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Abstract 

 

Han, Zhou and Zhu (2016) proposed a trend factor to capture all the short-, mid- and 

long-term information which represents the well-known short-term reversal factor, the 

momentum factor and the long-term reversal factor. HZZ documented the superiority 

performance of  the trend factor with its high and consistent abnormal return.  

 

Based on HZZ’s approach, this study provides some further examinations on the trend 

factor’s performance with the skipping period. The skipping period is widely used by 

related studies in order to mitigate bid-ask spread bias and avoid the opposite effects from 

shorter-term factors. The skipping period also provides a practical setup which considers 

the real-life trades execution issues. The study finds that with the skipping period, the 

performance of the trend factor largely declines and its superiority over other factors 

disappears. The trend factor’s monthly average return drops from 1.69% by more than 

0.50% when the 1-day skipping periods are applied,  and after applying the 5-day and 20-

day skipping periods the return becomes lower than that of the short-term reversal factor 

and the momentum factor.  

 

The study also shows such impacts of skipping period over the trend factor is mainly due 

to the short-term reversal factor, and especially the 5-day lag of the trend factor, which 

accounts for 0.82% out of 1.69% of the trend factor’s return. 
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1. Introduction 

 

Several types of stock return anomalies, which seem to be in conflicts with the efficient market 

hypothesis, have been documented by empirical studies, and the abnormal returns claimed by 

those studies are at the center of research and discussions over the years. Three of the most 

often discussed anomalies related to the weak form of efficient market hypothesis (or technical 

analysis) are especially interesting and draw lots of attentions: the short-term reversal effect, 

documented by Lehmann (1990) and Jegadeesh (1990), describes the phenomenon that the 

short-term (from few days up to one month) stock returns tend to reverse in the next period; the 

momentum effect, documented by Jegadeesh and Titman (1993), suggests the tendency of stock 

performance over a mid-term period (from three to twelve months) is likely to continue; and 

the long-term reversal effect, documented by De Bondt and Thaler (1985), indicates the reversal 

effect also exist in the longer-term periods (from one year to few years). Many studies on those 

three types of anomalies report significant and consistent returns over the years, while the 

discussions on possible explanations for such abnormal returns are still ongoing.  

 

In the paper “A trend factor: Any economic gains from using information over investment 

horizons?” Han, Zhou and Zhu (2016) proposed a trend factor, which captures all the short-, 

mid-, and long-term stock price signals, and generates decent abnormal returns. According to 

HZZ’s results, the trend factor significantly outperforms all of the short-term reversal factor 

(SREV), the momentum factor (MOM), the long-term reversal factor (LREV), as well as Fama-

French’s market portfolio, SMB and HML factors, with the average monthly return of 1.63% 

and Sharpe ratio of 0.47, the trend factor also has higher alpha compared to those benchmarks  

and generates higher returns during the recession and financial crisis periods. In addition, HZZ 

claimed the trend factor is more than a combination of the SREV, MOM and LREV factors, 

but a unique factor that lies outside of the mean-variance frontier of those three factors.  

  

One interesting part of HZZ’s study compared to other related studies is its methodology in 

forming the trend factor. Firstly, HZZ utilize the historical prices rather than historical returns, 

which are typically used by most studies on the SREV, MOM and LREV factors, to form the 

portfolios. Schultz (2017) replaced HZZ’s price signals with return signals and find the 

performance of the trend factor would become lower. Another key difference of HZZ’s 

methodology is that, HZZ didn’t include a skipping period between the portfolio formation 
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period and the holding period, while the skipping period is widely used by most studies on the 

SREV, MOM and LREV factors. And the issue of the skipping period is the main topic 

discussed in this study. 

 

Seemingly trivial as the few-day skipping period is, it is important for mitigating the bias from 

bid-ask spreads (Roll, 1984) and avoiding the opposite effects from shorter-term factors. And 

also, as documented by many studies, the application of a skipping period might affect the 

performance of the portfolio and in some cases the return of portfolio declines largely (see in 

section 3.3 Skipping Period). Thus it would be interesting to examine the robustness of the 

trend factor with the skipping period, which utilizes a more consistent method compared to 

other studies.   

 

In addition, the skipping period also has strong practical senses, because of the closing price is 

hardly tradable. Imagine an investor whose investment strategy is based on technical analyses, 

for which he/she uses the closing price1 to find the technical signals and doesn’t include a 

skipping period (as described by HZZ), when a signal is captured, the trading rule would require 

the investor to buy/sell the stock with the closing price at the same time when it’s observed, i.e. 

the moment of stock market close, in order to lock the exact price and return reflected by the 

theory. However, in the real world, this kind of trades are almost impossible to execute, simply 

because the market is closed and there is no time to take actions. Even if the investor tries 

his/her best to book the deals as soon as possible in the after-hour session or the next trading 

day, it’s likely that the price has already changed, thus the return won’t be exactly the same as 

suggested by the study. 

 

Given the strong motivations from both academic side and practical side, it is of great interest 

to examine the robustness of the trend factor after applying the skipping period. Based on the 

evidences from previous studies, it is natural to make the hypotheses that the skipping period 

will reduce the return of the trend factor, and the impact is mainly through the short-term related 

factor. 

 

                                                 

1 It can be the price at any moment, but this example I use closing price to follow HZZ’s rule of calculating trend 

factor 
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Following the previous studies, in this study I apply two types of skipping periods: the first type 

(in this study called “excluding type”), which is used by many studies on short-term reversal 

strategies, creates the gap by excluding the most recent observations from the sample period 

thus the information in the gap is eliminated while no new information is taken into account; 

and the second type (in this study called “inserting type”), which is used by some studies on 

mid-term momentum and long-term reversal strategies, creates the gap by moving the whole 

sample period backwards, and it keeps the length of the sample period while new information 

is added (the ones in the beginning of changed sample period) and the information in the gap is 

also eliminated. And there are three lengths for each type of the skipping period tested in this 

study: 1-day, 5-day and 20-day length, which indicate the 1-day, 1-week and 1-month period 

which are widely used by many other studies as the lengths for skipping periods. 

 

The results of this study show the return of the trend factor declines significantly after the 

application of skipping period. Under the first type (“excluding type”) of  skipping period, the 

monthly return of the trend factor drops from 1.69% to 1.15% (1-day skipping period), 0.75% 

(5-day skipping period) and 0.68% (20-day skipping period); and under the second type 

(“inserting type”) of  skipping period, the monthly return of the trend factor drops from 1.69% 

to 1.13% (1-day skipping period), 0.79% (5-day skipping period) and 0.67% (20-day skipping 

period). In both situations, after applying the 5- and 20-day skipping periods the return of the 

trend factor becomes lower than that of the SREV and MOM factor. The alpha of the trend 

factor also declines sharply, after applying the skipping period it becomes lower than the MOM 

factor’s alpha (in terms of both CAPM alpha and FF’s three factor alpha).  

 

Following HZZ, the impacts of skipping period over the trend factor are also evaluated under 

the recession period and the financial crisis period, and the results indicate that the skipping 

period might affects the trend factor mainly through the SREV factor. Based on this, in this 

study the HZZ is further examined by two decomposition analysis, one is following HZZ’s 

Sharpe style regressions and decompose the trend factor by SREV, MOM and LREV factors, 

and in addition to that, the trend factor is also decomposed by 11 portfolios formed on its 11 

lags. 

 

The decomposition of trend factor suggests that out of the average 1.69% month return of trend 

factor, the SREV factor accounts for the largest part of 0.24% monthly return. And a closer 

look by decomposing the trend factor on 11 portfolios formed on its lags shows the MA5 lag 
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accounts for 0.82% of the return. In addition, as the skipping period becomes longer, SREV’s 

coefficient to the trend factor drops significantly. Thus as a result, it comes to the conclusion 

that the skipping period affects the trend factor mainly through the SREV factor. 

 

The rest of this study is organized as follows: In the first part (Section 3. Literature Review) I 

provide a literature review of the past studies on the related stock return anomalies (especially 

the related short-term reversal effect, the momentum effect, and the long-term reversal effect), 

the trend factor and the skipping period; then the next part (Section 4. Hypotheses) elaborates 

the two hypotheses regarding the possible impacts of skipping period over the trend factor and 

the possible reason to be tested in the study; next section (Section 5. Data and Methodology) 

gives a detailed description on the data and methodology used by this study, to ensure the 

consistency and comparability with other studies; then (Section 6. Results and Analyses) I 

replicate the trend factor, and apply the skipping period of different types and lengths, I also 

conduct several different tests to analyze the impacts of skipping period over the trend factor; 

lastly (Section 7. Conclusion) is the summary of findings and conclusions. 

 

The study examines HZZ’s trend factor under the context of skipping period, the application of 

skipping period not only uses a more consistent method in formation the portfolios as most 

other studies, but also provides evidence on the trend factor’s performances in a real-world 

setting. In addition, the analyses on decomposition of the trend factor also provides some 

evidence on the sources of trend factor’s abnormal returns, which suggest the high returns of 

the trend factor is mainly from its short-term lags, which could be further explored and 

leveraged by future studies. 
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2. Literature Review 

 

2.1. Stock Return Anomalies of Weak Form EMH 

 

It has been well-known that the efficient market hypothesis (EMH) laid the foundation of many 

modern finance theories. Fama (1970) provided an early survey of market efficiency, and 

introduced the EMH in three forms: the weak form, the semi-strong form, and  the strong form. 

In the weak form of EMH, the stock prices reflect all the historical trading-related information; 

in the semi-strong form, the stock prices not only contain the historical trading-related 

information, but can also efficiently adjust to all publicly available information; and in the 

strong form, stock prices fully reflect all available information (including also the inside 

information) at any time. And in a later study, Fama (1991) reviewed the recent evidences and 

claimed that the EMH was still largely supported by studies. 

 

Out of the three forms of EMH, the semi-strong form of EMH is widely used as a good 

assumption and benchmark in a number of financial theories and studies. However, regarding 

the weak form of EMH, it has been discussed over the time by a large number of studies on 

whether it can hold true in the real-world financial market. According to Fama (1970), under 

the weak form of EMH, technical analysis, which utilizes the past patterns of returns to predict 

the future returns, should not earn abnormal returns. This is because the historical information 

should be included already in the stock prices, and the non-predictable stock prices should 

follow the pattern of random walk, where the subsequent price changes represent random 

departures from previous prices, with the reasoning that today’s price change only reflects 

today’s information and will be independent of the past information.  

 

On the other side, however, many empirical studies reported the evidence of anomalies for the 

weak form of EMH, where the stock returns can somehow be predicted by the past behaviors 

of prices or returns. Clearly, those findings are inconsistent with Fama’s definition on the weak 

form of EMH, and some of the examples of the anomalies include the short-term reversal effect 

documented by Lehmann (1990) and Jegadeesh (1990),  the momentum effect, documented by 

Jegadeesh and Titman (1993), the long-term reversal effect, documented by De Bondt and 

Thaler (1985), the seasonal and day-of-the-week effects, documented by Kerim and Ziemba 

(2000) and Roll (1983), and so on. 
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Despite that there are opponents arguing those anomalies are not really exceptions of the EMH, 

and the findings might lack the statistical power (Fama 1970), or the patterns didn’t last long, 

or the findings are likely to due to data mining issues (Malkuel 2003), increasing numbers of 

studies are being presented to either reject the EMH or trying to explain those anomalies. An 

interesting piece of recent study is HZZ’s trend factor, which incorporates three types of 

anomalies: the short-term reversal effect, momentum effect and long-term reversal effect, and 

according to HZZ’s study, the trend factor can utilize the historical price information to generate 

abnormal returns, which is against the weak form of EMH. In order to better introduce the 

HZZ’s trend factor, in the following part a review of literatures related to the short-term reversal 

effect, momentum and long-term reversal effect will be given first. 

 

Firstly, the short-term reversal effect describe that over the short-term horizon, i.e. from few 

days up to one month, the stocks with relatively low returns in one period tend to earn higher 

returns in the next period. The short-term reversal effect is documented by a number of 

empirical studies. In an early study of Fama (1965), it was pointed out that individual stock 

returns have negative serial correlation; and a later study by Fama and French (1988) also 

documented the existence of such serial correlation; furthermore, according to the study of 

Lehmann (1990), portfolios formed based on previous one-week returns experienced 

significant return reversal in the following week, where the portfolios had positive one-week 

returns tend to generate -0.35% ~ -0.55% returns on average over the subsequent week, while 

portfolios with negative one-week returns typically to generate an average of 0.86% ~ 1.24% 

positive return in the next week, and such abnormal returns will persist even with adjustment 

for bid-ask spreads and sensible transaction costs; Jegadeesh (1990) presented the empirical 

results that the first-order serial correlation of monthly stock returns are highly significant, and 

the two extreme deciles of equally weighted portfolios based on past one-month returns led to 

an average monthly return of 2.49%.  

 

Secondly, in terms of mid-term horizon, i.e. from one month up to one year, momentum effect 

has been reported by many studies, which describes that stocks with relatively high returns in 

one period tend to also have high returns in the following period. Jegadeesh and Titman (1993) 

documented the momentum strategy which buys stocks that performed well in the past 3- to 

12- month and sell stocks with poor performance during the same period resulted in abnormal 

returns, with the U.S. data from 1965 to 1989, the portfolio of 6-month formation and holding 

period realized an annualized 12.01% return, which cannot be explained by the systematic risk. 
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Following the study, Jegadeesh and Titman (2001) tested the strategy with U.S. data from 1990 

to 1998, and reported that momentum effect continued to exist in the 1990s. Lo and MacKinlay 

(1999) reported the existence of non-zero serial correlations, and many successive moves are 

in the same direction, which shows a pattern of momentum. In a later study by Grundy and 

Martin (2001), they found the momentum strategy’s profitability cannot be explained by Fama-

French there factor model. Outside the United States, several studies tested if momentum effect 

exist in other markets as well. Rouwenhorst (1998) tested the strategy with data of 12 European 

countries from 1985 to 1995, the results showed 1% average monthly return of the portfolio, 

which couldn’t be explained by factors. Chui, Wei and Titman (2000) reported the momentum 

strategies existed in 7 Asian markets except for Japan.  

 

Thirdly, over the long-term, i.e. more than one year, the stock returns tend to be mean reverse 

again. Debondt and Thaler (1985) found that strategies based on past three to five years stock 

returns earn around 25% returns in the following thirty six months. Fama and French (1988) 

documented the negative autocorrelations of stock returns more than one year in 1926-1985 

sample period, finding that predictable variation accounts for about 25%-40% of the 3-5 year 

return variance of portfolios. Poterba and Summers (1988) also documented the negative 

autocorrelation of long-term stock returns by using data from the US and other 17 countries. 

Debondt and Thaler (1985) attributed the long-term reversal effect to investors’ overreaction to 

market information, and the logic is that overreaction bias of investors drives the stock prices 

deviate from the fundamental value and then drives a mean reversion, thus a reversal strategy 

that buys stocks out of favor and sells stocks which returns are too high from the normal level 

can make profits of such behavior. While a later study by Fama and French (1996) found that 

the abnormal returns of the long-term reversal effect largely disappear in the three-factor model. 

 

Overall, most of those studies related to the short-term reversal effect, the momentum and the 

long-term reversal effect share the following things in common: first of all, almost all of those 

studies are based on the historical returns; in addition, in many of the studies portfolios are 

formed simply by sorting the returns of the previous intervals, thus no regression techniques 

are required, however some studies utilize some more sophisticated and different methods, for 

example, the widely used Fama-French short-term factor, momentum and long-term factors 

(French, 2018) use double sorting methods, which also includes the market capitalization in the 

formation of the portfolio; furthermore, many of those studies exclude the most recent trading 

day(s) in the formation period, in order to mitigate the bid-ask spreads bias and to avoid the 
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opposite effects from shorter-term factors, for example,  Jagadeesh (1990) and Lehmann (1990) 

exclude the most recent trading day from the formation period in the short-term reversal 

portfolio, Jagadeesh and Titman (1993) excludes the most recent week in in the short-term 

reversal portfolio, French’s benchmarks (available in Kenneth R. French’s data library. French, 

2018) also exclude a one-month period in momentum portfolio and a one-year skipping period 

in long-term reversal portfolio. This technique is called “the skipping period” in this study,  and 

some more detailed descriptions will be given below in Section 2.3 “Skipping Period” . 

 

 

2.2. Trend Factor 

 

Based on the short-term reversal effect, the momentum and the long-term reversal effect, HZZ 

(2016) presented a trend factor which captures all the short-, mid-, and long- term price signals, 

in order to gain abnormal returns.  

 

In brief, HZZ’s trend factor is built in the following steps (more detailed step-by-step 

mathematic expressions swill be given in Section 5. “Data and Methodology”): first, the moving 

averages with lag lengths of 3-, 5-,10-, 20-. 50-, 100-, 200-, 400-, 600-, 800-, and 1000-day are 

calculated; next, those moving averages are normalized by dividing the price of the last trading 

day respectively; then, HZZ uses cross-section regressions to estimate the coefficients of all 

those normalized moving averages at month t - 1 with regard to the returns at month t ; finally, 

those coefficients are used to calculate the expected return of month t + 1, based on which the 

stocks are sorted into five portfolios, and the return difference between the highest quantile and 

the lowest quantile is defined as the return of the return of the trend factor. 

 

According to the study, in the period of 1926 to 2014 the trend factor outperformed all of the 

short-term reversal factor, the momentum factor, the long-term reversal factor, as well as Fama-

French’s market portfolio, SMB and HML factors; with an average monthly return of 1.63% 

and Sharpe ratio of 0.47, the trend factor also generated higher returns during the recession 

periods and financial crisis. The study also showed the short-term information accounts for the 

most parts of return (around 52.2% overall, and 69.9% in recession period), and suggested the 

trend factor emphasizes more on the short-term information. Although the trend factor 

incorporates the lag lengths from 3 days to 1000 days, thus it includes all the information or 
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price signals used by the short-term reversal, the momentum and the long-term reversal 

strategies, there are still two major differences.  

 

First of all, HZZ follows the way Brock, Lakonishok and LeBaron (1992) generate price signals, 

so the prices of stocks are utilized to build the moving average signals and cross-section 

regressions are used to calculate the expected returns, while in most studies of the short-term 

reversal effect, momentum effect and the long-term reversal effect, returns of stocks are used 

to form portfolios. Secondly, HZZ utilizes normalized moving averages to generate buying or 

selling signals. This is quite different method compared to the related studies. Most studies on 

the short-term reversal effect, momentum effect and the long-term reversal effect use multiple 

historical returns conduct the regressions without doing any adjustment to the returns, for 

example, Jegadeesh (1990) constructs the model by regressing the return on month over all the 

prior returns. HZZ’s method of using moving average, in a sense, is one way of adjusting the 

historical information.  

 

HZZ argues this is because historical price has predictability over the future prices, which 

implies the predictability of moving averages based on price.  HZZ’s reasoning for this is from 

the empirical studies on technical analysis, for example, Treynor and Ferguson (1985), Brown 

and Jennings (1989) and Schwager (1989). In order to test HZZ’s model from a more consistent 

angle, Schultz (2017) explored this issue by replacing the prices with several different form of 

returns (including non-normalized return, return, excess non-normalized return, excess return, 

non-normalized geometric mean return, geometric mean return, non-normalized geometric 

mean excess return and geometric mean excess return) in the formation of the trend factor, the 

study reports lower average monthly returns and Sharpe ratios from all the return-based trend 

factors compared to the price-based trend factor, while the returned-based trend factors 

outperform the price-based return factor during the recession periods. 

 

Thirdly, and the most important for the topic of this study, HZZ’s trend factor doesn’t have the 

skipping period, while most of the studies related to the short-term reversal effect, the 

momentum and the long-term reversal effect do apply such a skipping period, with the 

consideration to mitigate bid-ask spread bias and avoid the opposite impacts from shorter-term 

factors. Much of this study will be focusing on the discussions about the skipping period, and 

more detailed discussions on the skipping period will be given in the following section. 
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2.3. Skipping Period  

 

In this study, the skipping period is defined as one or more most recent trading day(s) which 

are excluded or inserted, and as a result of skipping period there will be a gap between the 

portfolio formation period and the portfolio holding period. Many empirical studies on the 

short-term reversal, momentum and long-term reversal strategies adopted a skipping period. 

The purpose of such a skipping period is to mitigate the potential bias from bid-ask spread, and 

to avoid the opposite effects from shorter-term factors.  

 

The bid-ask spreads bias could affect the returns of strategy through observations. In the real 

world, stocks are traded on bid or ask prices, based on which the actual returns are calculated. 

However most data for empirical research only contain the midpoint of the stock price, as a 

result, the observed returns by studies contain measurement error to the extent of the bid-ask 

spreads. According to Ho and Stoll (1981), the midpoint between the market maker’s bid and 

ask prices will deviate from the intrinsic value of the stock when the market maker is facing 

inventory imbalances, and it is possible that the observed return changes are price bouncing 

between the bid and ask prices. Roll (1984) show the bid-ask spreads will lead to the negative 

serial correlation of stock returns over adjacent intervals, and a skipping period between the 

portfolio formation period and the holding period, which excludes the last one or few trading 

days in the formation period, will make the return intervals not adjacent, and as a result the bias 

due to bid-ask spreads could be avoided.  

 

As for the studies of mid-term momentum effect and long-term reversal effect, the skipping 

period can also help to avoid the opposite impacts from shorter-term factors. For example, most 

momentum strategies apply an one-month skipping period, in order also to avoid the short-term 

reversal effect within the first month after formation period. In long-term reversal strategies, 

the length of the skipping period applied is usually one year, in order to avoid both the short- 

and mid-term effects. 

 

Based on those considerations, many studies adopt the idea of skipping period. For example, 

Jagadeesh (1990) build the portfolios based on several different lags of historical returns, the 

study also includes another group with the same sets of lags but excluding the most recent 

trading day, as conservative situations to compare the returns of portfolios; Lehmann (1990) 

build the portfolios based on previous historical return, and also build a similar set of portfolios 
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which include a 1-day skipping period in order to mitigate the bid-ask spread bias; Jagadeesh 

and Titman (1993) use the strategies to select stocks based on previous 1-4 quarters returns, 

and use the portfolios with 1-week skipping period as a second group; in addition, the widely 

used momentum and long-term reversal benchmarking factors provided and updated by 

Kenneth R. French’s data library (French, 2018) also adopt the skipping period, with the 

momentum factor based on the prior 2-12 month returns (i.e.1-month skipping period) to 

formation period, and the long-term reversal based on the prior 13-60 month returns (i.e. 1-year 

skipping period). 

 

Many studies on short-term reversal use 1-day or 1-week skipping period, and usually those 

studies also include a set of comparison portfolios with skipping periods. One interesting 

finding of those studies is that returns of short-term reversal strategies decline after applying 

the skipping period. Jagadeesh (1990) reported after the exclusion of last trading day (1-day 

skipping period), the monthly returns of portfolios based on two short-term reversal related 

strategies (both based on historical returns) drop from 2.07% and 1.53% (without skipping 

period) to 1.77% and 1.08% (with 1-day skipping period) respectively; Lehmann (1990) tested 

the strategies based on previous 1-week, 4-week, 13-week, 26-week and 52-week returns, and 

there are also another sets of portfolios based on the same lag lengths excluding the most recent 

trading day, the results show that the application of skipping period reduces all five portfolios’ 

return significantly, and the 1-week return based portfolio’s weekly return reduces from 1.79% 

to 1.21%, while the 52-week return based portfolio’s annual return declines from 92.89% to 

62.81%. As for the reason of this trend, Jegadeesh and Titman (1995b) provided theoretical 

evidences that much of the short-term reversal effect could be explained by the bid-ask spreads 

resulting from market maker’s inventory imbalances, and parts of the abnormal returns might 

due to the compensation for bearing inventory risks.  

 

In the studies of  strategies over the longer terms (momentum effect and long-term reversal 

effect), usually a longer length skipping period is applied. However, unlike the results from 

short-term reversal studies that skipping period tend to reduce the returns of portfolios, the 

results of those longer-term studies show less consistent impacts over the returns of portfolios. 

For example, in the study by Jagadeesh and Titman (1993), portfolios are formed based on 

quarterly historical returns, and after an one-week skipping period, all the 16 portfolios 

(formation period of previous 1 to 4 quarter and holding period of 1 to 4 quarter ) see the returns 
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increased slightly, while it’s not clear by how much the increase is attributed to avoiding bid-

ask spreads and how much is attributed to the exclusion of short-term reversal factor.  

 

Lastly, it is important to point out that there are two types of skipping periods. The most 

commonly used one is the direct exclusion of the most one or several trading days from the 

formation period, which creates a gap between the formation and the holding period. In this 

study it is referred as the first type of skipping period (or the “excluding type”). Figure 1 below 

describes the first type of skipping period, by comparing the portfolio formation and holding 

period under the situations without and with a skipping period. Most studies mentioned above, 

such as Jegadeesh (1990) and Lehmann (1990) adopt the first type of skipping period. However, 

this type of skipping period clearly has a downside: when excluding the skipping period the 

useful information contained in that period is also excluded from the samples, thus this is used 

as a conservatively controlling method for potential bias (Jegadeesh, 1990).   

 

 

Figure 1. The first type (“excluding type”) of skipping period 

The figure below describes the first type (“excluding type”) of skipping period, where the first 

sub-figure is the situation without skipping period, where the portfolio strategy includes a 

formation period of length F and a holding period of length H, and the second sub-figure 

describe the situation where the skipping period of length S is applied. Under this type of 

skipping period, the length of formation period becomes F-S, while the length of holding period 

stays as H. 

 

Formation and holding period without skipping period: 

 

 

 

 

 

 

 

 

 

 

Formation = F Holding = H 

T 
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Formation and holding period with skipping period: 

 

 

 

 

 

 

 

 

 

Then there is another type of skipping period, which doesn’t exclude any trading days from the 

formation period, but creates the gap by inserting few days in between the formation period and 

the holding period. In this study it is referred as the second type of skipping period (or the 

“inserting type”). Figure 2 below describes the second type of skipping period, and it’s easy to 

find the difference compared to the first type: the second type of skipping period doesn’t 

exclude any useful information from the holding period, however it extends the length of the 

holding period. The second type of skipping period is used less frequently as the first type, but 

in some studies it is also used, for example, Lehmann (1990) tested the portfolio returns based 

on the 1-week return 2 weeks ago, 3 weeks ago, and up to 52 weeks ago, this can be considered 

as the second type of skipping period as it doesn’t exclude any trading days from the formation 

period, but inserted some 2-week, 3-week and up to 52-week skipping period in between the 

formation and the holding period. 

 

 

Figure 2. The second type (“inserting type”) of skipping period 

The figure below describes the second type (“inserting type”) of skipping period, where the 

first sub-figure is the situation without skipping period, where the portfolio strategy includes a 

formation period of length F and a holding period of length H, and the second sub-figure 

describe the situation where the skipping period of length S is applied. Under this type of 

skipping period, the length of formation period stays as F, and the length of holding period stays 

as H, while the length of skipping period S is added on top of F+H. For example, Grundy and 

Martin (2001) formed the momentum strategy portfolios based on the monthly excess return 

over the six-month formation period from t-7 to t-2, while there is a 1-month skipping period, 

the length of the formation period doesn’t change. 

T-S 

Formation = F-S Holding = H 

T 
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Formation and holding period without skipping period: 

 

 

 

 

 

 

 

Formation and holding period with skipping period: 

 

 

 

 

 

 

 

 

 

To summarize, the first type of skipping period (the “excluding type”, which excludes the last 

observations in sample period) is more used by short-term strategies, the second type of 

skipping period  (the “inserting type”, which skips the last observations in sample period) is 

more often seen in mid- and long-term strategies. Thus it is important to distinguish their usages 

and the different rationales. 

 

  

Formation = F Holding = H 

T 

T+S 

Formation = F Holding = H 

T S 
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3. Hypotheses 

 

The main purpose of this study is to provide a further examination on the performance of the 

trend factor with the application of skipping period. There are two major motivations behind 

this topic, and those two motivations are of the interests of both academical research 

(consistency) and practical settings (practicality). 

 

Firstly, it would be interesting to examine the performance of trend factor without the bias of 

bid-ask spreads. Since the skipping period is a method widely used by other studies to mitigate 

the bias of bid-ask spreads and to avoid the opposite effects from shorter-term factors, thus in 

order to keep the results consistent and comparable, the performance of the trend factor can be 

and should be evaluated under the same settings, to explore whether the existence of skipping 

period will affect the performance of the trend factor. Secondly, in terms of practicality, real-

world investors can hardly execute trades on the closing price exactly at the same time when 

the technical signal is observed, and most likely there is a gap between the portfolio formation 

period and the portfolio holding period, which suggests that a skipping period should be 

included.  

 

As mentioned in the previous section “Literature Review”, many evidences from past studies 

suggested that the skipping period would reduce the performance of the portfolios of short-term 

reversal strategies, thus it is natural to make the following two hypotheses: 

 

Hypothesis 1: The trend factor’s performance will decrease with the application of skipping 

period. 

 

Hypothesis 2: The skipping period affects the performance of the trend factor mainly through 

the SREV factor. 

 

In order to test the first hypothesis, in this study I first replicate HZZ’s trend factor to ensure 

the data and methodologies are consistent, and the results are comparable, then I apply both 

types of skipping periods (both the “excluding type” and the “inserting type” mention before) 

with different lengths to the trend factor, and compare the portfolio performance with the 

original trend factor from HZZ. 
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And in order to test the second hypothesis, it is needed to decomposition the trend factor into 

components with the Fama French’s three factors, and to analyze the influence of each 

component on the overall performance of the trend factor. A more detailed description of the 

data and methodology will be described seen in the next section. 
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4. Data and Methodology 

 

4.1. Data  

 

In order to examine the performance of the trend factor and ensure the results are comparable 

with HZZ’s study, in this study the same dataset is used as in HZZ’s. Historical stock data from 

January 2, 1926 to December 31, 2014 are downloaded from the CRSP database via WRDS. 

 

Following HZZ, two criteria are used to screen the stocks to be included in dataset:  1) the 

stocks must be listed on NYSE, AMEX or Nasdaq exchange (with CRSP Header Exchange 

Code 1, 2 or 3); 2) the stock must be ordinary common shares (with CRSP Share Code 10 or 

11, this excludes closed-ends funds, RETIs, unit trusts, ADRs and foreign stocks).  

 

Both CRSP daily stock files and monthly stock files are used in this study, where the daily data 

are used for calculating moving averages and price signals, and the month data are used for 

calculating expected returns and actual returns. Prices are adjusted for splits and dividends 

when necessary. At the end of every month, a price filter that excludes all the stocks with price 

below $5, and a size filter that excludes all the stocks in the smallest decile of NYSE breakpoints 

are applied to filter stocks. Overall, the CRSP data between January 2, 1926 to December 31, 

2014 used by this study contains 72,222,798 observations of daily stock data, and 3,420,218 

observations of monthly stock data (on the last trading day of the month). 

 

In addition, the data of NYSE month-end breakpoints (which is used to by the size filter 

mentioned above), risk-free returns (Rf), and the returns of Fama-French’s market portfolio 

(Market), size factor (SMB), value factor (HML), short-term reversal factor (SREV), 

momentum factor (MOM), long-term reversal factor (LREV) are from Kenneth R. French’s 

data library (French, 2018).  

 

For the assessment of returns during recession periods and financial crisis, this study takes the 

same recession periods definition as HZZ, from National Bureau of Economic Research (NBER, 

2018). In the sample period from June 1930 to December 2014, there are in total 1015 months 

and of which 190 months are defined as recession periods and according to HZZ, December 

2007 to June 2009 ( a total of 19 months) is defined as the financial crisis period. 
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4.2. Data Processing 

 

Since CRSP daily stock price data are not adjusted by splits and dividends while daily return 

data are, a price index which is calculated by compounding (1+daily return) from the first day 

of the stock is used in this study in replace of daily adjusted price to calculate normalized 

moving averages, which mathematically would lead to the same normalized moving averages 

mentioned by HZZ (see equation 1 below).  

 

In the calculation of HZZ’s moving average sets, it is required to have up to 1000-day 

continuous observations of daily data. Since missing observations widely exists in CRSP 

historical data, in this study NAs in daily stock returns are replaced with 0, assuming during the 

missing observation periods the price remained the same as the most recent valid trading day.  

HZZ didn’t disclose their methods of handling missing data in the study. 

 

Another issue regarding data processing is the handling of long gaps in CRSP daily stock data. 

Unlike the NAs mentioned before, gaps are periods of missing data not specified by CRSP (not 

marked with NAs). Weekends and holidays are normal gaps, while there are also longer gaps 

existing in the dataset due to reasons like the suspended trading of some stocks2. To avoid the 

long gaps in the calculation of moving average, I applied the rule to exclude all the price data 

series (for the calculation of moving average) contains at least one gap longer than 30 days. 

The logic is that if more than one month data is missing, the short-term reversal effect wouldn’t 

be captured by the trend factor anymore. Again, HZZ didn’t disclosed their method in the study. 

 

According to HZZ’s method, the first 1000 days (the maximum length required for moving 

averages) and the subsequent 12 months (the coefficients for expected return requires the 

averages of returns in the past 12 months) are excluded from the sample period,  so there are a 

total of 1015 months (observations) from June 1930 to December 2014 are included in the 

samples. In addition, since the long-term reversal factor (LREV) is available only from January 

1931, in the regressions which involves LREV, the effective sample period is from January 

1931 to December 2014, a total of 1008 months (observations). 

 

                                                 

2 For example, after the observation of stock 10066 on the day of 2002-08-30, the next observation of the stock 

10066 is on the day of 2008-01-31, during which a period of over 5 years is missing. 
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4.3. Results Replication with HZZ’s Method  

 

First of all, in order to check consistency of data and calculation methodology, and ensure the 

comparability to HZZ’s results, in this study I first replicate the results of the trend factor as 

documented by HZZ’s study.  

 

To start with, at the end of every month t (after price and size filter are applied to exclude stocks 

with prices below $5 and in the smallest decile),  the normalized MAs are calculated for each 

stock j based on prices with lag lengths L of 3-, 5-, 10-, 20-. 50-, 100-, 200-, 400-, 600-, 800- 

and 1000-days. The normalized MA is defined by the following formula (equation 1 and 2 in 

HZZ’s study): 

�̃�𝑗𝑡,𝐿 =
𝐴𝑗𝑡,𝐿

𝑃𝑗,𝑑
𝑡 =

𝑃𝑗,𝑑−𝐿+1
𝑡 + 𝑃𝑗,𝑑−𝐿+2

𝑡 + ⋯ + 𝑃𝑗,𝑑−1
𝑡 + 𝑃𝑗,𝑑

𝑡

𝐿 × 𝑃𝑗,𝑑
𝑡    

 

where �̃�𝑗𝑡,𝐿 is the normalized MA of stock j at end of month t with lag length L, 𝐴𝑗𝑡,𝐿 is the 

moving average of stock j at the end of month t with lag length L,  and 𝑃𝑗,𝑑
𝑡  is the closing price 

for stock j at the last trading day d of month t.  

 

Secondly, at the end of each month t, a cross-section regression is used to calculate the 

coefficients of each lag-specific normalized MA with regard to the monthly return (equation 3 

in HZZ’s study), where 𝑟𝑗,𝑡  is the return of stock j in month t, 𝛽𝑖,𝑡  is the coefficient of the 

normalized MA with leg 𝐿𝑖 in month t, and 𝛽0,𝑡 is the intercept in month t. 

𝑟𝑗,𝑡 = 𝛽0,𝑡 + ∑ 𝛽𝑖,𝑡

𝑖

�̃�𝑗𝑡−1,𝐿𝑖
+ 𝜀𝑗,𝑡 ,           𝑗 = 1, … , 𝑛 

 

Thirdly, at the end of each month t, the coefficients of month t and prior 11 months are used to 

estimate the coefficients of month t+1 (equation 5 in HZZ’s study): 

𝐸𝑡[𝛽𝑖,𝑡+1] =
1

12
 ∑ 𝛽𝑖,𝑡+1−𝑚

12

𝑚=1

 

 

Fourthly, those expected coefficients and the normalized MAs at the end of month t are used to 

calculate the expected returns of month t+1 (equation 4 in HZZ’s study): 

(1) 

(2) 

(3) 
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𝐸𝑡[𝑟𝑗,𝑡+1] = ∑ 𝐸𝑡[𝛽𝑖,𝑡+1]
𝑖

 �̃�𝑗𝑡,𝐿𝑖
 

 

Lastly, the monthly-rebalanced portfolio strategy is defined as follows: at the end of each month, 

all the stocks are sorted by their expected returns into five equal-weighted portfolios, and stocks 

in the highest quantile are defined as “winners” and lowest quantiles as “losers”. The difference 

between the returns of “winners” and the “losers” are defined as the returns of trend factor. 

 

 

4.4. Applying Skipping Period into Trend Factor 

 

After the replication of HZZ’s trend factor, the next step is to apply the two types of skipping 

periods into the trend factor, in order to test the Hypothesis 1.  

 

As for the lengths of the skipping periods, I include 1-, 5- and 20-day periods, which indicate 

1-day, 1-week, and 1-month lengths. Those lengths are commonly used by previous studies: 

for example, Lehmann (1990) and Jegadeesh (1990) applied 1-day skipping period (of the first 

type)  in short-term reversal strategies, Jegadeesh and Titman (1993) applied 1-week period (of 

the first type) in momentum strategies, Grundy and Martin (2001) applied 1-month period (of 

the second type) in momentum strategies.  

 

By applying the first type “excluding type”) skipping period with length S1, the most recent S1 

trading days are excluded from the observations in formation period and the moving averages 

are shortened accordingly. For example, when S1= 1,  the moving averages would become 2-, 

4-, 9-, 19-, 49-, 99-, 199-, 399-, 599-, 799-, and 999- days. 

 

And when the second type (“inserting type”) skipping period with length S2 is applied, the 

moving averages stay the same length while the starting day and ending day move backwards 

accordingly. For example, the 3-day moving average captures the price at month end (day d), 

one day before (day d-1) and two days before (day d-2), and when S2=1 is applied, the 3-day 

moving average will capture the price of day d-1, d-2 and d-3 instead. 

 

Then I conduct several similar tests as HZZ to examine the performance of the trend factor with 

those skipping periods. Firstly the summary statistics (where mean, standard deviation, Sharpe 

(4) 
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ratio, skewness and excess kurtosis are calculated), as well as the performance during the 

recession and financial crisis periods are presented as a general overview of trend factor with 

skipping period; next, the alpha of the trend factors with skipping periods is calculated, to 

presented a detailed view on the changes of its abnormal return. 

 

 

4.5. Determining the Key Driver for Performance Change 

 

If the Hypothesis 1 is supported (i.e. the performance of trend factor declines with the 

application of trend factor) by the analyses mentioned above, then the next step would be to 

test the Hypothesis 2 and further analyze which of the short-end, mid-end and long-end 

components drive such decline. 

 

HZZ conducted the Sharpe style regressions in order to determine the contribution of the short-

term reversal factor, the momentum factor and the long-term reversal factor to the return of the 

trend factor. The Sharpe Style regression (Sharpe, 1980) is used to determine the contribution 

of various sub-portfolios to the overall fund performance, and it puts constraints over the 

coefficients where all the coefficients cannot be negative and the sum must equal to 1. 

Following HZZ, I conduct the following regression to identify the contribution of the SREV, 

MOM and LREV factors to the trend factor: 

 

𝑟𝑇𝑟𝑒𝑛𝑑,𝑡 = 𝛼 + 𝛽1𝑟𝑆𝑅𝐸𝑉,𝑡 + 𝛽2𝑟𝑀𝑂𝑀,𝑡 + 𝛽3𝑟𝐿𝑅𝐸𝑉,𝑡 + 𝜖𝑡 

where 

𝛽1 ≥ 0, 𝛽2 ≥ 0, 𝛽3 ≥ 0,            𝑎𝑛𝑑  𝛽1 + 𝛽2 + 𝛽3 = 1   

 

 

According to the results of the Sharpe style regression, the coefficients  𝛽1, 𝛽2, 𝛽3 determine 

the sensitivity of the trend factor’s return to the returns of SREV, MOM and LREV factors, i.e. 

how much movement of the trend factor’ return is due to the movement of the SREV, MOM 

and LREV factors’ returns. By applying skipping periods of different types and lengths into the 

trend factor, it is possible to find how those coefficient changes with the skipping period. In 

addition, in order to get a full picture of each factor’s impact over the trend factor, it’s also 

important to take the returns of the factors 𝑟𝑆𝑅𝐸𝑉,𝑡 , 𝑟𝑀𝑂𝑀,𝑡 , 𝑟𝐿𝑅𝐸𝑉,𝑡  into the consideration. 

(5) 
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Given the values of  𝑟𝑆𝑅𝐸𝑉,𝑡 , 𝑟𝑀𝑂𝑀,𝑡 , 𝑟𝐿𝑅𝐸𝑉,𝑡  are known, it’s easy to multiply each factor’s 

return with its coefficient, and get a “starting point” for analysis (in this study its’ called the 

contributed return). The analysis for contributed return will be helpful to identify the key driver, 

by excluding the factors with high coefficient but low contributed returns. 

 

The Sharpe style regressions mentioned above could help to identify which of the SREV, MOM 

and LREV factor is the key driver for the trend factor’s performance when skipping periods are 

applied. In addition to that, a more detailed analysis would be to regress the trend factor’s return 

over the 11 portfolios formed based on individual lags: First is to construct the 11 single lag 

portfolios in similar way as the trend factor is constructed, and get the basic summary statistics 

of those portfolios; then similar to the previous analyses on the SREV, MOM and LREV factors, 

the coefficients of the 11 portfolios and the contributed returns of those 11 portfolios are 

calculated, in order to identify the key driver. 

 

Those methods mentioned above will help to identify the key driver behind the trend factor’s 

performance change when the skipping periods by firstly analyzing under the scope of the 

SREV, MOM and LREV factors, and then further narrowing down into each of the trend 

factor’s 11 lags. Finally, the results will help to answer whether the Hypothesis 2 is true. 
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5. Results and Analyses 

 

5.1. Replicated Results 

 

Based on the data and methods described in section 5, the trend factor is replicated in the 

beginning to ensure the comparability and consistency between this study and HZZ’s original 

study. Table 1 shows the summary statistics of HZZ’s original trend factor, the replicated trend 

factor, as well as the calculated benchmarking factors included in HZZ’s study using same data 

sources as mentioned above. The original summary statistics from HZZ’s study can be found 

in Appendix 1. 

 

Overall, the characteristics of the replicated trend factor is very close to HZZ’s original results, 

though slight discrepancies exist: the replicated trend factor has the monthly average return of 

1.69% (compared to 1.63% in HZZ’s results), the standard deviation of 4.02% (compared to 

3.45% in HZZ’s results), and the Sharpe ratio, skewness and excess kurtosis are 0.42 (compared 

to 0.47 in HZZ’s results), 1.50 (compared to 1.47 in HZZ’s results), and 19.77 (compared to 

11.3 in HZZ’s results) respectively.  

 

Despite the slight discrepancies between two studies, the replicated results support HZZ’s 

findings that, in terms of monthly average return and the Sharpe ratio, the trend factor 

significantly outperforms the benchmarking factors, i.e. the short-term reversal factor (SREV), 

momentum factor (MOM), long-term reversal factor (LREV), and the Fama-French market 

portfolio (Market), size factor (SMB), and value factor (HML). The replicated results also 

shows very similar skewness to HZZ’s original results and a large excess kurtosis, indicating 

the distribution of monthly returns has a fat right tail - the same shape as HZZ’s results. In 

addition to that, the results of benchmarking factors calculated in this study are almost the same 

as HZZ’s results, except for few very tiny discrepancies which can be neglected, this also 

indicate the consistency with HZZ’s study.  

 

Those discrepancies can possibly be explained by two issues. Firstly, HZZ might pre-filter the 

historical data in a slight different way especially when dealing with the NA and long gaps of 

CRSP data (as mentioned in section 5.2 Data Processing, HZZ didn’t explain their methodology 

to handle those two issues); Secondly, HZZ’s calculations were based on the CRSP data 
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downloaded in 2015, and the replicated results are based on the CRSP data downloaded in 2018, 

the changes in data source (as CRSP frequently update database 3 ) might lead to some 

discrepancies between the results, and a good proof for this is there are few neglectable 

discrepancies on some summary statistics of LREV, Market, SMB, and HML. 

 

Based on the observations above, it is sufficient to conclude that the data and methodology used 

in this study are largely consistent with HZZ’s original study, and the replicated results are 

comparable to HZZ’s original results, though we should notice the existence of tiny 

discrepancies. Thus, the replicated results will be used as a “starting point” in this study, and 

the following analyses of this study will be built on the comparisons between the trend factor 

with skipping periods and the replicated trend factor. 

 

 

Table 1. The original and replicated trend factor: summary statistics. 

The table reports the summary statistics, including mean, standard deviation, Sharpe ratio, 

skewness and excess kurtosis, of HZZ’s results (Trend-HZZ), the replicated results by this study 

in 2018 (Trend-R), and other benchmark factors used by HZZ, using the latest data from Ken 

French’s data library (French, 2018),  including the short-term reversal factor (SREV), the 

momentum factor (MOM), the long-term reversal factor (LREV), and Fama-French’s market 

portfolio (Market), SMB and HML factors. A total of 1015 months (observations) are included 

in the sample period, from June 1930 to December 2014. The t-statistics are in parentheses and 

significance at 1% level is given by ***.  

 

Factor Mean (%) Std. dev (%) Sharpe ratio Skewness 
Excess 

kurtosis 
      

Trend-HZZ 1.63*** 

(15.0) 

3.45 0.47 1.47 11.3 

Trend-R 1.69*** 

(13.41) 

4.02 0.42 1.50 19.77 

                                                 

3 HZZ’s paper was firstly received by the Journal of Financial Economics on 14 January 2015, and a revision was 

made on 28 September 2015. As mentioned in Kenneth R. French’s website (French, 2018), several CRSP updates 

have resulted in historical return changes especially in the early years. 
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SREV 0.79*** 

(7.21) 

3.49 0.23 0.99 8.18 

MOM 0.79*** 

(3.26) 

7.69 0.10 -4.41 40.42 

LREV 0.34*** 

(3.09) 

3.50 0.10 2.93 24.76 

Market 0.62*** 

(3.69) 

5.40 0.12 0.27 7.98 

SMB 0.26*** 

(2.57) 

3.24 0.08 2.02 19.82 

HML 0.41*** 

(3.70) 

3.56 0.12 2.19 19.10 

 

 

 

5.2. Summary Statistics 

 

Table 2 summarizes the results after applying both types of skipping periods of 1-, 5- and 20-

day lengths, and the comparison with benchmarking factors SREV, MOM, LREV, Market, 

SMB and HML. The results well support the Hypothesis 1, as the return of the trend factor 

largely declines when longer skipping periods applied, and eventually after applying the 5- and 

20-day skipping periods the return of the trend factor becomes lower than that of the SREV and 

MOM factor. 

 

The results suggest two types of skipping periods show similar impacts on the trend factor. 

With the 1-day skipping periods, the average monthly average returns significantly decline from 

1.69% to 1.16% and 1.13% (with respect to two types of skipping period). And after applying 

the 5-day skipping periods, the returns further reduce to 0.75% and 0.79%, which are below the 

returns of SREV (0.79%) and MOM (0.79%). While after applying the 20-day skipping periods, 

the monthly average returns are only 0.68% and 0.67%, indicating that without the short-term 

reversal effect, the trend factor’s return would have been lower than that of the SREV (0.79%), 

MOM (0.79%) and Market  (0.62%) factors.  
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However, the results also show that despite the return of the trend factor declines with the 

application of skipping periods, the standard deviation remains stable between 3.99% (the 

lowest, from the trend factor with 20-day “inserting type” skipping period, i.e. S2=20) and 4.31% 

(the highest, from the trend factor with 5-day “excluding type” skipping period, i.e. S1=5). As 

a result of that, even though the Sharpe ratio of the trend factor also declines with the application 

of skipping periods, it doesn’t go down as much significant as monthly average return. Even 

with the 20-day skipping periods, the Sharpe ratios are 0.16 and 0.17, which are lower than the 

Sharpe ratio of SREV (0.23), but still higher than that of the MOM (0.10), LREV (0.10), Market 

(0.12), SMB (0.08) and HML (0.12). 

 

In addition, the skewness of the trend factor become lower with skipping periods, though it 

didn’t show a clear pattern with the length of skipping period, still it suggests the skipping 

periods would distort the distribution of the monthly returns and reduce its fat right tail, which 

indicates lower probability of high returns. While in terms of the excess kurtosis, except for the 

trend factors with the 1-day “excluding type” skipping period (S1=1, 19.99) and the 5-day 

“inserting type” skipping period (S2=5, 25.61), all the excess kurtosis values become lower, 

which also suggest the skipping periods reduce the fat right tail of return distribution. 

 

To summary, the performance of the trend factor, in terms of all the major indicators including 

mean, Sharpe ratio, skewness and excess kurtosis declines with the applications of the skipping 

period. The return of the trend factor significantly declines as the longer lag length of the 

skipping periods applied, and eventually the superiority over benchmarking factors disappears 

when skipping periods of 5- and 10- day lengths applied.  

 

 

Table 2. The trend factor with skipping period: summary statistics 

This table provides the same summary statistics as Table 1, including mean, standard deviation, 

Sharpe ratio, skewness and excess kurtosis, of the trend factor, as well as the trend factors with 

both types of 1-, 5- and 20-day skipping periods (where S1 is the length of first type, i.e. 

“excluding type” skipping period which excludes the most recent observations of the formation 

period, and S2 is the length of second type, i.e. “inserting type” skipping period which doesn’t 

exclude the most recent observations but insert a gap after formation period), in comparison to 

the short-term reversal factor (SREV), the momentum factor (MOM), the long-term reversal 
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factor (LREV), and Fama-French’s market portfolio (Market), SMB and HML factors. The t-

statistics are in parentheses and significance at 1% level is given by ***.  

 

Factor Mean (%) Std. dev (%) Sharpe ratio Skewness 
Excess 

kurtosis 
      

Trend 1.69*** 

(13.41) 

4.02 0.42 1.50 19.77 

Trend 

(S1=1) 

1.16*** 

(8.80) 

4.18 0.28 1.01 19.99 

Trend 

(S1=5) 

0.75*** 

(5.83) 

4.12 0.18 0.79 18.35 

Trend 

(S1=20) 

0.68*** 

(5.05) 

4.31 0.16 0.66 15.42 

Trend 

(S2=1) 

1.13*** 

(8.65) 

4.16 0.27 0.55 18.71 

Trend 

(S2=5) 

0.79*** 

(6.02) 

4.18 0.19 1.44 25.61 

Trend 

(S2=20) 

0.67*** 

(5.34) 

3.99 0.17 0.86 15.66 

SREV 0.79*** 

(7.21) 

3.49 0.23 0.99 8.18 

MOM 0.79*** 

(3.26) 

7.69 0.10 -4.41 40.42 

LREV 0.34*** 

(3.09) 

3.50 0.10 2.93 24.76 

Market 0.62*** 

(3.69) 

5.40 0.12 0.27 7.98 

SMB 0.26*** 

(2.57) 

3.24 0.08 2.02 19.82 

HML 0.41*** 

(3.70) 

3.56 0.12 2.19 19.10 
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5.3. Performance in Recession and Financial Crisis Periods 

 

HZZ also evaluated the performance of the trend factor during the recession periods and the 

financial crisis periods, thus the same tests are included in this study to explore the effects of 

skipping period over portfolio returns during such periods. In this study the same definition of 

recession and the financial crisis periods is used, which is the same as HZZ and from the 

National Bureau of Economic Research (NBER, 2018) , and the results are reported in Table 3.  

 

Panel A of Table 3 reports the summary statistics of all the factors’ performance during all 

recession periods. First of all, consistent with HZZ’s study, both the return and volatility of the 

trend factor become higher during recession periods compared to the normal period, the average 

monthly return increases from 1.69% to 2.28%, and standard deviation increases from 4.02 to 

5.48, resulting the same Sharpe ratio of 0.42. The results show that the trend factor outperforms 

the SREV, MOM, LREV, Market, SMB and HML factors, with the highest average monthly 

return (2.28%) and Sharpe ratio (0.42). However, after applying two types of skipping periods, 

the trend factor sees significant declines in its performance. With the 1-day skipping periods 

applied, the average monthly return jumps from 2.28% to 1.51% and 1.43% (with respect to 

two types of skipping periods), and the Sharpe ratio declines from 0.42 to 0.28 and 0.26 (with 

respect to two types of skipping periods); with the 5-day and 20-day skipping periods applied, 

the performance of the trend factor further declines, and underperforms the SREV factor in both 

monthly average return and Sharpe ratio. The results are clear evidences to support the 

Hypothesis 1. 

 

Panel B of Table 3 reports the summary statistics of all the factors’ performance during the 

most recent financial crisis periods. The results show that the trend factor outperforms other 

factors with a 0.92% monthly average return and 0.14 Sharpe ratio, which is consistent with 

HZZ’s findings that the trend factor during financial crisis periods has weaker performance than 

it’s in recession period, but still outperforms the benchmarking factors except that SMB factor 

has a higher Sharpe ratio, though it should be also noted that the results are not statistically 

significantly (which is also consistent with HZZ’s original study). Interestingly, as opposite in 

recession periods, both types of the skipping periods seems to improve the performance of trend 

factor. With the 1-day skipping periods, the average monthly return increases from 0.92% to 

1.34% and 1.23% (with respect to two types of skipping periods), and the Sharpe ratio rises 

from 0.14 to 0.18 and 0.18 (with respect to two types of skipping periods); And the 20-day 
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“excluding type” skipping period (i.e. S1=20) leads to the best performance of the trend factor, 

with average monthly return of 1.53% and Sharpe ratio of 0.21. However, again those results 

are not statistically significant, thus it’s not sufficient to conclude whether the results in 

financial crisis periods supports the Hypothesis 1. 

 

Apart from those, when compare the results of the performances in recessions periods and the 

financial crisis periods, there seems to be a pattern. The results in Table 3 - Panel A also show 

the SREV factor outperforms the MOM and LREV factors with its 1.20% average monthly 

return and 0.22 Sharpe ratio. It implies that the performance of the trend factor might largely 

due to the SREV factor, as the results show that with the increasing length of skipping periods, 

the performance of the trend factor declines more. This relationship is also suggested by the 

results of financial crisis periods, as shown in Table 3 - Panel B,  the SREV has a -0.79% 

average monthly return, which is lower than that of the trend factor, which is 0.92%, this 

indicates that SREV factor actually drags the performance of trend factor, and when the 

skipping periods remove parts of SREV’s effects, the trend factor shows a stronger performance. 

However, despite the statistical insignificance during the financial crisis periods, it’s also hard 

to distinguish if such effects are from SREV, MOM or LREV during the financial crisis periods, 

and more evidences are needed to test the Hypothesis 2. 

 

 

Table 3. The trend factor with skipping period: recession periods 

This table provides the same summary statistics as Table 1, including mean, standard deviation, 

Sharpe ratio, skewness and excess kurtosis, of the trend factor, as well as the trend factors with 

both types of 1-, 5- and 20-day skipping periods (where S1 is the length of first type, i.e. 

“excluding type” skipping period which excludes the most recent observations of the formation 

period, and S2 is the length of second type, i.e. “inserting type” skipping period which doesn’t 

exclude the most recent observations but insert a gap after formation period), in comparison to 

the short-term reversal factor (SREV), the momentum factor (MOM), the long-term reversal 

factor (LREV), and Fama-French’s market portfolio (Market), SMB and HML factors, under 

the recession periods and financial crisis periods. The t-statistics are in parentheses and 

significance at 1% level is given by ***.  
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Factor Mean (%) Std. dev (%) Sharpe ratio Skewness 
Excess 

kurtosis 

 Panel A: Recession periods 

      

Trend 2.28*** 

(5.73) 

5.48 0.42 0.52 4.87 

Trend 

(S1=1) 

1.51*** 

(3.83) 

5.43 0.28 -0.23 5.07 

Trend 

(S1=5) 

0.76 

(1.98) 

5.27 0.14 -1.05 8.99 

Trend 

(S1=20) 

0.71 

(1.82) 

5.42 0.13 -0.71 8.35 

Trend 

(S2=1) 

1.43*** 

(3.54) 

5.55 0.26 -0.81 6.45 

Trend 

(S2=5) 

0.99* 

(2.62) 

5.21 0.19 -1.00 9.65 

Trend 

(S2=20) 

0.67* 

(1.85) 

4.98 0.13 -1.23 5.61 

SREV 1.20*** 

(3.07) 

5.39 0.22 0.84 3.24 

MOM 0.20 

(0.24) 

11.46 0.02 -3.17 17.11 

LREV 0.48 

(1.58) 

4.15 0.12 1.23 6.02 

Market -0.67 

(-1.13) 

8.24 -0.08 0.50 3.77 

SMB 0.01 

(0.06) 

3.30 0.00 0.55 2.00 

HML 0.17 

(0.45) 

5.17 0.03 2.85 18.38 
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Factor Mean (%) Std. dev (%) Sharpe ratio Skewness 
Excess 

kurtosis 

 Panel B: Financial crisis periods  

      

Trend 0.92 

(0.61) 

6.57 0.14 0.31 -0.54 

Trend 

(S1=1) 

1.34 

(0.81) 

7.25 0.18 0.78 0.35 

Trend 

(S1=5) 

0.98 

(0.73) 

5.85 0.17 0.13 -0.62 

Trend 

(S1=20) 

1.53 

(0.91) 

7.37 0.21 1.09 1.61 

Trend 

(S2=1) 

1.23 

(0.79) 

6.80 0.18 0.76 0.41 

Trend 

(S2=5) 

1.05 

(0.86) 

5.3 0.20 -0.08 -0.77 

Trend 

(S2=20) 

0.71 

(0.61) 

5.04 0.14 -0.07 -0.88 

SREV -0.79 

(-0.61) 

5.65 -0.14 -0.10 -1.14 

MOM -3.89 

(-1.27) 

13.39 -0.29 -1.29 0.98 

LREV 0.01 

(0.02) 

3.72 0.00 0.12 -0.45 

Market -2.02 

(-1.25) 

7.07 -0.29 -0.19 -0.48 

SMB 0.59 

(1.14) 

2.27 0.26 0.23 -1.00 

HML -0.54 

(-0.53) 

4.49 -0.12 -0.45 0.04 
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5.4. Alpha 

 

Following HZZ, in this study I also analyze the alphas and risk loadings, with regard to the 

CAPM and the Fama French three-factor model, of the trend factor as well as the trend factor 

with skipping periods, the momentum factor is also included in the analysis following HZZ. 

The results are reported in Table 4 and clearly support the Hypothesis 1. 

 

Table 4 shows that with longer skipping periods, both CAPM alpha and Fama-French three-

factor alpha of the trend factor decrease significantly. After the 1-day skipping period, the trend 

factor’s CAPM alpha becomes 0.81% and 0.79% (with regard to the two types of skipping 

periods) from 1.33%, and the Fama-French three-factor alpha becomes 0.78% and 0.77% (with 

regard to the two types of skipping periods) from 1.32%, both are lower than those of the 

momentum factor (MOM), of which the CAPM alpha is 1.07% and the Fama-French three-

factor alpha is 1.36%. And alphas of the trend factor further decline when the length of skipping 

periods becomes longer.  

 

In addition to that, when looking at the Fama-French three-factor risk loadings, the market 

factor plays less role in the return of the trend factor while the size factor (SMB) contributes to 

increasingly larger parts of the return with the longer skipping periods applied.  

 

 

Table 4. CAPM and Fama-French alphas. 

The table reports the Jensen’s alpha and risk loadings with respect to the CAPM and the Fama-

French three-factor model. The trend factor, as well as the trend factors with 1-, 5- and 20-day 

skipping periods (where S1 is the length of first type, i.e. “excluding type” skipping period 

which excludes the most recent observations of the formation period, and S2 is the length of 

second type, i.e. “inserting type” skipping period which doesn’t exclude the most recent 

observations but insert a gap after formation period) are included, in comparison to the 

momentum factor (MOM). The t-statistics are in parentheses and significance at 1% level is 

given by ***,  5% level by **, and 10% level by *. 
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 Panel A: CAPM Panel B: Fama-French 

 α (%) 𝛽𝑚𝑘𝑡 α (%) 𝛽𝑚𝑘𝑡 𝛽𝑠𝑚𝑏  𝛽ℎ𝑚𝑙 

 

Trend 1.33*** 

(10.59) 

0.13*** 

(5.57) 

1.32*** 

(10.58) 

0.10*** 

(4.01) 

0.19*** 

(4.77) 

-0.06 

(-1.55) 

Trend (S1=1) 0.81*** 

(6.16) 

0.10*** 

(4.19) 

0.78*** 

(6.11) 

0.05* 

(1.94) 

0.31*** 

(7.49) 

-0.06 

(-1.63) 

Trend  (S1=5) 0.42*** 

(3.23) 

0.08*** 

(3.51) 

0.37*** 

(2.96) 

0.01 

(0.43) 

0.38*** 

(9.28) 

-0.01 

(-0.30) 

Trend  (S1=20) 0.35** 

(2.56) 

0.08*** 

(3.31) 

0.30** 

(2.30) 

0.01 

(0.46) 

0.37*** 

(8.67) 

-0.02 

(-0.45) 

Trend (S2=1) 0.79*** 

(6.02) 

0.10*** 

(3.97) 

0.77*** 

(6.03) 

0.05* 

(1.87) 

0.31*** 

(7.59) 

-0.09** 

(-2.32) 

Trend  (S2=5) 0.45*** 

(3.40) 

0.10*** 

(3.95) 

0.41** 

(3.19) 

0.03 

(1.36) 

0.33*** 

(7.81) 

-0.02 

(-0.66) 

Trend  (S2=20) 0.33* 

(2.70) 

7.24** 

(3.11) 

0.30** 

(2.44) 

0.02 

(0.65) 

0.28*** 

(7.12) 

-0.00 

(-0.07) 

MOM 

 

1.07*** 

(4.62) 

-0.45*** 

(-10.61) 

1.36*** 

(6.47) 

-0.23*** 

(-5.35) 

-0.47*** 

(-6.91) 

-0.76*** 

(-12.55) 

 

 

 

5.5. Sharpe Style Regressions 

 

The previous analyses and results in Section 6.2-6.4 provide evidences to support the 

Hypothesis 1, and in addition to that, the Section 6.3 also implies the change of trend factor’s 

performance might be somewhat connected to the SREV factor, though the results are not 

statistically significant and the evidences are not sufficient. 

 

In order to provided further results to test the Hypothesis 2, in this subsection, I followed HZZ 

and utilized the Sharpe Style regressions to explore how the performance of the trend factor is 

related to SREV, MOM and LREV factors, and also examine the changes of such relationship 

across different lengths of skipping periods. The Sharpe Style regression (Sharpe, 1980) is used 
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to determine the contribution of various sub-portfolios to the overall fund performance, and it 

puts constraints over the coefficients where all the coefficients cannot be negative and the sum 

must equal to 1. Following HZZ, I conducted the following regression to identify the 

contribution of the SREV, MOM and LREV factors to the trend factor: 

 

𝑟𝑇𝑟𝑒𝑛𝑑,𝑡 = 𝛼 + 𝛽1𝑟𝑆𝑅𝐸𝑉,𝑡 + 𝛽2𝑟𝑀𝑂𝑀,𝑡 + 𝛽3𝑟𝐿𝑅𝐸𝑉,𝑡 + 𝜖𝑡 

where 

𝛽1 ≥ 0, 𝛽2 ≥ 0, 𝛽3 ≥ 0,            𝑎𝑛𝑑  𝛽1 + 𝛽2 + 𝛽3 = 1   

 

in which the monthly returns of the trend factor are regressed over the monthly returns of the 

short-term reversal factor (SREV), the momentum factor (MOM) and the long-term reversal 

factor (LREV), and t is the month. Mathematically, the coefficient 𝛽𝑖 measures the contribution 

of the movement on each factor’s monthly return over the movement of the trend factor’s 

monthly return. 

 

In addition to the regression over the trend factor, similar regressions are also conducted on the 

trend factor with both types of skipping periods of 1-, 5- and 20-day lengths. And in addition 

to those, the regressions are further split by whole sample period, recession periods and 

expansion periods, to evaluate the contributions of the SREV, MOM and LREV factors in 

different economic conditions. It should be pointed out that HZZ included the period from June 

1930 to December 2014 in the regression analysis, while in this study the sample period is from 

January 1931 to December 2014. This is because the LREV factor data is only available from 

January 1931 in Kenneth R. French's data library (French, 2018), while HZZ didn’t explain the 

data source for LREV factor before January 1931.  

 

The results of the Sharpe style regressions are reported in Table 5. The results show that, 

without any skipping period, the LREV factor accounts for the most movement of the trend 

factor’s return in the whole sample period (48.46%) and in expansion period (61.30%), while 

in recession period it is mainly contributed by the SREV factor (56.49%). This is somewhat 

different from the original HZZ’s results, where the SREV accounts for the most in all three 

periods. This difference might be from the different length of the sample period, as mentioned 

before, however this difference in the starting point is not crucial for our analysis on the impacts 

of skipping period on the trend factor, as the focus of this study is on the changes of three 

(5) 
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factor’s contributors when applying different skipping periods, which will be described in 

details in the following part. 

 

The results in Table 5 shows that, with the application of both types of skipping periods, the 

SREV factor’s contribution in the whole sample period decreases from 30.22% (no skipping 

period) to 20.37% and 21.03% (with respect to 1 day skipping period of both types), 9.60% and 

8.14% (with respect to 5 day skipping period of both types), 1.20% and 10.07% (with respect 

to 20 day skipping period of both types). The same declining pattern is also clearly observed in 

recession and expansion periods. Where in the recession periods, the SREV factor’s 

contribution decreases from 56.49% (no skipping period) to 45.72% and 44.85% (with respect 

to 1 day skipping period of both types), 25.52% and 30.92% (with respect to 5 day skipping 

period of both types), 14.34% and 27.23% (with respect to 20 day skipping period of both types); 

and in the expansion periods, the SREV factor’s contribution in the decreases from 13.19% (no 

skipping period) to 4.12% and 5.85% (with respect to 1 day skipping period of both types), -

0.41% and -0.06% (with respect to 5 day skipping period of both types), -7.22% and -0.01% 

(with respect to 20 day skipping period of both types). The results also show that the 

contribution of LREV factor increases as the decline of the contribution of the SREV factor, 

while MOM’s contribution almost stay unchanged.  

 

Despite the difference with HZZ’s study in the starting point, the comparison of results with 

different skipping periods support the Hypothesis 2 that skipping periods affect the performance 

of the trend factor mainly through SREV factor. 

 

 

Table 5. Sharpe Style regressions 

The table reports the results of Sharpe Style regressions, regressing the returns of the trend 

factors and the trend factors with 1-, 5- and 20-day skipping periods (where S1 is the length of 

first type, i.e. “excluding type” skipping period which excludes the most recent observations of 

the formation period, and S2 is the length of second type, i.e. “inserting type” skipping period 

which doesn’t exclude the most recent observations but insert a gap after formation period), on 

the returns of the short-term reversal factor (SREV), the momentum factor (MOM), and the 

long-term reversal factor (LREV). The coefficients are constrained to be positive and their sum 

is equal to 1. The sample period is from January 1931 to December 2014, including 1008 
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months (observations). The t-statistics are in parentheses and significance at 1% level is given 

by ***,  5% level by **, and 10% level by *. 

 

Trend  
Whole sample 

period 
Recession period Expansion period 

    

SREV 30.22*** 

(11.41) 

56.49*** 

(3.78) 

13.19*** 

(4.56) 

MOM 21.32*** 

(15.55) 

15.38*** 

(5.13) 

25.51*** 

(16.97) 

LREV 48.46*** 

(18.98) 

28.13*** 

(5.00) 

61.30*** 

(22.05) 

 

 

Trend (S1=1)  
Whole sample 

period 
Recession period Expansion period 

    

SREV 20.37*** 

(7.49) 

45.72*** 

(7.63) 

4.12*** 

(1.38) 

MOM 24.19*** 

(17.16) 

20.94*** 

(6.78) 

26.57*** 

(17.05) 

LREV 55.44*** 

(21.14) 

33.34*** 

(5.76) 

69.31*** 

(24.07) 

 

 

Trend (S1=5)  
Whole sample 

period 
Recession period Expansion period 

    

SREV 9.60*** 

(3.52) 

25.52*** 

(4.11) 

-0.41 

(-0.14) 

MOM 25.06*** 

(17.75) 

24.57*** 

(7.67) 

25.48*** 

(16.18) 

LREV 65.34*** 

(24.85) 

49.91*** 

(8.30) 

74.93*** 

(25.74) 
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Trend (S1=20)  
Whole sample 

period 
Recession period Expansion period 

    

SREV 1.20* 

(0.43) 

14.34** 

(2.19) 

-7.22** 

(-2.32) 

MOM 28.00*** 

(19.21) 

24.65*** 

(7.30) 

30.27*** 

(18.72) 

LREV 70.81*** 

(26.10) 

61.01*** 

(9.64) 

76.96*** 

(25.74) 

 

 

Trend (S2=1)  
Whole sample 

period 
Recession period Expansion period 

    

SREV 21.03*** 

(7.89) 

44.85*** 

(7.64) 

5.85** 

(1.99) 

MOM 25.15*** 

(18.23) 

23.52*** 

(7.77) 

26.45*** 

(17.30) 

LREV 53.82*** 

(20.96) 

31.62*** 

(5.57) 

67.70*** 

(23.95) 

 

 

Trend (S2=5)  
Whole sample 

period 
Recession period Expansion period 

    

SREV 8.14** 

(2.43) 

30.92*** 

(4.82) 

-0.06** 

(-2.08) 

MOM 24.62*** 

(17.00) 

23.16*** 

(7.00) 

25.78*** 

(16.31) 

LREV 67.24*** 

(24.94) 

45.92*** 

(7.41) 

80.55*** 

(27.57) 
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Trend (S2=20)  
Whole sample 

period 
Recession period Expansion period 

    

SREV 10.07 

(1.49) 

27.23*** 

(4.83) 

-0.01* 

(1.66) 

MOM 26.49*** 

(19.48) 

25.88*** 

(8.90) 

27.00*** 

(17.32) 

LREV 63.44*** 

(25.05) 

46.89*** 

(8.60) 

73.73*** 

(25.59) 

 

 

 

5.6. Contributed Returns of the SREV, MOM and LREV Factors 

 

The previous Sharpe style regressions primarily focus on the coefficient of the SREV, MOM 

and LREV factors’ return over the trend factor’s return, which finds that with the skipping 

periods would reduce SREV’s contribution to the movement of the trend factor’s return. 

Another interesting perspective is to look at the three factor’s contribution to the trend factor’s 

overall return (rather than the movement of the return), by multiplying the monthly return of 

each factor with its coefficient.  

 

Table 6 reports the results of the coefficients, the average monthly returns, and the contributed 

returns which are multiplied by the former two values, of the SREV, MOM and LREV factors. 

It should be pointed out that here the regression is slightly different from the previous Sharpe 

style regressions, because the constraints in equation (5) are removed in order to reflect the 

actual correlations, while the Sharpe style regression’s constraints are more suitable for 

analyses of contributions, however mathematically both ways should lead to similar results. 

The regression show that the coefficients of the SREV, MOM and LREV factors with regard 

to the trend factor are 0.16, 0.15 and 0.33, similar to the contribution ratios from Sharpe style 

regressions  30.22%, 21,32% and 48.46. 

 

The results of contributed returns show that out of the 1.69% total average monthly return of 

the trend factor, 0.24% are contributed by the SREV factor, 0.17% are due to MOM factor and 
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0.16% are from the LREV factor.  Thus, during the whole sample period, SREV factor accounts 

for the largest part of  the trend factor’s return compared to MOM and LREV factors . 

 

Combining the results of Sharpe style regressions (Table 5) and the contributed returns (Table 

6) gives us a more comprehensive view on how the skipping periods affect the trend factor 

through the SREV factor: Firstly, without any skipping periods, the SREV factor accounts for 

the largest part of the trend factor’s contributed return, as the commonly used skipping periods 

are within one-month length, it affects mostly the short-term information contained in the trend 

factor. For example, when the 20-day skipping period of the first type (“excluding type”) is 

applied, it will eliminate the whole SREV factor, and 0.24% out of the 1.69% return would be 

removed. Secondly, as shown by the Sharpe style regressions, the SREV factor’s coefficient to 

the trend factor will drop significantly as the length of skipping period increases, this will 

further reduce the trend factor’s return on top of the first reason. These findings not only well 

support the Hypothesis 2 that the skipping periods affects the trend factor mainly though the 

SREV factor, but also provide detailed explanations on how this happens. 

 

 

Table 6. Contributed returns of the SREV, MOM and LREV factors 

The table reports the contributed monthly average return of the short-term reversal factor 

(SREV), the momentum factor (MOM), and the long-term reversal factor (LREV), to the 

overall monthly average return (1.69%) of the trend factor. The contributed return of each factor 

is multiplied by its coefficient (whole sample) from the Sharpe Style regressions, and the 

average monthly return of the factor. The t-statistics of the coefficient and the average monthly 

return are in parentheses and significance at 1% level is given by ***,  5% level by **, and 10% 

level by *. 

 

Factor  
Coefficient  

(whole sample) 

Average monthly 

return (%) 

Contributed  

return (%) 
    

SREV 0.16*** 

(4.57) 

0.79*** 

(7.21) 

0.24 

 

MOM 0.15*** 

(9.34) 

0.79*** 

(3.26) 

0.17 
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LREV 0.33*** 

(9.20) 

0.34*** 

(3.09) 

0.16 

 

 

 

5.7. Decomposition of the Trend Factor by Single Lag Portfolios 

 

The results of Sharpe style regressions in Section 6.5 provide evidences to support the 

Hypothesis 2. And in Section 6.6 some similar but more detailed analyses are conducted to 

further analyze the impacts of the skipping periods over each components of the trend factor. 

Instead of analyzing the contribution of the SREV, MOM and LREV factors, in this section I 

constructed portfolios based on each lag of the trend factor, and analyzed the contribution of 

all these portfolios over the trend factor. 

 

Firstly, as the same in equation (1), the normalized moving averages �̃�𝑗𝑡,𝐿 of stock j at the end 

of month j, with lag L in 3-, 5-,10-, 20-. 50-, 100-, 200-, 400-, 600-, 800-, and 1000-day length 

are calculated. 

 

Secondly, instead of using cross-section regression of all 11 lags, only the normalized moving 

averages �̃�𝑗𝑡,𝐿 of stock j at the end of month j, with the same lag L are included in the regression. 

And since there are in total 11 different lag lengths, 11 individual regressions are conducted 

over the normalized moving averages of each lag length, where 𝑟𝑗,𝑡 is the return of stock j in 

month t, 𝛽𝑖,𝑡  is the coefficient of the normalized MA with leg 𝐿𝑖  in month t, and 𝛽0,𝑡  is the 

intercept in month t. 

𝑟𝑗,𝑡 = 𝛽0,𝑡 + 𝛽i,𝑡�̃�𝑗𝑡−1,𝐿𝑖
+ 𝜀𝑗,𝑡 ,           𝑗 = 1, … , 𝑛 

  

Then similar methods as described in equation (3) and equation (4) are used to construct 11 

single lag portfolios. The difference between those single lag portfolios and the trend factor is 

that the trend factor combines the information of 11 different lag lengths, while each of those 

single lag portfolios only contains the information of the related lag length. Intuitively, those 

11 individual portfolios can be seen as the decomposed trend factor.   

 

(6) 
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The same summary statistics as in Section 6.1 and 6.2 are reported in Table 7, for the trend 

factor, those 11 single lag portfolios and the related benchmarking SREV, MOM and LREV 

factors. The portfolios MA3, MA5, MA10 and MA20 are the single lag portfolios with short-

term lag lengths, the monthly returns of those portfolios are between 1.44% (MA20) and 1.67% 

(MA10), and the Sharpe ratios are between 0.52 (MA3 and MA5) and 0.39 (MA20); The 

portfolios MA50, MA100 and MA200 are the single lag portfolios with mid-term lag lengths, 

the monthly returns of those portfolios are between 0.28% (MA200) and 1.08% (MA50), and 

the Sharpe ratios are between 0.08 (MA200) and 0.28 (MA50); The portfolios MA400, MA600, 

MA800 and MA1000 are the single lag portfolios with long-term lag lengths, the monthly 

returns of those portfolios are between -0.03% (MA600 and MA800) and 0.09% (MA400), and 

the Sharpe ratios are between -0.01 (MA600 and MA800) and 0.02 (MA400). It is very obvious 

that the short-term lag related portfolios have higher returns and the long-term lag related 

portfolios have lower returns, and within each group, it’s also true that with the increasing 

length of the lag, the monthly return as well as the Sharpe ratio decline (except for MA600 and 

MA800, which are not statistically significant), which is consistent with the observation that 

both monthly return and Sharpe ratio rankings are SREV > MOM > LREV. 

 

 

Table 7. Performances of the single lag portfolios 

This table provides the same summary statistics as Table 1, including mean, standard deviation, 

Sharpe ratio, skewness and excess kurtosis, for the trend factor, as well as the 11 components 

of the trend factor, which using single lag (instead of the 11 lags) to form the portfolio, and the 

benchmarking short-term reversal factor (SREV), the momentum factor (MOM) and the long-

term reversal factor (LREV). The single lag portfolios are name with MA- and the lag length,  

for example, portfolio “MA3” is the portfolio formed only based on the 3-day lag and use the 

same logic can calculations. The t-statistics are in parentheses and significance at 1% level is 

given by ***,  5% level by **, and 10% level by *. 

 

Factor Mean (%) Std. dev (%) Sharpe ratio Skewness 
Excess 

kurtosis 
      

Trend 1.69*** 

(13.41) 

4.02 0.42 1.50 19.77 



 46 

MA3 1.47*** 

(16.49) 

2.77 0.52 2.53 16.66 

MA5 1.60*** 

(16.63) 

3.07 0.52 2.09 13.9 

MA10 1.67*** 

(15.42) 

3.45 0.48 1.85 14.31 

MA20 1.44*** 

(12.35) 

3.72 0.39 1.55 17.03 

MA50 1.08*** 

(9.03) 

3.82 0.28 2.42 16.15 

MA100 0.64*** 

(5.16) 

3.96 0.16 3.09 22.72 

MA200 0.28** 

(2.46) 

3.57 0.08 3.76 31.67 

MA400 0.09 

(0.75) 

3.80 0.02 5.76 75.37 

MA600 -0.03 

(-0.28) 

3.72 -0.01 2.41 21.79 

MA800 -0.03 

(-0.23) 

4.01 -0.01 2.06 25.57 

MA1000 0.06 

(0.41) 

4.46 0.01 3.92 46.31 

SREV 0.79*** 

(7.21) 

3.49 0.23 0.99 8.18 

MOM 0.79*** 

(3.26) 

7.69 0.10 -4.41 40.42 

LREV 0.34*** 

(3.09) 

3.50 0.10 2.93 24.76 

 

 

Then similar to the Sharpe style regressions in Section 6.5, the return of the trend factor is 

regressed over the returns of those 11 single lag portfolios, under the whole sample period, 

recession period and expansion period, and the results are reported in Table 8.  Please note that 
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this regression is the same as the regression conducted for Table 6, while doesn’t include the 

constraints of Sharpe style regressions.  

 

During the whole sample period, the results show the returns of the single lag portfolios MA5 

(with a coefficient of 0.51) and MA600 (with a coefficient of 0.55) have the highest coefficient, 

i.e. contribution to the movement of the trend factor’s return. The 5-day (one week, in trading 

days) and the 600-day (three years, in trading days) lags correspond to the short-term and long-

term factors, which is in line with the previous results from the Sharpe style regressions in 

Section 6.5 – Table 5 that LREV has the largest coefficient and SREV has the second largest 

coefficient. The results in recession periods show the key driver portfolio MA5’s coefficient 

increases to 0.61 and MA600’s coefficient declines to 0.30 (not statistically significant), while 

the results in expansion periods show MA5’s coefficient declines to 0.32 and MA600’s 

coefficient increases to 0.58, again these findings are in line with the changes of SREV and 

LREV’s coefficients during different periods from the previous analysis.  

 

However, not all the other single lag portfolios related to the SREV and LREV show the same 

patterns. For example, MA3 and MA10, the single lag portfolios related to SREV, of which the 

coefficients decline significantly in recession period and recover in expansion period, show 

opposite patterns of MA5; and MA400, MA800 and MA1000, the rest single lag portfolios 

related to LREV, also show opposite patterns of MA600. When compare different results 

between single lag portfolios (Table 8) and the SREV, MOM and LREV factors (Table 5), it 

should be pointed out the differences between those two sets of portfolios/factors. According 

to Kenneth R. French’s data library (French, 2018),  the SREV factor is formed by a double 

sorting based on 2 portfolios of size (market equity, ME) and 3 portfolios of priori 1-month 

return, and the SREV’s return is calculated as (Small Low + Big Low)/2 – (Small High + Big 

High)/2, while the single lag portfolios are built with HZZ’s method.  

 

Although not all the results in Table 8 are the same as the previous Sharpe style regressions 

results, it is still clear to identify the key drivers of the trend factor’s return movement are the 

short-term lag MA5 portfolio and long-term lag MA600 portfolio. And those results merely 

serve as a starting point, and further analyses are needed to explore the impacts of skipping 

period would require some further analyses on the relationships, which will be given in the 

following parts. 
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Table 8. Regressions of the trend factor on single lag portfolios 

The table reports the results of regressing the trend factor’s return on the single lag portfolios’ 

returns. The sample period is from January 1931 to December 2014, including 1008 months 

(observations). The t-statistics are in parentheses and significance at 1% level is given by ***,  

5% level by **, and 10% level by *. 

 

 Whole sample Recession Expansion 

    

Intercept 0.63*** 

(5.29) 

1.15*** 

(3.05) 

0.61*** 

(5.10) 

MA3 0.16* 

(1.76) 

-0.04 

(-0.19) 

0.31*** 

(3.07) 

MA5 0.51*** 

(4.61) 

0.61** 

(2.18) 

0.32*** 

(2.66) 

MA10 -0.08 

(-0.84) 

-0.19 

(-0.79) 

-0.03 

(-0.27) 

MA20 0.06 

(0.76) 

0.07 

(0.34) 

0.10 

(1.18) 

MA50 0.19** 

(2.47) 

0.32* 

(1.83) 

0.12 

(1.40) 

MA100 -0.20*** 

(-2.91) 

-0.16 

(-1.16) 

-0.35*** 

(-4.03) 

MA200 0.03 

(0.42) 

-0.21 

(-1.55) 

0.25*** 

(3.01) 

MA400 -0.45*** 

 (-7.14) 

-0.28** 

(-2.03) 

-0.42*** 

(-4.87) 

MA600 0.55*** 

(7.48) 

0.30 

(1.06) 

0.58*** 

(7.64) 

MA800 -0.32*** 

(-3.76) 

-0.01 

(-0.02) 

-0.89*** 

(-6.55) 

MA1000 0.20*** 

(3.02) 

0.15*** 

(1.03) 

0.63*** 

(5.77) 
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Similar to previous analyses on the SREV, MOM and LREV factors, in order to further explore 

the impacts of the skipping periods on each of those 11 single lag portfolios, I further conduct 

regressions of the trend factor with skipping periods on those single lag portfolios. Table 9 

reports the results of the regressions, in which the Panel A are the regressions on the trend factor 

with “excluding types” skipping period and Panel B are related to the “inserting types”. And 

Figure 3 visualizes those data included in Table 9, to show the changes of the coefficients in a 

more convenient way. 

 

The previous Sharpe style regressions on the SREV, MOM and LREV factors in Section 6.5 

Table 5 show that with the length of skipping periods becomes longer, the SREV’s coefficient 

will decline and LREV’s coefficient will grow larger. However, the results in Table 9 don’t 

show exactly the same patterns. Overall, there isn’t a clear decreasing trend of short-term lag 

portfolios’ coefficients. Although the key driver portfolio MA5’s coefficients shows some 

decline trend under the first type (“excluding type” ) of skipping period, which first increases 

from 0.51 (without skipping period, as in Table 8) to 0.70 when the trend factor is applied with 

1-day skipping period, but declines to 0.44 and 0.21 after applied with 5-day and 10-day 

skipping periods (as shown in Table 9 – Panel A). While under the “inserting type” skipping 

periods, the MA5’s coefficient doesn’t show a clear trend in its changes (as shown in Table 9 

– Panel B). As for the other key driver portfolio MA600, the coefficient bounces between 0.4 

and 0.6 under both types of skipping periods, without showing any clear trend.  

Despite it is difficult to identify a clear pattern on the changes of coefficients with regard to the 

length of skipping period, the Table 9 and Figure 3 show that the coefficients of MA50 and 

MA600, the previously identified key driver portfolios, stay at very high level regardless of the 

lengths of skipping periods. That is to say, no matter what kind of skipping period is applied to 

the trend factor, its return is most sensitive to the returns of MA50 and MA600 portfolios.  

 

 

Table 9. Regressions of the trend factor with skipping periods on single lag portfolios 

The table reports the results of regressing the trend factor’s return (with skipping periods of 

both types, where S1 is the length of first type, i.e. “excluding type” skipping period which 

excludes the most recent observations of the formation period, and S2 is the length of second 

type, i.e. “inserting type” skipping period which doesn’t exclude the most recent observations 

but insert a gap after formation period) on the single lag portfolios’ returns. The sample period 

is from January 1931 to December 2014, including 1008 months (observations). The t-statistics 
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are in parentheses and significance at 1% level is given by ***,  5% level by **, and 10% level 

by *. 

 

Panel A Trend Trend (S1=1) Trend (S1=5) Trend (S1=20) 

   
  

Intercept 0.63*** 

(5.29) 

0.69*** 

(5.05) 

0.76*** 

(5.41) 

0.83*** 

(5.89) 

MA3 0.16* 

(1.76) 

-0.33*** 

(-3.13) 

0.05 

(0.43) 

0.04 

(0.35) 

MA5 0.51*** 

(4.61) 

0.70*** 

(5.45) 

0.44*** 

(3.37) 

0.21 

(1.56) 

MA10 -0.08 

(-0.84) 

-0.17 

(-1.60) 

-0.52*** 

(-4.74) 

-0.09 

(-0.83) 

MA20 0.06 

(0.76) 

0.06 

(0.66) 

0.08 

(0.92) 

-0.17* 

(-1.81) 

MA50 0.19** 

(2.47) 

0.25*** 

(2.82) 

0.19** 

(2.03) 

0.14 

(1.56) 

MA100 -0.20*** 

(-2.91) 

-0.38*** 

(-4.76) 

-0.40*** 

(-4.89) 

-0.47*** 

(-5.65) 

MA200 0.03 

(0.42) 

0.07 

(0.95) 

0.16** 

(2.10) 

0.12 

(1.60) 

MA400 -0.45*** 

 (-7.14) 

-0.43*** 

(-5.93) 

-0.46*** 

(-6.18) 

-0.51*** 

(-6.87) 

MA600 0.55*** 

(7.48) 

0.55*** 

(6.47) 

0.48*** 

(5.48) 

0.51*** 

(5.77) 

MA800 -0.32*** 

(-3.76) 

-0.24** 

(-2.45) 

-0.17* 

(-1.66) 

-0.16 

(-1.60) 

MA1000 0.20*** 

(3.02) 

0.18** 

(2.36) 

0.19** 

(2.46) 

0.29*** 

(3.77) 
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Panel B Trend Trend (S2=1) Trend (S2=5) Trend (S2=20) 

   
  

Intercept 0.63*** 

(5.29) 

0.66*** 

(4.86) 

0.78*** 

(5.42) 

0.68*** 

(5.20) 

MA3 0.16* 

(1.76) 

-0.30*** 

(-2.82) 

0.02 

(0.16) 

-0.12 

(-1.21) 

MA5 0.51*** 

(4.61) 

0.66*** 

(5.17) 

0.45*** 

(3.35) 

0.61*** 

(4.94) 

MA10 -0.08 

(-0.84) 

-0.18* 

(-1.65) 

-0.47*** 

(-4.14) 

-0.41*** 

(-4.05) 

MA20 0.06 

(0.76) 

0.10 

(1.17) 

0.07 

(0.74) 

-0.01 

(-0.15) 

MA50 0.19** 

(2.47) 

0.23*** 

(2.61) 

0.09 

(0.97) 

0.14 

(1.60) 

MA100 -0.20*** 

(-2.91) 

-0.41*** 

(-5.11) 

-0.32*** 

(-3.76) 

-0.40*** 

(-5.19) 

MA200 0.03 

(0.42) 

0.10 

(1.40) 

0.28*** 

(3.62) 

0.21*** 

(2.94) 

MA400 -0.45*** 

 (-7.14) 

-0.45*** 

(-6.30) 

-0.54*** 

(-7.14) 

-0.58*** 

(-8.45) 

MA600 0.55*** 

(7.48) 

0.51*** 

(6.03) 

0.54*** 

(5.97) 

0.44*** 

(5.35) 

MA800 -0.32*** 

(-3.76) 

-0.17* 

(1.69) 

-0.17* 

(-1.66) 

0.07 

(0.76) 

MA1000 0.20*** 

(3.02) 

0.13* 

(1.77) 

0.15* 

(1.89) 

0.08 

(1.15) 

 

 

 

Figure 3. Coefficients of single lag portfolios 

The figures below show the changes of coefficients of the single lag portfolios (from the results 

of Table 9 – Panel A and Panel B) when different lag lengths of skipping period applied to the 

trend factor. S1 is the length of first type, i.e. “excluding type” skipping period which excludes 

the most recent observations of the formation period, and S2 is the length of second type, i.e. 
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“inserting type” skipping period which doesn’t exclude the most recent observations but insert 

a gap after formation period. 

 

Coefficients – the first type (“excluding type”) of skipping period: 
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Coefficients – the second type (“inserting type”) of skipping period: 
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5.8. Contributed Returns of the Single Lag Portfolios 

 

Since the analyses on the 11 single lag portfolios in previous section shows somewhat different 

results compared to the SREV, MOM and LREV factors. It would be interesting to see the 

contributed returns of those single lag portfolios. Similar to Section 6.6, the contributed return 

of each of those portfolios is calculated by multiplying its coefficient from Table 8 (whole 

sample period) with its average monthly return from Table 7, and the results are reported in 

Table 10. 

 

Table 10 shows that out of the 1.69% monthly average return of the trend factor, MA5 portfolio 

accounts for nearly half of the return (0.82%), and MA3 portfolio accounts for the second 

largest part of the return (0.24%), and overall most of the trend factor’s return is contributed by 

short-term lag portfolios, while the long-term lag portfolios accounts for the least (MA400 

accounts for -0.04%, MA600 accounts for -0.02%, MA800 accounts for -0.01% and MA400 

accounts for 0.01%). This finding is consistent with the analyses of the SREV, MOM and 

LREV factors’ contributed returns  (in Section 6.6) that the SREV factor has the highest 

contributed return and the LREV factor has the lowest. In addition, when looking at the key 

driver portfolios to the trend factor’s return movement identified in the regressions (in Section 

6.7), MA5 also accounts for large part of the trend factor’s return (0.82%), while MA600 

accounts for a very limited share (0.01%) of the trend factor’s return.  

 

The previous analysis on decomposition of the trend factor by SREV, MOM and LREV factors 

proves the skipping period affects the trend factor mainly through the SREV factor. And the 

findings from the regressions on the 11 single portfolios (Table 8) and the contributed returns 

(Table 10) gives us a more detailed view on how the skipping periods affect the trend factor 

through the 11 related single lag portfolios. The MA5 portfolio is identified as the main driver 

for the trend factor’s performance,  as it not only has a relatively very high coefficient, but also  

account for 0.82%, the largest part of the trend factor’s return without any skipping periods. 

With a 5-day skipping period of the first type, 0.82% out of the 1.69% return of trend factor 

will be removed. While the results show that the trend factor’s return is also sensitive to the 

long-term lag portfolio MA600, the low return of the MA600 portfolio makes it hard to create 

significant movements on the trend factor’s return. Thus the skipping period affects the trend 

factor’s performance mainly by affecting the short-term related lags, especially the 5-day lag. 

Again, those results support the Hypothesis 2. 
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Table 10. Contributed returns of the single lag portfolios 

The table reports the contributed monthly average return of the 11 single lag portfolios  to the 

overall monthly average return (1.69%) of the trend factor. The contributed return of each 

portfolio is multiplied by its coefficient (whole sample) from the regressions, and the average 

monthly return of the factor. The t-statistics of the coefficient and the average monthly return 

are in parentheses and significance at 1% level is given by ***,  5% level by **, and 10% level 

by *. 

 

Factor  
Coefficient  

(whole sample) 

Average monthly 

return (%) 

Contributed  

return (%) 
    

MA3 0.16* 

(1.76) 

1.47*** 

(16.49) 

0.24 

 

MA5 0.51*** 

(4.61) 

1.60*** 

(16.63) 

0.82 

 

MA10 -0.08 

(-0.84) 

1.67*** 

(15.42) 

-0.13 

 

MA20 0.06 

(0.76) 

1.44*** 

(12.35) 

0.09 

 

MA50 0.19** 

(2.47) 

1.08*** 

(9.03) 

0.21 

 

MA100 -0.20*** 

(-2.91) 

0.64*** 

(5.16) 

-0.13 

 

MA200 0.03 

(0.42) 

0.28** 

(2.46) 

0.08 

 

MA400 -0.45*** 

 (-7.14) 

0.09 

(0.75) 

-0.04 

 

MA600 0.55*** 

(7.48) 

-0.03 

(-0.28) 

-0.02 

 

MA800 -0.32*** 

(-3.76) 

-0.03 

(-0.23) 

0.01 

 

MA1000 0.20*** 

(3.02) 

0.06 

(0.41) 

0.01 
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6. Conclusion 

 

HZZ’s trend factor provides a combined factor from the short-term reversal factor, the 

momentum factor, and the long-term reversal factor through cross-section regressions in order 

to gain abnormal returns. This study is based on HZZ’s approach, and further examines the 

performance of the trend factor under the setting of skipping period. The skipping period is 

widely used by related studies in order to mitigate the bid-ask spread bias and avoid the opposite 

effects from shorter-term factors. The skipping period also provides a practical setup which 

considers the real-life trades execution issues. 

 

The trend factor is examined under two types of skipping periods, the first type (“excluding 

type”), and the second type ( “inserting type”), which are widely used by studies on short-term 

reversal effect, mid-term momentum effect, and long-term reversal effect. And there are three 

lengths for each type of the skipping period tested in this study: 1-day, 5-day and 20-day length, 

which correspond to the 1-day, 1-week and 1-month period which are widely used by many 

other studies as the lengths for skipping periods. 

 

This study aims to test two hypotheses: one is that the skipping period will reduce the return of 

the trend factor, and the other is that such impacts are mainly through the SREV factor.  

 

Hypothesis 1 is supported by the results that return of the trend factor declines significantly 

after the application of skipping period. Under both the “excluding type” and the “inserting 

type” of skipping periods, the monthly average return of trend factor drops from 1.69% by more 

than 0.50% when only the 1-day skipping periods are applied,  and after applying the 5-day and 

20-day skipping periods the return of the trend factor becomes lower than that of the SREV and 

MOM factor. The alpha of the trend factor also declines sharply, and after applying the skipping 

period it becomes lower than the MOM factor’s alpha (in terms of both CAPM alpha and FF’s 

three factor alpha).  

 

Then, the Hypothesis 2 is supported by decomposing the trend factor and analyzing the 

contributed returns of its components. The decomposition of trend factor by SREV, MOM and 

LREV factors suggests the declines of trend factor’s performance is mainly driven by the SREV 

factor, as it accounts for the most parts of trend factor’s returns (0.24% out of 1.69%), and with 
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the length of skipping period increases, the coefficient between the trend factor’s return and the 

SREV’s return declines. Together those two mechanisms lead the return of the trend factor drop 

significantly when the skipping period becomes longer. In addition, in the study trend factor is 

further decomposed by its lags into 11 single lag portfolios, and the short-term MA5 portfolio 

is identified as the main driver of trend factor’s return, as it not only has a very high coefficient 

with the trend factor’s return (0.21 to 0.51, depends on the length of skipping period), but also 

accounts for the most part of trend factors’ return (0.82% out of 1.69%). The results indicate 

that the skipping period impacts trend factor’s performance through the SREV factor. 

 

To summarize, the study finds that with the skipping period, the performance of the trend factor 

declines largely and its superiority over other factors disappears. The study also shows that the 

impacts of skipping period over the trend factor’s is mainly due to the short-term reversal factor, 

especially the 5-day lag of the trend factor. 

 

This study contributes to the previous research on the trend factor mainly in two ways. Firstly, 

the study examines HZZ’s trend factor under the context of skipping period, the application of 

skipping period not only serves as a consistent method as most peer studies, but also provides 

evidence on the trend factor’s performance in a real-world setting. Secondly, the analyses on 

decomposition of the trend factor also provides some details on the sources of trend factor’s 

abnormal returns, which suggest the high returns of the trend factor is mainly from its short-

term lags, which could be further explored and leveraged by future studies. 
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8. Appendices 

 

Appendix A. The original table of summary statistics from HZZ’s study 

 

Factor Mean (%) Std. dev (%) Sharpe ratio Skewness 
Excess 

kurtosis 
      

Trend-HZZ 1.63*** 

(15.0) 

3.45 0.47 1.47 11.3 

SREV 0.79*** 

(7.21) 

3.49 0.23 0.99 8.22 

MOM 0.79*** 

(3.29) 

7.69 0.10 -4.43 40.7 

LREV 0.34*** 

(3.09) 

3.50 0.10 2.93 24.8 

Market 0.62*** 

(3.69) 

5.40 0.12 0.27 8.03 

SMB 0.27*** 

(2.63) 

3.24 0.08 2.04 19.9 

HML 0.41*** 

(3.64) 

3.58 0.11 2.15 18.9 
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