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Chapter 1

Introduction

With the technological advancements in computational hardware and cloud
services over the past few years, developing machine learning solutions has
gained immense popularity amongst enterprises. While many enterprises are
now actively employing machine learning solutions, it brings along a set of
various challenges.

1.1 Scope

There are two primary challenges faced by enterprises investing into machine
learning solutions. The first challenge is that most enterprises have huge
amounts of historical data as well as incoming (unseen) sets of streaming
or batch data. Machine learning models are commonly employed to make
predictions and generate actionable insights from data. Machine learning
models need to be trained regularly to accommodate new unseen data to
maintain optimal performance, which gives birth to the requirement of man-
aging machine learning models in a structured manner. Machine learning
model (lifecycle) management means managing the performance of models
over time; because models can have varying performance over time.

The second challenge for enterprises is that, there is an overhead in terms
of support and operations in deploying machine learning models. Deploying
in this context means incorporating machine learning models into line-of-
business applications to support decision making. For cost-effective solu-
tions, enterprises are in favor of quickly pushing machine learning models
into production. Enterprises may wish to migrate machine learning solutions
to a different environment in the future, requiring extra resources for migra-
tion and setting up the new environment for the machine learning model.
Thus, the solution should be portable to allows migrations between service
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CHAPTER 1. INTRODUCTION 8

platforms. It is important to monitor the performance of machine learning
models and regularly checking the validity of the predictions after model
deployment because this affects the decision making process in an enterprise.

1.2 Contributions

The contribution of this thesis is the concept of ScienceOps which addresses
the two challenges mentioned in Section 1.1 and the literature survey men-
tioned in Chapter 2. ScienceOps is an end-to-end solution architecture to
deploy, monitor and manage machine learning models in an enterprise sce-
nario. ScienceOps is an agglomeration of three services aiming at managing,
monitoring and deploying machine learning models at enterprise scale. The
first service is called ModelDeploy which packages a machine learning model
and its functionality to make predictions with the model, into a versioned
build artifact and uploads it to a central repository. This triggers the build
of a web service which can be used for real-time scoring through a web-based
API. The second service is called DataMonitor which exposes a dashboard
with summary statistics about data used for training as well as statistics
for the incoming data. If the statistics of the incoming data significantly
deviate from the statistics obtained during training, the model should be re-
calibrated. This dashboard also helps in evaluating what portion of the data
must be considered for retraining. The third service is called ModelMonitor
which exposes a dashboard showing the deployed models and performance
measures at the time of training. It also tracks and monitors the predictions
generated by the model and their statistics over time.

1.3 Structure of the Thesis

Chapter 1 describes the problem statement with enterprise-level machine
learning solutions, the importance of the problem and, the goal and objec-
tives of this thesis. Literature survey can be found in Chapter 2, which
describes the challenges of machine learning solutions in production, chal-
lenges related to machine learning model management, evaluation of existing
solutions and, description of the components used in ScienceOps and the
advantages of using them. The workflow of the ScienceOps architecture, the
description of the services/tools used and justification for using them are
included in Chapter 3. Chapter 4 describes the workflow of the ScienceOps
architecture, how it is applied and justification for the usage of different ar-
chitectural components. This chapter also describes an example of how a
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machine learning problem can leverage the ScienceOps architecture to build
a solution on Azure. Comparison of ScienceOps workflow versus a rudimen-
tary method, discussion on implementation on Amazon AWS and possible
improvements with respect to the ScienceOps architecture to cater to the
problem statement are mentioned in Chapter 5. Conclusions and summa-
rization of the work can be found in Chapter 6. Reference code templates
and figures related to using the ScienceOps workflow are in the Appendix.



Chapter 2

Background

This chapter is divided into five parts. The first part describes challenges of
building and delivering machine learning solutions on the cloud, how chal-
lenges related to big data affect the development of machine learning models,
and challenges in data lifecycle management. The second part talks about the
challenges of model lifecycle management. The third part describes the chal-
lenges of up-keeping performance over time and need for monitoring model
performance and data statistics. The fourth part describes software packages
similar to that of ScienceOps and what features they provide. Background on
the technological components used in the ScienceOps architectural workflow
on Azure is mentioned in the last part of this chapter.

2.1 Challenges of Machine Learning in Pro-

duction

2.1.1 Solutions and Delivery of Models on Cloud

Machine learning systems were infeasible in the pre-cloud era for most en-
terprises with limited processing power and storage on premise. Cloud com-
puting provides scalable and low-cost resources attributing to the adoption
of machine learning solutions across enterprises. Cloud computing provides
disaster recovery, software updates, version control, collaboration, security,
platform access independence and zero capital-expenditure; thus offering it-
self as a suitable option as compared to on-premise (local) systems which
often have limited capability in these aspects [5]. In terms of an enter-
prise scenario, there are several advantages of adopting and migration to the
cloud platform such as lower cost of entry to benefit from compute-intensive
business analytics, immediate access to hardware resources with no upfront
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CHAPTER 2. BACKGROUND 11

capital investments and lowering IT barriers to innovation. [40].
However, there are several challenges for enterprise cloud-based software

services both on a technical front as well as on an adaptability front. Un-
certainty about security at network, host, application and data levels; high
speed internet access, reliability and availability to support 24/7 operations,
interoperability and portability of information between private clouds and
public clouds, and physical storage of confidential data across borders pose
as major technical challenges [6]. For an enterprise, change in role of the IT
department, policy compliance, political implications with respect to losing
control of some aspects of the services and impact on end-users [36].

The challenge in the service delivery models of cloud computing include
accessibility vulnerabilities, virtualization vulnerabilities, web application
vulnerabilities such as SQL injection and cross-site scripting, physical access
issues, privacy and control issues arising from third parties having physical
control of data, issues related to identity and credential management, is-
sues related to data verification, tampering, integrity, confidentiality, data
loss and theft, issues related to authentication of the respondent device or
devices and IP spoofing [75].

2.1.2 Machine Learning and Big Data in Enterprises

All machine learning solutions are based on the underlying data, and in re-
cent times the data being generated has increased significantly which gives
rise to the necessity of understanding big data. There are three key chal-
lenges [15] with respect to big data : Volume, Velocity and Variety. The
challenge with respect to volume means that there is no standard agreement
on the quantification process of big data. Quantification of big data depends
on various factors such as the complexity of the data structure and the re-
quirements of target applications. The challenge of velocity means handling
the speed with which new data is created (or existing data is updated). The
data velocity challenge affects every stack of a data management platform.
Both the storage layer and the query processing layer need to be fast and
scalable enough to meet the speed of the data generation or updation. The
third challenge of variety relates to the fact that data may be generated from
various sources in different formats and models [16].

With respect to productizing a solution in the big data context, one of
the most important challenge is the definition of an analytics structure. It is
unclear on how an optimal architecture should be constructed to deal with
historic data and realtime data simultaneously. It is also vital to achieve
statistically significant result while handling randomness in data because
it is easy to get incorrect results with huge dataset and different types of
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predictions [26]. Many data mining techniques are not easy to parallelize.
Data may be evolving over time, so it is important that the big data mining
techniques should be able to detect changes and adapt such as [28]. Claims
to accuracy may be misleading - when the number of variables increase, the
number of fake correlations increase [69].

When dealing with large quantities of data, storage becomes relevant.
There are two approaches to deal with this : either compression of data or
sampling of data to choose representative data [27].

Big data mining to extract relevant information is vital for machine learn-
ing solutions in order to get a training set which can perform well for gener-
ating predictions.

2.1.3 Data Lifecycle Mangement

There are several challenges when dealing with large amounts of data. Collec-
tion of data in an effective and time-saving way poses a challenge especially
when collecting huge amounts of data in realtime. Transfer of large, un-
structured datasets can be challenging because a small deficiency can lead
to propagation of issues [39]. It is important to understand the lifecycle of
data (quality). As mentioned earlier, data quality is expressed through in-
formation such as its uncertainty (spread/distribution), reliability (methods
used for measurements/calculations), completeness, age of the data (when
it was recorded), the process technology or technological level for which the
data is representative for. Thus reliability followed by applicability of the re-
sults of a lifecycle assessment depends on the original data quality providing
the background for the assessment. Thus data quality management must be
integrated as part of the lifecycle management [76].

It is a challenging task to manage and organize diverse and sophisticated
datasets during their lifecycle which includes data generation, acquisition,
preservation or processing [21, 32]. Easy, efficient and safe access to data
sources and repositories enable extraction of value through analytical pro-
cesses on the data. Thus efficient data management and organization systems
are vital for effective data to value generation [67].

2.2 Machine Learning Model Management

Performance of machine learning models are highly dependent on the un-
derlying data they are trained on. When the (incoming) data being scored
against the model statistically deviates from the data on which the model
is trained on, performance of the model worsens, thus rendering the model
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invalid. In order to combat the model performance degradation, it is neces-
sary to keep track of the statistics of the model performance. This gives rise
to the importance of machine learning model management.

In an enterprise context, building a machine learning model is a trial-and-
error based iterative process. A machine learning model is built based on a
hypothesis about the underlying data, the model is tested, and the hypothesis
and model are tuned based on results. The machine learning model process is
based on development of tens or hundreds of machine learning models before
landing at a model which can be accepted. It is difficult to track a previously
built machine learning model and the corresponding insights. Thus, there is
a need to remember relevant information about previous models to tune the
next set of machine learning models. Lack of model and result persistence
can also lead to doubt on the conclusions of a previous experiment leading
to re-running of expensive modeling workflows. This iterative, adhoc nature
of machine learning model building gives rise to the importance of machine
learning model management [72].

2.3 Data Monitoring and Model Monitoring

Incoming data can vary in its uncertainty (distribution), reliability (methods
used for measurements/calculations), completeness, age of the data (when
it was recorded), the process of data extraction or technological level for
which the data is representative [77]. Since data plays an important role on
how well a model performs and impacts the model management process, it
is important to track the deviation of statistical features of the trained data
versus incoming data.

However, this data driven approach can have an adverse effect if the
data on which models are dependent on are outliers or incorrect values. In
cases such as model retraining to account for data (distribution), changes
may lead to corruption of the model through model drift (or concept drift).
Concept drift means that the feature the model predicts, changes over time
due to statistical differences in the underlying data. Often the cause of
change is hidden, not known beforehand, making the learning task more
complicated[71]. This may cause the model to perform poorly over time.

2.3.1 Concept Drift

The challenge in handling concept drift is differentiating between true con-
cept drift and noise. Some algorithms may overreact to noise, erroneously
interpreting it as concept drift, while others may be highly robust to noise,
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adjusting to the changes too slowly [71]. There are three primary approaches
to handle concept drift. The first approach is called Instance Selection where
the goal is to select instances relevant to the current concept. It is possible
to handle concept drift based on instance selection and generalizing from a
window that moves over recently arrived instances and uses the learnt con-
cepts for prediction only in the immediate future. The window-size can either
be kept static or variable depending on the use case. The second approach
is called Instance Weighting [37]. In this approach, weighted instances are
processed based on machine learning algorithms such as Support Vector Ma-
chines. Instances can be weighted according to their age, and their compe-
tence with regard to the current concept. However, in general this approach is
worse than instance selection approach due to overfitting the data [37]. The
third approach is called Ensemble Learning. Ensemble learning maintains a
set of concept descriptions, predictions of which are combined using voting
or weighted voting, or the most relevant description is selected. There are
multiple existing implementations based on this method. A program called
STAGGER [65] consists of a set of concept descriptions, which are originally
features themselves, and more complicated concept descriptions are then pro-
duced iteratively using feature construction. Based on their relevance to the
current data, the features are then selected. Conceptual clustering can be
used to identify hidden contexts by clustering the data instances assuming
that the similarity of context is reflected by the degree to which instances
are well classified by the same concept. Based on the identified clusters, a
set of models is constructed [34].

An alternate way to combat concept drift is the Monte Carlo simulations
approach which can be used to measure the robustness of algorithms with
respect to model drift. Monte Carlo simulation is an experimental method
which relies on repeated random sampling. Through repeated sampling,
data-specific results are eliminated by finding averages across multiple runs
thus decreasing the variance in results [55]. Deep learning algorithms (espe-
cially in semantic classification problems) can be used to capture, to some
extent, the underlying generative factors that explain variations in the input
data. This means that these algorithms possess the ability for the learned
representations to help in disentangling the underlying factors of variation.
Deep learning algorithms can extract features that somewhat disentangle
the underlying factors of variation since there could be generic concepts that
characterize the results [29]. However, deep learning solely is prone to over-
fitting so, it is not resistant towards model drift.

There exist statistical approaches to detect concept drift through the use
of statistical hypothesis testing. A statistic is computed from the available
data which is sensitive to changes between two sets of data (training data
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and incoming data). The measured values of the statistic are then compared
with the expected value under the null hypothesis that both samples are
taken from the same distribution. The p-value obtained can be used as a
measure of the strength of the drift. A good statistic should be sensitive to
data properties that are likely to change by a large margin between multiple
samples. It is insufficient to look at mean or variance based measure because
distributions can differ with the same mean or variance range. Rank-based
measures such as the Mann-Whitney or the Wald-Wolfowitz statistics are
successful in non-parametric drift detection because they are sensitive to
higher order moments [24].

2.3.2 Retraining Models With New Data

In the context of managing machine learning solutions in production, there
are four key challenges [60] involved in machine learning model management
and deciding what type of data needs to be prepared for model retraining.

• The first challenge is understanding the data accounting for adverse
model performance and the data to be used for retraining the model.
Understanding data includes generating and visualizing features with
respect to the data (ex. range, statistical distribution and correlations),
outliers, encoding of data, identifying explicit/implicit data dependen-
cies in order to recommend and generate transformations on the data
to features based on data characteristics automatically.

• The second challenge is data validation before retraining a new model
because data validity affects the quality of the machine learning model.
Validation can have varied meaning depending on the context such
as ensuring that training data have the expected features, expected
values, expected feature correlation and statistically not different from
the training data.

• The third challenge is that of data cleaning after validation which in-
volves understanding where the error occurred, the impact of the error,
and fixing the error. Data cleaning is important prior to using the data
for retraining to avoid spurious cases.

• The fourth challenge is to augment the training and serving new data
with new features to improvise on the machine learning model. This
is typically achieved by joining the new data source to augment the
existing features with new signals or using the same signals with differ-
ent transformation (example through embeddings for text data). The
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challenge here is to find a way to enrich data through additional signals
or transformations which can then be fed as an input for retraining a
model.

Thus, it is important to keep track of both the model performance as well
as the statistics of trained data and incoming (new) data.

2.4 Existing Solutions

In this section, description of existing solutions and their functionalities are
described. A summary of the features for the solutions are presented in Table
2.1.

2.4.1 MLflow

MLflow [53] is an open source project which works with any machine learning
algorithm, library, language or deployment tool. This is done through the use
of REST APIs and simple data formats (model viewed as lambda function).
It consists of three components. MLflow Tracking is an API and UI which
is used to log parameters, version control, metrics and output files with
respect to the machine learning models. MLflow Projects is used to provide
a standard format for packaging reusable data science code. MLflow Models
is used to packaging machine learning modes in multiple format or flavors
through the use of inbuilt tools [19]. MLflow Tracking has code version
control (locally/remotely) and recording features for the meta-data for each
experiment. Models can be exported to be ready for deployment on multiple
platforms such as Azure and AWS Sagemaker. There is an inbuilt feature to
track the performance of machine learning models.

2.4.2 PipelineAI

PipelineAI [59] is a realtime enterprise textitAI solution which continuously
trains, optimizes and serves machine learning models on realtime streaming
data directly into production. Graphical Processing Units (GPUs) and x86
processors are used to host instances of docker which allows frameworks that
need to access realtime data. The features include validation and comparison
of models, training models with realtime data and optimizing models auto-
matically, productization with a machine learning model, migration between
different platforms and an option to view features and predictions in a vi-
sual format. However, automatic optimization of models with incoming data
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may not always result in better performance, give false predictions and can
have an immediate impact on the service provided by the enterprise. This
can usually happen when the incoming data being recorded is anomalous
because of a fault in the data recording medium. PipelineAI uses containers
to deploy the machine learning model locally and Kubernetes to deploy it in
production. The evaluation metrics are embedded into PipelineAI’s dash-
board which can be viewed locally or online. It provides support for A/B
testing and multi-armed bandit in production along with version control and
rollback options.

2.4.3 PredictionIO

PredictionIO [14] is an open source machine learning server with an inte-
grated graphical user interface (GUI) to evaluate, compare and deploy scal-
able algorithms, tune hyper-parameters (manually/automatically) and eval-
uate the machine learning model training status. There is an API included
which can be used for prediction retrieval and data collection. The advantage
is that PredictionIO is horizontally scalable with a distributed computing
component based on Hadoop. However, feature selection, online evaluation,
support for extended or custom algorithms is unavailable [14]. The features
include productization of models with customizable templates, respond to
dynamic queries in realtime once deployed as a web service, evaluate and
tune multiple engine variants systematically; and support machine learn-
ing and data processing libraries. The application runtime platform uses a
serverless, cloud-agnostic architecture. Models are deployed using Docker
containerization.

2.4.4 H2O.ai

H2O.ai [13] is an open source platform which allows deployment of AI and
deep learning problems to solve complex problems which can be easily inter-
faced with languages such as R, Python, Scala and Java to create complete
analytical workflows. It uses in-memory compression to handle billions of
rows in-memory even with small clusters. It can run in standalone mode,
on Hadoop, or within a Spark Cluster. It includes common machine learn-
ing algorithms such as generalized linear modeling, K-Means clustering and
Word2Vec along with implementation for algorithms at scale, such as dis-
tributed random forest, gradient boosting, and deep learning. The features
include algorithms developed for distributed computing, automating the ma-
chine learning workflow which includes automatic training and tuning of
many models within a user-specified time limit and deploy POJOs and MO-
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JOs to deploy models [33]. However, there is no model management nor is
there any data or model monitor included in this service.

2.4.5 Azure ML Services

Azure ML Services [52] is a web service which provides a machine learning
model authoring environment which enables creation and publishing of ma-
chine learning models. It includes functionality for collaboration, versioning,
visual workflows, external language support, push-button operationalization,
monetization and service tiers [70]. The features include automated machine
learning (to select the best algorithms) and hyper-parameter tuning, version
control for experiments, manage and monitor models using the image and
model registry, upgrade models through Azure-integrated CI/CD and con-
tainerization. The model management is taken care through Azure’s own
model management service.

2.4.6 Pachyderm

Pachyderm [57] is an open source workflow system and data management
framework which overcomes challenges such as data size, reproducibility of
results by enabling a reliable way to run processing stages in any computa-
tional environment, providing a well defined way to orchestrate those pro-
cessing stages; and providing a data management layer that tracks data as it
moves through the processing pipeline. This is achieved by creating a data
pipelining and data versioning layer on top of projects from the container
ecosystem, having Kubernetes as the backbone for container orchestration
[56]. There are six key features. The first feature is Reproducibility, which
means the ability to consistently reconstruct any previous state of the data
and analysis. The second feature is Data Provenance, the ability to track
any result all the way back to its raw input data, including all analysis, code,
and intermediate results. The third feature is Collaboration, with other de-
velopers. The fourth feature is Incrementality, which means that results
are synchronized with input data and no redundant processing is performed.
The fifth feature is Autonomy, in terms of selecting toolchain and deploy-
ment strategies. The sixth feature is called Infrastructure Agnostic, which
means the ability to deploy on any existing infrastructure. Pachyderm lacks
the ability to visually monitor the data and model in production.
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2.4.7 Google Cloud ML Engine

Google Cloud ML Engine [30] is used to train machine learning models at
scale and then use the machine learning model to make predictions about
new data. It provides services to train machine learning models, evaluate
model accuracy, tune hyperparameters, deploy the model, send prediction
requests to the machine learning model, monitor predictions on an ongo-
ing basis and, manage machine learning models and model versions. The
model management is implemented using model resources in Google Cloud
ML Engine in the form of logical containers for individual implementations
of models. However, it lacks a visual way to evaluate the machine learning
model.

2.4.8 Amazon SageMaker

Amazon SageMaker [3] is a fully managed platform that enables developers
and data scientists to quickly and easily build, train, and deploy machine
learning models at any scale. It allows selection and optimization of the al-
gorithm and framework for the application. It includes hosted Jupyter note-
books that makes it easy to explore and visualize training data. Through
the Amazon SageMaker it is possible to train machine learning models with
a single click with all the infrastructure managed automatically with the
option to scale train models at petabyte scale with auto-tuning of parame-
ters. Finally it makes it easy to deploy in production so predictions can be
generated.

2.4.9 Evaluation Of Existing Services

All existing solutions provide the ability to deploy models and most are able
to manage models, as shown in Table 2.1. However, not all solutions can be
deployed on any platform (platform-agnostic). Most existing solutions do not
provide the ability to monitor incoming data (statistics) and the performance
of the model. A visual feedback is relevant in business critical use cases
where domain-knowledge is required to detect anomalous entries and careful
selection of training data is needed for retraining a model. Compared to the
other existing solutions, ScienceOps lacks the ability to automatically retrain
the model by analyzing anomalies and selecting the new training data. While
this is possible to integrate to the ScienceOps solution, it is out of the scope
for this thesis. The manual updation of models (retraining) means a new
machine learning model can effectively replace the old model while keeping
the other architectural components and connections intact.
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Table 2.1: Comparison : Existing Services

Solution
Model
Deploy

Monitor
Models
(Visual)

Monitor
Incoming

Data (Visual)

Model
Management

Update
Models

(Retraining)
MLflow Yes Yes No Yes No

PipelineAI Yes No No Yes Automatic
PredictionIO Yes No No Yes No

H2O.ai Yes No No No Automatic
Azure ML
Services

Yes No No Yes Automatic

Pachyderm Yes No No Yes Manual
Google Cloud

ML Engine
Yes No Yes Yes No

Amazon
SageMaker

Yes No No No Manual

ScienceOps Yes Yes Yes Yes Manual

2.5 Infrastructure Services

Microsoft Azure [2] is an agglomeration of various inter-operable cloud com-
puting services managed by Microsoft. Azure leverages the cloud computing
concept in order to enable and instantly provision building, testing, deploying
and managing (web) applications/services through Microsoft’s data centers.
It provides Software as a Service (SaaS), Platform as a Service (PaaS) as
well as Infrastructure as a Service (IaaS).

Azure IaaS enables quick set up of development environments, web ap-
plication interfaces, storage/backup/restore solutions and high-performance
scalable computational environments. Azure PaaS [11] offers servers, stor-
age, networking and database management systems which alleviates the time
and resource spent on configuring and setting up the the OS configuration.
Azure SaaS provides a complete software solution and enables hosted appli-
cations, development tools and applications such as Power BI to be easily
deployed and used.

Azure Machine Learning Workbench (Workbench) [48] is a visual AI pow-
ered data wrangling, experimentation and lifecycle management tool. This
cross-platform Azure based client tool provisions a central graphical user
interface (GUI) for script version control and enabling script creation. The
interactive data preparation tools simplify data cleaning, transformation and
provides the ability of running scripts on Spark or a local/remote Docker con-
tainer; thus easing portability to multiple platforms. The ability to package
and deploy a machine learning model to Docker, Spark (HDInsight), Mi-
crosoft Machine Learning Server or SQL Server allows it to be used as a
development base.

Docker [42] is an open source program which enables virtualization at
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an operating system level, called as containerization implemented through
containers. Containers can be viewed as lightweight virtual machines which
allow setting up a computational environment including configurations, ex-
ecution dependencies and data files within an image. An image is a file,
which consists of multiple layers used to execute the code inside a Docker
container. The computational environment is defined by infrastructure con-
figuration and commands stored in a Docker script. The images can then
be distributed and run on any compatible platform. Since the docker images
share the kernel with the underlying machine, the image sizes are small with
a high performance [18].

Today, modern applications are built from existing components and are
dependent on other services. Through the use of Docker (and the container-
ization concept in general), the problem of conflicting dependencies, missing
dependencies and platform differences are resolved. Docker Images are cre-
ated by including specific dependencies as per the use case, which then are
used to create runtime containers which ensure the exact same execution
environment.

Flask [31] is a lightweight micro-framework for Python based on Werkzeug,
Jinja 2 and Click enabling building of web applications while supporting data
sources.

Azure Machine Learning Model Management [46] provides the ability
to manage, package and deploy machine-learning models and workflows as
REST APIs. This service is useful for enterprise level solutions because of
its inbuilt ability to track models in production, provide model versioning
(through registry of model versions), creation of (Linux-based) docker con-
tainers with the model with prediction API and capture model insights in
AppInsights for visual analysis. Through Azure Machine Learning Model
Management, images can directly be deployed on developer machine, organi-
zational servers or IoT edge devices, offering multiple choices for enterprise
level solutions.

Kubernetes [9] is an open source cluster manager for Docker contain-
ers, essentially decoupling application containers from the system details on
which they run on. Kubernetes schedules containers to use raw resources.
Decoupling simplifies the development lifecycle to cater to abstract resources
like memory and cores. The real power of (Docker) containers stems from
the implementation of distributed systems where each group of containers
has a unique IP address that is reachable from any other group of containers
in the same cluster.

Microsoft Azure Container Service (ACS) [7] is a Container Service Plat-
form which uses Kubernetes, Docker Swarm or DC/OS orchestration tools.
Once a cluster is deployed (with containers), Kubernetes can be used for
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orchestration operations, for example : list container instances in the clus-
ter, running containers and view status of containers. There is a master
control plane, a cluster state storage system and container instance(s) in
the form of node agent(s). Developers can deploy containerized application
either through the user interface or through providing YAML/JSON defi-
nitions which include image name and resource allocations. Docker Swarm
is an alternate orchestration tool used for deploying containerized applica-
tions across pool of Docker hosts or in ACS container-instances. Datacen-
ter Operating System (DC/OS) is yet another alternative for managing and
deploying containerized applications. DC/OS on ACS includes two natively
implemented orchestrators called Marathon and Metronome. Marathon man-
ages scheduling and execution of containerized applications, along with long
running jobs. It provides a user interface through which developers can spin
up a new container on the ACS-DC/OS cluster Metronome manages batch
jobs (short in nature) and configure the container in JSON format. Azure
Kubernetes Service (AKS) takes this concept further where enterprises do
not have to worry about patching, upgradation, scaling, and managing the
clusters [45].

Azure Container Registry (ACR) is a container repository which en-
ables building, storing and managing images for container deployments using
DC/OS, Docker Swarm and Kubernetes. [44]. The docker registry and de-
ployments are maintained within the same data center, which enables ACR
to significantly reduce network latency and additional cross-platform costs
in an enterprise scenario.

Azure Blob Storage [35] is an object storage solution for the cloud which is
optimized for storing huge amount of unstructured data such as text/binary
data. It enables storing of files for distributed access and streaming content
and serving files directly to the browser. Data in blob can be accessed easily
through an Azure Storage Account. Data is organized and stored within
containers, which provides a logical grouping and the level of sharing can be
defined.

Apache Spark [20] is an open source cluster computing framework which is
used for big data processing. Spark maintains MapReduce’s linear scalability
and fault tolerance and has several APIs available in Python, Java, Scala
along with core data abstraction, distributed dataframe with support for
interactive queries, streaming, graphic processing and machine learning [66].
The Azure inbuilt implementation has been used for ScienceOps on Azure
to process and generate statistics on the incoming data.

Azure Databricks [51] is an Azure Apache Spark based analytics platform
which includes the entire open-source Apache Spark cluster technologies and
capabilities, thus providing a unified analytics engine for large-scale data pro-



CHAPTER 2. BACKGROUND 23

cessing. Apache Spark in Azure HDInsight is the Microsoft’s implementation
of Apache Hadoop in the cloud.

Azure SQL Database [49] is a database-as-a-service (DBaaS) based on
the latest stable version of Microsoft SQL Server Database Engine.Azure
SQL Database is chosen for ScienceOps because it runs on the latest stable
version of SQL and patched with OS integrated in the Azure platform . It has
compatibility with various external services such as PowerBI, and is useful
for visualization related queries from external services.

Power BI is an enterprise business analytics tool used to deliver visually
interactive and informative insights. Due to its ability to connect to several
hundred data sources and perform data filtering, it is a suitable tool for
enterprise solutions.



Chapter 3

Solution Architecture

The goal of this chapter is to define ScienceOps’s architecture and architec-
tural workflow when used on the Azure platform. The ModelDeploy service
packages a machine learning model and its functionality to make predictions
with the model into a versioned build artifact and uploads to a central repos-
itory which can be used to create a web service. The DataMonitor exposes
a dashboard with historical summary statistics about data modeling to un-
derstand when a model should be retrained. The ModelMonitor exposes
a dashboard showing the deployed models, the performance measures and
statistics of predictions over time.

In this chapter, the solution architecture of ScienceOps is presented. This
architecture consists of three service blocks, called ModelDeploy, ModelMoni-
tor and DataMonitor. The ModelDeploy block is responsible for operational-
izing a machine learning model. This block enables reduction in the time
to production for a model to optimize costs in enterprises. Models and the
files used for prediction are containerized before being deployed which allows
portability of the solution to other platforms. The ModelMonitor block is
responsible for visually monitoring the performance of a machine learning
model. This service allows to track the performance of the model as new
data is scored against the model. The DataMonitor block is responsible for
visually monitoring the statistics of the incoming data versus the training
data. This service allows to track the statistics of the incoming data versus
historical data used for training. If the statistics deviate, a domain-knowledge
expert can flag the new data as incorrect or flag it to be used for retraining
the machine learning model, thus maintaining optimal performance of the
model. Through the visualization services (ModelMonitor/DataMonitor),
challenges in terms of understanding the data as listed in Section 2.1.3 can
be evaluated and mitigated as per the use case.

24
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ScienceOps is an aggregation of various interconnected services requiring
IaaS, PaaS and SaaS resources (when used on a cloud platform). When the
ScienceOps architecture is used with respect to a platform to build a solution,
the constituent services building the architectural blocks get replaced with
the constituent services available on that platform. For example : a SaaS
tool available on Azure may have a similar service bundled differently on
Amazon or Google Cloud platform. The ScienceOps architecture is realized
on a platform through workflows, which means the way individual services
on a particular platform are built and connected to build the three services
mentioned above. In general, the functionality and the workflow remain
similar irrespective of the platform. Using the ScienceOps architecture with
respect to the cloud platform has its advantages and disadvantages as listed
in Section 2.1.1 and helps mitigate the challenges with respect to resource
constraints such as volume, velocity and storage as listed in Section 2.1.2.

ScienceOps workflow as part of this thesis is revolved around Microsoft
Azure. Thus, the components described in this solution architecture are
with respect to the services available on Azure. It is possible to use the same
workflow on other similar cloud providers such as Amazon Web Services and
Google Cloud Platform using similar services to that of Azure. Implementa-
tion on the Amazon platform is briefly discussed in Chapter 5.

Figure 3.1: ScienceOps Workflow : Azure
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ScienceOps consists of three services (ModelDeploy, ModelMonitor and
DataMonitor), and a web interface which would allow the end-user to score
data against the machine learning model. The first step of the ScienceOps
architecture is building the ModelDeploy service which includes training the
machine learning model and operationalization of the model through the use
of containers. This is followed by a bundled ModelMonitor and DataMonitor
service which includes processing and logging of the model/data statistics
over time, which can then be visualized. A web interface allows a client/user
to score new data against the deployed model through an API call. Fig. 3.1
demonstrates the ScienceOps solution architectural workflow on Microsoft
Azure.

ScienceOps workflow for Azure uses several IaaS, PaaS and SaaS re-
sources and services from Azure. Below are the components in the solution
architecture described and explained in the context of ScienceOps. The de-
scription is laid out in the same order as Fig 3.1.

3.1 ModelDeploy Components

In the ModelDeploy architecture solution, a machine learning model (pickle
file), scoring script for predictions and schema file to define the format in
which data will be accepted for predictions; is created. These three files are
packaged inside a Docker Container to spin-up a web service. The task of
containerization to spin up a web service as part of building the service is
constant irrespective of the platform. The three constituent (micro) services
which build up the ModelDeploy service block are described below.

3.1.1 Operationalizing Machine Learning Model

The first constituent service required to build the ModelDeploy service should
enable development of a model, creation of compute clusters and a web ser-
vice exposing an API through which the client node can score new data
against. In the case of Azure, this is performed by a bundled service called
Azure Machine Learning Workbench (Workbench) and Azure Command Line
Interface (Azure CLI).

ScienceOps workflow on Azure uses Workbench for importing data sources
(post feature extraction), data preparation, running the model training script,
build a scoring script and schema file and finally operationalizing it by de-
ploying a web-service through Azure CLI. Azure CLI is a command-line tool
used to manage Azure resources. Thus, Azure Machine Learning Workbench
serves as the crux of building a machine learning web service.
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3.1.2 Docker and Flask

ScienceOps workflow, irrespective of the platform, revolves around the use of
containers. ScienceOps leverages Docker to ensure portability with respect
to deploying the model on any platform. ScienceOps uses Flask to build a
web application user-interface where the user can enter a query to retrieve
the prediction result. The Flask application is containerized using Docker
making it portable across platforms without dealing with the underlying
infrastructure. Additionally, the HTTPS port of the docker container is
exposed to the user-node to display the user-interface of the web application.

3.1.3 Machine Learning Model Management

The second constituent service required to build the ModelDeploy solution
should provide the ability to perform version control for tracking models,
keeping track of Docker images and deploy web service on a container service
cluster. In Azure, this is performed by Azure Machine Learning Model Man-
agement. Data with respect to each trained and deployed model is tracked,
which allows the mitigation of challenges listed in Section 2.2.

In ScienceOps, when productizing the machine learning model through
the Azure CLI in the Azure Machine Learning Workbench, the model man-
agement registers the model (pickle) created in the Workbench, creates a
manifest, creates a Docker image and finally deploys the web service. Ver-
sion control functionality in the Azure Machine Learning Model Management
helps maintain and restore models through a simple user-interface. The user
can send a query to the machine learning web service via an API call which
can be delivered via command-line or web-interface; and receive a response
with the prediction. In order to deploy a model through model management,
there are four steps :

1. Registering the machine learning model in the Model Management in
order to tag and describe it.

2. Create a manifest which includes the machine learning model and the
dependencies allowing it to run as a service. This manifest describes
the conda [4] dependencies to be executed at runtime in the execution
environment (Python/PySpark), the scoring script and the schema file
which will validate incoming unseen data.

3. Create a Docker image to install system dependencies, thus allowing a
uniform execution environment across different platforms. This docker
image is then used to create one or more container(s) running that
service.
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4. Create a web service by hosting the service on the running container
and exposing an API.

3.1.4 Container Service

The third constituent service required to build the ModelDeploy solution
should provide the ability to create, deploy and manage virtual machine
clusters where the containers will run. This task is performed by Azure
Container Service (ACS) in Azure.

Azure Container Service enables creation, configuration, deployment and
management of virtual machine clusters and are pre-configured to run con-
tainerized applications. Since ACS leverages Docker images, it enables multi-
platform portability. ACS is where the machine learning model is deployed
in the context of ScienceOps workflow on Azure. The image created dur-
ing the ScienceOps model operarationalization is stored and managed in
the Container Registry and Docker Image Storage. For enterprise solutions,
ACS is useful because of its ability to orchestrate and scale containers us-
ing Kubernetes and Docker Swarm; as well as exposing APIs such as REST
APIs, which are complemented with authentication, load balancing, auto-
matic scale-out and encryption services. ScienceOps uses Kubernetes to
manage the cluster of deployed containers on the Azure platform.

ScienceOps employs ACS because Windows platform containers are not
yet supported on AKS ; and to take advantage of granular controls and config-
urations tweaked as per the use case (for example configuring the head node
of a compute cluster). The Docker containers are deployed into the Azure
Cloud Services Kubernetes cluster. Application Insights is used to monitor
the live web application (deployed model) in order to detect performance
issues, help diagnose web service issues and see usage statistics of the web
service.

3.2 ModelMonitor and DataMonitor Compo-

nents

The ModelMonitor and DataMonitor services consists of four constituent
(micro) services which are described in the subsections below. The general
workflow for these two service blocks in the architectural solution is that
the user queries the web service for scoring new data. The input as well as
prediction result is stored and processed to generate statistics. The statistics
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of the data is logged into a relational database. This database is used for
generating visualizations.

3.2.1 Blob Storage

The first constituent service should be able to store the incoming data as
well as predictions generated from the model. In Azure, this is handled by
Blob Storage. All the incoming (unseen data), the prediction results and
model meta-data in ScienceOps is transferred and stored in the (Block) Blob
storage. Blob storage is a good choice for unstructured data where the format
of data is variable and structure is not consistent, as compared to traditional
(SQL) databases where a proper data structure and format is required [22].

For example, a new model built on more/less features than the original
model will change the number of data-points being recorded. In a relational
database, the schema would have to be altered each time there is a change
in the number of data-points, unlike Blob, which is resistant to such changes.
Blobs are organized and reside within a container, and can belong to three
categories [50]:

1. Block Blobs : To store text/binary data up to 4.7 TeraBytes. Typically
sufficient for files found in enterprises.

2. Append Blobs : Similar to Block Blobs, but are optimized for append
operations.

3. Page Blobs : To store random access files up to 8 TeraBytes. Commonly
used to store Virtual Hard Disks (VHDs).

3.2.2 Azure Databricks

The second constituent service is responsible for processing the stored incom-
ing data and the predictions to generate statistics. In Azure, this is handled
by Azure Databricks. Azure Databricks is chosen for ScienceOps because
batch/streaming data can be processed at a high rate (as compared to single
thread Python scripts) using Spark and can be integrated with data store
services such as Azure SQL Data Warehouse and Azure Blob Storage. This
service is especially useful when the data to be processed is in the form of
stream by easily scaling up or down the service based on the volume of data.

Azure Databricks, in the ScienceOps context, processes both the predicted
as well as user-input (unseen data) stored in the Blob storage to generate data
and model related statistics. This processing is vital in order to monitor the
incoming data quality as well as the performance of the model (prediction
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results). The statistics are also important to understand when the model
needs to retrained.

3.2.3 Azure SQL Database (DB)

The third constituent service should be able to store the calculated statistics
in a tabular (relational) manner. Relational method is preferred in order
to carry out querying tasks such as finding the statistics between two time
periods or finding statistics for a particular feature. On the Azure platform,
this is handled by Azure SQL Database (Azure DB). If done using flat files
stored on Blob, querying will be slow due to absence of indexing of the data.

Statistics of the data processing in Azure Databricks is stored in the Azure
DB. For every use case, the calculated statistical metrics are defined as per
the use case (example : mean, median, mode and variance). Since the format
in which these metrics are stored is relatively constant, a relational database
is suitable. Metrics for each feature is stored as a tuple, making it resistant
to changes in the number of features being recorded from the model. For
example, the tuple can consist of the machine learning container image ID,
model ID, the statistical metric name (mean and median) and the value of
the metric. If any statistical metric is added or removed, the number of
tuples added in any new iteration is increased/decreased.

3.2.4 Power BI

The fourth constituent service should be able to present the statistic results
in a visual manner for a developer or domain-expert to evaluate. In Azure,
PowerBI acts as a dashboard visualization tool depicting the performance
of the model over time; and the statistics of the user-input (unseen) data
over time. While it is possible to develop a custom dashboard, Power BI
complements its services with filtering/slicing tools and visual customizabil-
ity. Through visualization of the statistics, concept drift can be tracked and
evaluation of the training data for model retraining can be done to counter
the challenges listed in Section 2.2.



Chapter 4

ScienceOps Workflow and Build-
ing a Solution

This chapter describes the setup of the Azure workflow of ScienceOps in
order to build ModelDeploy, ModelMonitor and DataMonitor services; and
an example of how a machine learning task can leverage this workflow to
build a solution. The setup of architectural components and the example
are described together to showcase how the workflow is used to solve the
task. The example described in this thesis is the classification task of the Iris
dataset from the UCI Machine Learning Repository [23]. In order to leverage
the ScienceOps workflow to build a solution, code reference templates have
been provided for the tasks as part of the Appendix. These templates are
filled with use case specific scripts.

In order to build the architectural components as part of the workflow,
contributor access to a Resource Group on the Azure portal is required which
allows code development and architectural resource creation. The workflow
follows the order of the sections below :

4.1 ModelDeploy

In this section, we set up resources according to the ScienceOps workflow to
build the ModelDeploy service and demonstrate an example of how a machine
learning model is deployed using Azure CLI.

The first resource needed to build the workflow is a local installation of
Azure Workbench (with CLI) on the development node which acts as the
toolkit to develop the model. Further, a local installation of Docker on the
same node should be present if the testing of the scripts is done locally in a
container, although this step is optional and does not relate to the workflow.

31
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Building of the classification task solution starts with the Workbench. The
developer performs data preparation (data cleaning and feature extraction)
on the dataset. The developer then segregates the processed clean features
and the corresponding labels into a training, validation and test set. Fig. 4.1
depicts the workflow before model operationalization in the Workbench.

Figure 4.1: Model pre-operationalization tasks

Below is a description of how the Workbench is set up and a brief de-
scription of the data preparation step.

4.1.1 Project Setup on Workbench

The project is setup on Workbench and the following files are created as
shown in Fig. 4.2 :

• aml config : Local/Docker Configuration Files

– conda dependencies.yml : Dependencies required for running
the training script.

– docker.runconfig : Add environment variables, Framework (Python)
and Path for conda dependencies.yml.

– docker.compute : Type of implementation (local-docker) and
Base Docker Image.
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• score.py and train.py : Contains the scoring script and training script

Figure 4.2: Azure Workbench File List

Next, import data : Parquet, Excel, CSV or database files and create a
data preparation package. This opens up a view for exploratory data analysis
and transformation of the data. For this implementation, data stored in
Microsoft Excel is selected.

Once the data is prepared, it goes through the data preparation step
for transformation of data, if required; for example : data type transforma-
tion, replacing null values, appending data and renaming columns. After
transformation, a Data Preparation Package is generated which records the
transformations made to the data and is maintained in JSON format. Ad-
ditionally, a Data Access Code File can be generated with a script template
which defines the Azure logger and runs the data preparation package to
import data using the Data Preparation Package.

4.1.2 Training the model

In this step, we are not required to provision any resources with respect to
the ScienceOps workflow.

The training script is consists of the typical training scripts used in Ma-
chine Learning, specific to the use case. However, there are a two optional
additions to the training script which enhances the functionality of the script
as shown in A.1 :
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• Azure Machine Learning Loggers : The metrics stored are tied to its
corresponding running instance for future analysis.

• Run the data preparation package to tune the data according to the
correct configuration.

Once the training script is ready, run it in local mode (to iron out any
errors) followed by execution in docker mode. Optionally arguments can be
supplied in the GUI to emulate command line arguments. The local/docker
selection on the Workbench and the way to run it is shown in Fig. 4.3.

Figure 4.3: Train and Pickle

The developer performs model training and saves the model in the form of
a pickle file. This process is called pickling. Pickling is essentially serializing
and de-serializing a Python object structure which means conversion into a
byte stream or vice-versa. This pickle is then stored on the local disk for
reusability purposes. An alternate approach to running the training scripts
is through Azure CLI. A.3 shows how to execute the training script locally,
on a local docker or on a remote docker environment along with hints on
potential modifications required. In case of remote docker environment, first
a compute target is attached with a name, IP address and credentials followed
by the preparation step of the compute target which creates a docker image
in the remote virtual machine. The remote server must allow connections
through the firewall and must be enabled separately.

4.1.3 Scoring and Schema

In this step, we are not required to provision any resources with respect
to the ScienceOps workflow. In order to obtain prediction results from the
web service, it is important to have a prediction script which evaluates and
delivers results. In order to use the web service for scoring data, it is vital
to have a defined schema. The schema defines the format of the data to
be used for the web service. A.2 defines the scoring and scheme generation
script. The output of this script is a JSON file containing the schema. In
the A.2 code, first the Pandas Dataframe [41] is populated with the data
and corresponding column names. Then provide a test value as the input.
For generating the schema, we use generate schema method from azureml
library which takes the following arguments :
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• Prediction Function (run method) which returns the prediction result
in JSON format.

• Test input in the form of Pandas Dataframe.

• The file path for the schema output (to be saved).

Once the pickle file, scoring script and the schema file is created, the
minimum file requirements to deploy the realtime web service is complete.

4.1.4 Operationalize using Azure CLI

In this step, according to the ScienceOps workflow, we provision the Azure
Machine Learning Model Management resource, a compute cluster, container
registry, storage resource where docker image is stored and a storage resource
to store incoming data/predictions. In addition to this, an Application In-
sights resource is created which helps track the service diagnostics. In order
to provision a web service for the classification task, we first register the
machine learning model on Azure. From the registration, a manifest is cre-
ated containing details of the model, scoring function, the schema by which
an API can call the service and the dependencies which the scoring script
requires to run. From this manifest a docker image is built. An Azure con-
tainer service with a cluster is spun up and a web service is deployed on this
cluster. The workflow is depicted in Fig. 4.4.

Figure 4.4: Operationalization of the model

For the classification task, in order to create the realtime web service,
we first set up the ACS cluster. This can be achieved through a series of
commands as shown in A.4.

1. Setup a cluster by providing the name of the deployment environment
name, location of deployment and the resource group name.
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2. Create a model management account by providing the name of the
model management account, location of deployment and the resource
group name.

3. Set the model management account as the default model management
account to be used.

4. Create Realtime Web Service by providing :

• Scoring script

• Machine learning model (Pickle File)

• The schema JSON file (optional)

• Name of the web application

• Execution environment (Python and PySpark)

• Flag to enable/disable model data collection (user inputs/predic-
tions into blob storage)

• Conda Dependencies File (conda dependencies.yml relative path)

Next, a web service build process is initiated. The creation of the web-
service can be broken down into smaller units instead of a single command.
However since this offers no significant advantage (except for testing), it is
only briefly described as follows :

• Register the model in the Azure Machine Learning Model Management
by providing the pickle file. The output would be a model ID as shown
in Fig. A.1.

• Create a manifest using the model ID, scoring script, schema file and
conda dependencies file. The output would be a manifest ID as shown
in Fig. A.2.

• The image is created on the basis of the manifest ID, resulting into an
image ID ; and the web service is created on the basis of the image ID.
The created image and web service is shown in Fig. A.3 and Fig. A.4
respectively.

• The image is pushed into ACS as depicted in Fig. 3.1.

A user-input request can be queried to the deployed web service through
Python using A.6 :

• Parsing the input data into a JSON object.
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• Defining the URL of the web service.

• Header indicating the type of data to expect (JSON) along with the
API key (retrieved from the web service settings on Azure).

4.1.5 Blob Storage

In this step of the workflow, a storage account is provisioned to store the
incoming data and the predictions. Any user data entered into the web
service or any prediction result from the web service is captured and store in
Azure Blob Storage as shown in Fig 3.1. The data is by default segregated
on the basis of the date. All data from the same date in the same context is
stored in one file. While it is possible to manually access data files from the
GUI, it is often easier to computationally retrieve files for processing from
programming languages such as Python.

For the classification task, in order to access Blob storage from an ex-
ternal programming language, such as Python, the Storage Account Name
and Storage Access Key is required. They access key is generated through a
single command line as depicted in A.5.

In order to create, download or access blob data (for later analysis) in
ScienceOps, the account name and the account key is used as shown in A.7.

This completes the ModelDeploy service of the ScienceOps workflow.

4.2 DataMonitor and ModelMonitor

In this section, we set up resources according to the ScienceOps workflow
to build the DataMonitor and ModelMonitor service and demonstrate an
example of how the data metrics and the model performance can be tracked.

4.2.1 Azure Databricks (PySpark) and Azure SQL

In this step of the workflow, data stored in Blob needs to be processed to
generate statistics out of it. These statistics are then stored in a relational
database. The visualizing tool then reads the statistics from the relational
database and presents with plots for a domain-expert to analyze.

In the case of the classification task, in order to process large amounts of
data stored in Azure Blob Storage, the data is imported into Databricks for
processing. A new cluster is created from the Azure Databricks portal setting
the desired spark configuration, environment variables, python and spark ver-
sion. Databricks can automatically scale the number of computational nodes
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depending on the workload between the minimum and maximum number of
nodes defined.

The Azure SQL Database is created through the Azure Portal using a
Graphical Wizard. The exact configuration of the underlying schema is spe-
cific to each use case, and cannot be generalized.

First a spark session is created by using the PySpark python library by
defining the application name and the configuration for Windows Azure Stor-
age Blob (WASB). The PySpark script imports data through the WASB path
referring to the data stored in the blob. Statistics for each feature is computed
and appended into the Pandas dataframe. Statistics are always calculated for
the same model management account, model ID and web service name (data
from the same model). The default computed statistics in the ScienceOps
implementation include :

• environment : The model management account name.

• web service name : The name of the web service which generated
the data.

• model id : Uniquely identify the model which generated the data in
the blob.

• prediction date : Timestamp (which can also be used to define sta-
tistical time-based buckets).

• feature name : Name of the feature for which the statistics is being
computed.

• mean, median, standard deviation, minimum and maximum

Additional statistics can be added based on specific use cases. Once
the pandas dataframe consisting of statistics is created, it is converted to a
spark dataframe. The spark dataframe is then written in append mode into
the table in the SQL Database through Java Database Connectivity (JDBC)
connection. The implementation template is shown in A.8 which creates the
statistics.

4.2.2 Power BI

According to the ScienceOps workflow, the visualization tool is used to
present the plots for data statistics and model monitoring. In the visual-
ization tool, there are two views :
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• Model Monitor

• Data Monitor

PowerBI acts as the visualization tool for the classification task. The data
is queried from the Azure SQL Server. There are two types of connections
from PowerBI to a data source :

• Import

• Direct Query

The Import type of connection which will retrieve data from the data
source locally. The data is not automatically retrieved from the server, which
would result into manual importing of data through Power BI each time data
refresh is required. Enterprise datasets can be huge and often change quickly;
therefore Import connection type is seldom used. This connection is however
useful when the data is not updated frequently, there is no good internet
connection (thus locally storage data preferred) and when there are heavy
manipulations to be done on the data.

Direct Query connection type is the default connection type used by the
ScienceOps implementation. This requires a connection with the data source
because data is not loaded locally into Power BI - it simply retrieves new
query results as the user interacts with the visuals. Data is queried at run-
time, thus it is a more practical and common solution for huge datasets which
change quickly. However, this requires a good internet connection (commonly
available at enterprise premises) and the data can be refreshed with not less
than 15 minutes frequency. According to the ScienceOps workflow, statistics
are calculated on a daily basis by default, thus the periodicity of the data
refresh does not inhibit functionality.

The ground-truth (correct) label to queries cannot be known when a user
input is provided. Therefore, in order to determine the performance of the
service, it becomes crucial to investigate the metrics of both incoming as well
as predicted data to track statistical deviations. If the type of input data is
similar across multiple days, then the predictions should be similar.

Data monitor checks how the data varies across different days, which aids
in selecting the type of data for retraining a new model. This helps tackle the
problem of model drifting, where updated models are deployed with faulty
data included in the training set. Model monitor plays a crucial role when
the correct labels are known over the course of time. Then the correct labels
can be visually compared against the predicted labels to see the performance
of the model. For instance, in a stock prediction use case forecasting the
next day’s stocks, the correct labels would be available after one day.
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4.2.3 Model Monitor Service

The model monitor visualizes the statistics of the predicted data. The exact
statistics depend on the use case. By default, a count-ratio statistic which
displays the ratio of predictions over time, is included as shown in Fig 4.5.
The visuals created depend on the use case. For instance, in a text classifi-
cation task, a histogram could be useful if there are less classes; whereas a
word cloud could be more insightful if there are a higher number of classes.

4.2.4 Data Monitor

Data Monitor provides an interface to view statistics of the data being
queried by the user. The statistics which are viewed by default are mean, me-
dian, standard deviation, minimum and maximum. Additional metrics can
be added by computing more statistics in Azure Databricks and then pushed
to the Azure SQL Server. In an enterprise scenario, there can easily be hun-
dreds or even thousands of features in a dataset. Visually analyzing all the
features in a single plot would yield no visual cues for an analyst, nor would
having one graph per feature bring out the statistics which shows a major
change in behaviour. Thus, ScienceOps, by default, retrieves data where the
Coefficient of Variation[12] is higher than a certain threshold. This criteria
is used by default because it is used to implicate the level of variability for
a given population without any dependence on the observation’s absolute
value. Other metrics can be employed as per use case such as rate of change
in the moving average. Features are then plotted on graphs on Power BI
where each graph represents a statistic (example : mean and median). This
is shown in Fig 4.6.

Features may have a very varied level of statistic; for example : three
features with a mean within the range of 0 to 3 and another feature with a
mean ranging above 1000. On a graph, the feature with the very high mean
range can easily over-shadow the rest of the data. Power BI can use filtering
to view one or more features and the graph scaling is adjusted accordingly
to easily analyze from the graph.

4.2.5 User Interface For Input

The user can enter data for prediction via a web interface. This data is pre-
processed and scored against the machine learning model through an API
request. The pre-processing is performed using the same technique applied
on training data. The user then receives the predictions back on the user-
interface.
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Figure 4.5: Model Monitor on Power BI

Figure 4.6: Data Monitor on Power BI



Chapter 5

Discussion

5.1 Evaluation

The ScienceOps architecture was successfully deployed and tested with the
Iris dataset from the UCI Machine Learning Repository. The success was
measured based on the creation of the web service, verification through API
calls, ensuring model data storage (input/output), verify the stored data
being processed and being stored in a tabular format and correctly displayed
on the visualization tool. A summary of the evaluation can be found in Table
5.1.

5.1.1 Azure Workflow Evaluation

First the ModelDeploy service was created. ModelDeploy service creation
took 160 minutes. This is primarily due to the time Azure takes to provision
resources. Files are uploaded at this stage (model pickle file, scoring script
and schema file) - if the model pickle file is huge, it can take more time. In
our testing phase, the pickle file creation took 2 minutes and uploaded in a
matter of a few seconds.

• Installation of Machine Learning Workbench took 20 minutes.

• Creation of training script, scoring file and schema file took 45 minutes.

• Development of a machine learning model took 5 minutes.

• Provisioning machine learning model management account, storage ac-
count, container registry, container services and deploying the web ser-
vice took 70 minutes.

42
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• Development of a simple user interface where a user can enter data in
a text field to score against the model, took 20 minutes.

The next step was to create the ModelMonitor and DataMonitor service.
Testing the API calls to the machine learning web application, creation of
database, the database connection test and creation of a Databricks instance
took 50 minutes. Setting up PowerBI, setting up a connection with the
database and adding basic visualizations took 45 minutes. The ModelMonitor
and DataMonitor service was ready in 95 minutes.

In total, the entire setup starting from machine learning model to a func-
tioning machine learning service took 4.25 hours. Service Level Agreements
(SLAs) are taken care by the cloud platform service provider (in this case
Microsoft).

5.1.2 Rudimentary Workflow Evaluation

The rudimentary workflow evaluation was conducted on a Linux virtual ma-
chine deployed on Microsoft Azure. First the ModelDeploy service was cre-
ated, similar to the ScienceOps workflow evaluation.

• Creation of training script, scoring file and schema file took 45 minutes.

• The configuration of a version control service took 90 minutes. This
involved setting up repositories on Azure Repositories [43], installation
of Git LFS (Git Large File Storage) [10] and configuration. The reason
Git LFS was chosen is because it replaces large files (such as large
pickle files) inside Git with text pointers and storing the file contents
on a remote server.

• In order to operationalize the model, a container is built which took 20
minutes.

However the stand-alone container required additional configurations to
be able to meet high loads with secure communication. The configurations
took 90 minutes and included :

• Port 443 access through the firewall (for HTTPS connections)

• Generation of self-signed certificates for server verification through
OpenSSL [73]
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• Production web server to be chosen to be Gunicorn [17]. The advantage
of using Gunicorn is that it will run enough aiohttp [1] processes in
order to utilize all available CPU cores, inbuilt security features and
configurability of the web server.

NGINX [62], which is a web server which can be used for load balancing
and reverse proxy, has not been used for simplicity purposes. In an ideal
implementation, NGINX should be included for enterprise solutions [54] and
its configuration will also contribute to time to production. Development of
a simple user interface where a user can enter data in a text field to score
against the model, took 20 minutes. The ModelDeploy service was ready in
270 minutes.

The next step was to create the ModelMonitor and DataMonitor service.
Testing the API calls to the machine learning web application and develop-
ment of a script to store the input data for the model and the predicted data
took 20 minutes. It takes 40 minutes to setup a SQL Database where the
statistics of the stored data will be inferred by the visualization tool. Setting
up a Spark environment takes 90 minutes with several modifications required
in configuration files.

A custom visualization webpage was built using D3.js [78] in 120 minutes.
The statistics were updated every 3000 milliseconds (configurable). More
frequent update rates would cause a high load on the server and decrease
in the performance. In contrast, PowerBI can update the visualizations in
increments of 15 minutes (minimum). So a custom visualization webpage
proved to be better for close to realtime visualizations. The ModelMonitor
and DataMonitor service was ready in 270 minutes.

In total, the entire setup starting from machine learning model to a
functioning machine learning service took 9 hours. The advantage of this
approach is the close to realtime monitoring services, however this can be
combated by attaching a different visualization setup to the ScienceOps im-
plementation. The disadvantage of this approach is that it takes more than
double the time to productize a machine learning model with deployment
and monitoring services. A lot of configurations are required to ensure se-
cure communication between different data processing and storing related
services. This setup cannot be easily scaled-up or scaled-down in terms of
compute power and storage capacity. Furthermore, this setup will not per-
form well with multiple requests being handled simultaneously because of the
lack of a compute cluster. Overcoming all these disadvantages contributes
to overhead and further increases time to production.

The DataMonitor service shows the statistics of the features, as shown
in Fig 4.6. In the Iris dataset example, if the mean or variance starts to
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change, the new data must be evaluated to verify non-existence of anomalies
and used to retrain the machine learning model.

The ModelMonitor service shows the prediction of classes and how they
are distributed, as shown in Fig 4.5. In the Iris dataset example, if the ratios
start changing, the model needs to be retrained. Once labels for the new data
is received, the ModelMonitor service can help track accuracy levels.

5.1.3 Amazon Workflow Evaluation

An independent experiment by a developer was conducted to use the Sci-
enceOps architectural workflow on Amazon AWS.

The idea of ScienceOps is to be portable so that enterprises can use
the service with the choice of their cloud platform. Currently there major
cloud platform providers include : Amazon AWS (Amazon Web Services),
Microsoft Azure and Google AppEngine [38]. The scope of this thesis has
been limited to Azure. However, similar implementations are possible on
other cloud platforms. Let us consider the case of Amazon Web Services.
The steps of creating a machine learning model are largely independent from
cloud services, unless specific cloud services are explicitly used.

First, the ScienceOps workflow on AWS is described followed by the
evaluation of the time taken to productize a machine learning model.

The workflow starts with the development of the machine learning model,
as described in the rudimentary workflow. Once the scoring script, schema
file and machine learning model is created, developers can upload it to a
central repository which enables the use of version control through AWS
CodeCommit. AWS CodeCommit is a managed source control service that
hosts private repositories [25]. Once the files are uploaded AWS CodeBuild is
triggered which is a fully built manager on AWS which builds the code in the
cloud service. The AWS CodeBuild process follows CI-CD (continuous inte-
gration and continuous delivery) practices, which means that once the test
is executed and passed, it is compiled and the code is released. This helps
speed up the release process [63] in enterprises. Next the solution is con-
tainerized through Amazon Elastic Container Service (ECS). Amazon ECS
enables provisioning of resources composed of (docker) container-instance
clusters and deploy containerized applications [8]. In this context, Amazon
ECS performs, the equivalent tasks to that of Azure Container Service - the
exact working of both services is slightly different, but both services are used
for the same purpose of containerization. The statistics of the data is stored
in Amazon DynamoDB. DynamoDB is a proprietary scalable non-relational
database service [68] - the reason for choosing a non-relational database over
a relational database is to ease the variable nature of data metrics (fea-
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tures) over time. As part of this thesis in the Azure implementation, a rela-
tional database has been used. However, in the next iteration, CosmosDB, a
schema-less database, will be used [58]. The equivalent of Azure Functions,
in AWS, called AWS Lambda is used for triggering retraining of a model with
new training data and updation of the web service with the new model. AWS
Lambda allows implementing microservice architectures without the need of
managing servers [74].

In order to use the ScienceOps workflow on AWS, first the ModelDeploy
service was created. The tool for development of the machine learning model
was Spyder [61] since there is no alternative to Azure’s Workbench. It took
90 minutes to create the training script, the scoring file and schema file.
This took more time than local development in the Azure workflow because
there are no code templates available on the basis of which the scripts can
be written. For the Iris (5 KiloBytes) dataset model development, it took 5
minutes. It took 110 minutes to set up all the services from scratch on AWS
which includes AWSCodeCommit to provide the version control functionality,
AWS CodeBuild to build the code on AWS and Amazon ECS which is the
equivalent service of Azure Container Service to deploy the web service. The
local development time could be avoided if we use the same docker container
(with a few modifications to log processes on AWS), however we wanted to
estimate building the solution from scratch.

Development of a user interface where a user can enter data in a text field
and select from a drop-down list to score against the model, took 90 minutes.
The user interface took more time because on the AWS implementation, there
was a provision to retrain a model using AWS Lambda from the user interface
itself based on the date filters as well as the dashboard for ModelMonitor and
DataMonitor were integrated in the interface as shown in Fig A.5. Fig A.5
is an intermediate user interface and was polished later on with additional
plots. The ModelDeploy service was ready in 295 minutes.

The next step was to create the ModelMonitor and DataMonitor service.
Testing the API calls to the machine learning web application, creation of
a non relational database (DynamoDB), the database connection test and
creation of a processing script (no Spark alternative used in this experiment
intentionally) took 25 minutes. Setting up a connection of the dashboard with
the database for the data to be plotted took 10 minutes. The ModelMonitor
and DataMonitor service was ready in 35 minutes.

In total, the entire setup starting from machine learning model to a func-
tioning machine learning service took 5.5 hours. This is more than the time
taken on Azure because in this experiment we had a custom dashboard built,
retraining using AWS Lambda and scripts written from scratch. Service Level



CHAPTER 5. DISCUSSION 48

Agreements (SLAs) are taken care by the cloud platform service provider (in
this case AWS). A similar setup on other cloud providers such as Google Cloud
Platform (GCP) will take approximately the same time; though the entire
workflow has not been tested on GCP at the moment, but through estima-
tion of using the equivalent services separately, the time to production is very
similar. Through the use of containerization, a level of portability is enabled
and can be deployed on any compute cluster. Challenges listed in Section 1.1
are addressed by providing a service to reduce the time taken to productize
a machine learning solution, enabling portability through the use of Docker,
providing model management and version control and enabling services to
keep track of machine learning model performance and data statistics.

5.2 Future Work

In the future, it is worth exploring the reduction of overheads by switch-
ing from Azure Container Service (ACS) to the latest (as of 2018) Azure
Kubernetes Service (AKS). AKS [64] makes it easier to manage and operate
the Kubernetes environment while maintaining portability. The advantages
are automatic upgrades, self-healing, simple user experience and easy scal-
ing. The idea is to get the benefit of open source Kubernetes without the
complexity and operational overhead [47]. Furthermore, AKS manages the
head-node of the compute cluster on which the containers are deployed au-
tomatically, unlike ACS.

One of the research challenges is to understand when the machine learn-
ing model should be trained. This means, for example, what characteristics
should the machine learning model statistics exhibit - difference in variance,
mean, medians in the input and output data; what thresholds of performance
- if the performance of model goes below some threshold; evaluating the possi-
bility of performance dip of the model being temporary because of anomalous
data; how much and what type of data to be taken for retraining. In the
future, different options as listed above could be integrated to at least have
a semi-automated machine learning retraining solution. Semi-automated, in
this context means with some intervention by a human to evaluate the new
data to be trained and tuning of parameters.



Chapter 6

Conclusion

In this thesis, we reasoned out the necessity for a solution like ScienceOps in
the form of a problem statement, how it works and how it solves the problem.
The thesis describes the challenges of machine learning model management,
portability, the advantages and disadvantages of cloud services, the need for
quick productization of machine learning models and auto-retraining of ma-
chine learning models over time. Next, the background study is conducted
which includes studies on the challenges and solutions to enterprise cloud-
based software services, challenges in lifecycle management in the machine
learning context, the challenges in service delivery models, importance of
managing machine learning models in enterprise workflows, description of
related services to that of ScienceOps and a description of the Azure techno-
logical components used in ScienceOps. The architectural workflow consists
of three services. ModelDeploy service is responsible for training the machine
learning model and operationalization of the model through the use of con-
tainers by creating a web service. ModelMonitor and DataMonitor service
involves processing and logging of the model/data statistics periodically over
time, which can then be visualized. A web interface allows a client/user to
score new data against the deployed model through an API call.

The different Azure services used and the reason for using them was
described; which included Machine Learning Workbench, Model Manage-
ment, Container Registry, Container Service, Blob Storage, Databricks, SQL
Database, Azure Functions and PowerBI ; followed by Docker and Kuber-
netes. The technique for building a machine learning model from Machine
Learning Workbench and deploying as a web service was described. Once a
web service had been deployed, the input/output was stored on Blob, pro-
cessed through Azure Databricks and visualized through PowerBI. The time
to production on Azure/AWS versus a rudimentary method was compared.
A brief description of the rudimentary workflow and ScienceOps workflow on

49
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Azure/AWS has been described. It was concluded that the time to produc-
tion is faster using the ScienceOps architecture. Statistics visualized from
DataMonitor and ModelMonitor are subject to the interpretation of the use
case and the decision-maker, thus cannot be uniformly evaluated.
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Appendix A

Code Implementations

1 #import a l l packages <>
2 from azu r e l . dataprep import package
3
4 # Use the Azure Machine Learning data c o l l e c t o r to l og var i ous

metr i c s
5 from azureml . l ogg ing import g e t a zu r em l l o gg e r
6 l o gg e r = ge t a zu r em l l o gg e r ( )
7
8 #arg0 : dprep path ( assume name i s i r i s . dprep )
9 #arg1 : zero−based index o f which data f low in the package to

execute − i f s p e c i f i e d data f low r e f e r e n c e s other data f l ows /
sources , they are executed as we l l .

10 #arg2 : re turn spark dataframe or pandas dataframe
11 pkg = package . run ( ’ i r i s . dprep ’ , da ta f l ow idx=0, spark=False )
12
13 X = pkg [ [ ’ f e a t u r e 1 ’ , ’ f e a t u r e 2 ’ ] ] . va lue s
14 Y = pkg [ ’ l a b e l ’ ] . va lue s
15
16 #Add Machine Learning Model Code
17
18 #Pick l e The Model

Code Listing A.1: Training & Pickling
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1 #Put try−catch ( ImportError ) s i n c e ModelDataCol lector i s only
supported in Docker Mode

2 from azureml . d a t a c o l l e c t o r import ModelDataCol lector
3 from azureml . ap i . schema . dataTypes import DataTypes
4 from azureml . ap i . schema . samp leDe f in i t i on import SampleDef in i t ion
5 from azureml . ap i . r e a l t ime . s e r v i c e s import generate schema
6 from azureml . a s s e t s import g e t l o c a l p a t h
7
8 de f i n i t ( ) :
9 g l oba l inputs dc , p r ed i c t i on dc , model
10 model = j o b l i b . load ( ’model . pkl ’ ) #sk l e a rn
11 input s dc = ModelDataCol lector ( ”model . pkl ” , i d e n t i f i e r=”

inputs ” )
12 p r ed i c t i on d c = ModelDataCol lector ( ”model . pkl ” , i d e n t i f i e r=”

p r ed i c t i on ” )
13
14 de f run ( inpu t d f ) :
15 import j son
16 input s dc . c o l l e c t ( i npu t d f )
17 pred = model . p r ed i c t ( i npu t d f )
18 p r ed i c t i on d c . c o l l e c t ( pred )
19 re turn j son . dumps( s t r ( pred ) )
20
21 de f main ( ) :
22 from azureml . ap i . schema . dataTypes import DataTypes
23 from azureml . ap i . schema . samp leDe f in i t i on import

SampleDef in i t ion
24 from azureml . ap i . r e a l t ime . s e r v i c e s import generate schema
25
26 df = pandas . DataFrame ( data =[ [ f e a tu r e va l u e 1 , f e a t u r e v a l u e 2

] ] , columns=[ ’ f e a t u r e 1 ’ , ’ f e a t u r e 2 ’ ] )
27
28 os . env i ron [ ”AMLMODELDCDEBUG” ] = ’ t rue ’ # Debug mode to view

output in stdout
29
30 inputs = {” input d f ” : SampleDef in i t ion (DataTypes .PANDAS, df ) }
31
32 generate schema ( run func=run , inputs=inputs , f i l e p a t h=’ . /

outputs / se rv i c e s chema . j son ’ ) #Generate schema
33
34 i f name == ” main ” :
35 main ( )

Code Listing A.2: Scoring 1& Schema Generation
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1 az l o g i n
2 az account l i s t −o tab l e #L i s t s ub s c r i p t i o n s
3 az account s e t −s <your−subs c r i p t i on−id> #Set sub s c r i p t i on ID
4
5 az ml experiment submit −c l o c a l .\ t r a i n i n g . py #Local Compute
6 az ml experiment submit −c docker−python .\ t r a i n i n g . py #Docker

Environment
7
8 ##Running in Remote Docker Container
9 az ml computetarget attach remotedocker −−name <compute target>

−−address <IP> −−username <username> −−password <password>
10
11 az ml experiment prepare −c <compute target> #Change aml con f i g

/<compute target >. runcon f i g from ’ Pyspark ’ −−> ’ Python ’
12
13 #I f Connection Problems ( Tested Azure Ubuntu Server 2016) , Try :
14 sudo apt−get i n s t a l l openssh−s e r v e r
15 sudo ufw enable
16 sudo ufw al low ssh
17 sudo ufw re l oad
18 sudo i p t a b l e s −I INPUT −p tcp −−dport 22 −j ACCEPT
19 sudo i p t a b l e s −I OUTPUT −p tcp −−dport 22 −j ACCEPT
20 sudo ip t ab l e s−save
21 ################################
22
23 ###Changing aml con f i g f i l e s ===>
24
25 ##l o c a l . runcon f i g / docker−python . runcon f i g ===>
26 #UseSampling : t rue
27 #PrepareEnvironment : t rue
28
29 ##conda dependenc ies . yml ===>
30 #s c i k i t −l e a rn ( under dependenc ies )
31 #azureml−model−management−sdk ( under pip )

Code Listing A.3: Training & Pickling Using Azure CLI
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1 ##Running in Clus te r
2 az ml env setup −−c l u s t e r −n <new deployment environment name>

−−l o c a t i o n westeurope −g <e x i s t i n g r e sou r c e group name>
3
4 az ml env show −n <deployment environment name> −g <e x i s t i n g

r e sou r c e group name> #Check Status t i l l Succeeded
5
6 az ml account modelmanagement c r e a t e −−l o c a t i o n <e . g . eastus2> −

n <new model management account name> −g <e x i s t i n g r e sou r c e
group name> −−sku−name S1

7
8 az ml account modelmanagement s e t −n <youracctname> −g <

yourresourcegroupname>
9
10 az ml env s e t −n <deployment environment name> −g <e x i s t i n g

r e sou r c e group name>
11
12 az ml env show
13
14 az ml s e r v i c e c r e a t e r ea l t ime −f s c o r e i r i s . py −−model− f i l e

model . pkl −s s e rv i c e s chema . j son −n i r i s a pp −r python −−
c o l l e c t−model−data t rue −c aml con f i g \ conda dependenc ies . yml

15
16 az ml s e r v i c e l i s t r e a l t ime −o tab l e #Check Deployed Se rv i c e
17
18 az ml s e r v i c e usage r ea l t ime − i <web s e r v i c e id>
19
20 az ml s e r v i c e keys r ea l t ime − i <web s e r v i c e id>

Code Listing A.4: Running in Cluster
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1 #### ACCESS STORAGE FROM OUTSIDE
2 az s to rage account keys l i s t \
3 −−account−name mystorageaccount \
4 −−re source−group myResourceGroup \
5 −−output t ab l e ##Get Key
6
7 export AZURE STORAGEACCOUNT=”mystorageaccountname”
8 export AZURE STORAGE ACCESS KEY=”myStorageAccountKey”

Code Listing A.5: Manage Storage
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1 import r eque s t s
2 import j son
3 data = ”{\” inpu t d f \” : [{\” f e a tu r e1 \” : value1 , \” f e a tu r e2 \” :

va lue2 } ]} ”
4 body = s t r . encode ( j son . dumps( data ) )
5 u r l = ’ http ://< s e r v i c e ip address >:80/ api /v1/ s e r v i c e /< s e r v i c e

name>/s co r e ’
6 ap i key = ’ your s e r v i c e key ’
7 headers = { ’ Content−Type ’ : ’ a pp l i c a t i o n / j son ’ , ’ Author i zat ion ’ : ( ’

Bearer ’+ ap i key ) }
8
9 resp = reque s t s . post ( ur l , data , headers=headers )
10 resp . t ex t #Use p r i n t to d i sp l ay the r e s u l t here
11
12
13 ’ ’ ’
14 goo . g l /nZJZzw
15 goo . g l /1rxNuM
16 goo . g l / fLJesv
17 ’ ’ ’

Code Listing A.6: Run Web Service
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1 from azure . s t o rage . blob import BlockBlobService , Publ icAccess
2
3 b l o c k b l o b s e r v i c e = BlockBlobServ ice ( account name=<>,

account key=<>)
4 f u l l p a t h t o f i l e = os . path . j o i n ( l o ca l pa th , l o c a l f i l e n ame ) #

l o c a l p a t h example : C:\\ Users
5
6 #Create Blob
7 b l o c k b l o b s e r v i c e . c r ea t e b l ob f r om path ( container name ,

l o c a l f i l e n ame , os . path . j o i n ( l o ca l pa th , l o c a l f i l e n ame ) )
8 #L i s t o f a l l Blobs
9 generator = b l o c k b l o b s e r v i c e . l i s t b l o b s ( container name )
10 #Downloading Blob
11 b l o c k b l o b s e r v i c e . g e t b l ob t o pa th ( container name , <Blob URL to

CSV> , < f u l l p a t h t o f i l e 2 >)

Code Listing A.7: Access Blob Storage



APPENDIX A. CODE IMPLEMENTATIONS 65

1 import pyspark
2 from sc ipy import s t a t s
3 import pandas as pd
4 from pyspark . s q l . types import DoubleType
5 ’ ’ ’
6 Add to Azure Databr icks Spark Config :
7 spark . hadoop . f s . azure . account . key . $<$name$>$ . core . windows . net $<

$key$>$
8 ’ ’ ’
9 pa th t r a i n = ”wasb :// modeldata@abc . blob . core . windows . net / . . . ”
10 pa th t e s t = ”wasb :// modeldata@abc . blob . core . windows . net / . . . ”
11 account key = #Account Key
12
13 spark = ( pyspark . s q l . SparkSess ion . bu i l d e r \
14 . master ( ” l o c a l ” ) . appName( ”X” ) \
15 . c on f i g ( ” f s . azure . account . key . abc . blob . core . windows . net

” , account key ) . getOrCreate ( ) )
16
17 da t a t r a i n=spark . read . csv ( pa th t r a i n ) #Read Train ing Data
18 da t a t e s t=spark . read . csv ( pa th t e s t )
19
20 f o r col name in da t a t r a i n . columns : #Same f o r t e s t
21 da t a t r a i n = da ta t r a i n . withColumn ( col name , da t a t r a i n [

col name ] . ca s t (DoubleType ( ) ) )
22
23 de f funct ion name ( args ) : #Do Computation
24 return var
25
26 f o r col name in da t a t r a i n . columns :
27 r e s u l t . append ( funct ion name ( da t a t r a i n . s e l e c t ( col name ) . . . ) )
28
29 jdbcUrl = ” jdbc : s q l s e r v e r ://<xxx>. database . windows . net : 1 433 ;\
30 database=<yyy>; u se r=<name>@<zzz >;\
31 password=<xyz>; encrypt=true ;\
32 t r u s t S e r v e rC e r t i f i c a t e=f a l s e ;\
33 hostNameInCert i f i ca te =∗. database . windows . net ;\
34 loginTimeout=30;”
35 #SQL DB READ
36 read query = ” ( s e l e c t ∗ from <dbo>.<table name>) <a l i a s>”
37 df = spark . read . jdbc ( u r l=jdbcUrl , t ab l e=read query ) #then use

d i sp l ay ( df )
38
39 #SQL DB WRITE
40 df = spark . createDataFrame (pd . DataFrame ( r e s u l t ) . t ranspose ( ) )
41 df . wr i t e .mode( ”append” ) . jdbc ( u r l=jdbcUrl , t ab l e=” table name” )

Code Listing A.8: Configure Spark on Azure Databricks
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Figure A.1: Model Registered on Azure

Figure A.2: Manifest Created on Azure Based on Fig. A.1
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Figure A.3: Image Created on Azure Based on Fig. A.2

Figure A.4: Web Service Created on Azure Based on Fig. A.3
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Figure A.5: User Interface for AWS Implementation A.5
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