
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Deepti Vedala

Building a classification engine for ticket
routing in IT support systems

Master’s Thesis
Espoo, August 28, 2018

Supervisor: Professor Aristides Gionis
Instructors: Jyrki Tunnela M.Sc. (Information Technology),

Marko Lähde

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/162137811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Deepti Vedala

Title:
Building a classification engine for ticket routing in IT support systems

Date: August 28, 2018 Pages: vi + 42

Professorship: Computer Science, Aalto University Code: SCI3042

Supervisor: Professor Aristides Gionis

Instructors: Jyrki Tunnela M.Sc. (Information Technology),
Marko Lähde

In any IT support environment, it is important to quickly route support tickets
to correct teams. Often, it takes few days to manually classify several hundreds
of tickets. This thesis presents a classification engine that provides routing rec-
ommendation to specialists for incoming tickets. The classification engine is built
using machine learning and software robotics to decrease the amount of human
time spent on support ticket classification. Experiments are carried with logistic
regression, random forests and extremely randomized trees using historical data.
During off-line cross-validation, random forest model performs well with 90%
of f1-score and is deployed in production using AWS. The performance of the
classification engine is tested in production for two weeks. The deployed model
has f1-score of 86%. The f1-scores for the individual groups like level 1, level 23,
level 24 are 89%, 88% and 93% respectively. These three groups contribute to
almost 90% of total tickets. This thesis presents an approach of how a machine
learning model is employed to reduce human time.

Keywords: machine learning, robotics, classification, support tickets

Language: English

ii

Acknowledgements

I am grateful to professor Aristidis Gionis for supervising me during the pro-
cess of this master thesis. My sincere thanks to Basware Oyj for providing
me an opportunity to work on thesis project. I would like to thank my thesis
advisors at Basware, Jyrki Tunnela and Marko Lähde for steering me in right
direction with their valuable suggestions and time.

Finally, I must express my profound gratitude to my husband Kartiek and
to my parents for their continuous support and encouragement throughout
my years of study without which this accomplishment would have been im-
possible.

Espoo, August 28, 2018

Deepti Vedala

iii

Abbreviations and Acronyms

tf Term Frequency
tsv tab separated values
csv comma separated values
idf Inverse Document Frequency
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
AWS Amazon Web Services
RPA Robotic Process Automation
HTTP Hyper Text Transfer Protocol
ITSM Issue Tracking System Management
SVM Support Vector Machine
SVC Support Vector classification
NuSVC Nu-Support Vector Classification
LinearSVC Linear Support Vector Classification

iv

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Problem statement . 2
1.2 My contributions . 3
1.3 Structure of the thesis . 4

2 Background 5
2.1 Machine learning . 5
2.2 Supervised learning . 6

2.2.1 Classification . 7
2.2.1.1 Logistic regression 7
2.2.1.2 Random forest classification 9
2.2.1.3 Extremely randomized trees 12

2.3 Robotic process automation 12

3 Methods and experiments 14
3.1 Data description . 14
3.2 Data preprocessing . 15
3.3 Experimental setup 1 . 20

3.3.1 Off-line cross-validation 21
3.4 Experimental setup 2 . 23

3.4.1 Production deployment 24

4 Evaluation 26
4.1 Classification metrics . 26

4.1.1 Confusion matrix . 26
4.1.2 Precision . 28
4.1.3 Recall . 28
4.1.4 f1-score . 28

4.2 Results . 29

v

4.2.1 Experimental setup 1 29
4.2.2 Experimental setup 2 34

5 Recommendations 37
5.1 Discussion . 37
5.2 Machine learning combined with robotics 38
5.3 Possible extensions . 39

6 Conclusions 40

vi

Chapter 1

Introduction

Basware customer care team receives IT tickets from customers around the
globe. It has eight groups that deal with different kinds of problems. Special-
ists dedicated to each group spend considerable amount of time to manually
classify and direct the tickets to correct responsible teams.

Currently, the ITSM system receives emails from customers in eight different
languages. Based on these emails, specialists create tickets. The scope of the
project is limited to classification of tickets that are in english.

To save human work and time Basware makes use of software automation
using RPA. The goal of this thesis project is to augment the software au-
tomation and significantly improve ticket resolving times by implementing a
classification engine. The core of the classification engine consists of a ma-
chine learning model. To build the machine learning model, this thesis uses
Scikit-learn, a machine learning library for python programming language.
This project has two experimental setups. In setup 1, experiments with
logistic regression, random forests and extra trees classifier (also known as
extremely randomized trees) on different sets of data is performed to identify
the best performing algorithm during off-line cross-validation. In setup 2, the
model that performs best on the test data is deployed in production using
AWS. RPA uses software robots to communicate with the model deployed in
production. For incoming tickets, a software robot interacts with the model
and gets the predictions.

1

CHAPTER 1. INTRODUCTION 2

1.1 Problem statement

Basware provides various online service channels to the customers for resolv-
ing support requests. Customers contact Basware through chat, emails or
contact form submissions. Digital self service tools are provided by making
use of self-service tools such as online ticketing and knowledge base. Online
ticketing tool has the emails/incidents received from the customers, which
are further routed to respective support teams for further processing. Sup-
port teams are categorized into three major support lines: first level support,
second level support and third level support. The domain specialists working
for these support lines use knowledge base tool, which has knowledge base
articles to resolve the tickets.

Ticket resolution includes three steps as shown in Figure 1.1. The first,
is ticket creation which also includes ticket validation. The second step is
ticket classification and the final step is ticket processing. Ticket creation is
manually done by first level specialists. Specialist checks if the incident has
all required information and verifies if certain fields like the company, contact
details are correctly set and are not empty, includes error description to notes
(detailed description) field, summarizes the incident to summary(description)
field and verifies if all the necessary fields are correctly set. After validating
all the required fields, specialist then creates a ticket.

As discussed, Basware customer care has three major support lines out of
which first level support (level 1) deals with almost 50% of existing tickets.
Specialists dedicated to level 1 group, resolve all the tickets that satisfy cer-
tain criteria and directs the rest to other groups. There are five different sub
categories in second level support: level 21, level 22, level 23, level 24 and
level 25. If the ticket do not have sufficient information and if the priority
is very high then it is routed to third level. The third level has few subcat-
egories. There are very few tickets that are escalated to third level. Other
than these existing groups, there are few other groups to which tickets are
rarely escalated. As it is not possible to train a machine learning model with
such few number of tickets, this project considers all the subcategories of 3rd
level and the rest of the other groups as a new group ’Others’.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Steps involved in the process of resolving support tickets

1.2 My contributions

This thesis addresses the problem with manual ticket routing in IT support
systems. Currently, it takes a lot of time and routine work to classify support
tickets to correct teams. Based on two year history data, I have experimented
logistic regression, random forests and extremely randomized trees on differ-
ent sets of data in experimental setup 1. I have evaluated the models based
on classification metrics like precision, recall and f1-score. The model with
best results is deployed in production using AWS. This thesis uses software
robots of RPA to communicate between the IT support system and the model
deployed in cloud. A test run on real tickets in production is conducted with
the model for two weeks. Model evaluation is performed.

CHAPTER 1. INTRODUCTION 4

1.3 Structure of the thesis

This thesis comprises of six chapters. Chapter 1 is a brief introduction to the
problem of classifying support tickets and it also describes how it was ad-
dressed earlier. Chapter 2, discusses about different classification techniques
in machine learning that are used in this thesis and also gives a brief descrip-
tion on RPA. Chapter 3 describes about the experiments and the methods
used to classify support tickets. Chapter 4 evaluates all the methods used in
this thesis. Chapter 5 discusses the role of machine learning in addressing
the problem and also about the advantages of robotics when combined with
machine learning in this context

Chapter 2

Background

2.1 Machine learning

Machine learning is a process of programming machines to improve, achieve
optimized performance in solving a problem [1]. A problem might be a clas-
sification problem, clustering problem or any kind of machine learning prob-
lem. A machine learning problem can be represented using three concepts.
First, a machine have to learn data to solve a task ’T’. In present case, the
task is to classify the support tickets. Second, these machines require some
experience ’E’ to resolve the task. Experience in this context refers to the
example or training dataset provided. Finally, The performance ’P’ of the
machine in solving the task is measured [6].

Machines learn, analyze example data and make predictions. In order
to make good predictions from machine learning, it is important to have
clean data which has more information and less noise. Data cleaning which
is also termed as data preprocessing is a crucial step and the procedure of
data cleaning differs widely with the type of data used in context. The type
of data can be text, numbers, strings, categorical values, continuous values,
images, audio files, video files, etc.

Currently, the data used in this thesis has text, categorical fields. Pre-
processing of data involves different steps for text and categorical data. Text
data should be cleaned in such a way that no punctuations, stopwords exist
and then encoded to normalized vector format. Categorical data, on the
other hand should be converted to respective categorical codes. After com-
pleting the preprocessing step, data can be used with suitable algorithms
according to the requirement.

5

CHAPTER 2. BACKGROUND 6

Algorithms in machine learning are divided into four broad categories.
They are supervised learning, unsupervised learning, semi-supervised learn-
ing, reinforcement learning. The Figure 2.1 shows the classification of ma-
chine learning algorithms and their sub categories. This thesis addresses the
problem of classifying support tickets that belong to more than two cate-
gories, by implementing the algorithms that handle multi class classification
problems. Multi class classification problem is a sub category of classification
in which the learning is supervised. A brief description of supervised learning
can be found in Section 2.2.

Figure 2.1: Types of machine learning algorithms

2.2 Supervised learning

Supervised learning algorithms are applied on data, which has labeled target
variable/variables. In supervised learning, data which has specific features
with desired target variables is given as input. Based on such training data,
supervised algorithms predict the target variable of the test data [9]. Super-
vised learning can be divided into two categories – classification, regression.

CHAPTER 2. BACKGROUND 7

In classification problems, the target variables are often called categories or
labels. The goal of the classification problems is to predict the class/cat-
egory/label of the target variable. A detailed description of classification
algorithms used in this thesis is provided in Subsection 2.2.1. On the other
hand, in regression problems, the target variable is a continuous value ap-
proximated basing on the input data.

2.2.1 Classification

As discussed, in classification problems, the target variable is categorical
and the task is to predict if an observation belongs to certain category. As
described in Figure 2.1, there are different kinds of classifications. A clas-
sification problem in which the task is to predict a single target value that
might belong to one of two existing classes, is a binary classification problem.
A problem in which the target value might belong to more than two classes,
is a multi class classification problem [9]. On the other hand, if the problem
aims at predicting more than one target variable where, each target variable
might belong to two or more classes comes under a multi label classification.
This thesis focuses on a multi class classification problem, where the target
variable to be predicted might belong one of six existing categories. Algo-
rithms that support multi class classification, are applied on current dataset
and a detailed description of those algorithms is provided in 2.2.1.1, 2.2.1.2
and 2.2.1.3

2.2.1.1 Logistic regression

Logistic regression is a linear model for classification. It can be used for bino-
mial classification and multi class classification. In multi class classification
problems, multinomial logistic regression computes the probability for each
class and choose the class that has the maximum probability [3].

Logistic regression uses different solvers like liblinear, lbfgs, sab, sag, newton-
cg and few others [5]. Some of those like liblinear, saga support L1 penaliza-
tion. For multi class classification problems, liblinear uses coordinate descent
algorithm, which decomposes the optimization problem in one-vs-regression
fashion and uses separate binary classifiers to train all classes. On the other
hand, solvers like lbfgs, sag, newton-cg support L2 penalization. They con-
verge faster for high dimensional data. Setting the multi class parameter to
’multinomial’ with these solvers, learns true multinomial logistic regression
model and performs better when compared to one-vs-rest setting. Other
solvers like sag, uses stochastic average gradient descent algorithm and runs

CHAPTER 2. BACKGROUND 8

faster for large datasets.

Regularization solves the problem of overfitting. It adds a regularization
term to prevent the coefficients to overfit. There are two types of regulariza-
tion. Namely, L1 regularization and L2 regularization [8]. L1 regularization
is a linear function of weight values that uses the L1 norm (absolute values,
Manhattan distance) of weight values. On the other hand, L2 regularization
uses the quadratic function of weight values that uses the L2 (square, eu-
clidean distance) of the weight values. Some of the important parameters for
logistic regression are listed below [5]

Important hyperparameters for logistic regression

Penalty
This parameter specifies the type of norm used in penalization. For example,
L1, L2

Class weight
As discussed in other classification algorithms, class weight parameter works
same as in other cases. It takes values like ’None’, ’balanced’ or dictionary
values. For balanced mode, the classifier automatically adjusts class weight
for each of the existing classes. Class weight of ’None’ assigns a weight of
one to all classes.

Solver
Specifies the solver to be used. Different types of solvers are newton-cg, lbfgs,
liblinear, saga, sag etc. Each of those has their own advantages. Liblinear
performs well for small data sets. Sag, saga runs faster for large datasets.
Newton-cg, sag, saga, lbfgs can handle multi class classification problems us-
ing multinomial loss.

max iter
Maximum number of iterations taken by the solvers to converge.

multi class
This parameter takes two values, ovr, multinomial. If the parameter is set
to ovr, then a binary problem is for each label. If it is set to multinomial,
the classifier tries to minimise the multinomial loss.

CHAPTER 2. BACKGROUND 9

2.2.1.2 Random forest classification

Random forest classification technique comes under ensemble learning. En-
semble learning is a powerful machine learning paradigm which trains mul-
tiple learners to solve a problem [4]. Unlike general machine learning algo-
rithms, which learn one model from data, ensemble methods combine the
predictions/hypothesis of each individual base learner to improve the perfor-
mance. Base learners are generated from training data based on a learning
algorithm like a decision tree or any machine learning algorithm.

Ensembles are constructed in two steps. At first, base learners are gener-
ated in either parallel or sequential fashion. Then, the outcomes of all base
learners are combined in certain ways. One example approach for combining
the results of base learners in classification problems is the majority vot-
ing scheme which returns the most frequent vote. In general, for regression
problems, the weighted averaging scheme is used which returns the weighted
sum. The quality of an ensemble depends on the accuracy, diversity of the
base learners [11]. Accuracy of the learners can be measured using different
techniques like cross validation, leave-one out etc. Diversity in base learners
can be achieved by subsampling the training samples, injecting randomness
to learning algorithms etc.

There are a variety of ensemble methods which differ widely in the way base
learners are produced and/or in the different combination schemes used. Bag-
ging, boosting are the two most popular ensemble methods.

Boosting
Boosting is a sequential ensemble method in which the base learners are gen-
erated sequentially [11]. In sequential methods, the goal is to strengthen the
dependence between the base learners. They focus more on improving the
performance of the weak learner. Sequential methods boost the overall per-
formance by assigning higher weights to the previously mislabeled examples.
Boosting aims at fitting a sequence of weak learners and the final outcome
is obtained by combining the final predictions by majority voting scheme
in classification and weighted sum in regression. AdaBoost, gradient tree
boosting are some of the widely used boosting algorithms [4].

Bagging
Bagging uses bootstrap sampling in training base learners. Bootstrap sam-
pling can be defined as subsampling of training data with replacement and

CHAPTER 2. BACKGROUND 10

Figure 2.2: Bootstrap Sampling

the size of the sample and the training data set are same [4]. The Figure 2.2
depicts the subsampling of training dataset using bootstrap sampling. Each
base learner is trained on a random sample of instances. The output of each
individual base learners are aggregated by the ensemble classifier. Thus, the
final outcome of the ensemble classifier has better accuracy compared to in-
dividual classifiers.

The algorithm for bagging is as below:
The bagging algorithm:

Input: Dataset D = (x1, y1),(x2, y2), ··· ,(xm, ym);
Base learning algorithm `;
Number of learning rounds T.

Process:
for t = 1, · · ·, T:

Dt = Bootstrap(D);
ht = `(Dt) % Train a base learner ht from the bootstrap sample

end.

Output: H(x) = argmaxy∈Y ΣT
t=1 1(y = ht (x)) % the value of 1(a) is 1 if

a is true and 0 otherwise

Random forests are a good example of bagging technique. They fit numer-
ous decision tree classifiers on different subsamples of dataset. They follow

CHAPTER 2. BACKGROUND 11

the majority voting scheme for classification and averaging for regression to
improve accuracy, control over-fitting [4]. There a number of parameters
and varying each of those parameters lead to different results. Some of the
important parameters for random forests are listed below [5].

Important hyperparameters for random forests

n estimaters
The total number of trees in the forest. The default value of n estimaters is
10. For larger datasets, an increase in the value of n estimaters yields better
results. But, the results stop getting better after reaching a threshold value.

max features
Number of features to consider when looking for the best split. The default
value is ’auto’, for which the max features value is equal to the square root
of total number of features. Other options include log2 (logarithm of total
features), float (a defined percentage of features), int (defined number of fea-
tures) etc.

max depth
max depth of the tree takes integer value or it can also be set to None. For
large datasets, an increase in value of max depth leads to more accuracy.

class weight
class weight takes values like ’balanced’, ’None’, or a dictionary. For classifi-
cation problems that have a class balance do not require class weight param-
eter and the value of class weight parameter can be assigned to ’None’. If the
value is ’None’, then all classes are supposed to have weight one. But, multi
class classification problems with class imbalances need class weight param-
eter to balance the imbalance in between different classes. If class weight is
’balanced’, the classifier adjusts the weights of classes inversely proportional
to the class frequencies of input data as

bootstrap
The default value for this parameter is set to ’True’. If it is set to true, the
classifier uses the bootstrapped samples while building trees.

n samples
(n classes∗bincount(y))

Another alternative to resolve the class imbalance problem is to pass a dic-
tionary as class weight parameter. The dictionary should have integer values

CHAPTER 2. BACKGROUND 12

as weights assigned to each class.

n jobs
n jobs parameter takes an integer. It specifies the number of jobs that run
in parallel. If it is equal to -1, the number of jobs is set to number of cores.

2.2.1.3 Extremely randomized trees

Extremely randomized trees, also known as extra trees algorithm is one of the
ensemble methods that resembles random forests. Similar to random forests,
they build several individual estimators and average the predictions of all
estimators to control over-fitting and improve prediction accuracy. They dif-
fer from random forests in two aspects. First, unlike random forests, which
use bootstrapping for sampling training data, extremely randomized trees
use the entire training dataset. Second, to randomly select ’n’ number of at-
tributes at a particular node, they chose a random cut-point without taking
the target variable into consideration [13]. Extremely randomized trees are
one step ahead to random forests in randomizing thresholds while splitting.
They focus on decreasing the variance of the model. But, this often leads to
higher values of bias.

Extra trees algorithm can be used in classification or in regression tasks.
In this context, extra trees classifier is used for handling multi class clas-
sification problem. All parameters of extra trees classifier are same as the
parameters of random forest classifier except ’bootstrap’.

Hyperparameters of extremely randomized trees that differ from
random forests

bootstrap
This parameter is by default set as ’False’ where as in random forests, its
value is set to ’True’. If the value is false, it means that the classifier does
not use bootstrapping for sampling training dataset [5].

2.3 Robotic process automation

RPA, which is termed as robotic process automation is a software technology
developed from the concept of automation. Automation can be described as
developing a system or programming a workflow that requires no human in-
tervention [14]. RPA makes use of software which mimics human actions in

CHAPTER 2. BACKGROUND 13

a system and interacts with various applications to complete various rule-
based tasks. RPA is basically designed to perform a variety of rule-based
tasks, complex processes. It has virtual assistants that can respond, commu-
nicate with other systems as humans.

In Basware, RPA is based on a tool called UiPath. UiPath is an RPA technol-
ogy vendor who designs the software that automates business processes [14].
The basic components of UiPath RPA platform are UiPath studio, UiPath
robot, UiPath orchestrator.

UiPath studio is a development environment of UiPath and can be used
to design robotic processes. It is a modeling tool with which one can de-
velop automations visually in less time without requiring high level coding
skills [14]. UiPath studio has a variety of activities, which performs an action
or a task. Examples of activities include writing text to a text box, selecting
radio buttons, clicking buttons to an excel sheet, reading and/or writing a
file etc.

Uipath robot is a Windows service that can execute processes or set of ac-
tivities, designed or developed or recorded using UiPath studio. It is an
execution agent which runs the automation projects/processes that are de-
signed in UiPath studio. UiPath robots are managed by UiPath orchestrator.
They can run in either attended or unattended environments. Robots run-
ning in attended environments works only on human trigger where as the
robots that run in unattended environments can work on their own.

UiPath orchestrator is a server based application that helps humans in or-
chestrating the robots. Orchestrator runs on a server and all the robots
are connected to orchestrator. It has a user interface by which humans can
create, manage, monitor, deploy resources in the environment. Processes in
orchestrator can be scheduled and orchestrator manages the processed that
are in the queue.

Chapter 3

Methods and experiments

This chapter focuses on the methods and experiments carried out on the data.
It is divided into four sections. The first section describes the data used in
this project. The second section presents the steps taken for cleaning the
data. The third and fourth sections describe the two different experimental
setups employed. The former discusses about the off-line cross-validation
with different machine learning algorithms and the later is about the best
performing model, deployed in production.

3.1 Data description

Data used in this thesis is collected over a period of 2 years (2016 and 2017).
It has information regarding the end-to-end process of resolving ticket, ap-
plication configuration of the system and meta data of specialists involved
in resolving tickets. The total volume of data is 2 gigabytes. It has 280
columns and 381528 rows, where each row represent a single ticket. Tickets
are in different languages like English, Finnish, German, Swedish etc. There
are 114747 tickets that are in English and the scope of this thesis is limited
to English tickets.

It is important to identify the columns that play key role in the process
ticket routing. Most of the columns in the data do not contribute to the
ticket routing process and are considered to be irrelevant. According to the
domain specialists, who are involved in the process of ticket resolution, the
three key columns are ’Description’, ’Detailed Description’ and ’Service CI’.
Also, basing on the Basware knowledge repositories for ticket routing, certain
columns that provide information regarding the impact, priority, company,
product and operation categorizations of the issue raised are also considered

14

CHAPTER 3. METHODS AND EXPERIMENTS 15

as relevant. The relevant fields are listed in Table 3.1.

The scope of the thesis is limited to Basware customer care unit. Basware
customer care unit has seven groups. For all incoming tickets, it is the duty
of the specialist to manually process and route the tickets to specific group.
Different levels of Basware customer care include, ’level 1’, ’level 21’, ’level
22’, ’level 23’, ’level 24’, ’level 25’, ’Others’. The distribution of tickets to
the respective groups can be found in the Figure 3.1

Figure 3.1: Ticket distribution

3.2 Data preprocessing

Initially, database administrators exported data to tsv files. The reason of
choosing tsv format is that the columns like description, detailed description
are in text format and have punctuations and commas. If we choose csv
instead of tsv, the column delimiter might not work well and leads to data
corrupting issues. Tab separated files addresses such challenges. Data from
24 tsv files corresponding to two years (24 months) of data is converted to
a pandas dataframe. This thesis uses a freely available machine learning li-
brary, scikit-learn for Python

CHAPTER 3. METHODS AND EXPERIMENTS 16

Column names Type Description of columns
description text summary of the detailed description

field
detailed description text detailed description of the

email/ticket
service CI string category of service to which the ticket

is assigned
impact number It indicates the impact of the ticket.
priority number It indicates the priority of the ticket..

It is set by the practitioner while cre-
ating the ticket.

product categoriza-
tion tier 1

string A categorical string representing the
product categorization in tier 1

product categoriza-
tion tier 2

string A categorical string representing the
product categorization in tier 2

product categoriza-
tion tier 3

string A categorical string representing the
product categorization in tier 3

assigned group string group to which the ticket is routed.
assigned groups number ID’s representing the group ID’s to

which the ticket is routed
company string respective company
categorization tier 1 string A categorical string representing the

operational category in tier 1
categorization tier 2 string A categorical string representing the

operational category in tier 2
categorization tier 3 string A categorical string representing the

operational category in tier 3

Table 3.1: List of relevant columns and their description

CHAPTER 3. METHODS AND EXPERIMENTS 17

Filtering necessary columns
As discussed, there are 280 columns out of which 14 columns are important.
Important columns are filtered accordingly.

Filter english tickets
The scope of this thesis is limited to classification of English tickets which
represent around 50% of total tickets. There are existing language codes for
2016 and 2017 data. Only those rows that correspond to English tickets are
filtered.

Remove redundant data
In the two year data, there are certain tickets that are frequently received
from the customer. Certain tickets that are completely similar to any of the
existing tickets in the data can be removed. Including such repeated tickets
do not add any extra value to the machine learning algorithm. It is impor-
tant to remove those rows from the data.

Filter relevant groups
Currently, the data constitutes of tickets that belong to a variety of groups.
Tickets that belong to Basware customer care unit are filtered and all other
groups are excluded.

Handling null values
In current dataset, there are certain fields with ’NaN’ fields. One way of han-
dling ’NaN’ fields, is to exclude rows that have ’NaN’ fields. But, in present
case, excluding ’NaN’ fields would decrease the accuracy of the classifier.
Because, as shown in the Figure 3.2, in the column, ’categorization tier 3’,
almost 53% of data is filled with ’NaN’ fields. So, excluding them do not
add value in present context. Also, these columns are important in routing
a ticket. The better way to handle such data would be to replace the ’NaN’
values with the most suitable value.

One way to handle ’NaN’ fields is to replace them with the most frequently
occurring value. But, using the most frequent values is not apt for columns
like Categorization Tier 2, categorization tier 3, product categorization tier
1, product categorization tier 2, product categorization tier 3. Assigning
the most frequently occurring category to these groups would mislead the
classifier in prediction. Because, for tickets that belong to level 1, the cate-
gorization tier 3 field would always be empty and for tickets other than level
1, the values are not empty. So, replacing such empty fields with the most

CHAPTER 3. METHODS AND EXPERIMENTS 18

Figure 3.2: Proportion of null values

frequent category misleads the classifier. To address that problem, fields that
have ’NaN’ values are replaced with a new value, ’MISC’ that represents a
new category.

Excluding tickets that are assigned to multiple groups
In current data, there are few tickets that are assigned to more than one
’assigned groups’. There is no clear evidence whether they are misdirected
to several groups or routed to a specific set of groups to resolve the ticket.
Those tickets which have more than one ID in ’assigned group’ are excluded
from the data.

Categorical encoding
Except ’description’ and ’detailed description’ columns, all the other columns

CHAPTER 3. METHODS AND EXPERIMENTS 19

have categorical data as strings with datatype ’object’. It is important to
encode such categorical strings to numerical categories.

Text processing
There are two text fields in data: ’description’ and ’detailed description’.
These text fields comprise of characters, punctuations, non-character and
extra spaces. Machine learning algorithms cannot be applied directly on
text data. Text data should be converted into vector format to make them
ingestible for machine learning pipelines [10]. Text data can be represented
using bag of words model in which each word is considered as a feature and
text in each ticket is transformed into a vector of non-zero elements for all
the features.

TfidfVectorizer
Transforming text to quantitative data can be done using transformers like
TfidfVectorizer, countVectorizer. In this project, TfidfVectorizer is used to
transform text fields and vectorize them using tf-idf [5]. Currently, there are
80,000 tickets. TfidfVectorizer is applied on two text columns and a huge
vector of size 80000*180000 dimensions is generated. There are certain pa-
rameters in TfidfVectorizer that control the noise by reducing the number of
features used.

Some important parameters for TfidfVectorizer

stopwords
It takes a string, list or ’None’ as input. If it is a string, the only supported
value is ’English’. It checks for the stop list for English language and ex-
cludes the stop words from the features. If a list of stop words is passed, all
of elements in the list will be removed from the resulting features.

mindf
It ignores the terms that have a document frequency strictly less than the
given threshold.

maxdf
It ignores the terms that have a document frequency strictly greater than
the given threshold.

use idf
This parameter is set to true by default. It enables the inverse-document-
frequency reweighting.

CHAPTER 3. METHODS AND EXPERIMENTS 20

Combining heterogeneous data
The result of tfidfVectorizer for each text field should be concatenated with
the numerical categories. FeatureUnion, is such kind of estimator which
concatenates the results of multiple transformers applied on heterogeneous
data. The combined result can now be used to train a model using machine
learning algorithms like SVM, Logistic regression, Random Forests etc. The
Figure 3.3 clearly depicts the data preprocessing steps taken before training
the model.

Figure 3.3: Data preprocessing steps

3.3 Experimental setup 1

Basically, this thesis has two experimental setups. This section discusses
about the methods used and experiments carried in setup 1. Details regard-
ing setup 2 can be found in Section 3.4. In experimental setup1, classification
techniques which support multi class classification like logistic regression,

CHAPTER 3. METHODS AND EXPERIMENTS 21

random forests, extremely randomized trees are chosen and experimented
with different sets and volumes of data.

Listing 1: Python code for splitting data into training and test sets

from sklearn.model_selection import train_test_split

#Split data into train , test datasets
x_train , x_test , y_train , y_test = train_test_split(

twoYearData.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12]],
twoYearData.iloc[:, [8]],
test_size =0.33)

3.3.1 Off-line cross-validation

Training and test datasets
Initially, the data is randomly split into two sets, training data and test data.
Training data and test data are divided in such a way that two thirds and
one third of data respectively. An example code for such random split of data
into training and test datasets can be found in Listing 1. The four variables
x train, y train, x test and y test represent the training and test datasets.
y test, y train datasets have a single column ’assigned group’, which is the
target value to be predicted. x train and x test includes all the fields in the
data except the target variable as listed in Listing 1. A machine learning
model is trained on the x train, y train datasets as in Listing 2. The same
model is then used on test dataset to predict the target variable.

The reason for splitting data is to evaluate the performance of the classi-
fier on a new unseen dataset [12]. The new unseen dataset in this case is
the test set. A machine learning pipeline is constructed, which uses a sci-
kit ’FeatureUnion’ fuction to vectorize the text features and then combine
them with the categorical features on the training data. In the next step, the
pipeline generates models on the combined dataset using different machine
learning algorithms. The predictions made by the model can be optimized
by tuning the hyper-parameters of the classification algorithms. It is often
hard to manually tune the parameters with a random guess. This thesis uses
a sci-kit ’GridSearchCV’ function to address such problem.

Grid Search
Grid searchCV uses cross-validation and performs an exhaustive search on a
grid of hyperparameter values to determine the model with best performance.
Hyperparameters are passed as arguments to the estimators. As discussed,

CHAPTER 3. METHODS AND EXPERIMENTS 22

the values of hyperparameters can be changed to optimize the performance
of the model. It is often recommended to search in the hyperparameter space
that have the best cross validation score [7]. An example code for finding the
best fit can be found in Listing 2. The returned list of best values for the
hyperparameters can also be found in Listing 2

Cross-Validation
Cross-Validation is a statistical technique used in machine learning context to
get the best estimate of error [12]. This thesis uses a 5-fold cross-validation,
which splits the data into five approximately equal parts and each partition
in turn is used as testing and remainder is used for training.

Listing 2: Python code for finding the best parameters using GridSearchCV

pipeline = Pipeline ([(’features ’,Datafeatures),
(’classifier ’, RandomForestClassifier(random_state = 0))])

hyperparameters = {’classifier__max_depth ’: [10, 50, 70, 90, 100, 200],
’classifier__min_samples_leaf ’: [2],
’classifier__n_jobs ’: [-1],
’classifier__n_estimators ’: [10, 50, 70, 90, 100, 200],
’features__Description__tfidf__max_df ’: [0.4, 0.5, 0.7, 0.9, 0.95],
’features__Description__tfidf__min_df ’: [0.004 , 0.001, 0.01, 0.1],
’features__Detailed_Description__tfidf__min_df ’:[0.004 , 0.001, 0.01, 0.1],
’features__Detailed_Description__tfidf__max_df ’:[0.4, 0.5, 0.7, 0.9, 0.95],
’features__Detailed_Description__tfidf__token_pattern ’: [r’[a-zA-z]+’]}

model = GridSearchCV(pipeline , hyperparameters , cv=5)
model.fit(x_train , y_train)
predic = model.predict(x_test)
model.best_params_
model.refit

####################### Output: Best Parameters ########################

{’classifier__max_depth ’: [90],
’classifier__min_samples_leaf ’: [2],
’classifier__n_jobs ’: [-1],
’classifier__n_estimators ’: [100],
’features__Description__tfidf__max_df ’: [0.9],
’features__Description__tfidf__min_df ’: [0.004] ,
’features__Detailed_Description__tfidf__min_df ’:[0.004] ,
’features__Detailed_Description__tfidf__max_df ’:[0.7] ,
’features__Detailed_Description__tfidf__token_pattern ’: [r’[a-zA-z]+’]}

Case 1
As shown in Table 3.2 different experiments are conducted for three different

CHAPTER 3. METHODS AND EXPERIMENTS 23

Case Volume ’detailed description’ field CS level25
1 2 years Excluded Included
2 2 years Included Included
3 2 years Included Excluded

Table 3.2: Datasets used in different cases

cases. There are two text fields as mentioned in Table 3.1. As the ’detailed
description’ field has lot of noise, case 1 excludes the ’detailed description’
field to observe the performance of different classifiers. Logistic regression,
random forests, extra trees classifier are trained on the data. The perfor-
mance of these algorithms is tabulated in Table 4.3.

Case 2
Case 2 includes the ’detailed description’ field to observe if the classifier would
perform better in this scenario. All three classifiers are trained on the data
and the performance of these classifiers is tabulated in Table 4.5. There is
an interesting observation from the confusion matrices of each classifier. Ta-
ble 4.6 represents the confusion matrix of the random forest classifier on two
year data set including ’detailed description’ field. From the table, it is clear
that, good amount of ’level 25’ tickets are classified to ’level 1’ and vice versa.

After further investigation, it was found that the reason for this kind of
merge in between these two groups is because of having different consoles for
incoming tickets. Practitioners dealing with the tickets that arrive to console
A, do not have access to assign it to ’level 25’. So, those tickets are assigned
to the ’level 1’ that deals with the similar kind of tickets.

Case 3
To address the merge of tickets in between ’level 1’ and ’level 25’, case 3
excludes ’level 25’ group from the data. The three classifiers are trained on
remaining data. The results can be seen in the Table 4.7. Basing on results,
it can be concluded that the performance of extra trees classifier and random
forest classifier are better compared to logistic regression. Random forest has
the best scores for precision , recall and f1-score.

3.4 Experimental setup 2

In experimental setup 2, this thesis focuses on deploying the best performing
machine learning model in production environment, testing its performance

CHAPTER 3. METHODS AND EXPERIMENTS 24

on real tickets, evaluating the performance of the model. The model that
shows best results during off-line cross-validation on test data is deployed in
production. A test run on two weeks of tickets is performed using the same
model. The performance of the model can be seen in Figure 4.4.

Figure 3.4: Process workflow of machine learning combined with robotics

3.4.1 Production deployment

Basware makes use of RPA robots to add a language code to existing support
tickets of ITSM portal. This thesis extends the functionality of the existing
robot to get the predictions of the model for all incoming tickets. The robot is

CHAPTER 3. METHODS AND EXPERIMENTS 25

scheduled in orchestrator and runs accordingly. It fetches the necessary fields
of an incoming ticket and generates a HTTP request to the web server. This
project uses Tornado, a powerful scalable web server for handling the HTTP
requests. AWS (Amazon web services) hosts the Tornado web server. The
machine learning model and other required files are stored in scikit pickled
format and are deployed to AWS. When a HTTP request is send by robot,
Tornado web server handles the request, get the predictions, responds to
the robot. The Figure 3.4 gives an overview of the end-to-end process of
classifying the support tickets.

Chapter 4

Evaluation

In Chapter 3, we discussed how different models are generated on training
dataset, how the generated models are used to make certain predictions on
test data set, how models are tuned using grid search. But, a performance
measure of these developed models is required in order to choose a model
that suits best to the current requirement. Model evaluation plays a promi-
nent role in building generalized models, tuning them, and choosing the best
model by using numerical metrics [12]. Usually, these metrics vary depending
upon the type of problem. For example, classification problems have metrics
different from that of the regression and clustering problems.

4.1 Classification metrics

Classification performance of a model can be measured using a variety of
metrics. As the data used in this thesis deals with a multi classification
problem, a subset of metrics that suit well for current purpose should be
identified. This thesis uses confusion matrix, precision, recall and f1-score in
evaluating the models for multi class classification.

4.1.1 Confusion matrix

Confusion matrix, is one of the popular metrics for evaluating classification
models. It is a matrix representation of data where each cell c[i, j] represents
the instances that are classified with label j, when it actually belongs to label
i [2]. Each column in the matrix represents the count of instances classified
based on the predictions of the model and each row represents the count of
instances based on the actual labels [12]. The diagonal elements, c[i, i] are

26

CHAPTER 4. EVALUATION 27

A B C D E F
A 15103 1 314 276 729 117
B 0 278 0 42 0 0
C 262 0 1750 0 3 30
D 110 18 3 3708 66 14
E 200 0 6 76 4832 35
F 267 5 77 235 154 482

Table 4.1: An example of a confusion matrix

the instance counts of the number of correct classifications for a respective
group and the off-diagonal elements represent the misclassified instances.
Confusion matrix visualizes different types of errors made by the classifier.
The below list of concepts describes more about the general type of errors
made by the classifiers [2]. An example of confusion matrix can be seen in
Table 4.1.

True positives
True positives are the relevant instances that are correctly classified by the
classifier as relevant. As shown in Table 4.1, all the diagonal elements that
are in bold, represent the true positives corresponding to each class. For
example, consider the diagonal element corresponding to column ’A’, which
has a value of ’15103’ and is in bold. It indicates that ’15103’ instances which
actually belong to class ’A’ are correctly classified with label ’A’.

False positives (type 1 errors)
False positives are the irrelevant instances that are misclassified as relevant.
In confusion matrix, all the elements in a column excluding the diagonal ele-
ment represent the false positives. For example, in Table 4.1, all the elements
in column ’A’, except the diagonal element represent the false positives of
class ’A’.

True negatives
True negatives are the irrelevant instances that are correctly identified as
irrelevant.

False negatives (type 2 errors)
False negatives are the relevant instances that are misclassified as irrelevant.
In confusion matrix, all the elements in a row excluding the diagonal element
represent the false negatives. For example, in Table 4.1, all the elements in

CHAPTER 4. EVALUATION 28

the first row, excluding the diagonal element represent the false negatives of
class ’A’. Those instances which have a true label as class ’A’, are misclassi-
fied to other classes by the classifier.

This thesis uses a classification report that gives a text report of impor-
tant classification metrics like precision, recall, f1-score for each class. For
multi classification problems, the notions of precision, recall and f1-score are
applied independently for each class/label as described above. In addition,
classification report provides a computed average of the precision, recall, f1-
scores for all the classes basing on the weighted (weighted by considering the
number of true instances for each class) macro average across the classes as
shown in Table 4.2. The metrics in Table 4.2 correspond to the confusion
matrix that is tabulated in Table 4.1.

4.1.2 Precision

Precision is a measure of result relevancy. It is the ratio of the instances that
were correctly classified as relevant to the total number of instances that
were classified as relevant.

Precision = TP
TP+FP

As shown in Table 4.2, metrics related to the precision of each individual
class is listed as column 1. Those individual precision values for each class
are calculated with the above mentioned formula.

4.1.3 Recall

Recall is the percent of relevant instances that were correctly classified as
relevant. It can be calculated as shown below.

Recall = TP
TP+FN

In Table 4.2, the recall metrics for each class are listed in column 2.

4.1.4 f1-score

f1-score is the harmonic mean of precision and recall. It provides a balanced
optimization score of both precision and recall. f1-score is the F-beta score,
where beta=1.0. It can be calculated as below:

F1Score = 2∗Precison∗Recall
Precision+Recall

CHAPTER 4. EVALUATION 29

Precision Recall F1 Score Support
A 0.95 0.91 0.93 16540
B 0.92 0.87 0.89 320
C 0.81 0.86 0.83 2045
D 0.85 0.95 0.90 3919
E 0.84 0.94 0.88 5149
F 0.71 0.40 0.51 1220

Average/Total 0.90 0.90 0.89 29193

Table 4.2: An example of a classification report

The f1-score metrics corresponding to the Table 4.1 are listed as column 3 in
Table 4.2.

4.2 Results

4.2.1 Experimental setup 1

As discussed in Chapter 3, there are three cases in experimental setup 1.
In all three cases, the data is experimented with three different algorithms:
logistic regression, extra trees classifier and random forests.

Case 1
In case 1, data excludes the ’detailed description’ field. Algorithms like lo-
gistic regression, extra trees classifier and random forests are applied on the
data. After tuning the hyperparameters, the best results obtained for each
classier are tabulated in a single table. Table 4.3, gives an overview of results.

The results are tabulated in such a way that each row represents individ-
ual scores of precision, recall and f1-score for each group with respect to the
algorithm used. The last row gives the average of individual scores for all
groups. Basing on these results, it is clear that the average scores of preci-
sion, recall, f1-score are high in case of extra trees classifier compared to the
rest. For certain groups like level 1, level 23 and level 24 the individual scores
exceeded 80% where as, the individual scores for the rest of the groups are
pretty low.

Case 2
In case 2, data includes the ’detailed description’ field. The results of all

CHAPTER 4. EVALUATION 30

Case 1

Class
Logistic regression Extra trees Random forests

Support
precision recall f1-score precision recall f1-score precision recall f1-score

level 1 0.77 0.91 0.83 0.92 0.70 0.79 0.88 0.73 0.80 14603
level 21 0.89 0.42 0.57 0.77 0.90 0.83 0.76 0.76 0.76 99
level 22 0.85 0.47 0.60 0.64 0.85 0.73 0.48 0.84 0.61 1350
leve1 23 0.88 0.90 0.89 0.90 0.94 0.92 0.88 0.94 0.91 3290
level 24 0.83 0.87 0.85 0.84 0.94 0.89 0.83 0.94 0.88 4543
level 25 0.56 0.29 0.38 0.47 0.71 0.57 0.51 0.56 0.53 3958
Others 0.00 0.00 0.00 0.19 0.37 0.25 0.16 0.22 0.18 434

Avg/total 0.76 0.78 0.76 0.82 0.77 0.78 0.79 0.76 0.77 28277

Table 4.3: Performance of three classifiers for different groups in case 1

level 1 level 21 level 22 level 23 level 24 level 25 Others
level 1 10159 2 528 212 618 2705 379
level 21 0 89 0 10 0 0 0
level 22 78 0 1152 2 2 106 10
level 23 18 21 1 3099 22 118 11
level 24 40 0 4 57 4254 110 78
level 25 735 1 97 44 57 2818 206
Others 31 2 5 35 85 114 162

Table 4.4: Confusion matrix of extra trees classifier in case 1

CHAPTER 4. EVALUATION 31

Case 2

Class
Logistic regression Extra trees Random forests

Support
precision recall f1-score precision recall f1-score precision recall f1-score

level 1 0.80 0.91 0.85 0.80 0.93 0.86 0.85 0.85 0.85 16360
level 21 0.96 0.75 0.85 0.91 0.85 0.88 0.89 0.84 0.86 347
level 22 0.87 0.66 0.75 0.91 0.72 0.81 0.84 0.83 0.83 2043
level 23 0.88 0.94 0.91 0.87 0.94 0.90 0.88 0.96 0.92 3920
level 24 0.89 0.91 0.90 0.88 0.92 0.90 0.85 0.93 0.89 5224
level 25 0.65 0.47 0.55 0.70 0.42 0.53 0.60 0.59 0.59 4628
Others 0.67 0.26 0.38 0.96 0.24 0.38 0.81 0.32 0.46 1235

Avg/total 0.80 0.81 0.80 0.82 0.82 0.80 0.82 0.82 0.81 33757

Table 4.5: Performance of three classifiers for different groups in case 2

three classifiers are tabulated in Table 4.5. Based on the results, it is evi-
dent that the performance of random forest classifier is better compared to
the rest.

The Figure 4.1 presents the comparison between the results of case 1 and
2 for all three algorithms. The plot contains two subplots, subplot1 on the
upper half and the subplot2 on the lower half. Subplot1 is a factor plot that
compares the performances of three algorithms in two different cases with
respect to the metrics like precision, recall and f1-score. The bars that are
in blue, represent the metric scores in case 1 and the bars in green are the
scores of classifiers in case 2. For the subplot1, the scale of y-axis range from
0 to 1. The only difference between the subplot 1 and 2 is that the subplot2
is the zoomed version of subplot1, which visualizes only the necessary details
by rescaling the y-axis. From the plot, it is also clear that the results of case
2 are better than that of case 1.

The confusion matrix for the best performing algorithm, random forest in
this case is tabulated in Table 4.6. From the table, it is evident that a huge
proportion of level 1 tickets are misclassified as level 25 and vice versa. The
reason for this is that the training data has tickets that are misclassified by
the specialists due to lack of access to certain groups.

Case 3
The issue with the merge of tickets between level 1 and level 25 groups can
be addressed in two ways. One approach would be to remove all the tickets
that are misclassified by the specialists to these groups. Second approach is
to exclude all the tickets that belong to level 25.

Proceeding with the first approach is highly impossible for this kind of data.

CHAPTER 4. EVALUATION 32

Figure 4.1: Performance comparison of three classifiers in case 1 and 2

level 1 level 21 level 22 level 23 level 24 level 25 Others
level 1 13939 0 193 228 621 1334 45
level 21 0 292 0 54 1 0 0
level 22 247 30 1695 1 4 79 17
level 23 55 30 1 3683 58 92 1
level 24 152 0 2 69 4869 109 23
level 25 1741 0 39 49 73 2717 9
Others 180 7 92 234 131 194 397

Table 4.6: Confusion matrix of random forest classifier in case 2

CHAPTER 4. EVALUATION 33

Case 3

Class
Logistic regression Extra trees Random forests

Support
precision recall f1-score precision recall f1-score precision recall f1-score

level 1 0.90 0.96 0.93 0.95 0.91 0.93 0.94 0.93 0.93 16540
level 21 0.90 0.81 0.85 0.92 0.87 0.89 0.92 0.85 0.88 320
level 22 0.87 0.73 0.79 0.81 0.86 0.83 0.86 0.82 0.84 2045
level 23 0.87 0.91 0.89 0.85 0.95 0.90 0.86 0.94 0.90 3919
level 24 0.87 0.87 0.87 0.84 0.94 0.88 0.85 0.93 0.89 5149
Others 0.86 0.27 0.41 0.71 0.40 0.51 0.79 0.35 0.48 1220

Avg/total 0.89 0.89 0.88 0.90 0.90 0.89 0.90 0.90 0.90 29193

Table 4.7: Performance of three classifiers for different groups in case 3

Figure 4.2: Performance comparison of three classifiers in case 2 and 3

CHAPTER 4. EVALUATION 34

Figure 4.3: Performance of random forest classifier for different groups in
case 3

Because, it is not possible to identify such tickets that are misclassified.This
thesis proceeds with approach 2 as the total number of tickets that belong to
level 25 are less in number. Hence, the scope of case 3 is limited to Basware
customer care unit excluding the level 25 group.

The data is experimented with logistic regression, extra trees and random
forests. The individual scores of each classifier with respect to the metrics
for each group are tabulated in Table 4.7. In the table, the last row that is
in bold, represents the average of scores for all groups with respect to each
classifier. It is clear that the average scores are high for the random forest
classifier when compared to the rest. Figure 4.2 compares the performance
of all classifiers for case 2 and 3. Figure 4.2 is similar to Figure 4.1 in
all aspects expect that Figure 4.2 compares the performance of classifiers
in case 2 and 3. It is evident that the performance of all three classifiers is
improved in case 3 compared to case 2. Random forest in case 3 exhibits an
average score of 90% over all the groups for all the metrics. For random for-
est classifier, the individual metric scores of each group are plotted in Figure
4.3

4.2.2 Experimental setup 2

As discussed in Chapter 3, the experimental setup 2 has the best perform-
ing model running in production on real tickets. Random forest model is
the best performing model in off-line cross-validation. It is deployed in pro-
duction and its performance is tested for two weeks over 614 tickets. The
predictions of the classifier are compared against the human predictions. The
classification metrics can be found in Table 4.8. In the table, the rows that
are in bold have better scores of precision, recall and f1-score.

CHAPTER 4. EVALUATION 35

Figure 4.4: Performance of the model in production for level 1, level 23, level
24 groups

Precision Recall F1 Score Support
level 1 0.91 0.87 0.89 275
level 21 0.00 0.00 0.00 6
level 22 0.46 0.50 0.48 12
level 23 0.83 0.93 0.88 155
level 24 0.92 0.93 0.93 153
Others 0.00 0.00 0.00 13

Average/Total 0.86 0.87 0.86 614

Table 4.8: Classification report of the model in production

The average scores over all groups exceed 85%. The f1-scores exceed 88%
for the level 1, level 23 and level 24 groups, which share approximately 95%
of the total tickets. For the rest of the groups which constitute less than
5% of tickets, the predictions are pretty low. But, it is not appropriate to
measure the performance of the classifier for these groups at this point of
time as they do not have sufficient number of tickets to evaluate the model.
The Table 4.9 represent the confusion matrix of the model in production for
614 tickets. The Figure 4.4 shows the performance of the classifier for which
the scores are better.

CHAPTER 4. EVALUATION 36

level 1 level 21 level 22 level 23 level 24 Others
level 1 240 0 7 13 6 9
level 21 0 0 0 6 0 0
level 22 5 0 6 0 1 0
level 23 9 0 0 144 2 0
level 24 5 0 0 4 143 1
Others 4 0 0 6 3 0

Table 4.9: Confusion matrix for the model in production

Chapter 5

Recommendations

This chapter discusses about the model performance deployed in production
and the possibilities to address the issues found in production. It also sug-
gests some of the alternatives to overcome the problems faced in production.
It also summarizes the advantages of using robotics in present scenario. Last
but not the least, a brief discussion on the future enhancements or alternative
approaches to reduce the ticket processing time are provided.

5.1 Discussion

Based on the results obtained for different models, random forest model that
performed best during off-line cross-validation is deployed in production. It is
trained on data excluding the level 25 group. In production, for all incoming
tickets the classifier predicts the most suitable group, out of the six existing
groups on which it was trained. The performance of the classifier is evaluated
on the tickets that actually belong to the six groups. Tables 4.8, 4.9 that
correspond to the deployed model explain the same.

However, in production, there are almost 10% of total tickets which belong
to level 25. On observing the predictions of classifier for level 25 tickets, it
was quite surprising that almost 95% of level 25 tickets are classified as level
1. That means, for every 100 tickets that are classified as level 1, 70% belong
to level 1 and the rest belong to level 25. So, specialists dealing with level 1
tickets start working on the tickets that are classified as level 1 by the classi-
fier. They open the tickets and try to process them. True level 1 tickets are
resolved in no time and the remaining can then be assigned to level 25. For
the majority of tickets, the classifier has reduced the time taken to route the
tickets to correct teams and also forward them to next levels when needed.

37

CHAPTER 5. RECOMMENDATIONS 38

The average time spent on each ticket previously is in minutes and has been
reduced to few seconds by the classifier.

5.2 Machine learning combined with robotics

In the existing system, support tickets are manually processed by specialists.
There are about 35 dedicated specialists for classifying tickets that are in
English. They login to system and continuously monitor the incoming tick-
ets and assign them to the most suitable group. It takes few days for them
to manually process several hundreds of tickets. There is another team of
specialists, whose aim is to resolve the classified tickets. So, the time taken
for an incoming ticket classification should be reduced in order to speed up
the entire process of resolving tickets. This thesis combines machine learning
with robotics to speed up the process of ticket classification.

As discussed, Basware uses RPA to automate business tasks. RPA has robots
to handle repetitive rule based tasks without human intervention. Robots
reduce human labor and eventually saves lot of time and money. But, they
cannot make intelligent decisions. In present case, it is not possible for a
robot to classify support tickets based on certain rules. There are several
thousands of rules that should be taken into consideration while classifying
tickets and it is not feasible to automate those rules.

On the other hand, a robot can be made smarter by combining it with ma-
chine learning. Software robot of RPA is like arms and legs whereas the
machine learning part is the brain. A machine learning model that is able to
predict the most probable group for an incoming ticket is built and deployed
in cloud. Robot communicates with the model by generating a HTTP re-
quest. Robot fetches the predictions of the classifier and writes results. This
entire process takes few seconds and several hundreds of tickets can be clas-
sified in just few minutes.

The results obtained in this project clearly shows that the random forest
model deployed, performs well for certain groups that contribute large por-
tion of tickets. In the present context, the process of ticket classification
using machine learning combined with robotics reduces the time spent on
ticket classification to a good extent. Hence, the combination of machine
learning and robotics is recommended for speeding up the process of ticket
classification.

CHAPTER 5. RECOMMENDATIONS 39

5.3 Possible extensions

This thesis can be extended in a few ways. The current classifier predicts
the most probable group for an incoming ticket. Based on the results, it
is possible that the predictions might go wrong for few cases. This might
be because the probabilities of certain groups might be a bit closer and the
classifier just returns the group that has more probability. An alternative
approach would be to consider the most probable group only if it exceeds a
certain threshold probability and for the rest, the classifier returns the two
most probable groups. This approach might increase the true positive rate.

There are a few more possible additions to existing work. They include
automating the ticket creation and ticket resolution processes. In case of
ticket creation process, for each incoming email, a specialist should manu-
ally create a ticket by assigning each of the existing fields in the system with
respective values. It takes few minutes for creation of each ticket. Upon talk-
ing to specialists, it was clear that 50% of the incoming emails are related
to trivial cases and consumes almost 50% of the time in the process of ticket
creation. For such trivial redundant cases, it is possible to automate the
work in order to save human time. Machine learning combined with robotics
can address this problem. In the first step, machine learning can be used
in identifying the type of ticket basing on the text. For trivial tickets like
’request to password reset’, the robot sets required fields in the system with
respective values basing on certain rules. In long term, this solution of using
machine learning with robotics for ticket creation saves human time and cost.

Another possibility would be to automate the ticket resolution process. Do-
main specialists for each group resolve tickets basing on knowledge base ar-
ticles. There are several hundreds of rules in ticket resolution process that
cannot be automated. But, for some of the simple cases, respective knowl-
edge base articles can be used as historical data. A machine learning model
can be developed using such historical data, which can suggest the related
knowledge base articles for each of the incoming emails. this model should
be more advantageous for IT support teams as it eliminate the time taken
for the ticket creation, classification and resolution. At-least this approach
should be applicable for 50% of the most trivial cases.

Chapter 6

Conclusions

This thesis builds a classification engine that provides a recommendation to
specialists for routing support tickets in Basware ITSM system. It is crucial
to reduce the amount of time spent on ticket routing process. Manual ticket
routing includes routine work and takes at least few days to route several
hundreds of support tickets. Various experiments conducted on different sets
of historical data using logistic regression, random forests and extremely ran-
domized trees. From the results presented in Chapter 4, it is evident that the
random forest model performs well with an average of 90% f1-score over all
groups during off-line cross-validation. This model is deployed in production
using AWS to evaluate the performance of the model on real tickets. This
thesis uses software robots of RPA to communicate between the IT support
system and the deployed model. Evaluation of the model is performed for
two weeks of real tickets. The model has an average f1-score of 86% for all
groups. The f1-scores for the level 1, level 23, level 24 groups that contribute
90% of total tickets are 89%, 88%, 93% respectively. This classification en-
gine is quick in providing recommendation to the specialists and reduced the
time spent on routing each ticket from minutes to seconds.

Few possible ways to extend this work include automating ticket creating
and resolution processes for the most frequent and trivial cases. This can
reduce the total time spent on 50% of tickets and speed up the entire process
of ticket resolution.

40

Bibliography

[1] Alpaydin, E. Introduction to Machine Learning., vol. Third edition of
Adaptive Computation and Machine Learning. 2014.

[2] Bird, S., Klein, E., and Loper, E. Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly
Media, 2009.

[3] Bishop, C. M. Pattern recognition and machine learning (information
science and statistics), 2006.

[4] Breiman, L. Random forests. Machine Learning 45, 1 (2001), 5–32.

[5] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., and Varoquaux, G. API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning
(2013), pp. 108–122.

[6] Garreta, R., and Moncecchi, G. Learning scikit-learn : Machine
learning in python, 2013.

[7] Hussain, Z., Mueller, J., and Massaron, L. Python for Data
Science For Dummies. –For dummies. Wiley, 2015.

[8] Jurafsky, D., and Martin, J. H. Speech and language processing.
Harlow : Pearson Education cop. 2014.

[9] Maglogiannis, I. Emerging Artificial Intelligence Applications in
Computer Engineering: Real Word AI Systems with Applications in
EHealth, HCI, Information Retrieval and Pervasive Technologies. Fron-
tiers in artificial intelligence and applications. IOS Press, 2007.

41

BIBLIOGRAPHY 42

[10] Ozdemir, S., and Susarla, D. Feature Engineering Made Easy:
Identify unique features from your dataset in order to build powerful
machine learning systems. Packt Publishing, 2018.

[11] Rokach, L. Pattern Classification Using Ensemble Methods. World
Scientific Publishing Co Pte Ltd, 2014.

[12] Sarkar, D., Bali, R., and Sharma, T. Practical Machine Learning
with Python: A Problem-Solver’s Guide to Building Real-World Intelli-
gent Systems. Apress, 2017.

[13] Subramanian, G. Python Data Science Cookbook. Packt Publishing,
2015.

[14] Tripathi, A. M. Learning Robotic Process Automation: Create Soft-
ware robots and automate business processes with the leading RPA tool
? UiPath. Packt Publishing Ltd, 2018, 2018.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 My contributions
	1.3 Structure of the thesis

	2 Background
	2.1 Machine learning
	2.2 Supervised learning
	2.2.1 Classification
	2.2.1.1 Logistic regression
	2.2.1.2 Random forest classification
	2.2.1.3 Extremely randomized trees

	2.3 Robotic process automation

	3 Methods and experiments
	3.1 Data description
	3.2 Data preprocessing
	3.3 Experimental setup 1
	3.3.1 Off-line cross-validation

	3.4 Experimental setup 2
	3.4.1 Production deployment

	4 Evaluation
	4.1 Classification metrics
	4.1.1 Confusion matrix
	4.1.2 Precision
	4.1.3 Recall
	4.1.4 f1-score

	4.2 Results
	4.2.1 Experimental setup 1
	4.2.2 Experimental setup 2

	5 Recommendations
	5.1 Discussion
	5.2 Machine learning combined with robotics
	5.3 Possible extensions

	6 Conclusions

