copy, which can be queried to verify whether the
path is still valid. Namely, AS can periodically check paths in a routing table and remove
the ones which are not valid anymore.

S-6: The secure version of BGP should be able to verify whether the applied path prefix
still belongs to the same AS.

Solution: Similarly to S-6, each AS stores a blockchain copy, which can be queried to
verify whether the prefix is still valid. Namely, AS can periodically check advertised pre-
fixes in a routing table and remove the ones which are not valid anymore.

S-7: The secure version of BGP should provide link layer integrity between peers. Namely,
packets injection, deletion, modification or replay should be prevented.

Solution: This solution does not modify the BGP protocol, but works as an addition to it
for verifying paths correctness. As a result, the connections between AS border routers
should be secure using existing solutions. For example, BGPsec or MDS5 authentication
could be used to improve link layer security of peers. The integrity between Quorum
nodes is achieved by the fact that blocks are synchronized from different peers and each
block correctness is verified upon receiving it. Namely, cryptographical algorithms are
used to verify that the received block was not modified.

S-8: The secure version of BGP should reveal information to peers only required to ascer-
tain the correctness of messages. As a result, it should reveal peering, customer/provider
relationships as less as possible.

Solution: The information of the peers’ connections and prefix allocations is shared
among all the Quorum network participants. As a result, the information between peers
connections and customer/provider relationships are revealed. However, Quorum project
improves the privacy of transactions shared between peers by introducing private transac-
tions which can be read only by peers specified in the to field of the transaction. There
have to be some improvements done before this feature would be production ready.

47

S-9: The secure version of BGP should signal or emit logs about security exceptions
which are important for network operators.

Solution: Smart contracts allow to emit events when some action was performed on a
blockchain. These events will appear on each node as soon as the block will be synchro-
nized. As a result, the Quorum node can trigger different actions based on the events
emitted. For example, if peering AS has changed its neighboring peers, the paths which
include this AS could be removed or validated again.

S-10: The storage of routing information database should be secured by authentication
and imply periodic reauthentication.

Solution: Blockchain is used as a database to store the information about prefixes and
peers connections. In order to make changes to this databases, the private and public key
pair must be used. The private key is protected with a passphrase and can be unblocked
only for a certain period of time. After the unlocking time has ended, the user has to
resubmit the passphrase.

S-11: The secure version of BGP should use secure cryptographic algorithms.

Solution: Quorum is Ethereum fork and uses Elliptic Curve Cryptography (ECC) for
signing transactions. The cryptography algorithms are considered to be secure for now
and are widely used in TLS and blockchain platforms. However, quantum computing is
advancing and these algorithms could have to be replaced with quantum resistant algo-
rithms.

S-12: The secure version of BGP should be resistant to downgrade attacks.

Solution: This solution does not modify the BGP protocol and is used as an additional
tool for verifying BGP paths. As a result, it is not possible to downgrade this solution to
an insecure version.

5.2 Deployment

There are six deployment requirements defined in Section 2.2 which will be used to eval-
uate the solution.

D-1 The secure version of BGP must be backward compatible with BGP and other ver-
sions of secure BGP so that it could be deployed incrementally.

Solution: The blockchain based solution can be deployed incrementally as it does not
modify the BGP. However, ASes which use the solution have to distinguish between ASes
which have the contract and are maintaining it and ASes which does not have it yet. The
Registry contract could store such information and, as a result, other ASes would know
whether to validate the AS contract or not.

48

D-2 The secure version of BGP must be backward compatible with the way messages
are formatted, processed and transmitted, so they could be parsed in environments with
mixed BGP versions.

Solution: The proposed solution will work with any modification of BGP, e.g., BGPsec,
S-BGP and soBGP.

D-3 The secure version of BGP should not possess large memory, storage and CPU over-
head on routers.

Solution: If Quorum node was deployed on the same router, it will increase the usage of
storage, memory, and CPU. However, if the recommended deployment way is used, then
it will not make any impact on the router’s resources. However, the processing time of
the messages could increase and, as a result, will cause more usage of a router’s memory
to store the received UPDATE messages which have to be validated.

D-4 The secure version of BGP should allow peers to configure the use of the security
mechanism on a per-peer basis.

Solution: Each peer can deploy the Quorum node in any way suitable for its needs. In
addition, each peer can regulate what secure information to expose to other peers through
its AS smart contract.

D-5 The secure version of BGP should allow peers to apply their custom routing poli-
cies on received paths to determine the preferred one.

Solution: When AS has sent path validation of the UPDATE message to the Quorum
node and the specified path is considered to be correct, it can apply any routing policies
on it locally. Furthermore, AS contract could be extended in a way that each AS would
be able to specify what network policies should be applied to its prefixes by other ASes.

D-6 The secure version of BGP should be easy to deploy, maintain and remove.
Solution: In order to run the Quorum node, an AS administrator has to set up a dedicated
server, download Quorum package, configure and run it. The setup does not require a lot
of time and does not differ a lot from setting up any other software package. The node has
to have enough memory, storage, and CPU allocated to make it able to store, process and
send the blockchain packets. Also, the administrator has to keep the AS smart contract up
to date and make changes anytime there has been some change made in its topology, e.g.,
it has added/removed a peer. In order to remove the Quorum node, the AS owner has to
disable the AS contract and stop running the node.

49

5.3 Performance

BGP traffic

In order to verify whether the solution will be capable of handling BGP traffic and will
not affect network performance, the traffic of BGP speaker has to be analyzed to extract
the amount and properties of data being transferred between peers.

The measurements were conducted on AS131072 by Geoff Huston [13]. Its traffic was
collected and analyzed since the year 2007. The BGP speaking router was logging all the
received BGP UPDATE messages and was not emitting any new ones. It was connected
to the default-free eBGP feed from AS4608 in Australia and AS4777 in Japan for both
IPv4 and IPv6 routes [13].

As aresult, the AS was working as a stub at the edge of the Internet. Its purpose was
just to collect and analyze packets from BGP speaking routers.

Daily BGP v4 Update Activity for AS131072
700000

|\Mth drawals| + ‘ I ! ! ! ! ! ! /"/
Announcements X P lliE

Total T
600000 - BGP FIB Size : ; ; 3 i
500000 |- ; ; % // i | FH -
400000 . . - /

300000 | e

Count
¥ : \

200000

100000

£t i

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Date

pa

Figure 5.1: Daily BGP v4 Update activity for AS131072 [13].

Figure 5.1 shows the daily BGP v4 activity at AS131072 from June 2007 to January
2018. Following facts could be extracted from it:

50

|Pv4 Average AS Path Length

. The number of advertised prefixes has risen from 230 000 to 700 000 by the end of

2017.

The number of withdrawals has stayed relatively constant (15 000 — 20 000 with-
drawals per day).

. The number of announcements has reached around 120 000 a day by the end of

2017.

The total number of UPDATE messages was steady at 50 000 per day from 2007 to
2013. From 2013 to 2015 the number of UPDATE messages per day has increased
to about 100 000. In a period of 2016 to 2017, the number of updates per day
has increased again and reached 170 000 UPDATE messages per day by the end of
2017.

Another important fact to take into account is the length of AS Path in UPDATE
messages. From Figure 5.2 it can be seen that the average AS Path has remained relatively

constant at 5.7. As a result, path validation requires to do queries to blockchain for around
5.7 ASes.

6

55 -

54 -

53

52

Il 1 Il Il 1 Il 1
Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17 Jan-18

AvgAS Path ILength —
Linear
0@

Date

Figure 5.2: IPv4 average AS Path length [13].

51

Furthermore, the number of ASes in BGP network is constantly increasing (see Figure
5.3). By the beginning of 2018, the number has reached 60 000. However, the announce-
ments are mostly generated by 20 000 - 40 000 ASes [13]. Other ASes are not upstream
to any third party. Namely, they do not pass UPDATE messages to other ASes and do not
have a large set of BGP peers [13].

65000

AS Count
Linear
o2 ~

60000

55000

50000

IPv4 BGP AS Count

45000 |- -

40000 -

35000 I I I I 1 L I
Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17 Jan-18

Date

Figure 5.3: The number of ASes in BGP network [13].

As a result, by the January 2018, there were 20 000 - 40 000 ASes which altogether
generated around 170 000 UPDATE messages a day. In case of announcements, each
UPDATE message had around 5.7 ASes in AS path.

Quorum

After analyzing information about BGP traffic load, it is time to measure whether Quorum
will be capable of dealing with such amount of traffic.

Read operations

The actions like UPDATE message validation are read operations and do not perform any
changes on a blockchain. In average, each UPDATE message validation should perform
around 6 queries to the blockchain, because each AS Path contains 6 ASes in average
which should be validated separately. Such queries do not perform any network requests
and are executed locally by parsing the blockchain. As a result, they are relatively fast
and any modest Desktop PC will be capable of running such node. If Quorum node is
deployed on a dedicated server, its performance could be adapted by scaling vertically.

52

For example, adding more cores, RAM to the server or having SSD storage could make
queries execute faster. The amount of resources required depends more on the number of
requests AS gets from the border routers.

Write operations

Based on a BGP traffic investigated above, there were around 170 000 UPDATE messages
generated a day by the beginning of 2018. Namely, the Quorum network should be capa-
ble of dealing with around 2 transactions a second. There should be also some additional
margin in case the number of UPDATE messages will grow in the future. It should also be
capable of dealing with traffic spikes which could increase up to 4 transactions a second.

In order to apply a transaction to the blockchain, the following steps have to be exe-
cuted:

1. The transaction has to be propagated to the leader. The leader is a Quorum node
which is chosen by peers using a voting system (see section 4.2).

2. The leader has to mint the block. This is performed each 50 ms by default. How-
ever, this parameter is configurable and could be adapted to the network needs [18].
This rate is used to achieve a balance between transaction throughput and block
propagation time.

3. The leader has to publish the block to the blockchain network through the Raft
protocol.

4. The published block has to propagate to all the nodes in a network.

5. The block has to be appended to the existing ledger by all the nodes in a network.

The actions performed in steps 2, 3 and 5 are very fast and could be omitted in calcula-
tions. The most time-consuming operations from above are in steps 1 and 4.

The transactions generated by AS and Registry contracts take around 146 000 gas.
The gas is an execution fee that transaction senders have to pay for making it executed
on a blockchain. However, it is not used in Quorum blockchain and can only be used to
calculate the time required to execute the transaction. Currently, Ethereum main chain has
8 000 000 gas limit (regulates the number of transactions per block), 20 000 nodes and
14.6 seconds block propagation time [3]. The connectivity between nodes in a network is
varying and machines could be laptops, PCs or dedicated servers. In spite that fact, such a
network would be capable of dealing with 54.8 Registry and AS transactions in a second
which is 27.4 times more than the BGP load recorded at the beginning of 2018. ASes are
even better interconnected than peer to peer Ethereum network and will have even smaller
block propagation time.

53

Quorum is an Ethereum fork. As a result, it would be capable of dealing with the
BGP UPDATE messages if there would be 20 000 Quorum nodes in BGP network. If the
number of Quorum nodes will increase, it could take more time to propagate the messages
to all the nodes and, as a result, decrease the block time.

According to the research performed by Decker and Wattenhofer in Zurich [5], the
two main factors which influence the block propagation time are block size and network
diameter.

The network diameter depends on the way nodes are connected. The blocks are prop-
agated faster in a dense network. The nodes which have long shortest path will receive
the block the last. Due to the fact that RIRs have run out of IPv4 address blocks [16],
the BGP network is becoming denser and is not growing anymore in terms of average
AS Path [13]. As a result, the BGP peers interconnectivity will increase and the block
propagation will not slow down with time.

The block size depends on the total amount of the gas required to execute all of the
transactions in a block. With the gas limit of 8 000 000, each block is 22.3 KB in size.
Currently, transactions in Quorum are minted every 50 ms and there are 2 transactions
per second on average. It could be assumed that each block contains one transaction on
average. As transactions generated by AS and Registry contracts take in average 146 000
gas, each block will be around 400 bytes. As a result, the block should be propagated
much faster than 14.6 seconds as the block size is 55 times smaller and the proposed
solution has a potential of dealing with the current amount of BGP traffic with a large
margin.

54

Chapter 6

Conclusion

In this thesis, it was analyzed how different BGP securing solutions tackle security and
deployment issues. It was proven that none of them can address all of the issues and be
an optimal solution for every AS. Some of them provide strong security but are lacking
deployment flexibility or require more resources to run. Others are lightweight, easy to
deploy, but not tackling all of the hijacking attacks.

In this research, a new way of overcoming BGP security and deployment issues was
introduced. The solution is designed to use Quorum blockchain platform to exchange
packets in a peer to peer way and protect the integrity of the information using modern
cryptographic algorithms. Also, it uses smart contracts to store the information required
by other entities to verify the received BGP messages. The security and deployment prop-
erties of such an approach were analyzed similarly to other BGP securing solutions. The
new solution has demonstrated quite decent security and deployment properties which
tackle all of the defined issues. The performance of such an approach was analyzed ac-
cording to the BGP traffic recorded in recent years and proved to be able to handle such a
load.

In the future, the solution could be improved in multiple ways. The Quorum platform
has to store neighboring peers not in a local file, but in smart contracts. It is planned to be
done in near future and will make the deployment much easier. Also, the smart contracts
could be extended with more properties which will add more flexibility for ASes to store
other routing information, e.g., network policies. Lastly, the more sophisticated testing
must be performed to reveal corner cases and investigate the performance close to the
real-life scenarios.

55

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Cisco CCNA. "Sample Configuration for Authentication in OSPF". https://www.
cisco.com/c/en/us/support/docs/ip/open- shortest-path-first-ospf/13697-25.html,
2005. [Online; accessed 28-September-2018].

ChainTrade. "10 Advantages of Using Smart Contracts". https://medium.com/
@ChainTrade/10-advantages-of-using-smart-contracts-bc29c508691a, 2017. [On-
line; accessed 28-September-2018].

BitCoin Info Charts. "Ethereum Statistics". https://bitinfocharts.com/ethereum/,
2018. [Online; accessed 28-September-2018].

A. de la Rocha and P. Papadimitratos. "Blockchain-based Public Key Infrastructure
for Inter-Domain Secure Routing". IFIP WG 11.4 Workshop on Open Problems in
Network Security (IFIP iNetSec), 2017.

Christian Decker and Roger Wattenhofer. "Information Propagation in the Bit-
coin Network". [EEE P2P 2013 Proceedings, https://www.tik.ee.ethz.ch/file/
49318d3f56c1d525aabf7fda78b23fc0/P2P2013_041.pdf, 2013. [Online; accessed
28-September-2018].

Saraju P. Mohanty Chi Yang Deepak Puthal, Nisha Saroha Malik. "The Blockchain
as a Decentralized Security Framework". IEEE Consumer Electronics Magazine
vol. 7, https://www.researchgate.net/publication/323491592_The_Blockchain_as_
a_Decentralized_Security_Framework_Future_Directions, 2018. [Online; accessed
28-September-2018].

Internet Engineering Task Force. "Security Requirements for BGP Path Validation".
https://www.rfc-editor.org/rfc/pdfrfc/rfc7353.txt.pdf, 2014. [Online; accessed 28-
September-2018].

Internet Engineering Task Force. "BGPsec Protocol Specification". https://tools.
ietf.org/html/rfc8205, 2017. [Online; accessed 28-September-2018].

56

https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/13697-25.html
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/13697-25.html
https://medium.com/@ChainTrade/10-advantages-of-using-smart-contracts-bc29c508691a
https://medium.com/@ChainTrade/10-advantages-of-using-smart-contracts-bc29c508691a
https://bitinfocharts.com/ethereum/
https://www.tik.ee.ethz.ch/file/49318d3f56c1d525aabf7fda78b23fc0/P2P2013_041.pdf
https://www.tik.ee.ethz.ch/file/49318d3f56c1d525aabf7fda78b23fc0/P2P2013_041.pdf
https://www.researchgate.net/publication/323491592_The_Blockchain_as_a_Decentralized_Security_Framework_Future_Directions
https://www.researchgate.net/publication/323491592_The_Blockchain_as_a_Decentralized_Security_Framework_Future_Directions
https://www.rfc-editor.org/rfc/pdfrfc/rfc7353.txt.pdf
https://tools.ietf.org/html/rfc8205
https://tools.ietf.org/html/rfc8205

[9] T. Griffin J. Ioannidis P. Mcdaniel G. Goodell, W. Aiello. "Working Around
BGP: An Incremental Approach to Improving Security and Accuracy of Inter-
domain Routing". NDSS, https://www.researchgate.net/publication/2543280_
Working_Around_BGP_An_Incremental_Approach_to_Improving_Security_and_
Accuracy_of_Interdomain_Routing, 2002. [Online; accessed 28-September-2018].

[10] Network Working Group. "RFC 1105". https://tools.ietf.org/html/rfc1105, 1989.
[Online; accessed 28-September-2018].

[11] Network Working Group. "RFC 1164". https://tools.ietf.org/html/rfc1164, 1990.
[Online; accessed 28-September-2018].

[12] Network Working Group. "RFC 4271". https://tools.ietf.org/html/rfc4271, 2006.
[Online; accessed 28-September-2018].

[13] Geoff Huston. "BGP in 2017". https://blog.apnic.net/2018/01/10/bgp-in-2017,
2018. [Online; accessed 28-September-2018].

[14] Jennifer Rexford Kevin Butler, Toni R Farley. "A Survey of BGP Security Issues
and Solutions". Proceedings of the IEEE, vol. 98, 2009.

[15] P. Papadimitratos A. Perrig M. Hollick, C. Nita-Rotaru and S. Schmid. "Toward a
Taxonomy and Attacker Model for Secure Routing Protocols". ACM SIGCOMM
Computer Communication Review, vol. 47, no. 1, pp. 43-48, 2017.

[16] Kieren McCarthy. "OK, this time it’s for real: The last available IPv4 address block
has gone". https://www.theregister.co.uk/2018/04/18/last_ipv4_address/, 2018.
[Online; accessed 28-September-2018].

[17] J.P. Morgan. "Quorum Readme". https://github.com/jpmorganchase/quorum/blob/
master/README.md, 2016. [Online; accessed 28-September-2018].

[18] Quorum. "Quorum minting frequency". https://github.com/jpmorganchase/
quorum/blob/master/raft/doc.md#minting-frequency, 2016. [Online; accessed 28-
September-2018].

[19] Stephen Wolthusen Rostom Zouaghi. "A Comparison between S-BGP and soBGP in
tackling security vulnerabilities in the Border Gateway Protocol". Royal Holloway,
University of London, https://cdn.ttgtmedia.com/searchSecurityUK/downloads/
RHUL_Z _final.pdf, 2004. [Online; accessed 28-September-2018].

[20] BBN Technologies Stephen T. Kent. "Securing the Border Gateway Protocol".
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/
table-contents-25/securing-bgp-s-bgp.html, 2004. [Online; accessed 28-September-
2018].

57

https://www.researchgate.net/publication/2543280_Working_Around_BGP_An_Incremental_Approach_to_Improving_Security_and_Accuracy_of_Interdomain_Routing
https://www.researchgate.net/publication/2543280_Working_Around_BGP_An_Incremental_Approach_to_Improving_Security_and_Accuracy_of_Interdomain_Routing
https://www.researchgate.net/publication/2543280_Working_Around_BGP_An_Incremental_Approach_to_Improving_Security_and_Accuracy_of_Interdomain_Routing
https://tools.ietf.org/html/rfc1105
https://tools.ietf.org/html/rfc1164
https://tools.ietf.org/html/rfc4271
https://blog.apnic.net/2018/01/10/bgp-in-2017
https://www.theregister.co.uk/2018/04/18/last_ipv4_address/
https://github.com/jpmorganchase/quorum/blob/master/README.md
https://github.com/jpmorganchase/quorum/blob/master/README.md
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md#minting-frequency
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md#minting-frequency
https://cdn.ttgtmedia.com/searchSecurityUK/downloads/RHUL_Z_final.pdf
https://cdn.ttgtmedia.com/searchSecurityUK/downloads/RHUL_Z_final.pdf
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-25/securing-bgp-s-bgp.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-25/securing-bgp-s-bgp.html

[21] Russ White. "Securing BGP Through Secure Origin BGP". International Journal of
Internet Protocol Technology, https://www.cisco.com/c/en/us/about/press/internet-
protocol-journal/back-issues/table-contents-25/securing- bgp-sobgp.html, 2003.
[Online; accessed 28-September-2018].

58

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-25/securing-bgp-sobgp.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-25/securing-bgp-sobgp.html

Appendices

59

Appendix A

Implementation code

https://gits-15.sys.kth.se/tsumak/master-thesis

60

https://gits-15.sys.kth.se/tsumak/master-thesis

Appendix B

Demonstration

https://www.dropbox.com/s/t104hzptwObr4al/bgp-demo.mov?dl1=0

61

https://www.dropbox.com/s/t1o4hzptw0br4a1/bgp-demo.mov?dl=0

	Introduction
	Background
	Border Gateway Protocol
	Requirements

	Related Work
	Secure Border Gateway Protocol
	Secure Origin Border Gateway Protocol
	Interdomain Route Validation
	BGP MD5 authentication
	BGPSec
	Secure Blockchain Trust Management system (SBTM)
	Summary

	Methodology
	Smart contracts
	Quorum
	Solution overview
	Account management
	Registry contract
	AS contract
	Path validation
	Deployment
	Future work

	Analysis
	Security
	Deployment
	Performance

	Conclusion
	Appendices
	Implementation code
	Demonstration

