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Machine learning has many potentially useful applications in process industry, for
example in process monitoring and control. Continuously accumulating process
data and the recent development in software and hardware that enable more ad-
vanced machine learning, are fulfilling the prerequisites of developing and deploy-
ing process automation integrated machine learning applications which improve
existing functionalities or even implement artificial intelligence.

In this master’s thesis, a framework is designed and implemented on a proof-of-
concept level, to enable easy acquisition of process data to be used with modern
machine learning libraries, and to also enable scalable online deployment of the
trained models. The literature part of the thesis concentrates on studying the
current state and approaches for digital advisory systems for process operators,
as a potential application to be developed on the machine learning framework.

The literature study shows that the approaches for process operators’ decision
support tools have shifted from rule-based and knowledge-based methods to ma-
chine learning. However, no standard methods can be concluded, and most of
the use cases are quite application-specific.

In the developed machine learning framework, both commercial software and open
source components with permissive licenses are used. Data is acquired over OPC
UA and then processed in Python, which is currently almost the de facto standard
language in data analytics. Microservice architecture with containerization is
used in the online deployment, and in a qualitative evaluation, it proved to be a
versatile and functional solution.
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Koneoppimisella voidaan osoittaa olevan useita hyödyllisiä käyttökohteita pro-
sessiteollisuudessa, esimerkiksi prosessinohjaukseen liittyvissä sovelluksissa. Jat-
kuvasti kerääntyvä prosessidata ja toisaalta koneoppimiseen soveltuvien ohjel-
mistojen sekä myös laitteistojen viimeaikainen kehitys johtavat tilanteeseen, jos-
sa prosessiautomaatioon liitettyjen koneoppimissovellusten avulla on mahdollista
parantaa nykyisiä toiminnallisuuksia tai jopa toteuttaa tekoälysovelluksia.

Tässä diplomityössä suunniteltiin ja toteutettiin prototyypin tasolla koneoppi-
miskehys, jonka avulla on helppo käyttää prosessidataa yhdessä nykyaikaisten
koneoppimiskirjastojen kanssa. Kehys mahdollistaa myös koneopittujen mallien
skaalautuvan käyttöönoton. Diplomityön kirjallisuusosa keskittyy prosessiope-
raattoreille tarkoitettujen digitaalisten avustajajärjestelmien nykytilaan ja to-
teutustapoihin, avustajajärjestelmän tai sen päätöstukijärjestelmän ollessa yksi
mahdollinen koneoppimiskehyksen päälle rakennettava ohjelma.

Kirjallisuustutkimuksen mukaan prosessioperaattorin päätöstukijärjestelmien
taustalla olevat menetelmät ovat yhä useammin koneoppimiseen perustuvia, ai-
empien sääntö- ja tietämyskantoihin perustuvien menetelmien sijasta. Selkeitä
yhdenmukaisia lähestymistapoja ei kuitenkaan ole helposti pääteltävissä kirjal-
lisuuden perusteella. Lisäksi useimmat tapausesimerkit ovat sovellettavissa vain
kyseisissä erikoistapauksissa.

Kehitetyssä koneoppimiskehyksessä on käytetty sekä kaupallisia että avoimen
lähdekoodin komponentteja. Prosessidata haetaan OPC UA -protokollan avul-
la, ja sitä on mahdollista käsitellä Python-kielellä, josta on muodostunut lähes
de facto -standardi data-analytiikassa. Kehyksen käyttöönottokomponentit pe-
rustuvat mikropalveluarkkitehtuuriin ja konttiteknologiaan, jotka osoittautuivat
laadullisessa testauksessa monipuoliseksi ja toimivaksi toteutustavaksi.
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Chapter 1

Introduction

Machine learning has many practical and potential uses in process industry,
for example in soft sensors, process monitoring, fault detection and predictive
maintenance to name a few [1]. A common denominator of these applications
is the data-driven approach: instead of manually programming all function-
alities, systems are able to automatically learn from big data, which is a term
used to describe the large amount of varied data collected continuously [2,
p. 21].

Machine learning became more viable after the lack of data a few decades
ago was fixed by the fast development of technology and the decreased cost of
storing the data [2]. Another factor was the fundamental advance in training
deep neural networks effectively [3]. Currently, the limiting factors are mem-
ory and processing power which usually translates into time: a self-driving
car must be able to handle the data in real time and predict an oncoming
accident before it happens. [4] One example of the significant development
in computing power is one of the early autonomous vehicles in the 1970s,
based on a lunar vehicle of NASA: the vehicle was able to move only about
a meter at a time, pausing for half a minute to compute the next movement
[5]. Nowadays, to speed up processing, the state-of-the-art machine learn-
ing systems commonly incorporate graphics processing units (GPU) [4] or
application-specific integrated circuits (ASIC), such as the tensor processing
unit (TPU) developed by Google [6].

Artificial intelligence (AI) is another growing topic, at least partly due to
the overall development of machine learning which is an important part of
many AI systems. Such systems include digital assistants that understand
speech and can not only do what the user said, but also what the user ac-
tually intended to accomplish. Artificial intelligence systems may also help
humans to operate machines or vehicles more optimally. However, machine
learning only provides the learning part of AI, and additional decision mak-
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ing is usually required. As a matter of fact, machine learning could be said
to be mostly statistics and mathematical optimization with certain specific
goals such as predictive analytics. [4, pp. 9–21] Artificial intelligence, on the
other hand, tries to solve complex problems as humans do [7]. As the share
of non-routine occupations and tasks keeps increasing due to the automa-
tion of routine and repetitive tasks, applications of artificial intelligence are
predicted to become increasingly advantageous [8].

Machine learning and artificial intelligence are not new concepts: They
have existed almost as long as digital computers, but especially artificial intel-
ligence has followed the series of hype cycles well-known from many emerging
technologies. [3] Even the term AI winter is used to describe the periods of
disappointment caused by high expectations and the discovery of the limita-
tions of AI systems [9]. During these periods, the term artificial intelligence
was so unpopular that some scientist and engineers avoided using it [5], which
may have contributed to the incoherent terminology of the present AI field.
However, AI and machine learning are popular technologies again [3], and
this time the background development in the subfields of AI, technological
advances mentioned above and already useful-proven applications may re-
sult in a more visible success of artificial intelligence also in process systems
engineering.

Expert systems are one well-known example of a system implementing ar-
tificial intelligence. Expert systems became somewhat unpopular after their
limitations shattered the expectations in the 1990s [9, 10]. The challenges
include acquiring, structuring and formalizing the usually heavily domain-
specific knowledge that the system relies on [7, 11, 12]. Attempts to overcome
this problem lead to a multitude of disciplines and domains such as cognitive
studies of artificial intelligence, decision support systems, automated rea-
soning, knowledge automation, big data knowledge engineering, operations
research and ontology engineering [7, 12–15]. Modern machine learning algo-
rithms may provide solutions to some of these problems. For example, high-
level decision making and planning is typically expressed as Markov decision
processes for which stochastic dynamic programming (e.g. approximate dy-
namic programming in reinforcement learning) provides a solution [3]. Wag-
ner [16] stated that the research related to expert systems has continued for
over thirty years but the focus has moved from “classic” expert systems to
a hybrid model of knowledge-based systems incorporating a variety of AI
techniques.
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1.1 Problem statement

The research questions for this master’s thesis are:

• What is the current state of digital advisory systems for a process
operator, to assist operation from the process control point of view?

• What approaches have been used to implement such advisory systems
and how could modern machine learning be possibly used?

• How to design and implement a framework for developing and deploying
machine learning applications, capable of satisfying process industry
specific requirements?

1.2 Structure and objective of the thesis

The thesis is divided into two parts: The literature part (Chapters 2–5)
reviews the current state of advisory and decision support systems for process
operators. Approaches that are used in creating the systems that can be
found in literature, are studied. Focus is given to modern machine learning
methods as much as possible. Finally at the end of the literature part, case
studies of advisory systems are reviewed.

In the experimental part (Chapters 6–9), a proof of concept for a machine
learning framework is implemented. An architecture is first designed accord-
ing to the requirements specification which is based on the requirements of
the process control related applications in petrochemical industry. Finally, a
couple of use cases are used to qualitatively evaluate the proof of concept.

1.3 Excluded contents

Both the literature part and the experimental part of the thesis have a
common goal which is a set of process-specific applications using low-level
machine learning libraries, developed on a framework which seamlessly in-
tegrates process control related applications and modern machine learning
tools. However, reaching the final goal is clearly out of the scope of one
master’s thesis, and therefore, the literature part and the experimental part
mostly have separate conclusions.

In the experimental part, the target is to develop the machine learning
framework on a proof-of-concept level. Focus is primarily given to func-
tionality, and therefore, unit tests or quantitative performance tests are not

3



implemented within the thesis work. Furthermore, individual machine learn-
ing algorithms will not be evaluated but the emphasis is more on creating
a framework that supports multiple algorithms, and enables experimenting
with, evaluating and comparing them.
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Chapter 2

Theoretical background

In this chapter, an overview of advisory systems for a process operator is
given, while also giving a better understanding of what actually is referred
to with the term advisory systems in this thesis. In addition, the key concepts
and terminology of machine learning are concisely summarized.

2.1 Process operator’s advisory systems

Requirements for more optimized manufacturing in the petrochemical and
other manufacturing industries are increasing along with strategies such as
the Europe 2020, the Advanced Manufacturing Partnership in the USA,
Industry 4.0 in Germany and China Manufacturing 2025 in China. Op-
timizations include for example increased energy efficiency, environmental
protection, individualized customer needs, product cost reduction and di-
versified raw material sources. [14, 17, 18] In general, one way to realize
these objectives is to make manufacturing processes more intelligent using
modern methods of information technology such as the Internet of Things,
cloud computing and big data technologies [1, 18]. A roof term smart man-
ufacturing includes using data analytics to improve system performance and
complement traditional methods of decision making [17]. The key technolo-
gies for making smart factories in petrochemical industry are summarized in
Figure 2.1. In the figure, virtual assistants mentioned in intelligent human-
computer integration aim to improve the overall human-machine collabora-
tive decision-making. [18]

For petrochemical and other process industries, it is typical that fluctua-
tions in concentrations and the diversity of chemical reactions and unit oper-
ations result in strongly nonlinear control problems with complex couplings
and competing objectives. For a process operator, with limited knowledge of

5



     

Closed-loop control
in uncertain environment

Real-time optimization and
system modeling.

Large-scale dynamic opti-
mization with globally opti-
mal decision support.

Modeling of overall produc-
tion.
Operations research.

Resource optimization for
overall supply chain

System integration for
green manufacturing

Operation management
and control for safety

Next generation intelligent control technologies: sensor interconnection (IIoT), information and 
control integration.

Cloud-based big data processing and knowledge base technology: data mining and analytics, enterprice-level
knowledge base and knowledge management.

Human-computer collaborative decision-making and visualization: collaborative decision and inference, virtual
reality and virtual assistant.

Large-scale integration,
optimization and modeling.
Order-driven management
and control.

Cross docking.
Investment optimization
based on raw material
price.

Molecular product enginee-
ring and micro-chemical
manufacturing.
Renewable energy.

Enterprice multi-scale mo-
del integration and layered
optimization techniques in
uncertain environment.

Multi-objective multi-scale
modeling and optimization.
Integrated product design.

Integrated control system
modeling for overall pro-
duction.
Real-time scheduling.

Fault forecasting, detection
and diagnosis.
Safety analysis and safety
management evaluation.

Supply chain emergency
techniques and design for 
safety.
Expert system of real-time
analysis and diagnosis.

Major accident derivative
change and overall tempo-
ral and spatial simulation
techniques.

Figure 2.1: Key digital technologies of smart petrochemical manufacturing
(see the original full figure in Appendix A) [18].

process dynamics it is difficult to make decisions that would reach the global
optimum [14], which is usually done better by computers that are by com-
parison able to handle virtually an unlimited number of variables. On the
other hand, human operators are able to use intuition and expert knowledge
to make decisions in situations where the control system may not even have
all the required input signals (e.g. sensors). [19]

Advisory systems (also operator support systems (OSS), decision support
systems or intelligent support systems) try to combine the advantages of both
human operators and computerized control systems [19] by giving advice to
the operator and by augmenting the process operator’s capacity to monitor
and process information, and make decisions [20]. Advisory systems analyze
process data and present it in a way that gives information about the events
and trends in the process, and that way help in decision making. Systems
based on both artificial intelligence and non-AI technologies have been used,
and research has been done to combine them into a more robust system. [21]

Advisory systems can be built based on data-driven, analytical and knowl-
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edge-based methods [21]. Data-driven and knowledge-based methods are in-
teresting since large amounts of data are constantly accumulating into history
databases in modern chemical plants. However, many of the best methods
for extracting the knowledge from process data are supervised methods that
require labeling the data, which requires knowledge of the process and a sig-
nificant amount of work. On the other hand, unsupervised learning can be
used to automatically discover groups of data: Extracting information and
learning patterns from dimensionally reduced and clustered process data is
called knowledge discovery from database (KDD), which includes data min-
ing. [22] The steps of KDD are summarized in Figure 2.2.

Process data

Processed data

Dimensionality
reduction

Data groups

Knowledge

Data
clustering

Cluster
assignment
(labeling)

Figure 2.2: Outlined steps of knowledge discovery from database [22].

On a practical level, in order to combine supervised and unsupervised
learning for an industrial application, such as an advisory system, a software
framework with the following features is usually required: Separating or la-
beling the data, and training the model should be possible to be done also
by non-experts in data science. The framework should also assist the user in
identifying new knowledge and deploying the trained models. [22]

Compared with advisory systems, another analogous and closely related
area of research is the development of autonomous vehicles, the goal of which
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is to make driving more convenient and safer by reducing the probability of
human error. While the environment is very different compared to chemi-
cal processes, similar challenges are faced with uncertainty due to unknown
factors, noisy data and physical limitations of sensors etc. Many approaches
have been proposed to implement decision making for autonomous driving,
including rule-based systems (e.g. finite and hybrid state machines) in con-
trolled environments, and knowledge base or ontology-based inference. Par-
tially Observable Markov Decision Processes (POMDP) have also been sug-
gested for determining the optimal control trajectory. [23]

2.2 Machine learning

Machine learning (ML) is a subfield of computer science that uses the theory
of probability and statistics to recognize patterns and learn from data to
make predictions and improve performance in a given task, without explicit
programming [1, 24]. In process industry, machine learning has been used
in data mining and analytics, e.g. for online soft sensing, quality prediction,
anomaly detection, data clustering and dimensionality reduction. In general,
by constructing models from process data, new useful information can be
created, patterns in data can be identified and predictions can be made, and
these in turn can be used e.g. in optimizing decision making processes. [1]

The machine learning algorithms most commonly used for data mining
and analytics in the process industry, are presented in Figure 2.3.

2.2.1 ML terminology and algorithm classification

Machine learning methods can be categorized into supervised learning, unsu-
pervised learning, reinforcement learning [1, 3] and semi-supervised learning.
Supervised and unsupervised learning are the most commonly used methods
in industrial applications. [1] A summary of the characteristics of selected
machine learning algorithms is presented in Appendix B.

Learning from data generally means optimization where the (algorithm’s
internal) cost function (also known as error function, objective function, loss
function when minimizing or scoring function when maximizing) guides the
optimization by pointing out the changes in the internal parameters that are
the most significant for outputting better predictions. During (supervised)
learning, the input of the cost function can be e.g. all the variables that
will define the learned model. The parameters of the cost function consist
of all the labeled training data. Therefore, the output of the cost function
gives a value for the goodness of the model, which then can be optimized
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&
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Figure 2.3: Machine learning algorithms most commonly used in process
industry, and their applications [1].

using e.g. the gradient descent algorithm, resulting in the learned model, or
rather the (at least locally) optimal internal parameters for the model. [4,
pp. 167–177]

Most machine learning algorithms use their own cost functions, only the
hyperparameters of which can be customized. A cost function that is used in
optimization or validation, but not in the learning algorithm, is sometimes
called an external cost function. [4, pp. 167–177]
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The data X used for learning consists of a set of n examples (also known
as points) xi, so that X = (x0, ..., xn−1). By convention, X is either a (single-
feature column) vector, or a matrix where the rows represent examples and
the columns represent features (also known as independent variables or pre-
dictors). [4, p. 150][25] If the data is labeled, the training dataset is made
of pairs (xi, yi) where yi ∈ Y are called labels (also known as targets or re-
sponses) of the examples xi. Both the examples and the labels can be either
quantitative or qualitative, i.e. continuous or discrete. [4, 26]

Supervised learning means learning from data X that includes associated
target responses in the response vector (or in some cases matrix ) Y which can
be numeric values or qualitative labels [3, 4]. The learning involves mapping
the labels yi to the examples xi with as accurate approximation as possible,
and obtaining the conditional probability model P (Y |X). The learned model
can then be applied on new data, i.e. f : X → Y where f represents the
learned model. Supervised learning can be categorized into classification and
regression. In general, their difference is that in classification the output Y
(i.e. labels) is discrete and in regression it is continuous. [27]

Unsupervised learning is used for discovering patterns and trends in mul-
tidimensional unlabeled data X. The learning involves obtaining information
about the distribution of the data, P (X), and it can be useful in clustering,
dimensionality reduction and outlier detection [3].

Semi-supervised learning can be considered as a bridge between super-
vised and unsupervised learning. While being less often used in industrial
applications, it has recently gained more attention in process industry. [1]
However, the term ‘semi-supervised’ may be somewhat open to interpreta-
tions, since according to Ge et al. [1], any (un)supervised learning algorithm
can be turned into semi-supervised with an appropriate modification or in-
formation integration. Either way, the idea of semi-supervised learning is
to minimize the costly requirement of labeling the data, and thus a large
amount of unlabeled data and only a small amount of labeled data is used
for training the model [1]. The learning uses the unlabeled data to obtain
the probability distribution of the input space P (X) and jointly optimizes
the prediction over the labeled and unlabeled data. In other words, P (Y |X)
and P (X) are optimized together in a weighted combined objective. [3] In
practice, semi-supervised learning can comprise for example first clustering
all data, and then labeling the clusters based on the labeled data. Con-
sequently, the unlabeled data helps in finding the boundary of the clusters
more accurately, as illustrated in Figure 2.4. Semi-supervised learning usu-
ally requires assumptions, such as the cluster assumption: “If points are in
the same cluster, they are likely to be of the same class” (where class is
derived from the labels). [26]
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Figure 2.4: Semi-supervised learning: The influence of unlabeled data (grey
circles) on the decision boundary (or learned model, dash line) [28].

Reinforcement learning is used in applications where the algorithm must
make decisions (based on unlabeled data) that have consequences. Learning
happens by trial and error, when positive or negative feedback is given to
the decisions. [4] According to Ge et al. [1] reinforcement learning is rarely
used in process industry applications. However, according to Silver [29] re-
inforcement learning is closely related to the theories of optimal control and
operations research.

2.2.2 ML model development workflow

Developing machine learning models either manually or programmatically
roughly follows the workflow presented in Figure 2.5. In general, the extract,
transform, load (ETL) process is used to describe the process of combining
multiple data sources, transforming the data into a proper format, and load-
ing it to the final database [24]. In process automation, historical process
data is often already available in a well-structured form in a database.

Dataset preparation includes feature extraction in which the relevant
parts of the data are extracted, usually in a lossy manner. Then, the dataset
is partitioned into at least two parts: the training and testing datasets, and
possibly a validation dataset. The training dataset is used for adjusting
the parameters (i.e. weights) of the model. The testing dataset is used for
measuring the accuracy of the trained model. If alternative model types or
architectures are compared, the third partition is a validation set that is used
for the comparison. The proportions of the partitions (training, validation,
test) are typically 70:20:10. [24]

Data preprocessing includes feature engineering, in which the selected
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Figure 2.5: The process of creating a machine learning model [1].

data is transformed in a way that makes it easy for the model to general-
ize. The transformation can be e.g. a simple calculation, based on expert
knowledge or even common sense. For instance, one hot encoding transforms
discrete groups or integers into a binary array containing only ones and ze-
ros. [24] For example for four integers between 0...3, one hot encoding would
perform a transformation as follows:

[1, 0, 2, 3]→

[[0, 1, 0, 0]
[1, 0, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]]
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Feature engineering is not usually a mandatory step, but in many cases
it improves the quality of the model if done correctly. Other commonly used
methods in preprocessing include PCA and autoencoders (see Section 3.1.1)
which are used for dimensionality reduction. [24]

In the training step, an iterative optimization is performed to obtain the
parameters of the model. One iteration defines one instance of calculating the
error gradient and adjusting the model parameters. In traditional batching,
the batch includes the entire training dataset, although in practice this is
often impossible due to memory limits. By contrast, in stochastic gradient
descent the number of samples per batch (i.e. batch size) is one. In practice,
often the best compromise between these two methods is the mini-batching,
in which a small subset of the training dataset is used at a time, until the
whole dataset is used. Each pass of the entire training dataset is called an
epoch. [24]

A common way to evaluate the fitness of the model in the current con-
ditions, both before and after deploying, is to calculate error metrics. In
regression, commonly used indicators include the mean absolute error, the
median absolute error, and the mean squared error. In classification, gen-
eral metrics include the accuracy, precision, recall and F-measure, and for
visualization the confusion matrix. Clustering quality can be measured with
the help of the silhouette coefficient, homogeneity, completeness and the V-
measure. [24]
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Chapter 3

Approaches for decision support
in advisory systems

Process operations management (closely related to manufacturing operations
management (MOM) and manufacturing execution systems (MES) [30–32])
consists of tasks from top-level scheduling and planning to low-level control
and data acquisition. A lower level implements the decisions made on higher
levels, but on the other hand, events on all levels affect the entire decision
making chain. Integrated tools for decision support aim at improving decision
making by automating it when possible, or by supporting it when human
intervention is required, in order to reduce manufacturing cost and improve
process safety and product quality. [33]

One particular sector of decision making is any manual control of a pro-
cess, i.e. process operators’ actions to control the process, especially dur-
ing startups, shutdowns and abnormal conditions [33]. Advisory systems
are often only one component of a wider framework that is designed for
e.g. intelligent process monitoring, diagnosis, control and optimization, in-
cluding process modeling and simulation. Especially fault detection and iso-
lation (FDI) is a common motivator for such systems, probably due to the
universality of FDI [34] in any manufacturing process.

An integrated decision support system does not usually try to replace
human operators with computers because of the risks involved in supervisory
decision making, liability and legal issues, and also limitations in intelligent
systems. Therefore, in order to assist plant operators, the goal of an advisory
system is to analyze data and present the information to the operator in an
easily understandable manner. The information should contain insight to
the near and distant future behavior of the process, with explanations and
recommendations. [33]

In this chapter, approaches for implementing a decision support system
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for a process operator are studied. The most common approaches can be cat-
egorized into data-driven, analytical and knowledge-based approaches [35],
although one system may contain characteristics from multiple categories. In
addition, an overview of the concept of agent-based decision support systems
is given. Multi-objective optimization gives yet another approach which is
sometimes used together with knowledge bases, resulting in knowledge-driven
optimization.

3.1 Data-driven approach and methods

Data-driven methods have been successfully used in process monitoring ap-
plications based on models that are constructed almost entirely from process
data. These methods include the principal component analysis (PCA), Fisher
discriminant analysis, partial least squares (PLS) regression and canonical
variate analysis. Especially PCA and PLS have been used to extract fea-
tures from process data. [21]

3.1.1 Principal component analysis and autoencoder

Principal component analysis (PCA) is an unsupervised procedure used for
dimensionality reduction and outlier detection. Dimensionality reduction
helps for example visualization: High-dimensional process data can be pro-
jected into two or three dimensions which can be visualized while still con-
veying the characteristics of the state of the process. PCA is also used for
preprocessing datasets for machine learning to improve results, compared to
using the entire dimensionality of the observation space in training. Further-
more, PCA can be used to identify variables of the process data that most
contribute to an event. [21] An example of using PCA for three-dimensional
data is presented in Figure 3.1.

Autoencoder (AE) is an artificial neural network (ANN) that also can
be used to learn an efficient representation (i.e. encoding) of a dataset [3].
Whereas PCA finds a linear orthogonal projection that maximally captures
the variance [36], which consists of linear combinations of variables, autoen-
coder generalizes this to nonlinear combinations. Therefore, AE can be con-
sidered as a nonlinear generalization of PCA. [3]

Linear discriminant analysis (LDA) is yet another technique for dimen-
sionality reduction, for labeled data. Compared to PCA, instead of maximiz-
ing the variance, LDA finds a linear orthogonal projection that maximizes
the difference between two or more classes. Also, compared to clustering, the
data used in LDA is labeled. [36]
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Figure 3.1: Dimensionality reduction from 3D to 2D with PCA. In case of
3D, PCA finds the optimal angle of view. [37]

3.1.2 Partial least squares regression

Partial least squares (also known as projection on latent structures [38])
(PLS) regression is a multivariate algorithm in supervised machine learning.
PLS combines features from PCA (dimensionality reduction) and multiple
linear regression. [38] After the PLS model has been created, it is possible to
use only the predictor matrix X (for example process variables) to predict
the Y matrix (for example product quality). Therefore, PLS has been used
in soft sensors, other process monitoring and fault detection. [21]

During the learning, the objective is to find the regression coefficient
matrix B to be able to build the model

Y = XB + F (3.1)

where: Y = Yn×l = response matrix; n samples by l (output) variables
X = Xn×p = predictor matrix; n samples by p (input) variables.
F = residual matrix of Y

This can be formed by first creating models

Y = UQT + F

X = TP T + E
(3.2)
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where: U = score matrix of Y
Q = (orthogonal) loading matrix of Y
F = residual matrix of Y
T = score matrix of X
P = (orthogonal) loading matrix of X
E = residual matrix of X.

The score and loading matrices are developed so that the score ui ∈ U has
the maximum covariance with ti ∈ T ∀i. Thus the model parameter matrix
R is formed so that U = TR. Consequently,

Y = UQT + F

Y = TRQT + F

Y = (XP )RQT + F

Y = XB + F

(3.3)

where: B = PRQT . [1, 25, 38–40]

If the number of variables p (for example process variables used in X) is
large compared to the number of samples n, the probability of X being sin-
gular is high, and the regression becomes unfeasible [38]. Therefore, it must
often be assumed that the first few principal components capture most of
the characteristics of the process. However, this assumption may not always
be applicable. [21] In practice, the matrices are determined with iterative
algorithms, such as NIPALS or SIMPLS [41].

3.1.3 Fisher discriminant analysis

Fisher discriminant analysis (FDA) is a supervised technique widely used in
process industry for dimensionality reduction, data classification and process
monitoring. For example, it can be directly used for classification of different
operating modes of the process. Other examples include using FDA as a di-
mensionality reduction step before further classification, and differentiating
various abnormal events and faults. The FDA algorithm performs classifi-
cation by finding a transformation matrix that maximizes scatter between
classes and minimizes it within classes. [1]

3.2 Analytical versus empirical approaches

In the analytical approach, rigorous first-principles process models are re-
quired to calculate model parameters p, residuals r and state estimations x̂,
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by means of measured input u and output y. For example, process mon-
itoring and fault detection can be based on comparing estimated parame-
ters p̂ or states to the values associated with normal operating conditions (p,
e.g. historical average value). Predefined thresholds ε are used to determine if
a parameter difference ∆p indicates an abnormal condition |∆p| = |p−p̂| > ε,
as presented in Figure 3.2. [21, 42]

ε ε ε

t t t

|Δp| |Δp| |Δp|

abrupt fault incipient fault intermittent fault

Figure 3.2: Time dependency and threshold of faults [43].

With state estimator (also known as observer) based methods, it is pos-
sible to reconstruct unmeasured states and calculate their residuals by es-
timating observable states of the system. Common methods include the
Luenberger observer and the Kalman filter. [44, p. 1063][21]

In contrast to analytical approach, system identification provides tools
to use empirical mathematical models and parameter estimation to model
a process as a black box without the need of complete process knowledge
[44]. In process industry, system identification is used for model-based engi-
neering, design, control and optimization, such as model predictive control
(MPC) [45]. System identification is closely related to machine learning,
since in both, examples or observations are used to infer a function. For ex-
ample, applications-oriented optimal experiment design (AOED) in system
identification is related to reinforcement learning (RL) as an optimal control
problem. [45]

In general, the link between system identification and machine learning
is not yet strong [46], and according to Rajeswaran [47], due to its back-
ground in statistics and signal processing, system identification is not always
utilizing modern computational power. On the other hand, neural networks
have been used especially in modeling complex nonlinear processes (e.g. in
nonlinear MPC (NMPC) [48]), and according to Ogunmolu et al. [49], deep
neural network (DNN) is a suitable replacement for system identification of
nonlinear regressive models, although DNN requires selecting hyperparame-
ters, choosing the model structure and tuning weights. However according
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to Tsai et al. [48], ANN based models of highly nonlinear processes are usu-
ally too inaccurate for MPC if the training data is not good and sufficient
enough. New input patterns and subsequent unreliable prediction by an ANN
can be recognized from notable decrease in the probability density function
calculated from the training data [48].

3.3 Knowledge base and AI-based approaches

Knowledge-based approaches are usually built on a knowledge base and an
inference engine, and they are designed to perform process monitoring, con-
trol and diagnosis. Knowledge-based systems (KBS) also aim at solving com-
plex problems, such as prediction, detection, recommendation and automated
reasoning, by using uncertain, conflicting and non-quantifiable information.
Machine learning and human expertise are often used for creating knowledge-
based systems. [21, 50] Knowledge-based solutions can be based on expert
systems, fuzzy logic, machine learning and pattern recognition [21].

3.3.1 Expert systems

Expert systems (ES) are knowledge-based software systems that capture do-
main specific knowledge into a knowledge base, and use that in conjunction
with an inferencing (reasoning) procedure to solve decision making problems
that usually require human experts [51]. In the control field, expert systems
are useful for online operations due to their ability to explain a sequence
of reasoning by incorporating symbolic rule-based knowledge that relates a
situation to actions [35].

The first expert systems were created already in the 1960s, and they were
the first step in the evolution of knowledge engineering [15]. Since then,
numerous case studies have been published containing information about
the challenges and advantages of expert systems [16]. The major challenges
include acquiring, structuring and formalizing the usually heavily domain-
specific knowledge that the system relies on [7, 11, 12]. Since the beginning
of the 21st century, knowledge engineering has focused on big data tech-
niques [15], and expert systems have evolved from a classic model the knowl-
edge base of which is generated by one or more humans, to a hybrid model
(see Section 3.3.3: Hybrid expert systems) of a knowledge-based system that
utilizes various AI tools and techniques [16], such as fuzzy logic, machine
learning and pattern recognition techniques [21].

Nowadays expert systems are often considered obsolete [10], but on the
other hand, they are also said to be among the most mature, widespread and
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successful branches of AI applications [52] and according to Weathington [10],
no clear successor with the same capabilities can be identified for an expert
system, at least in its modern shape. Drools is one example of software that
can be used as a rule engine for an expert system, and its open source project
is still alive. Drools is a business rules management system (BRMS) solution
developed and productized by Red Hat. Drools comprises a set of components
including an inference engine and a knowledge base manager. [53, 54]

3.3.1.1 Architecture

Expert systems usually consist of a knowledge-base (KB), an inference en-
gine (IE) and a user interface (UI). The knowledge base may contain shallow
knowledge based on heuristics, and deep knowledge based on factual models,
i.e. mathematical, structural or behavioral models. [35] Knowledge represen-
tation (KR) schemas are used to organize the knowledge in the knowledge
base, and they include rule-based, frame-based, case-based and cognitive
map based schemas [16, 51]. Rule-based are generally most common, while
cognitive maps have gained increased attention recently. [16] Frames spec-
ify attributes and relationships for objects, whereas rules are simply if-then
statements [51].

The working memory (or workspace) contains the information about the
current status of the case or problem. The inference engine evaluates the rules
of the knowledge base, and orchestrates the applying of reasoning methods
on the working memory. The reasoning methods include forward and back-
ward chaining, hypothesis testing, heuristic search methods, and meta-rules.
In forward chaining, inferring advances from the facts to the goal, whereas in
backward chaining the inference engine attempts to match an hypothesized
goal with the then-part of a rule. [21, 51, 55, 56] Forward chaining is usu-
ally used with open-ended problems, such as in planning, and the backward
chaining is used in classification problems where the states of the conclusion
are discrete and limited [51].

The explanation facility is used to explain, either in natural language or
as a sequence of reasoning, how the expert system achieved the inference [51].
A typical system architecture of a rule-based expert system is presented in
Figure 3.3.

3.3.1.2 Knowledge acquisition in expert systems

The knowledge base is an important component of an expert system, but ac-
quiring the knowledge from domain experts and building the knowledge base
has been the bottleneck of building knowledge-based systems, such as expert
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Figure 3.3: A general architecture used in expert systems [21, 51, 55].

systems [12]. Early methods of knowledge acquisition (KA) included man-
ual or computerized interview processes. Later on, automated KA methods
have been studied, involving ANNs, Bayesian networks and case-based rea-
soning. [16] In ANNs, symbolic information can be included into the network
learning algorithm [21].

3.3.2 Fuzzy logic

Fuzzy logic provides a mechanism to represent uncertain knowledge using
graded statements instead of strictly boolean statements. For example, if
given data points xi ∈ X (e.g. temperature) (X is usually called a universe
of discourse [57]) can be classified into (sub)sets A,B,C, ... ∈ X (e.g. hot,
warm, cold), a membership function µ for each set maps the points to a value
between [0, 1] with respect to the degree of the corresponding membership:

µA(x) : X → [0, 1] (3.4)

where: µA = membership function of set A.

Thus, a degree of membership, the value of which is 1, indicates a full mem-
bership to the set. Fuzzy logic can also be used to represent qualitative
properties with a degree of certainty. [21] A membership function is illus-
trated in Figure 3.4.

Membership functions and a knowledge base consisting of fuzzy rules,
can be heuristically created with expert knowledge [43]. Fuzzy rules are
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expressed as a function of the sets (or linguistic variables, e.g. ”if x is A and
y is B then z is C ” [57]). However, determining the correct set of rules and
their weighting for a complex system is usually difficult and time consuming,
and thus, neural networks are often used for learning the best membership
functions. This combination of ANN and fuzzy logic is used e.g. in control
applications, such as controlling a continuous stirred tank reactor involving
a non-linear open-loop unstable process, or controlling a pulp digester with
a fuzzy inference system consisting of a connectionist network. [21] Fuzzy
clustering such as fuzzy c-means (FCM), where data points can belong to
multiple clusters, can be used e.g. for process monitoring without detailed
process knowledge [43].

3.3.3 Hybrid expert systems

Hybrid expert systems are hybrid intelligent systems that combine expert
systems with multiple intelligent technologies, such as ANNs and fuzzy logic,
in order to overcome the challenges of creating expert systems while taking
advantage of both the explanation capabilities of an expert system and the
data-driven construction of ANNs. Most hybrid expert systems can be cate-
gorized into neural network based connectionist expert systems (also known
as neural expert systems), including neuro-fuzzy and rough neural expert
systems. [58]

3.3.3.1 Fuzzy expert systems

Fuzzy expert systems use fuzzy logic, which improves the handling of uncer-
tainty [59]. A general architecture is presented in Figure 3.5. Fuzzification
transforms crisp input values to fuzzy values using the membership func-
tions. Clustering (e.g. fuzzy c-means) can be used to define the sets and their
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membership functions. Fuzzy rule base is the knowledge base, as discussed
in section 3.3.2, and the fuzzy inference engine usually follows the Mamdani
fuzzy inferencing [60], which is focused on interpretability, or the Takagi-
Sugeno-Kang inferencing, which aims at precise fuzzy modeling focused on
accuracy [61]. Finally, in defuzzification the fuzzy value is transformed to a
definite value, for example using a weighted average model [60].

Fuzzification
interface

Fuzzy rule
base

Defuzzification
interface

Fuzzy inference
engine

Figure 3.5: General core architecture of a fuzzy expert system [60].

Clustering can be used for automatic rule generation, if an approximate
relationship from input to output can be represented by clustered input and
output. Since the cluster centroids are used to represent the entire clus-
ter, derived rules become automatically inexact or fuzzy by nature. [62] For
example, Determan et al. [62] describe a method to form an ith rule as an
if-then statement denoted as implication

n︷ ︸︸ ︷
(xk1 ∈ Ai1) ∧ (xk2 ∈ Ai2) ∧ ... ∧ (xkn ∈ Ain)

⇒ (yi1 ∈ Bi1) ∧ (yi2 ∈ Bi2) ∧ ... ∧ (yim ∈ Bim)︸ ︷︷ ︸
m

(3.5)

where: xkj = n normalized rule input values for the kth datapoint
xk, when j ∈ [1, n]

Ai1, ..., Ain = fuzzy sets defined by input clusters
yi1, ..., yim = rule output values
Bi1, ..., Bim = fuzzy sets defined by output clusters

The truth value of the membership xkn ∈ Ain can be defined using exponen-
tial (Gaussian) membership functions µij derived from cluster parameters:

µij(xkj) = exp

(
−1

2

(
xkj − x∗ij
σij

)2
)
, j ∈ [1, n] (3.6)
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where: x∗ij = estimated cluster mean
σij = estimated standard deviation of the cluster

If a crisp truth value is required, alpha-cut could be used:

A := Aα = {x ∈ X|µ(x) ≥ α} (3.7)

Otherwise, since the output of the membership function represents the match
strength of the input xkj with the associated set Aij, the match strengths can
be combined into rule strength ξ:

ξi(xk) = exp

(
−1

2

n∑
j=1

(
xkj − x∗ij
σij

)2
)

(3.8)

In fuzzy inference, the defuzzification algorithms cause greater rule match
strength to give greater weight to the consequence of the rule. One well-
known defuzzification method is the center of gravity algorithm that gives
the system output y as follows:

y =

∑n
i=1 ξiy

∗
i∑n

i=1 ξi
=

n∑
i=1

ξi∑n
i=1 ξi

y∗i (3.9)

where: n = number of rules
y∗i = vector of output cluster centroids

ξi∑n
i=1 ξi

= normalized weight of each rule

Thus, the rule set output is the weighted sum of the individual rule outputs,
where the weight is the rule strength that is normalized by the sum of all
rule strengths. [62]

Genetic algorithms can be used for further improving the process, for
example for determining the number of clusters, which affects the number of
rules, and for determining cluster parameters such as the amount of cluster
overlapping [60, 62].

3.3.3.2 Neural expert systems

Neural expert systems provide automatic knowledge acquisition from a set
of examples by employing feedforward trained ANNs, and the inference is
improved by an ability to handle more generalized and incomplete cases [58].
System architectures with regard to the relation between ANN and ES, vary
from fully-integrated models to loosely-coupled, to stand-alone architectures.
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In fully-integrated models, components share the data structures, whereas in
loosely-coupled models ANN and ES components are separate, and output
of one component is passed to the other. In stand-alone models the com-
ponents are independent, which makes the comparison of the components
possible. [63]

In classic rule-based expert systems, the knowledge is represented as well-
specified if-then statements, and consequently, the inference engine cannot
handle noisy or incomplete data. On the other hand, since the reasoning is
serial algorithmic by nature, results are easily explainable. In neural net-
works, the knowledge is unstructured and it is stored as synaptic weights
between neurons. Thus, the input data does not have to completely match
the data used for training, which enables so called approximate reasoning.
On the other hand, knowledge is embedded into the entire network, acting
as a black box model, and any change in the synaptic weights may cause
unpredictable results. [59, 63]

Combining the ES and ANN results in a neural expert system that uses a
trained neural network as its knowledge base. The network consists of neu-
rons connected by weighted links. The weights w define rules by determining
the strength of the associated neuron inputs, as presented in Figure 3.6. The
inference engine draws an inference if the sum of weighted known inputs to
a neuron is greater than the sum of the absolute value of weights of the
unknown inputs:

n∑
i=1

xiwi︸ ︷︷ ︸
known

>
n∑
j=1

|wj|︸ ︷︷ ︸
unknown

(3.10)

where: i = known neuron inputs
j = unknown neuron inputs
n = number of neuron inputs [63]

Neuro-fuzzy (expert) systems aim at combining the learning abilities and
parallel computation of ANNs with the linguistic knowledge representation
and explanation abilities of fuzzy systems. Neuro-fuzzy systems can be
trained as an ANN to develop fuzzy if-then rules and define the membership
functions for the input and output variables of the system. A neuro-fuzzy
system can be divided into five layers (Figure 3.7), the three of which are
hidden representing membership functions and fuzzy rules:

• Layer 1, input : Neurons transmit external crisp signals to the next
layer, i.e. y

(1)
i = x

(1)
i . For a neuron n, it is common practice to denote
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Figure 3.6: An example of a neural knowledge base for classifying flying
objects. Input ∈ {−1, 0, 1}, where -1=false, 0=unknown and 1=true. [63]

the layer number l as superscript, and the neuron number h on that
layer (or input feature number on the input layer) as subscript as fol-

lows: n
[l]
h . Here the input of a neuron is denoted as x

(l)
h and output as

y
(l)
h .

• Layer 2, fuzzification: Neurons, e.g. neuron A1, represent a fuzzy sub-
set that is one of the inputs for the fuzzy rules. The input of the neuron
A1 is a crisp value, based on which the neuron determines the degree
of membership of the input to the set A1. The activation functions of
the neurons are derived from the membership functions.

• Layer 3, fuzzy rules : Each neuron represents a single fuzzy rule. For
example in Figure 3.7, neuron R1 represents the Rule 1, which is a
function of subsets A1 and B1. Rule output is calculated as a product
of the inputs.

• Layer 4, output membership: Neurons represent fuzzy sets that are out-
puts of the fuzzy rules. A neuron combines its inputs using probabilistic
OR, or fuzzy union.

• Layer 5, defuzzification: The layer combines the rule output member-
ships into a single output membership function and determines the
defuzzified crisp or numerical output of the entire system. For example
the sum-product method calculates the output as a weighted average
of the centroids of all output membership functions. [63] If the third
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layer outputs crisp values, layers 4 and 5 are replaced with one output
layer [61].
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Figure 3.7: Neuro-fuzzy system. Light arrows represent unused subsets in
rules. [63]

Back-propagation and other standard ANN learning methods can be used
for training neuro-fuzzy systems. Given a good set of examples, fuzzy if-then
rules can be created automatically. On the other hand, also human experts
can create rules. [63]

Further improvements of neuro-fuzzy systems include the adaptive neuro-
fuzzy inference system (ANFIS), where the added fourth layer normalizes the
firing strengths of the rules, and the fifth layer receives the initial inputs of
the first layer (assuming that the ANFIS system is represented as six layers
to correspond the diagram in Figure 3.7, instead of a five-layer system, where
the numbering starts from the second layer [64]) [65, 66]. ANFIS combines
the least-squares and the back-propagation gradient descend methods to find
the effective parameters of a Sugeno-type fuzzy inference system [67]. The
general form of a Sugeno fuzzy rule is

IF (x1 is A1) AND (x2 is A2) AND ... AND (xm is Am)

THEN y = f(x1, x2, ..., xm)
(3.11)
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where: xi = input variables, i ∈ [1,m]
Aj = fuzzy sets, j ∈ [1,m] [63]

Wavelet transform can be used to improve time series data prediction, and
fuzzy c-means clustering can be used to decrease the number of fuzzy rules
reducing the problem of curse of dimensionality [68].

ANFIS has been used for process prediction and modeling. For example,
Kassem et al. [69] successfully predicted viscosity and density of biodiesel-
petroleum diesel blends as a function of temperature and volume fraction of
biodiesel. ANFIS proved to output more accurate prediction than an ANN
model.

Kurnaz et al. [64] used ANFIS as three parallel fuzzy controllers to im-
plement an autonomous control of an unmanned aerial vehicle (UAV). The
inputs for the controllers were the altitude error, the air speed error and the
bank angle error with their derivatives, and the outputs were the throttle
position, the elevator position and the bank angle, respectively. The ANFIS
controllers were evaluated against requested flight trajectories. Stable con-
trol and fast reaction time was achieved, although some external disturbances
caused unstable performance.

For online system modeling problems, Ouyang et al. [70] describe a method
for extracting fuzzy if-then rules by dynamically merging clusters in input
and output data. Thus, existing clusters are refined and new ones created as
new training data is inputted. The workflow is presented in Figure 3.8.
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Figure 3.8: Dynamic fuzzy rule extraction from online process data [70].

3.4 Agent based decision support

In artificial intelligence and especially in computer science, agents are gener-
ally defined as systems or software capable of autonomous reasoning in order
to achieve one or multiple goals [71]. Agents usually get input from their
environment, and based on that modify that environment, without having a
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complete control over it, however. Learning is not a requirement, and further
definition greatly depends on the application. [72]

Compared to classic expert systems, agents are more autonomous and
act on their environment directly, whereas expert systems give advise to a
third party, who then modifies the environment. On the other hand, some
real-time expert systems in process control are agents by this definition. [72]

Intelligent agents are able to interact with other agents and humans,
perceive changes in their environment and respond quickly enough to achieve
the goal, and also proactively recognize opportunities and take initiative
actions. Multi-agent systems consist of multiple agents, and decentralized
data and computation without a global control system. [72] Also a knowledge
base common to all agents, may exist [73].

Koumboulis et al. [74] proposed a multi-agent based solution for assist-
ing process operator’s decision making. The decision making system consists
of two kind of agents: supervisory control agents and an operator agent.
The supervisory control agent executes e.g. controller selection and tuning,
whereas the operator agent takes actions usually done by human operators,
such as setpoint selection and fault detection and management, leaving only
the higher-level decisions to the human operator. The operator agent is im-
plemented according to the DAI-DEPUR expert system architecture, which
consist of four levels: data, knowledge, reasoning and supervisory levels. The
knowledge level comprises multiple agents, each of which describes the be-
havior of one subsystem of the process, by using the data level, clustering,
simulation and knowledge acquisition. These agents send their information
to the supervisory level, which infers the state of the process. The reasoning
level is based on a case library that contains information about previously
experienced situations and their consequent control actions (or solutions).
Heuristic functions are used to retrieve the best matching case, and the pro-
posed solution is evaluated with simulation. For example the optimal set-
points are stored in the case library, and they are selected to be the optimal
solution after the following steps: the human operator chooses the high-level
goal, the supervisory level infers the process state, and, the reasoning level
finds the optimal case and evaluates its actions in the current situation by
simulating.

Calderwood et al. [73] presented a multi-agent system that concentrates
on modeling and handling uncertainty that is caused by e.g. noise and error
in sensor data, and conflicting and incomplete data from multiple sources
or agents. Uncertainty modeling is based on the Dempster-Shafter theory,
and the AgentSpeak language was used to model the plans and goals of the
system.

Gofuku et al. [75] developed a multi-agent based operator support system
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prototype for an oil refinery. The goal of the system is to support and guide
human operators during an abnormal condition of the plant, and also to serve
as a dynamic operation permission system, the idea of which is to check that
the operator’s actions comply with sequential operation rules and manuals.
The prototype was evaluated with two scenarios: the decrease of a crude
input flow, and the shutdown of the plant. In addition, the influence of
an action, on the future plant behavior, is also predicted using model-based
reasoning. The model was created with multi-level flow modeling, which is
able to estimate the plant behavior qualitatively only, although quantitative
simulation was also considered. The agent-based architecture of the system
is presented in Figure 3.9.
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Figure 3.9: The architecture of the prototype of dynamic operation permis-
sion system for oil refineries [75].

3.5 Knowledge-driven multi-objective optimiza-

tion

The theory of multi-objective optimization concentrates on methods to simul-
taneously optimize multiple conflicting objective functions. These methods
can be applied quite universally almost in any decision making, therefore be-
ing interesting from the perspective of advisory systems. Knowledge-driven
multi-objective optimization combines the multi-objective optimization with
knowledge bases.

3.5.1 Multi-objective optimization

In multi-objective optimization (MOO), decision making means selecting one
solution out of all Pareto optimal solutions [76]. A MOO problem is generally
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expressed as

minimize F(x) = {f1(x), f2(x), ..., fm(x)}
subject to x ∈ S

(3.12)

where: fi = m (≥ 2) conflicting objectives that are simultaneously mini-
mized, fi : Rn → R

x = [x1, x2, ..., xn] = variable vector that belongs to the non-empty
feasible region S ⊂ Rn

S = the feasible region formed by the constraints of the problem and
the bounds of the variables. [36]

A variable vector x1 dominates x2 if

1. fi(x1) ≤ fi(x2) ∀i ∈ {1, 2, ...,m}
and 2. ∃j ∈ {1, 2, ...,m} such that fj(x1) < fj(x2)

(3.13)

This domination is denoted as x1 ≺ x2. A vector x∗ is called Pareto optimal
if @x such that x ≺ x∗. The set of all x∗ forms the Pareto optimal set, the
projection of which in the objective space, F(x∗) ∀x∗, is called the Pareto
optimal front. [36]

The n-dimensional decision space formed by the variables, and the m-
dimensional objective space formed by the objectives, are illustrated in Fig-
ure 3.10.

Population-based evolutionary algorithms are the most common meth-
ods to solve multi-objective optimization problems. These algorithms can be
classified into Pareto-dominance based (e.g. MOGA, NSGA, NPGA, PAES,
NSGA-II and SPEA2), decomposition-based (e.g. MOGLS, MOEA/D and
NSGA-III) and indicator-based methods (e.g. HypE, IBEA and SMS-EMOA).
High-dimensional objective space (m > 10) causes the curse of dimension-
ality problem with Pareto-dominance based algorithms, and thus, the latter
two are more suitable in that case. During the optimization, a MOO dataset
is formed. Each row in the MOO dataset consists of the decision vector
components, corresponding objective values and possibly some additional in-
formation. Thus, the dataset can be divided into infeasible and feasible sets.
[36]

According to Bandaru et al. [36], the MOO dataset can be used for ex-
tracting knowledge, by using data mining methods such as descriptive statis-
tics (e.g. mean, skewness, contingency), visual data mining (e.g. clustering,
dimensionality reduction) and machine learning (e.g. decision trees). With
these methods, it is possible to for example reveal the overall structure of the
objective space and associate clusters in it to corresponding clusters in the
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Figure 3.10: The decision space and the objective space (both two-
dimensional) in multi-objective optimization [36].

decision space. Some methods, especially data visualization, may require ex-
pert knowledge to make understanding the knowledge possible, which usually
results in subjective interpretation of the extracted knowledge.

Machine learning can be used for non-visual data mining and knowl-
edge extraction from MOO datasets. In supervised learning, decision tree
(classification tree if the labels are discrete, or regression tree if continuous)
algorithms, such as ID3 and C4.5, are used to create decision rules, e.g. in
the form of a statement

if (x1 < v1) ∧ (x2 > v2) ∧ ... then (Class Y) (3.14)

These algorithms recursively divide the training dataset into two subgroups,
by a feature that maximizes the dissimilarity between the subgroups. Thus,
explicit knowledge representation is acquired. [36] For example, an objective
function in MOO can be discretized using the decision variables xi as the
division variables [77].

For implicit representation, e.g. self-organizing maps are used for visu-
alization, and support vector machines (SVM) and ANNs can be used for
black-box modeling [36]. For example, SVMs are used for predicting the
ranks of new MOO solutions [78].
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3.5.2 Knowledge-driven optimization

According to Bandaru et al. [36], interest in the application of multi-objective
optimization to real-world problems is increasing, and consequently, knowl-
edge-driven optimization may become an important topic in the near future.
In knowledge-driven optimization (KDO) the user or decision maker modifies
the optimization problem or algorithm by using the knowledge gained in a
post-optimal analysis. KDO can be performed online or offline, as illustrated
in Figure 3.11. In offline KDO, data mining and the optimization algorithm
are separate, and thus, any MOO algorithm can be used unchanged.
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(Interactive)
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Knowledge

Knowledge Base
or

Expert System

Figure 3.11: A framework for knowledge-driven optimization [36].

For example in offline KDO, regression analysis can be carried out on a
set of Pareto optimal solutions, to obtain analytical relationships between the
variables. When these relationships are used as constraints on the original
MOO problem and a local search is performed on the previously obtained
solutions, a better approximation of the Pareto front can be generated. As
another example, post-optimal knowledge can be used for parameter tuning
of the optimization algorithm, and expert systems can be used for automatic
MOO problem and algorithm modification if a knowledge base is built, as
presented in Figure 3.12. [36]
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Figure 3.12: A method to control the optimization algorithm and to mod-
ify the original MOO problem, by using extracted knowledge in an expert
system [79].

Online KDO aims at extracting knowledge during optimization, which
could be used to obtain faster convergence of the Pareto optimal front. For
example, dimensionality reduction can be used for identifying redundant ob-
jectives in the objective space. On the other hand, online KDO can also
be data stream mining : For example, if a reference point is provided by the
decision maker, the input data stream can be filtered to obtain only solutions
close to the reference point. [36]

In a case study by Bandaru et al. [79], a MOO problem with three objec-
tive functions (including cost and buffer capacity) was solved using NSGA-II.
The results for the Pareto optimal solutions for cost C and a buffer capacity
B is presented in Figure 3.13. Then DBSCAN clustering was performed in
the objective space, which resulted in three clusters, Classes 1–3. Based on
this, it was possible to create rules in the decision space for these clusters,
as shown in Figure 3.13.

3.6 Conclusions

The idea of creating digital advisory systems for process operators, especially
for control room use, has been under research for decades. However, most of
the high-level methods used lead to either the research of artificial intelligence
or generic methods used for example in fault detection. The research of arti-
ficial intelligence has been quite periodical, and as a consequence, currently
the majority of the information that can be found in literature applicable
to process control related advisors, is at least fifteen years old. More recent
articles about the topic can be found, but in a closer examination, they do
not offer much improvement or other new relevant information.

Bonnin [24] presented the development of artificial intelligence in four
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Class SEL UNSEL Rule

1 78.84 0.00 B2 ≥ 1.5 ∧ B8 ≥ 1.5 ∧ B16 < 23.5 ∧ ...
2 95.93 0.00 B2 < 1.5 ∧ B15 < 18.5 ∧ B16 < 16.0 ∧ ...
3 90.06 0.00 B2 ≥ 1.5 ∧ B8 < 1.5 ∧ B27 < 31.5 ∧ ...

Figure 3.13: Clustered objective space and the obtained rules for the decision
space variables (e.g. a buffer capacity Bj) [79].

steps, shown in Figure 3.14. According to this, the development has shifted
from rule-based algorithms to machine learning, but on the other hand, in
artificial intelligence, all the other three algorithm types will be used to enable
solving tasks that had never been considered during the development of the
system.

While machine learning and especially neural networks show significant
potential in inference and decision making, in many contexts the inability
to explain the sequence of reasoning and the need of a substantially large
dataset for training, are mentioned as the biggest challenges. Different so-
lutions to these shortcomings have been proposed to this day, such as in
a recent rule-embedded neural network (ReNN) approach where long-term
dependencies are modeled with the help of rules from domain experts. [80]
However, no standard solutions can be found in literature, but most of the
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Figure 3.14: The four stages of development towards true or strong artificial
intelligence [24, p. 9].

proposed methods are very experimental, and often only tested in one specific
case.

Artificial intelligence products in the consumer-oriented market are often
called intelligent digital assistants, including e.g. Google Assistant and Apple
Siri. In most cases these intelligent assistants are based on natural language
processing, image recognition and recommender systems, all of which mostly
rely on machine learning algorithms. Similar systems have been developed
also for industrial use, such as the Sophos-MS framework, proposed by Longo
et al. [81]. The idea of Sophos-MS is to provide the operator with augmented
reality (AR) contents such as interactive operating manuals and tutoring
systems. Speech recognition and 3D models of equipment are used with a
dedicated headset, as shown on the right side of Figure 3.15. [81] However
the concept of augmented reality for process operators is not new, and in the
end, it only provides another user interface. Any software that provides the
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artificial intelligence functionality is application-specific, and not covered by
the Sophos-MS framework.

Figure 3.15: Implementations of augmented reality for a process operator,
by Valmet Automation Oy in the 1990s [82] (left), and by the Sophos-MS
framework [81] in 2017 (right).
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Chapter 4

Artificial neural networks in pro-
cess modeling and control

Since machine learning, and especially neural networks, have been concluded
to be important tools in artificial intelligence, and on the other hand, the
current best methods of advanced process control (APC) get quite close to
the definition of artificial intelligence, it is worth looking into the state of
neural networks from the perspective of advanced process control.

In this chapter, the use of artificial neural networks in process modeling
and model predictive control (MPC) is briefly reviewed. The scope is not
exhaustive, but mainly topics that have figured in relevant case studies and
articles, are covered.

4.1 Process modeling

In theory, artificial neural networks are able to model any continuous non-
linear relation between variables with arbitrary accuracy. In practice, while
neural modeling does not need any analytical knowledge of the process, at
least its dynamics must be known to be able to select a correct ANN model,
and also a representative dataset is required for training. If one model cannot
approximate a dynamic system in all operating points, a Takagi-Sugeno-Kang
fuzzy model (equation 3.11 on page 27) can be used to connect multiple par-
tial models to different operating ranges. However, defining the borders of
these ranges is not an easy task, and usually expert knowledge, clustering,
group method of data handling (GMDH) or some automatic or genetic opti-
mization is required. [83]

Compared to polynomial models, neural models can be more precise and
usually have better interpolation and extrapolation properties. Compared to
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fuzzy models, neural models tend to be more precise with less parameters. [84]
When modeling a process with a neural network, time series data may

require using a dynamic network that contains memory. These ANNs can
be classified into short-term and long-term memory networks, depending on
the retention time. Short-term memory usually refers to memory that still
represents the near-current state of the process, whereas long-term memory
may contain even permanently stored data or slowly changing weights. [83]

4.1.1 Multilayer perceptron and deep neural network

Multilayer perceptron (MLP) network is one of the most common artificial
neural network used for static process modeling [83, 85]. MLP is a feedfor-
ward network, meaning that calculations flow from input to output without
cyclic connections (or feedback loops) in the neurons. Backpropagation is
used in training to adjust the weights, and usually a nonlinear activation
function (or transfer function), such as a sigmoid function, is used. [24]

A classic multilayer perceptron network usually comprises one hidden
layer, whereas a single-layer perceptron contains only the input and output
layers. Thus, MLP can be seen as a special case of a deep neural network
(DNN). While there is no universally accepted definition for the multilayer
perceptron, in this thesis, deep neural network and deep learning refer to
neural networks with more than one hidden layer. In general, MLP and
DNN are suitable for both regression and classification tasks. In regression,
a linear output function is used to get a real output value. In classification,
e.g. sigmoid output function is used. [24]

For MLP networks, usually multiple parallel MISO (multi-input single-
output) models are used, and they are trained independently. Compared to
one MIMO (multi-output) model, MISO models may perform better if the
dynamics are different in different parts of the process. [84, p. 32]

Deep neural networks started becoming more popular after finding net-
work structures and training algorithms with satisfactory performance-com-
plexity ratio. Some milestones and developed models include the deep belief
network in 2006, deep Boltzmann machine in 2009, denoising auto encoder in
2010, deep convolutional neural network in 2012 and attention-based LSTM
in 2016. Nowadays, new model architectures are developed and proposed on
a weekly basis. [17]

Training the ANN usually means minimizing a nonlinear multimodal cost
function using a gradient-based algorithm, which easily causes the training
to get stuck in local minima resulting in unsatisfactory results. To miti-
gate this issue, some global optimization methods have been developed, such
as adaptive random search (ARS) and simultaneous perturbation stochastic
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approximation (SPSA). [83]
In addition, there are algorithms for finding the optimal structure of ANN

to optimize the complexity and reduce the overfitting phenomenon. These
include the pruning algorithms optimal brain damage (OBD) and optimal
brain surgeon (OBS). [83, 86]

4.1.2 Tapped delay lines and recurrent networks

There are two main methods to add dynamic capabilities into an ANN:
tapped delay lines and feedback loops. Tapped delay lines (TDL) use ex-
ternal memory to include previous time steps to the input of the neural
network. If known, the order of the process can be used as the number of
previous time steps:

ym(k + 1) = f(y(k), ..., y(k −m), u(k), ..., u(k −m)) (4.1)

where: f = nonlinear mapping or ANN
u(k) = input of the model at time step k
ym(k) = output of the model
y(k) = output of the process
m = order of the process

In practice, there are limitations including possible problems with some dy-
namic phenomena, e.g. hysteresis, and also using a high value for the m
results in an unfeasible number of inputs to the ANN. [83] Consequently, a
suitable value for m may have to be selected by trial and error. Also model
stability issues may occur, especially if the model output instead of process
output, is used for the delayed inputs [83], as follows:

ym(k + 1) = f(ym(k), ..., ym(k −m), u(k), ..., u(k −m)) (4.2)

The other method, feedback loops, are used in recurrent neural networks
which can be classified into globally, partially and locally recurrent networks.
In the globally recurrent, feedback is allowed between neurons of the same
or different layers, whereas in the locally recurrent, feedback takes place
only inside the neuron model. Partially recurrent networks, such as Elman
neural network, may provide the optimal compromise performancewise. In
the Elman network, one of the two hidden layers (context layer) is used to
memorize the previous activations of the other hidden layer, as shown in
Figure 4.1. [83]
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Figure 4.1: The topology of the Elman network.

4.2 ANN-based model predictive control

Model predictive control (MPC) is one of the advanced process control meth-
ods. MPC can be categorized into linear and nonlinear MPC according to
the linearity of the model that is used for process prediction, and their com-
bination:

• linear MPC algorithms with quadratic optimization

• nonlinear MPC algorithms with nonlinear optimization

• suboptimal MPC algorithms with successive online linearization and
quadratic optimization [84]

Linear models include polynomial models e.g. ARX and ARMAX, whereas
nonlinear models can be created with analytical models, artificial neural net-
works and fuzzy models [86]. Nonlinear models enable more precise predict-
ing since the majority of technological processes are nonlinear by nature.
However, nonlinear models with nonlinear constraints result in a nonlinear
cost function in optimization, requiring nonlinear MPC algorithms. In ad-
dition, there is no method to guarantee that an optimal solution from the
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optimization is the global optimum, which poses a risk in online model pre-
dictive control. [84].

Since the process model gives the process output as a function of the ma-
nipulated variables, and the opposite is pursued to solve the control problem,
either optimization or the inverse model is required [84]. The general idea of
the MPC is shown in Figure 4.2, where the lower graph is the result of the
optimization, which is recalculated for the entire prediction horizon at each
time step k.

Figure 4.2: The basic idea of model predictive control with a) the setpoint
and the predicted output trajectories and b) the calculated future control
trajectory [84].

4.2.1 Predicted output trajectory

Since the model used for prediction in MPC is never perfect due to simpli-
fications and unknown disturbances, a disturbance term is usually added to
the prediction:

ŷm(k + p|k) = ym(k + p|k) + dm(k) (4.3)
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where: ŷm(k + p|k) = predicted value (for the time step k + p) of a process
output, calculated at the time step k

ym(k) = output of the model
dm(k) = estimation of the unmeasured disturbance, which is

assumed to be constant for the entire prediction hori-
zon.

One way to calculate the dm(k) is to use the difference between the real
measured process output and the model output:

dm(k) = y(k)− ym(k|k − 1) (4.4)

where: ym(k|k − 1) = model output for the time step k, calculated at the
time step k − 1. [84]

4.2.2 ANN based NMPC

A neural model can be used directly for process prediction if nonlinear opti-
mization such as sequential quadratic programming (SQP) or interior point
optimizer (IPOPT) is used, as shown in Figure 4.3. From the model ac-
curacy point of view, this is the ideal way of using the ANN. However, the
nonlinear optimization problem may be non-convex and computationally too
demanding compared to the sampling time in fast processes. [84]

Figure 4.3: MPC with nonlinear optimization [84].

Another suboptimal but more computationally efficient option is to use
online linearization so that the prediction trajectory becomes a linear func-
tion of the calculated future control sequence. These methods include the
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MPC-NPL (nonlinear prediction and linearization for the current operating
point) shown in Figure 4.4. [84] According to Lawryńczuk [84], many more

Figure 4.4: MPC with nonlinear prediction and linearization for the current
operating point [84].

advanced algorithms have been proposed, for example MPC-SL, MPC-NPLT,
MPC-NPLPT and MPC-NNPAPT, which should be used if required for an
acceptable control performance, usually in strongly nonlinear processes such
as distillation.

For setpoint optimization, MPC can be used in multi-layer control on
top of PID controllers, as shown in Figure 4.5. The fourth layer in the sys-
tem, local steady-state optimization (LSSO) calculates the optimal setpoints
for the MPC layer, usually based on e.g. economics constrained by safety
and product quality. Instead of a (nonlinear) steady-state model, a dynamic
model is rarely used. The topmost management layer determines the oper-
ating conditions for the LSSO layer, i.e. parameters and constraints for the
cost function of LSSO. [84]

4.2.3 Inverse ANN based NMPC

In direct inverse control, inversion of the process model is used as the con-
troller. If the forward model of a process f is unknown, but enough is known
about its properties, such as nonlinearity and time delay, a suitable structure
for an artificial neural network can be deduced. After that an ANN can be
trained to approximate the inverse function f−1. [86, p. 47]
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Figure 4.5: The structure of the classical multi-layer control system [84].

There are at least two strategies for obtaining the the inverse model:
In generalized training, the inverse model is obtained offline even without
any process model. The inputs of the neural network include the (delayed)
process output and the setpoints. In specialized training, an online algorithm
is used, related to model-reference adaptive control. A forward model is
trained before training the inverse model, and therefore, specialized training
is more complex to implement in practice, requiring more design parameters.
On the other hand, specialized training makes it possible to create a controller
that is able to make the process output closely follow the reference. [86]

A drawback of the inverse ANN based NMPC comes from the general
non-invertibility of neural networks. When followed backwards, neural net-
work mappings derived from time series data may lead to multiple possible
trajectories.
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Chapter 5

Case studies for machine learn-
ing and operator’s advisory sys-
tems

In this chapter, five case studies of systems that enable or aim at implement-
ing advisory functionalities for a process operator, are reviewed. Because of
the lack of example cases in the field of petrochemical industry, other in-
dustries and processes are accepted as well. Overall conclusions are given in
Chapter 10.

5.1 DiaSter system

DiaSter is a software package for process modeling, diagnostics, fault detec-
tion, supervisory control and decision support for industrial processes [87],
such as chemical industry. The system is able to detect improper states of a
process, and give advice and operating instructions to the operator. [83]

DiaSter is developed as a university project by a research team from the
Warsaw University of Technology, Silesian University of Technology, Rzeszów
University of Technology and University of Zielona Gora, and it is the suc-
cessor of an older system AMandD developed in Warsaw University of Tech-
nology [87]. The position of DiaSter in the automation pyramid is presented
in Figure 5.1.

According to Syfert et al. [87] (in 2011), DiaSter is a unique solution,
and at that time ready to be prepared also for commercial use. Most of
the information available of the system is from years 2011–2014, and from
universities that took part in developing the system.
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Figure 5.1: DiaSter in the automation pyramid [87].

5.1.1 System architecture

DiaSter is a software platform that enables a set of programs, specialization
packages and plug-ins (.dll) together to implement e.g. simulation, modeling,
soft sensors and fault diagnosis. The main components of the DiaSter sys-
tem are presented in Figure 5.2. A common information model defines the
data exchanged between the components, a central configuration environ-
ment handles configuration data for all components, and a central archival
database stores values of built-in or custom data types. Distributed calcula-
tion over a computer cluster is possible. [87]

5.1.2 Process modeling and control

For identification, a modeling module (MITforRD) allows creating static and
dynamic models, e.g. linear models, neural networks or fuzzy logic based
models. For neural models, two model types are available: locally recurrent
networks, and ANN of the GMDH type. [83] The workflow of the identifica-
tion can be seen in the GUI presented in Figure 5.3.

Syfert et al. [83] present an example for neural network modeling for the
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Figure 5.2: The architecture of DiaSter. Black blocks are specialization
packages. [87]

simple three-tank benchmark process, using a locally recurrent network (and
also the GMDH ANN). The three-tank benchmark process, or the three-tank
system, is a laboratory-scale system that consists of three tanks in series,
the bottom parts of which are connected with a pipe. From Tank 3, water
pours out freely due to gravity, to a storage reservoir. From the storage,
water is pumped through a control valve to Tank 1. From there, water flows
freely via Tank 2 to Tank 3, approximately according to Torricelli’s law. The
structure of the locally recurrent network was selected by trial and error, and
a model with one hidden layer with seven neurons was chosen. A first-order
infinite impulse response filter, and a hyperbolic tangent activation function
was used. The three inputs for the ANN were the control valve position xv,
pressure before the control valve p, and the flow on the inlet of Tank 1, f1,
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Figure 5.3: GUI for system identification in DiaSter [83].

and the input data was scaled to the range between [0, 1]. The output was
the liquid level in Tank 3, l3, thus resulting in a model

l3 = fNN(xv, f1, p) (5.1)

where: fNN = nonlinear mapping by the locally recurrent neural network

The ANN was trained using the adaptive random search (ARS) algorithm
with initial variance σ0 = 0.1. The maximum number of iterations or epochs
was 200, and the training set included 2000 samples. The stability of the
model was guaranteed by the gradient projection method. The testing data
comprised 13000 samples, and the results were mostly good with SSE = 11.67
and MSE = 8.9 · 10−4. In addition, the model was tested with data from
some fault cases, such as decreased water pump efficiency. As expected, it
was possible to detect a fault from the model output residual, if the source
of the fault had some relation with the ANN input variables.

For nonlinear model predictive control, at least MPC-SL (suboptimal
MPC algorithm with successive linearization) and MPC-NPL (suboptimal
MPC algorithm with nonlinear prediction and linearization) algorithms are
available [84, p. 97].

5.1.3 Visualization

The data generated by DiaSter can be sent to external systems, visualized
there, or presented directly to the operator with DiaSter. A visualization
module is used for graphical user interfaces (GUI), the displays of which are
created as plug-ins. [83] An example of a GUI for an operator is presented in
Figure 5.4.
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Figure 5.4: An example of a process operator’s interface in DiaSter, display-
ing diagnostics of the process [87].

5.1.4 Conclusion

In conclusion, DiaSter is a versatile and easy to extend platform, somewhat
similar to Matlab with Simulink, however with focus on supervisory pro-
cess control and modeling. According to Syfert et al. [87], the system is in
educational use, and commercial applications are planned, but no further
information is available.
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5.2 Probabilistic advisory system based on

Bayesian probability

Puchr and Herout [19, 88] describe the implementation of a probabilistic ad-
visory system based on multiple earlier projects, such as the European Union
funded ProDaCTool (Decision support tool for complex industrial processes
based on probabilistic data clustering) and ProDisMon (Probabilistic dis-
tributed industrial system monitor). The goal of the system is to help the
operator to optimally set a set of global parameters of a complex industrial
process.

The process is considered as stochastic, and the input and output of the
system controlling the process are considered as random variables. It is as-
sumed that these variables vary around their mean value during a given state
of the process, forming clusters of points in a region of the multi-dimensional
data space. A probability density function (PDF) is used to describe the
location of a point. A short history of a mixture of these probability density
functions is used to describe the state or behavior of the process. Uncertainty
and updating of the PDFs is handled with Bayesian statistics. Bayesian prob-
ability is used to form the mathematical model for the PDF:

f(Θ|y(T )) =
f(y(T )|Θ)f(Θ)

f(y(T ))
(5.2)

where: f = probability density function (PDF)
Θ = parameter describing the state or behavior of

the process, Θ ∈ 〈0, 1〉
y(T ) = process data vector as a function of index T
f(Θ) = f(Θ|y(0)) = prior probability density function of the param-

eter Θ at the start of estimation
f(Θ|y(T )) = posterior probability density function expressing

the current knowledge of the value for Θ, at the
moment of T

f(y(T )) = normalization constant that can be omitted if
the posterior probability function is normalized
otherwise. [19, 88]

In a simplified workflow of the advisory system, first a criterion Θ that
characterizes the requested state of the process, is chosen. From the history
data, a time period corresponding to that state, is selected, and the data
from that period is presented as probability density functions. Next, corre-
sponding probability density functions are acquired in the current state of the
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process, and they are compared with the historical ones. Recommendations
are generated to the operator, how to change the state of the process to the
requested state. When the probability density functions match, the process
is in the requested state. [19, 88] The overall structure of the advisory system
is presented in Figure 5.5.
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Figure 5.5: Logical structure of the probabilistic advisory system. The prob-
ability density function is abbreviated to PDF. [19]

Puchr [19] states that the intended form of the advice to the operator is
sentences, e.g. ”increase parameter X to value Y”, but also mentions that
the shortest path from a process state to the requested state, is not always
feasible. In addition, the order of actions taken may affect the transition. No
ready solution was proposed yet.

A pilot of the system was tested for a small rolling mill. The approach
proved to be well applicable, although data processing (Bayesian probability
calculation) caused some performance issues. Need for better generation of
advices and visualization was identified, since the test showed that these were
the key parts of the advisory system. Any obscure information easily confuses
the operator who then loses the confidence in the advisory system. [19]
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5.3 Operator support systems in nuclear power

plants

Human error has been identified as one of the major causes of accidents
in safety critical processes, especially in nuclear power plants. Therefore,
many different kind of operator support systems (OSS) have been developed
to support the process operators’ cognitive processes, such as perception
and situation assessment in nuclear power plants. These systems can be
classified to passive and active: Passive systems aim to represent all the
available information to the operator in an optimal way, improving operator’s
abilities. Active systems include intelligent advisors and diagnostic systems
that are developed using e.g. knowledge bases, neural networks and genetic
algorithms. [89]

5.3.1 An integrated operator support system

Lee et al. [89] proposed an advisory system that integrates multiple separate
support systems into one system, as shown in Figure 5.6. Implementations for
a fault diagnosis system and an operation validation system were presented.
The operation validation system works in a similar manner than the system
by Gofuku et al. [75] described on page 29, except that also quantitative
predictions for actions are available.
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system
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system

Computerized
procedure system
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priorization

Corresponding pro-
cedure suggestion

Alarm
analysis

Adequate operation
suggestion

Monitoring/
Detection
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Response
planning

Response
implementation

OSS

Operator

OSS

Figure 5.6: An integrated operator support system to support operator’s
cognitive process [89].

The fault diagnosis system consists of a modified dynamic neural net-
work (MDNN) and a dynamic neuro-fuzzy network (DNFN), which partially
act as one double-redundant system. MDNN handles digital inputs such as
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alarms and on-off information, whereas DNFN handles analog inputs such
as measurements. The proposed MDNN is based on multi-layer perceptron
network, and the modifications make it handle time deviations in recognized
patterns (e.g. alarms). [89]

The system was tested with a group of students as operators, by mea-
suring the operator performance based on workload required to accomplish
a task in a fault case, and accuracy. Workload was measured by a subjective
self-assessment of an operator (NASA-TLX), in which the required mental
effort was rated. The accuracy was measured as the failure probability (of
the given task), which was based on diagnosis error and operation error. The
overall result was positive, but in some cases the advisory system also had
adverse effects. [90]

5.3.2 A pattern-based operator support system for fault
diagnosis

Ayodeji et al. [91] present an operator support system for decision making
during abnormal transients or disturbances of the process, based on arti-
ficial neural networks and a ”large knowledge base, which is developed by
collecting the plant’s time-dependent transient data from the system”. The
authors state that this kind of data-driven approach has replaced the prob-
abilistic methods of diagnostics, such as fault trees, Bayesian network and
Markov chain, since these are too dependent on expert knowledge, too prone
to error, and cannot be easily updated. However, even though the authors
do not elaborate, judging by the earlier research by Vinod et al. [92], the
knowledge base in this case means a trained neural network, the training of
which requires data (fault cases) generated with an external simulator.

In the proposed system, the input vectors of ANNs are normalized to
zero mean unit standard deviation, and also PCA is applied to reduce the
dimensionality from about forty variables into about ten features. The ANNs
have two outputs, indicating the location and size of the fault. [91]

Two different neural networks were tested: recurrent Elman neural net-
work (ENN) and radial basis function network (RBFN). RBFN has one hid-
den layer, the size of which is automatically increased until the mean square
error goal for the training dataset is met. RBFN is faster and computa-
tionally less demanding compared to other type of multilayer perceptron
networks. ENN is able to predict sequential data due to its temporary mem-
ory available in the form of recursive loops in the hidden layer. This enables
recognizing events even with slightly different time scales. The ENN was
trained in Matlab using gradient descend with momentum (traingdx) and
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adaptive learning rate back propagation (ALBP) with tangent-sigmoid ac-
tivation function in the hidden layer and a linear activation function in the
output layer. The overall performance of RBFN was better. [91]

5.4 Use of fuzzy neural network for rule gen-

eration in activated sludge process

Du et al. [93] implemented a fuzzy-neural network system to extract fuzzy
rules from a set of numerical process data, in order to enable heuristic rea-
soning in process control. The goal was to assist ordinary operators to work
at the level of an experienced operator who is able to use heuristic control
rules to control the sludge process. With the learning capabilities of neural
networks and the reasoning capabilities of fuzzy rules, the system was able
to learn the complex relations in the process while generating logic linguistic
rules for heuristic reasoning.

The neural network was a three-layer feedforward network having one
hidden layer of four nodes. The weights of the network were real numbers
and the inputs were fuzzified. The input variables were the feed flow rate
q, feed concentration u and recycle ratio α, and all of these were fuzzified
to three levels (L=low, M=medium, H=high), resulting in nine inputs total
for the ANN. The output variable was sludge age θ, fuzzified the same way,
giving three output neurons. θ was considered as the manipulated variable
for the process. The structure of the ANN is shown in Figure 5.7.

A simulator was used to create the process data for training the ANN.
Data was normalized based on the normal operating range of the variables.
Conventional membership functions were used for the fuzzification of the
input variables, as shown in Figure 5.8, and a customized function was used
for the recycle ratio α since its fuzzy value is relative to the feed condition.
The rules generated are presented in Appendix C. [93]
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Figure 5.7: Neuro-fuzzy network for creating heuristic control rules [93].

Figure 5.8: Fuzzification of the input variables [93].
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Chapter 6

Framework objective and require-
ments specification

In the literature part of this thesis, the current status of digital advisory sys-
tems for process operators was reviewed, these systems being one potential
application that could make use of machine learning in the field of process
industry. The literature study shows that both supervised and unsupervised
methods have been used to implement process operator’s advisory systems,
but otherwise more specifically, the methods have been quite application-
specific. This creates special requirements for the software that is used to
implement the machine learning part of the advisory system, especially in
terms of modularity and extensibility. On the other hand, the characteristics
of production software in process industry also create their own special re-
quirements, e.g. in terms of communication protocols, application platforms,
scalability and information security. Therefore, a platform design and a
framework is required, to enable controlled development and deployment of
machine learning applications.

The goal of the experimental part of this thesis is to design and imple-
ment a proof-of-concept for a machine learning framework for petrochemical
process industry applications, with respect to the given requirements specifi-
cation. In this chapter, the requirements are presented. However, as always
in the process of defining new software architecture, defining the require-
ments, the architecture and the implementation is an iterative process [94],
as shown in Figure 6.1.
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Figure 6.1: The process of defining software architecture. The curly arrows
represent the iterative process. [94, p. 76]

6.1 Software context, data acquisition and the

user

The framework will be implemented to be a part of or compatible with
NAPCON Analytics which is an advanced data analytics and visualization
solution for process industry. Utilizing its existing components is not a re-
quirement but probably makes implementing faster and the end result more
coherent.

The primary data source will be NAPCON Informer and the commu-
nication protocol for the process data will be OPC UA. History data will
be used for machine learning model development, and it must be possible
to easily select correct variables and the time interval with a graphical user
interface. Predictions should be generated in real time with real-time data.
The user will be the user of NAPCON Analytics, however the framework
should double as an internal tool for data analytics and machine learning
research.

6.2 Functionality and supported algorithms

The first two use cases for the framework are data mining and soft sensor
development. Data mining includes for example data preprocessing and clus-
tering. For data mining, modern software libraries must be supported, such
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as Scikit-learn. The development of soft sensors will be done with modern
deep learning libraries, and the framework should easily support the addition
of new machine learning libraries and tools.

Soft sensors and similar online deployments require a model server that
supports updating the model while keeping the application (e.g. a soft sen-
sor) interface unchanged. Multitenancy should be supported, and the ap-
plications developed with the framework should easily be compatible with
multiple client applications, especially within NAPCON Suite.

59



Chapter 7

Comparison and choice of com-
patible components

Analyzing the requirements in Chapter 6 reveals that they can be categorized
into the following tasks which are also roughly the steps of the development
of a machine learning model, as shown in Figure 2.5 (on page 12):

• data acquisition

• data preprocessing and basic machine learning

• deep neural network training

• model deployment

• model management

• user interface

Several open source components with permissive licenses are available for
most of these tasks. However, choosing the optimal and compatible compo-
nents without locking too much into one ecosystem in a restrictive way is
not a trivial task. Furthermore, there is a high risk that using multiple open
source components results in a high technical dept design pattern with too
much glue code (i.e. code that makes inherently incompatible codebases or
software components compatible with each other) and experimental configu-
ration, since the actual machine learning code tends to form only a small frac-
tion of real-world machine learning systems, as shown in Figure 7.1 [95]. Ac-
cording to Sculley et al. [95], common architecture smells of machine learning
systems include the multiple-language smell which is usually a consequence
of using components that are easily available but implemented in different
languages, usually making testing and maintenance more difficult. The cho-
sen components should also be compatible as they are, since in forking, the
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support from the open source community (including compatible updates) is
more or less lost. In forking, a copy of the source code is made, to start new
independent development, usually by another group of developers. In this
chapter, available and the most suitable options are briefly reviewed and an
initial choice for a component for each task is presented. The licenses and
API languages of the mentioned software products are listed in Appendix E.
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Process
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Figure 7.1: Real-world machine learning systems often consist of mostly
supportive components for the actual machine learning component (black
box in the figure) [95].

7.1 Data acquisition

In the requirements, the primary source of data is an OPC UA server. NAP-
CON Analytics natively supports OPC UA, therefore being the primary op-
tion, and also adequate when the amount of data and the nature of the pro-
cessing are such that the resources of one computer are enough. However,
using large datasets with machine learning algorithms may require specialized
file systems, databases and parallel processing capabilities. Apache Hadoop
and its ecosystem is probably the most popular open source solution in that
area.

The Hadoop Distributed File System (HDFS ) makes it possible to store
large files across multiple computers. HDFS uses a master–slave (NameNode–
DataNodes) architecture, the slave nodes of which serve the read and write
requests coming from the client of the file system. The master node (NameN-
ode) stores the metadata and directs the traffic from clients to the DataN-
odes. HDFS is fault tolerant in case of disk failure. [96]

Introduced in 2007, Apache Hadoop is an open source implementation
of the combination of the MapReduce processing engine and HDFS [96].
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MapReduce is a programming model that enables processing big datasets
in a parallelized and distributed way. The current Apache MapReduce uses
the Apache YARN (Yet-Another-Resource-Negotiator) which is a framework
for implementing applications for distributed processing. [97] Hadoop and
MapReduce are best at linear processing of big datasets when the speed of
processing is not critical [98]. While Apache Mahout library can be used for
machine learning, Hadoop with MapReduce is currently not very viable and
versatile platform for machine learning, especially if iterative computation is
required [96].

Apache Spark, which was initially developed at the University of Califor-
nia, Berkeley, is based on MapReduce and is often considered as an improve-
ment over Hadoop’s MapReduce. The main concept of Spark is the Resilient
Distributed Dataset (RDD) which can be seen as an immutable (i.e. read-
only) distributed shared data storage. Spark supports iterative computation,
has stream processing capabilities and utilizes in-memory computation mak-
ing it generally faster than MapReduce on Hadoop. Spark has also been
considered as easier to program, although the learning curve can be quite
steep. [96, 99][4, p. 144] MLlib is a machine learning library for Spark, and
it includes algorithms for classification, regression, clustering and collabora-
tive filtering [99]. Neither MLlib nor Mahout offer deep learning capabilities,
at least for deeper neural networks than a multilayer perceptron with one
hidden layer [96].

Apache Flink has more improved streaming capabilities compared to
Spark. FlinkML is a machine learning library for Flink, and its supported
algorithms include SVMs, multiple linear regression, k-nearest neighbor and
multiple data preprocessing algorithms. [99, 100] However, while Flink may
become a replacement for Spark, it is still quite a new project, and thus if
the streaming features are not required, Spark is more mature and therefore
probably a safer choice [101].

While setting up the Hadoop environment is out of the scope of this
thesis, and doing more advanced machine learning in a parallelized manner
is probably quite difficult in practice, the machine learning framework should
be easily compatible with the Hadoop ecosystem for future extensibility. In
this thesis, NAPCON Analytics and its OPC UA client is used for data
acquisition.

62



7.2 Data preprocessing and basic machine learn-

ing

In addition to the preprocessing capabilities of the Hadoop ecosystem, there
are two well-known options for data preprocessing and feature engineering
in machine learning: Caret package with R language, and Scikit-learn with
Python.

Another framework worth mentioning is H2O, which is written in Java
and consists of both Apache-2.0 licensed open source projects and commercial
products developed by the company H2O.ai [102]. The open source compo-
nents provide a distributed in-memory machine learning platform, somewhat
comparable to Scikit-learn, but more scalable [103]. One of the components,
Sparkling Water, integrates Apache Spark into the platform, making H2O
compatible with the Hadoop ecosystem. H2O can be used with Java, Python,
R and Scala, and in addition, a notebook-style web user interface is provided,
the language of which is CoffeeScript. Trained models can be exported and
deployed in POJO (Plain Old Java Object) or MOJO (Model Object Opti-
mized) formats.

R programming language and environment was created for statistical com-
puting and graphics, and it is mostly written in the R dialect of S program-
ming language. It is possible to link and run C, C++ and Fortran code at
run time. R and its Caret package provide a versatile collection of statistical
tools, for example for (non)linear modeling, time series analysis, classification
and clustering [104].

Scikit-learn is a Python library which implements a wide collection of ma-
chine learning and data preprocessing algorithms for medium-scale unsuper-
vised and supervised problems. Due to its BSD license and Python language,
it is easy to use Scikit-learn also in commercial applications. Scikit-learn has
a moderate number of dependencies, and some of them are compiled or writ-
ten in C++ for efficiency. In terms of speed, Scikit-learn is generally faster
than many other machine learning libraries for Python, such as mlpy. [105] A
flow diagram for choosing the correct machine learning algorithm is presented
in Appendix D, and the workflow is presented in Figure 7.2.

In terms of functionality, Scikit-learn is often compared to R language,
and they are often found quite comparable. While R with Caret is sometimes
found more user-friendly, Scikit-learn is often found faster. However, the
most significant advantages of Scikit-learn over R (and GPL-3 licensed Caret)
is its BSD license and the universality of Python language. [106–108] In this
thesis, Python and Scikit-learn along with the NumPy, SciPy and Pandas
libraries are the primary choices for data preprocessing.
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Figure 7.2: Data mining workflow in Scikit-learn [106].

7.3 Deep neural network training

There are many open source deep learning frameworks with permissive li-
censes, in many cases initially developed or later backed up by some large
company, such as Google, Microsoft, Facebook or Amazon [109]. A summa-
rizing comparison of the currently most popular deep learning frameworks is
presented in Table 7.1. Recurrent neural network (RNN) modeling capabil-
ity is included as an criterion because of its importance when dealing with
time-series data. The licenses and API languages are listed in Appendix E.

According to the Table 7.1, three frameworks stand out: TensorFlow,
PyTorch and Microsoft Cognitive Toolkit (also known as CNTK). Since the
frameworks are at their best in slightly different use cases, and the framework
designed in this thesis should be adaptable to versatile use cases, it should
be easy to add a support for a new deep learning framework. As a starting
point, TensorFlow and PyTorch will be chosen as the supported frameworks.

7.3.1 TensorFlow

TensorFlow is a low level deep learning framework and numerical library de-
veloped by Google. TensorFlow uses static data flow graphs to define how a
series of deep learning algorithms process the batches of data (i.e. tensors). [4,
p. 140] Input nodes of the graph are called placeholders, and weights, biases
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Table 7.1: A comparison of deep learning frameworks, on a scale of 0–3
(-/•/••/•••), summarizing multiple sources. Since it is virtually impossible
to make a universally applicable and summarizing comparison, this table
should not be used for comparing the frameworks in one given use case.
Moreover, this table can be considered as a representation of the general
average opinion about the current state of the frameworks. [110, 111]

Frame-
work

Commu-
nity
sup-
port
and tu-
torials

Distrib-
uted
execu-
tion

RNN
mod-
eling
capa-
bility

Usability
and
porta-
bility

Speed Multi-
GPU
sup-
port

Keras
com-
patible

Caffe • - - • • • -

Caffe2 • •• • •• •• • -

CNTK • •• ••• • •• •• •

MXNet • • • •• •• ••• -

PyTorch •• •• •• •• •• •• -

TensorFlow••• •• •• •• •• •• •

Theano • - •• • •• • •

Torch • - •• • •• •• -
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and other mutable values of the graph are called variables. In addition to
static graphs (define-and-run), there is a new define-by-run interface (called
Eager Execution) introduced but still in its early stages. A define-by-run
paradigm usually makes debugging and prototyping easier. Due to the low-
level nature of TensorFlow, higher level abstractions have been built on top
of it. The best known option is to use Keras with TensorFlow as its back-
end. [111]

TensorFlow supports distributed execution in a cluster that consists of
TensorFlow servers and clients created with TensorFlow itself. A client pro-
gram is usually written in Python or C++, and it builds the computational
graph and creates a TensorFlow session which uses the servers in the cluster.
Cluster management programmatically with Kubernetes is planned but not
yet supported. [112]

TensorFlow has separate install packages for CPU and GPU enabled ver-
sions. In addition, a web-based visualization tool is provided, called Ten-
sorBoard, which visualizes the summary data that is written to disk during
training. Third-party libraries make it possible to use TensorBoard with Py-
Torch and CNTK as well. TensorFlow does not natively support the ONNX
format (Open Neural Network Exchange) which is used for saving and de-
ploying the models. [111]

7.3.2 PyTorch

PyTorch is a define-by-run deep learning framework developed by Facebook.
PyTorch resembles and is partly based on Torch, while being also well inte-
grated with Python. The imperative nature and the Python API of PyTorch
have been considered as an advantage in prototyping and research. Tensors
in PyTorch are similar to NumPy arrays, and variables are the nodes in the
computational graph including the mutable values. A module is used to store
the weights of one layer of the neural network. [111]

PyTorch supports distributed execution with four different backends:
TCP, MPI, Gloo and NCCL, each of which has a different set of supported
functionalities for CPU and GPU (CUDA) tensors [113]. Most of the deep
learning libraries are able use Nvidia GPUs, and thus CUDA and cudNN
libraries, for faster calculation, such as matrix multiplication. Possible fu-
ture alternatives for GPU programming frameworks include OpenCL, HIP
by AMD and MKL-DNN by Intel. [111] The CPU and GPU enabled versions
are in the same PyTorch package. A visualization tool Visdom can be used
with PyTorch, and ONNX is supported. [111] Caffe2 is being merged with
PyTorch [114].
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7.4 Model deployment and management

The two main issues in the model deployment are the model persistence (sav-
ing the trained model for later use) and the inference system (i.e. prediction
serving) that is independent of the machine learning framework used for
training. The inference system should also be easily usable from different
applications and environments, with high availability.

For Scikit-learn and other Python models in general, the recommended
way to implement model persistence is to serialize the model with Pickle [115].
Pickle can be used for serializing Python objects into a byte stream (or a
binary file) and for de-serializing them back into Python objects elsewhere.
However, the most significant limitation of pickling is that the versions of
Scikit-learn when pickling and unpickling, must match, or otherwise the un-
pickling is not supported or at least guaranteed to succeed. [116] In addition
to picking, a small software project Sklearn-porter can be used to transpile
some Scikit-learn models into Java or C [115].

The prediction serving for pickled Scikit-learn models can be done e.g. by
wrapping the model into an independently deployable Python-based web ap-
plication, for example by using Flask. This idea of turning learned models
into microservices is often used in (open source) inference systems. In ad-
dition, if the running environment is included with the model by using con-
tainers for example, the microservice architecture also partially solves the
problem with different software versions when unpickling, although it does
not help updating the version compatibility of a model.

Another approach for model persistence is to use an interoperable inter-
mediate format, such as ONNX (Open Neural Network Exchange). ONNX is
an open source format for neural networks, initiated by Microsoft and Face-
book, with IBM and Amazon joined later. [115] Google and the TensorFlow
community have not shown as much interest in ONNX, but some third-party
converters exist. [117] While the ONNX format and its compatibility with
various machine learning frameworks is in its early stages, it is an advantage
if the inference system supports the ONNX format.

Currently, the best known open source inference servers with permis-
sive licenses include TensorFlow Serving, Clipper, Model Server for Apache
MXNet (MMS) and Apache PredictionIO. Other open source projects with
less permissive licenses include DeepDetect (LGPLv3 [118]) and PlaidML
(AGPLv3). Apache PredictionIO is compatible with Spark MLLib, and
therefore worth further examination if the Spark ecosystem is used. In this
thesis, Clipper is the chosen tool for model management and deployment,
mostly because of its Apache-2.0 license and versatility compared to Tensor-
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Flow Serving.

7.4.1 TensorFlow Serving

TensorFlow Serving is an inference product developed by Google, for serv-
ing TensorFlow models in a production environment. TensorFlow Serving
aims to provide a high-performance API for querying predictions and deploy-
ing new models without modifying their front-end applications. TensorFlow
Serving supports TensorFlow models only, although it should be possible to
add support for other ML frameworks with a C++ API, by implementing a
custom model-specific wrapper in C++, called servable (see Figure 7.3). Ten-
sorFlow Serving uses the gRPC protocol between the server and the client,
and a RESTful API is also available for classification, regression and predic-
tion on TensorFlow models. Version management is supported to update or
roll back to an old version of a model. [115, 119, 120]

Client
(prediction
consumer)

TensorFlow Serving Custom Servable
C++ API of some

other machine learning
framework

Trained model

gRPC, RESTful Load from
file system

Figure 7.3: Custom Servable in TensorFlow Serving [115].

7.4.2 Clipper

Clipper is a general-purpose open source prediction serving system, developed
by the RISELab of the University of California, Berkeley. Clipper is written
in C++ and Python, and it deploys the models as microservices which ex-
pose the inference interface by using a RESTful API. Similar to TensorFlow
Serving, Clipper supports model versioning, i.e. updating or rolling back to
an old model without changing the front-end application. However, Clipper
supports not only TensorFlow models, but also pure Python, Scikit-learn,
PySpark, PyTorch and MXNet models. In addition, implementing a support
for a new machine learning framework should be quite easy. [115, 121]
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The runtime components of Clipper form a cluster, including four main
components, as shown in Figure 7.4: a query processor, a management tool,
a metrics server and a configuration database. The models are deployed as
Docker containers by using a Python API. [122]

Model
containerModel

container

Applications

Clipper
Query Processor Clipper

Management

clipper
admin

Prometheus
Monitoring

Predictions
Queries Python

RPC

Configuration
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Figure 7.4: The architecture of the Clipper runtime cluster [122].

The architecture of the Clipper’s query engine can be divided into two
layers: the model abstraction and the model selection layers, as presented in
Figure 7.5 [121].
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Figure 7.5: The data flow and prediction stack of Clipper [121].
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Prediction requests from end-user applications are first processed in the
model selection layer which dispatches the queries to one or more models.
The model abstraction layer provides a common prediction interface, resource
isolation and caching, and optimizes the query workload for batch oriented
machine learning frameworks. Therefore, it uses the prediction cache or
assigns the query to an adaptive batching query associated with the correct
model. A cross-language RPC protocol is used in the communication between
the model containers and Clipper. The model abstraction layer returns the
results to the model selection layer which combines the results and confidence
estimates into the final prediction which in turn is returned to the end-user
application. [121]

In terms of prediction throughput and latency, according to Crankshaw
(one of the developers of Clipper) et al. [121], Clipper is comparable to Ten-
sorFlow Serving. Figure 7.6 shows the results of a comparison where three
TensorFlow models were deployed and tested with both Clipper and Ten-
sorFlow Serving. The models were a 4-layer convolutional neural network
trained on the MNIST dataset, a 8-layer AlexNet trained on the CIFAR-10
dataset, and Google’s 22-layer Inception-v3 network trained on the ImageNet
database.

Figure 7.6: Comparison of the relative peak throughput and mean latency,
between Clipper and TensorFlow Serving. Both Python and C++ APIs of
TensorFlow were tested. The predict measurement includes the time spent
in the inference (i.e. in TensorFlow code) and the queue measurement repre-
sents the time when the model container is waiting for the GPU to become
available. [121]
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The deployed models are stateless, which means that resource intensive
models can be replicated across multiple machines. Clipper also supports
linear ensemble methods, to improve prediction accuracy, although imple-
mentations for ensemble methods are not included in the current version
(0.3). [121]

7.5 User interface

Most of the open source machine learning frameworks do not include a graph-
ical user interface but only an API, for example for Python. However, graphi-
cal user interfaces exist in commercial products. The available user interfaces
can be categorized into the following groups: API only, notebook-style UI
and (flow-style) graphical UI.

Fully graphical user interfaces often visualize the data flow, where all the
operations are visualized as blocks. A good example of such a GUI is the
Microsoft Azure Machine Learning Studio, presented in Figure 7.7.

Figure 7.7: The GUI of Microsoft Azure Machine Learning Studio [123].

TensorBoard for TensorFlow looks somewhat similar, although it is used
only for visualizing the computational graph (Figure 7.8). This kind of flow-
type user interface could probably be built for example on top of Apache
NiFi (see Figure 7.9), Node-RED, Pothos framework [124] or Darwin [125].
In NiFi and Node-RED, custom processing blocks can be written in Java
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and JavaScript respectively. However, they are more than graphical user
interfaces, and especially using NiFi for GUI purposes should probably be
considered only if the Hadoop ecosystem is used.

Figure 7.8: The user interface of TensorBoard [126].

Figure 7.9: The user interface of Apache NiFi [127].

Notebooks are often used as semi-graphical user interfaces for machine
learning. However, notebooks are more web-based code editors or light IDEs
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than fully graphical user interfaces. One well-known example is the H2O’s
(graphical) user interface Flow, shown in Figure 7.10. Other well-known
notebook projects include Jupyter, R Markdown and Apache Zeppelin.

The common component in notebooks is a cell of code that can be run
individually, after which the output is printed below the cell. By default,
the output is text (such as standard output), but it can also be graphical UI
elements, images or even embedded web pages. Currently one of the most
popular notebook projects is Jupyter, which was also selected (along with its
default Python 3 kernel) as the initial user interface in this thesis.

Figure 7.10: H2O Flow is the notebook-style user interface of H2O [128].

7.5.1 Jupyter Notebook

Jupyter Notebook is an open source web application based on IPython, which
is an interactive Python shell, also used as the default execution environment
in Jupyter. Jupyter itself is language-neutral, and the language used in
the notebook can be changed by switching the kernel which is responsible
for the code execution, tab completion, etc. [129] The Jupyter project is
being constantly developed, and compared to many alternatives, it has a
large community because of its universality. The user interface of Jupyter is
presented in Figure 7.11.

As an user interface for a machine learning framework, a notebook is
clearly not as easy to use than a dedicated GUI. However, since Python
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Figure 7.11: The user interface of Jupyter [130].

has become one of the de facto standard languages in machine learning, a
notebook-style UI has multiple advantages: Most machine learning tutorials
online are available in the IPython notebook format. In addition, it is easy
to share own experiments or development, since the notebook can easily
be downloaded in JSON format as an .ipynb file. Due to the plain text
format, version control tools can also be used with the notebooks, although
the version control of the source code itself is somewhat difficult due to the
JSON encapsulation. Furthermore, compared to a dedicated GUI, it is easy
to add support for new machine learning tools or frameworks since they can
be easily installed and used immediately without GUI development.

Widgets can be used to add GUI elements, such as dropdown menus,
buttons, sliders, progress bars etc. and also more advanced widgets are al-
ready available, such as 3D plots and interactive tables. [131, 132] Writing
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documentation as a part of a notebook is also possible since the type of a
cell can be changed to Markdown, and for example LaTeX equations are
supported. [133]

The notebook front end communicates with the IPython kernel using
JSON messages sent with ZeroMQ (or ∅MQ) which implements the ZeroMQ
Message Transfer Protocol (ZMTP). The kernel is not connected to the note-
book file, as shown in Figure 7.12, but a new kernel process is started for
each notebook. [134]

Browser
Notebook
server

Kernel

Notebook
file

User

HTTP &
Websockets ØMQ

Figure 7.12: The components of Jupyter [134].
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Chapter 8

Framework architecture

Based on the requirements specification in Chapter 6 and the selected com-
ponents in Chapter 7, a practical high-level architecture was designed for the
machine learning framework. In this chapter, the architecture is presented
and an overview of the implemented parts and their additional required com-
ponents is given.

8.1 Architecture overview

The designed architecture is presented in Figure 8.1. As mentioned in Sec-
tion 6.1, the framework is implemented to be a part of NAPCON Analytics,
and the primary data source is NAPCON Informer. Training with big data
(the lower part of the diagram) and the background deployment are out of
the scope of this thesis, but it is important to keep the machine learning
framework compatible with them, and therefore, they are included in the
architecture.

NAPCON Informer is an advanced OPC UA database server for indus-
trial large scale applications with low latency requirements, certified by the
OPC Foundation. NAPCON Informer also implements the serving of his-
torical data via OPC UA, and it is also extensible due to plugin-based user-
definable OPC UA information models. The extensibility, along with the
other products of the NAPCON Suite, gives multiple options to implement
methods for utilizing the predictions and other real-time results from the
machine learning framework.

The machine learning environment, code named ML factory in the archi-
tecture, is a single-user environment for experimenting with process data and
machine learning, and also for developing and deploying machine learning ap-
plications in Python. Process data is transferred to the environment from
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Figure 8.1: The high-level architecture of the designed machine learning
framework. The implementations for the background deployment and the
training with big data are excluded from this thesis. The background de-
ployment primarily comprises any machine learning tasks that run in the
background modifying the state of either a database or a deployed ML model.

NAPCON Informer via OPC UA. The ML factory also serves the notebook
user interface, which is used as a part of NAPCON Analytics UI.
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The ML factory is deployed as a container, and the container management
and the data transfer are orchestrated by the calculation engine of NAPCON
Analytics. The support for this orchestration was implemented into the
calculation engine with a multi-user support. Upon request by the user, the
data transfer is started for the requested variables and time span, and in case
the ML factory does not exist yet, it is created for the user. In the current
implementation, while ML factories can be created for multiple users, the
data source and the online model deployment are shared resources for all
users. Therefore, in this proof of concept, all the users and clients within one
NAPCON Analytics deployment are also in the same information security
context.

The ML factory is equipped with the tools selected in Chapter 7. For
example, it is possible to visualize the process data, preprocess the data,
train machine learning models, and develop Python applications that use
the model. In the current implementation in this thesis, Clipper’s Python
client is used to deploy the models, but other prediction serving systems
could be used as well, such as TensorFlow Serving.

The Redis database instance is used by Clipper, for persistently storing
its internal configuration state. Since the deployed models are built into
Docker containers (as explained in Section 7.4.2), Clipper uses Kubernetes
and its command line interface (kubectl) for container management. The
model containers are pushed into a private container registry which doubles
as a library or storage for the trained models.

8.2 Docker

The core idea of Docker is to be able to pack an application with all the
needed dependencies into a single standardized unit for deployment. Docker
was initially created as an internal project in a platform-as-a-service company
dotCloud, and in 2013 Docker was released as open source. Currently, Docker
is developed by Docker Inc. and the development is supported by many big
companies, e.g. Google and Microsoft. [135]

Essentially, a Docker image is a group of filesystem layers sequentially
stacked to form the final union filesystem of the image, which is then run in an
isolated environment by the kernel of the host machine [136]. Layers contain
the information of the filesystem changes relative to the parent layer. When
building the image e.g. with a Dockerfile, each step becomes a layer and
consequently, an intermediate image. [135] The layered structure of Docker
images makes it possible to quickly deploy a machine learning model as a
self-contained microservice because most of the contents already exist in the
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base image, and only the application itself is added as a layer. Updating the
model only requires updating the application layer.

The running instance of an image is called a container. When a container
is started, a writable layer is added on top of the (read-only) layers defined
by the image. Any changes in the writable layer can be committed, resulting
in a new image. [135]

Compared to traditional virtualization with a virtual machine that is
completely isolated with its own BIOS and operating system running on top
of the host machine, Docker containers run within the same kernel running
on the host machine. This makes running containers lightweight since there
is no overhead from running a guest operating system or a virtualization hy-
pervisor. [135] However, the downside is that e.g. a Linux container does not
have all the capabilities of a fully-featured virtual machine. Some capabilities
can be added to a container, but usually by compromising the advantages
of virtualization, especially the isolation between the container and the host
system or between containers.

Docker images can be pulled from and pushed to a Docker registry, which
is an application for storing the images. There are publicly available on-
line registries, such as Docker Hub, serving a large number of repositories.
However, deploying an own registry server is also possible. [135]

8.3 Kubernetes

Kubernetes (also abbreviated as K8s) is an open source tool for deploying
containers across a cluster of computers, and it can be used for the orches-
tration and automated deployment and management of Docker containers.
Kubernetes is developed by Google, and it is based on the best practices
developed with Google’s internal container system Borg, which can be seen
as the predecessor to Kubernetes. The alternatives to Kubernetes include
Docker Swarm and Apache Mesos. [135]

The role of Kubernetes is important especially with microservices where
automated management is required, for example to enable communication
between containers without manually opening network ports, or to enable
automated model deployment balancing across a cluster. [135]

The key concepts of a Kubernetes cluster include the nodes, pods and
services, as shown in Figure 8.2. Nodes, more specifically a master node and
a set of worker nodes form the cluster, and they are either physical servers
or virtual machines with Kubernetes installed. The master node is dedicated
to handling and managing the cluster. The state of the cluster is stored in
etcd, which is a fast and reliable key-value store that contains information
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about what pods should be running and on which nodes etc. The API server
accepts HTTP requests using JSON, and it is used as a front end to the
state of the cluster. All the other components interact through the front end,
and it is also used for the centralized management of the cluster since only
the API server is connected to etcd. The scheduler and controller manager
is continuously monitoring the instances of the deployed applications, and
ensures their availability in case a node goes down or is deleted. In the
worker nodes, kubelet is the process listening to commands coming from the
master node. [135]
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Figure 8.2: The architecture of Kubernetes [135].

A pod consists of one or more Docker containers, and it is the basic unit
of execution in the Kubernetes platform. The containers running in the same
pod share the disk, network namespace and security context. Therefore, the
communication between the containers is usually done over localhost, and
volumes (e.g. a local hard disk or Amazon Web Services storage) attached to
the pod can be mounted in one or multiple containers. An example of a pod
could consist of two containers: one including the deployed application and
the other providing necessary tools to run the application, such as a database.
Pods are stateless by design and therefore may be killed and disposed by the
master node. [135]

A service is an abstraction that can be used to persistently provide access
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to an application deployed over a group of pods, as defined by the deploy-
ment and its ReplicaSet. When using a service, Kubernetes takes care of
load balancing by distributing the traffic to different instances of the appli-
cation. [135]

While the API server of a Kubernetes cluster can be used with standard
HTTP requests, kubectl is a command-line interface that makes interacting
with the cluster faster and more convenient. In addition, the web-based Ku-
bernetes Dashboard can be used as an GUI for managing and troubleshooting
the cluster and the deployed applications. Minikube can be used for creating
a local Kubernetes cluster with a single node, for development purposes. [135]
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Chapter 9

Qualitative evaluation with use
cases

A proof-of-concept system was constructed according to the architecture in
Chapter 8, and a couple of use cases were used to qualitatively evaluate the
framework against the requirements in Chapter 6. In this chapter, these
use cases are presented and also illustrated, although the development of
a graphical user interface was not included in the proof of concept, and
therefore, the GUI is lacking in most cases. Furthermore, the solutions for
the problems of the use cases are not necessarily accurate from the data
science point of view, but they are enough to represent the workflow.

9.1 Process data acquisition and visualization

By using the graphical user interface of NAPCON Analytics, process data for
three pressure measurements and one level measurement, for the time span
of fifteen hours, was selected and transferred to the machine learning envi-
ronment, by using OPC UA. Figure 9.1 illustrates the user interface which
is already implemented in NAPCON Analytics. When typing the variable
names, automatic completion and suggestions for matching database tags
help finding the correct tag. Tab completion is also used in the machine
learning environment where the selected dataset can be accessed with the
OPCUA Dataset object, as shown in Figure 9.2. In the figure, the user inter-
face of the machine learning environment is embedded into the web-based
GUI of NAPCON Analytics, and Google Chrome was used to display the
webpage in all of the use cases.

The dataset was plotted using three different visualization libraries. In
Figure 9.3, Matplotlib and an interactive plot capable of panning and zoom-
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Figure 9.1: Choosing the variables and the time interval.

Figure 9.2: Accessing the dataset in the machine learning environment.

ing, are used for visualizing the dataset. Notebook widgets could be used to
eliminate the need of code, by displaying e.g. a dropdown menu and a ’draw’
button instead.
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Figure 9.3: Visualizing the dataset by using two different plotting libraries.

9.2 Process data clustering for detecting op-

erating points

As a continuation of the previous use case, the same dataset was used for
generating and evaluating a use case where an operating state of a process
is detected. The generated data should be considered as toy data, and the
evaluation methods are accurate enough only for representing the workflow.

Clustering is probably the most common general unsupervised method to
generate subgroups of similar types of observations [137], which is one way to
detect operating points of a process. For the three pressure measurements,
a new operating point was artificially created by shifting the values so that
the new operating point could not be easily detected for example as global
minima or maxima (see Figure 9.4).

The modified dataset was clustered by using the agglomerative clustering
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Figure 9.4: The original dataset (upper plot), and the generated dataset
(lower plot) where the artificially added operating point can be seen in the
middle of the time series.

algorithm of Scikit-learn, and the number of clusters was set to three. The
results were visualized with a scatter matrix, as shown in Figure 9.5, where
the clusters are marked with different colors. The algorithm was able to sep-
arate the operating points reasonably well. While being out of the scope of
this thesis, experimenting with different algorithms and tuning their param-
eters could be easily done in the same environment by utilizing Python and
the straightforward API of Scikit-learn.
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Figure 9.5: The operating points of the process were detected with the ag-
glomerative clustering of Scikit-learn. The results can be visualized as a
scatterplot matrix that is colored according to the clusters.

9.3 Training, deploying and querying a neu-

ral network model

In this use case, a simple neural network was trained using PyTorch. The
architecture of the neural network was defined as one linear layer with 28 ·28
inputs and two outputs, as shown in Figure 9.6. An external dataset was
used and uploaded to the machine learning environment by using the file
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manager included in Jupyter. The dataset was a small part of the MNIST
dataset which is a large database of labeled handwritten digits. The input
of the neural network takes in one image with the resolution of 28 · 28 pixels,
and predicts whether the image represents either the number one or two.

Figure 9.6: Defining the neural network in PyTorch.

After training the model, it was deployed to the online deployment plat-
form (the upper part of Figure 8.1). The deployment can be done with only
one line of code, which again could be replaced with a couple of graphical
UI elements that could be easily implemented as notebook widgets. The
API used for the deployment hides the complexity of the online deployment
architecture shown in Figure 8.1.

After the model was deployed, predictions could be queried with a stan-
dard HTTP request. In this case, the request was made in the same machine
learning environment with the Requests library in Python because of its con-
venience, but the request could as well be sent from any other application
that could benefit from the use of machine learning models. A randomly
selected image of a handwritten digit was parsed into JSON format and sent
in the HTTP request. The queried image and the response from the model
is presented in the Figure 9.7 below. The latency limit for the deployed
application was set to 100 ms, and the model was able to reliably generate
predictions within the latency requirement, even with the modest hardware
used to evaluate the proof of concept.
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Figure 9.7: The input image sent in the HTTP query, and the resulting
response from the deployed application using the neural network model.

9.4 Discussion

The use cases in this chapter show that the designed framework is able to
qualitatively fulfill the requirements described in Chapter 6. The framework
is well integrated with the NAPCON Analytics utilizing some of its technolo-
gies, while adding the capabilities to develop and deploy machine learning
models trained with process data. As a proof of concept, the system is mostly
ready to be deployed on dedicated hardware to enable quantitative evalua-
tion which includes finding the possible bottlenecks in terms of usability and
throughput of data and predictions.

Being only an initial proof of concept, there are naturally many areas
for development. Next, real-world use cases should be well defined and then
executed on the created system, to find out the most important targets of
development, and to be able to further refine the requirements specification
and also the architecture. The user interface should also be improved.

Out of the components used in the system, the model deployment in
general, probably requires development the most: While the API of Clipper
is simple and easy to use, a considerable amount of knowledge is required to
actually be able to use the deep learning frameworks and create models that
can be serialized or otherwise deployed. Furthermore in terms of production
use, Clipper has some critical bugs that have not been fixed yet in the current
version (0.3), although bug reports and development can already be found
in GitHub. In addition, Clipper does not implement a way to manage the
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Docker registry, and therefore, it is not possible to fully delete and clean up
deployed models in the current implementation.
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Chapter 10

Conclusions and future work

The success of modern artificial intelligence applications in everyday life has
inspired the development of AI based applications also in the field of process
industry. One use case for such an application is an advisory system for
process operators, which augments the process operator’s capacity to process
and monitor information, resulting in better decision making in terms of
safety and profitability.

The concept of advisory systems for process operators is not new, and the
development is somewhat connected to the research of artificial intelligence.
The minor recent theoretical advancement, as concluded in Section 3.6, does
not necessarily make the older methods of digital advisory systems obso-
lete, but it raises the question if successful real-world use cases exist. As a
conclusion from the numerous applicable case studies, including the ones in
Chapter 5, in practice there are no standard generally accepted approaches
for developing such systems, and even the oldest methods are used in some
recent works. Furthermore, while giving also good results, most of the use
cases are designed for and tested in quite a narrow and specific cases, which
makes it difficult to evaluate the applicability and scalability of the methods
used. Therefore, the most realistic approach for an advisory system seems
to be a combination of multiple smaller applications, each of which are im-
plemented with the best methods already available.

Machine learning has proven to be a very useful tool in developing intel-
ligent or otherwise complex applications, partly due to the increased ability
to utilize deep neural networks which can be used for precise and nonlinear
black-box modeling. In process industry and especially advanced process
control, system identification is used for similar purposes. However, the pop-
ularity of machine learning has resulted in fast development in the software
(and also compatible hardware) that can be used to make more complex ma-
chine learning tasks feasible. Utilizing these resources in advanced process
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control might result in noticeable improvements in control systems in the
future.

One step towards the integration of modern machine learning and process
industry applications was taken in the experimental part of this thesis, where
a framework for developing and deploying machine learning applications was
designed and implemented on a proof-of-concept level. The microservice
architecture that was used, proved to be functional and advantageous, espe-
cially by ensuring the easy extensibility in terms of both the machine learning
libraries used and the client applications using the deployed models.

The use of open source software as components of a machine learning
framework gives a good head start in implementing new features. However,
the drawbacks include the risk of accumulating technical dept: Especially
small open source projects with permissive licenses tend to promise a lot, and
even the documentation may look extensive, but eventually, if the software is
not functional enough as it is, or the problems cannot be solved with the help
of the documentation (or community), the lack of knowledge of the codebase
causes significant overhead in resolving the issues.

Future work related to the framework architecture presented in this the-
sis, includes quantitative performance testing in real-world use cases. It is to
be expected that the versatility of the framework causes some negative im-
pact on the performance, compared to an application-specific tightly-coupled
solution.

While most machine learning tasks can be done on a single computer given
decent hardware, future work also includes making the framework compatible
with big data, which is the term used when the resources of one computer are
not enough to store or process all the data. Big data handling can be done
with dedicated tools, the best known of which are probably in the Apache
Hadoop ecosystem. When a cluster of resources is set up, the current im-
plementation of the machine learning framework should be easily adaptable
to using it. In some cases, also workarounds such as random or stratified
subsampling of a large dataset, can be used to process big data with given
memory limits. On the other hand, big data tools usually already implement
similar procedures, along with streaming, mini-batch learning and online
learning. The planning of big data compatibility should be started with a
literature review, since studies related to big data architectures can be found
quite easily, such as the article by Sarnovsky et al. [99], about a big data
processing platform for process industry factories.
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Appendix B

Comparison of machine learning
algorithms

Table B.1: A summary of the characteristics of selected machine learning
algorithms [138].

Algorithm Used in Pros Cons

Adaboost Face detection Automatically han-
dles missing values.
No need to transform
any variable.
Does not overfit
easily.
Only few parameters
to tweak.
Can leverage many
different weak-
learners.

Sensitive to noisy
data and outliers.
Never the best in
class predictions.

Gradient
Boosting

At almost
any machine
learning prob-
lem.
Search en-
gines (solving
the problem
of learning to
rank).

Can approximate
most nonlinear func-
tions.
Best in class predic-
tor.
Automatically han-
dles missing values.
No need to transform
any variable.

May overfit if run for
too many iterations.
Sensitive to noisy
data and outliers.
Does not work well
without parameter
tuning.
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K-means Segmentation Fast in finding clus-
ters.
Can detect outliers in
multiple dimensions.

Suffers from multi-
collinearity.
Clusters are spher-
ical, cannot detect
groups of other
shape.
Unstable solutions,
depends on initial-
ization.

K-nearest
Neighbors

Computer
vision.
Multilabel
tagging.
Recommender
systems.
Spell checking
tasks

Fast, lazy training.
Can naturally han-
dle extreme multi-
class problems (like
tagging text).

Slow and cumber-
some in the predict-
ing phase.
Can fail to predict
correctly due to the
curse of dimensional-
ity.

Linear re-
gression

Baseline pre-
dictions.
Econometric
predictions.
Modelling
marketing
responses.

Simple to understand
and explain.
Seldom overfits.
Using L1 and L2 reg-
ularization is effec-
tive in feature selec-
tion.
Fast to train.
Easy to train on big
data thanks to its
stochastic version.

Hard to make it fit
nonlinear functions.
Can suffer from out-
liers.

Logistic
regression

Ordering
results by
probability.
Modelling
marketing
responses.

Simple to understand
and explain.
It seldom overfits.
Using L1 and L2 reg-
ularization is effec-
tive in feature selec-
tion.
The best algorithm
for predicting proba-
bilities of an event.
Fast to train.
Easy to train on big
data thanks to its
stochastic version.

Hard to make it fit
nonlinear functions.
Can suffer from out-
liers.
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Naive
Bayes

Face recogni-
tion.
Sentiment
analysis.
Spam detec-
tion.
Text classifi-
cation.

Easy and fast to im-
plement, doesn’t re-
quire too much mem-
ory and can be used
for online learning.
Easy to understand.
Takes into account
prior knowledge.

Strong and unrealis-
tic feature indepen-
dence assumptions.
Fails estimating rare
occurrences.
Suffers from irrele-
vant features.

Neural
Networks

Image recog-
nition.
Language
recognition
and transla-
tion.
Speech recog-
nition.
Vision recog-
nition.

Can approximate
any nonlinear func-
tion.
Robust to outliers.
Works only with a
portion of the ex-
amples (the support
vectors).

Very difficult to set
up.
Difficult to tune be-
cause of too many
parameters, one of
which is the topology
of the network.
Difficult to interpret.
Easy to overfit.

PCA Removing
collinearity.
Reducing
dimensions of
the dataset.

Can reduce data di-
mensionality.

Implies strong linear
assumptions (compo-
nents are a weighted
summations of fea-
tures).

Support
Vector
Machines

Character
recognition.
Image recog-
nition.
Text classifi-
cation.

Automatic nonlinear
feature creation.
Can approximate
complex nonlinear
functions.

Difficult to interpret
when applying non-
linear kernels.
Suffers from too
many examples, af-
ter 10 000 examples
it starts taking too
long to train.

SVD Recommender
systems

Can restructure data
in a meaningful way.

Difficult to under-
stand why data has
been restructured in
a certain way.

Random
Forest

At almost
any machine
learning prob-
lem.
Bioinformatics.

Can work in parallel.
Seldom overfits.
Automatically han-
dles missing values.
No need to transform
any variable.
No need to tweak pa-
rameters.
Can be used by al-
most anyone with ex-
cellent results.

Difficult to interpret.
Weaker on regression
when estimating val-
ues at the extremities
of the distribution of
response values.
Biased in multiclass
problems toward
more frequent
classes.
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Appendix C

Rules generated in a neuro-fuzzy
system (case study)

Case study in section 5.4.
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Table C.1: The IF-THEN rules generated by the neuro-fuzzy system. H, N, or
L means that the respective fuzzy membership function is > 0.9. Otherwise,
for example in Case 20, u can be interpreted as a bit low since µL,u = 0.75. [93]

Case IF q and IF u and IF α and THEN θ

1 L L L L (0.81 0.17 0.00)
5 L L L (0.60 0.32 0.00) N
9 L L (0.75 0.21 0.00) L L (0.89 0.12 0.00)
14 L L (0.75 0.21 0.00) N (0.32 0.60 0.00) N
20 L L (0.75 0.21 0.00) H (0.00 0.13 0.88) H
21 L N L (0.88 0.13 0.00) L (0.68 0.26 0.00)
22 L N N (0.41 0.50 0.00) N (0.14 0.85 0.00)
26 L N H H (0.00 0.14 0.85)
27 L N (0.00 0.61 0.32) L L (0.84 0.15 0.00)
29 L N (0.00 0.61 0.32) L (0.72 0.23 0.00) N
37 L N (0.00 0.61 0.32) N (0.00 0.48 0.43) H
40 L H L L
56 L H N (0.40 0.87 0.00) H (0.00 0.30 0.63)
59 N (0.23 0.73 0.00) L L L
63 N (0.23 0.73 0.00) L L (0.66 0.27 0.00) N (0.15 0.85 0.00)
65 N (0.23 0.73 0.00) L L (0.51 0.4 0.00) N
77 N (0.23 0.73 0.00) L H H (0.00 0.18 0.80)
78 N (0.23 0.73 0.00) L (0.67 0.27 0.00) L L (0.87 0.13 0.00)
83 N (0.23 0.73 0.00) L (0.67 0.27 0.00) N (0.38 0.53 0.00) N
95 N (0.23 0.73 0.00) N H H (0.00 0.41 0.50)
97 N (0.23 0.73 0.00) N L L
107 N (0.23 0.73 0.00) N L (0.62 0.31 0.00) N
118 N (0.23 0.73 0.00) N (0.00 0.61 0.32) L L (0.91 0.11 0.00)
132 N (0.23 0.73 0.00) N (0.00 0.61 0.32) N (0.00 0.50 0.40) N (0.12 0.90 0.00)
135 N (0.23 0.73 0.00) H L L (0.87 0.14 0.00)
145 N (0.23 0.73 0.00) H H (0.00 0.18 0.80) N (0.36 0.55 0.00)
148 N (0.00 0.66 0.27) L (0.75 0.27 0.00) L (0.85 0.14 0.00) L (0.60 0.32 0.00)
155 N (0.00 0.66 0.27) L (0.75 0.21 0.00) N (0.00 0.72 0.23) N
157 N (0.00 0.66 0.27) L (0.75 0.21 0.00) H H (0.00 0.19 0.78)
171 N (0.00 0.66 0.27) N (0.00 0.61 0.32) H L
190 H L L L
208 H L N N (0.17 0.81 0.00)
220 H L H H (0.00 0.22 0.74)
222 H L (0.75 0.21 0.00) L L
236 H L (0.75 0.21 0.00) N (0.00 0.49 0.42) N
243 H L (0.75 0.21 0.00) H N (0.00 0.67 0.27)
259 H N H H (0.00 0.13 0.88)
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Appendix D

Scikit-learn: choosing a machine
learning algorithm
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Figure D.1: A flow diagram for choosing the correct machine learning algo-
rithm in Scikit-learn [139].
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Appendix E

List of licenses and languages of
the software discussed

Table E.1: A summary of the licenses, implementation languages and API
languages of all the machine learning tools, frameworks and other software
discussed in this thesis. The BSD licenses listed are of either the 2-clause or
the 3-clause version, unless otherwise stated.

Software License API languages (or
UI)

Written in

Caffe BSD Python, C++ C++

Caffe2 (merged to
PyTorch)

Apache-2.0 Python, C++ C++

Caret (for R) GPLv2, GPLv3 R R

Clipper Apache-2.0 Python, R, (REST-
ful)

C++, Python

Darwin BSD C++ C++

DeepDetect LGPLv3 C++ C++

Deeplearning4j Apache-2.0 Java, Scala Java, C, C++,
CUDA

Docker Apache-2.0 (CLI) Go

Drools Apache-2.0 Java Java

Flink Apache-2.0 Scala, Java, Python,
SQL

Scala (Java)
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H2O Apache-2.0 Java, Python, Scala,
R

Java, Python, R

Hadoop Apache-2.0 MapReduce: Java Java

Jupyter BSD 3-Clause (web), Kernel:
e.g. Python

Python, JavaScript,
CSS, HTML

Keras MIT Python, R Python

Kubernetes Apache-2.0 (CLI) Go

Mahout Apache-2.0 Java, Scala Scala (Java)

Matplotlib Matplotlib (BSD) Python Python

Microsoft CNTK MIT Python (Keras),
C++, (CLI)

C++

MLlib Apache-2.0 Java, Python, Scala,
R

Scala (Java)

Model Server for
Apache MXNet
(MMS)

Apache-2.0 (CLI) Python

MXNet Apache-2.0 C++, Python, R,
Scala, and others

C++, Python, R,
Scala, and others

NiFi Apache-2.0 (web) Java

Node-RED Apache-2.0 (web), JavaScript JavaScript

NumPy BSD 3-Clause Python Python, C

ONNX MIT - Python, C++

Pandas BSD 3-Clause Python Python

PlaidML AGPLv3 Python (Keras),
C++, C

C++, Python

Plotly.js MIT Python, R, Node JavaScript

Pothos BSL-1.0 C++ C++

PredictionIO Apache-2.0 Java, Python Java

PyTorch BSD Python Python, C, CUDA

Scikit-learn BSD Python Python, Cython, C,
C++
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SciPy BSD 3-Clause Python Python, Fortran, C,
C++

Seaborn BSD 3-Clause Python Python

Sklearn-porter MIT Python Python

Spark Apache-2.0 Scala, Java, Python,
R, SQL

Scala (Java)

TensorBoard Apache-2.0 (web) Python, HTML,
others

TensorFlow Apache-2.0 Python (Keras), C,
C++, Java, R, Go,
Julia

C++, Python,
CUDA

TensorFlow Serv-
ing

Apache-2.0 Python, (gRPC),
(RESTful)

C++

Theano BSD Python (Keras) Python

Torch BSD Lua, C C, Lua

Vespa Apache-2.0 Java, HTTP Java, C++

Visdom Attribution-
NonCommercial
4.0

Python, Lua, (web) Python, JavaScript
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