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The purpose of this Master’s Thesis is to discuss the application of functional
statistical depth, a powerful nonparametric modeling tool, to supervised functional
classification.

With the recent rapid increase of the sophistication of measurement and storage
tools, we have begun to encounter more and more complex datasets on all fields
of research. This sudden explosion of very high dimensional complex data has
brought with it an increasing need for inferential analytic tools for dealing with
such data. However, developing methodology for functional data is far from
straightforward due to the introduction of a wide range of important features
unique to this type of data, most notably, shape and shape-outlyingness. The issue
is furthermore complicated by the massive computational load many otherwise
appealing approaches would impose.

In this thesis, shape receptive depth based classification is considered. In particular,
the focus is on Jth order kth moment integrated depth based classification.

Receptiveness to shape features and shape-outlyingness of the Jth order kth moment
integrated depth is discussed and important key-ideas related to its features are
established. Then, the Jth order kth moment integrated depth is applied to
supervised functional classification for two different real datasets. Performance
of different functional depth approaches is compared. The real data examples
illustrate excellent classification accuracy of the Jth order kth moment integrated
depth. Finally, future work and improvement suggestions on the area are discussed.
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Työn tavoitteena on tarkastella funktionaalisen tilastollisen syvyyden soveltamista
luokittelussa. Syvyysmitat ovat epäparametrisia mittareita, jotka kertovat havain-
tojen tilastollisesta poikkeavuudesta.

Tänä päivänä pystymme tallentamaan valtavia määriä dataa. Tämä on mahdollis-
tanut monimutkaisten ja korkeauloitteisten aineistojen keräämisen ja analysoinnin.
Tästä on syntynyt tarve uusille menetelmille jotka soveltuvat korkeauloitteisen
datan käsittelyyn. Funktionaaliset aineistot ovat ääretönuloitteisia. Menetelmien
kehittäminen ääretönuloitteisten aineistojen analysointiin on vaikeaa. Erityisen
haastavaa on huomioida funktionaalisten havaintojen muoto. Lisäksi laskennallinen
taakka saattaa tuottaa ongelmia.

Työssä tutkitaan funktioiden muotoa huomioivien syvyysmittarian käyttöä
luokittelussa. Erityisesti, työssä tarkastellaan J :nnen asteen k:nnen momentin
integroituun syvyysmittaan perustuvaa luokittelua.

Työssä tarkastellaan J :nnen asteen k:nnen momentin integroidun syvyysmitan
herkkyyttä funktioiden muodoille ja muodon suhteen poikkeaville havainnoille.
J :nnen asteen k:nnen momentin integroitua syvyysmittaa käytetään kahden oikean
aineiston luokitteluun. Menetelmän suorituskykyä verrataan muihin syvyysmit-
taan perustuviin luokittelijoihin. Aineistoesimerkit havainnollistavat J :nnen asteen
k:nnen momentin integroidun syvyysmitan erinomaista luokittelukykyä. Työn lo-
pussa esitetään ajatuksia mahdollisuuksista parantaa ja laajentaa tarkasteltua
menetelmää.

Avainsanat: funktionaalinen data-analyysi, tilastollinen syvyys, luokittelu,
muoto, tilastollinen poikkeavuus
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1 Introduction
Today, we are able to store massive amounts of data, and large dimensional datasets
are becoming more and more common. One approach for dealing with very large
dimensional data is to assume that the observations are random functions, instead
of random vectors. This approach is well justified especially in the cases when the
dataset consists of numerous observations of the same process. Analysing the data as
functional, instead of large dimensional vectors, enables to apply methods designed
for processes of continuous nature.

Thinking of the data as functional means thinking of the observation sequences as
single entities that are continuous in time, or some other continuum, over which they
are being sampled. In practice however, this often means that instead of functions, the
observed functions xi often arrive to us as sequences of value-index pairs xi = (yij, tij),
where j = 1, 2, . . . , ni. This means that, although the functions and processes being
measured are continuous, we can never directly observe them in their entirety as
this would mean measuring and storing uncountably many values. Instead, each
observation is only ever partially observed at a certain set of measurement points
which need not even be the same ranging from an observation to another. Thus,
continuity of the functions here means that in principle if we chose to, we could
measure the process at any arbitrary point in time.

The context of the data or the phenomenon to be analyzed often -but not always-
gives raise to an assumption of a certain degree of smoothness on the functions. That
is, given a fine enough measurement scale, two adjacently measured function values
necessarily depend on eachother, and cannot be arbitrarily far apart. The interplay
between smooth and rough plays an important role in the treatment of functional
data and is discussed further in Section 2.

As functional data appears more and more commonly in different applications,
development of the theory and methods for analysing such data has become more
and more important. Many methods originally developed for multivariate data have
already seen extensions to the functional context (see for example Ramsay and
Silverman (2005)). However, extending multivariate methods to functional setting is
not straightforward; The introduction of infinite dimensionality brings about a wide
range of features, concepts and difficulties that are not present in finite dimensional
cases.

Difficulties in dealing with functional data are not only limited to those brought
about by the continuous functional structure of the data. Also, the form in which
the data arrives to us can be challenging and might require some ingenuity in how
to pre-process and present the data in an informative way. Good examples of such
challenging forms the data might arrive in are plentiful in the literature. A common
example is data that consists of input-output pairs of two clearly connected functional
sources that should be analysed jointly. Also, data where the observations consist
of cyclic processes that are continuously observed over multiple cycles is commonly
encountered. This type of data also often exhibits trends that span multiple sub
cycles, posing additional challenges for the analysis.

In finite dimensions the relative location of an observation with respect to a
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Figure 1: The heights of 10 girls measured at 31 ages, chosen randomly from the
Berkley growth data set.

distribution plays a large role in any analysis. However, in a functional setting,
location of an observation is no longer the sole focus of interest, but concepts such
as shape, time-transformations, feature alignment, smoothness etc. play a key role.
Indeed, moving to infinite dimensions also gives a rise to a range of new modes of
variance in not only location, but in shape as well.

An illustrative example of such variation in shape brought about by the continuous
structure of functional data can be found in the Berkley Growth Study, where the
data consists of measurement records of childrens heights taken at a set of 31 ages. In
Figure 1 we have illustrated 10 randomly chosen girls growth curves. Note that the
measurement ages are not equally spaced. There are four measurements while the
child is one year, and annual measurements from two to eight years, after which the
heights are measured twice a year. These measurements reflect a smooth variation in
height that could be assessed as often as desired, therefore making the data functional
of nature. From a first glance the curves look very similar to one another and there
doesn’t appear to be much of interest in the data to be assessed. However, the
features of the data are just too subtle to be seen in this type of plot and only arrive
to us as the variation in the growth acceleration curves, plotted in Figure 2. Aside
from the curve-to-curve variation in the growth curves, Figure 2 also serves as a
good prototype for some key features one routinely encounters while working with
functional data; namely variance in amplitude and phase.

With this in mind, it is not surprising that shape variation and shape outlyingness
have recently received a lot of attention in literature, and there have been rigorous
attempts at developing and extending functional methods that encapsulate these
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Figure 2: The estimated height acceleration curves of the 10 girls, measured in
centimeters per year.
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features. This has proven to be a very difficult task since the idea of encompassing
shape and shape outlyingness are concepts that lack the finite dimensional basis to
expand upon. In multivariate setups, ideas of outlyingness are solely interested in the
location (in some sensible metric) of an observation with respect to the distribution.
These simple ideas can be expanded to the the functional case as well, but the
intricacies in shape and structure inherent to the functional setting still need to be
addressed. However, there has been some very recent advances in the literature
regarding shape and structure of functional data. Nagy et al.(2017) introduce the
first formal definition of shape outlyingness, and many of the recently introduced
depth functionals such as MFHD, KFSD and Pareto Depth have put great emphasis
on addressing the typicality of an observation in not only location but in shape as
well. See: Claeskens et al. (2014), Sguera et al. (2016) and Helander et al. (2018)
for further details on these methods.

The concept of statistical depth (see for example Zuo and Serfling (2000), Tukey
(1975)) was originally introduced to provide a consistent way of constructing sensible
quantiles in multivariate settings where, due to the lack of natural ordering, such
notions are difficult to achieve. Statistical depth provides a center-outward ordering
of the data from a depth-based multivariate median outwards giving rise to regions of
equal depth that have been shown to have many of the properties one would expect
from quantiles (see for example: Zuo and Serfling (2000a) and Serfling (2010)). Due
to these robust distributional feature revealing properties, depth has become a widely
used nonparametric analytic tool. Not only does depth provide a robust measure
of centrality and location, but through the depth regions it allows exploration of
numerous features of the underlying distribution such as asymmetry, spread or shape
(Liu et al. (1999)).

The first example of such statistical depth functional is the often referenced
halfspace depth introduced by Tukey (1975),

HD(x, P ) := inf
u∈Rd−1

P [uT (X − x) ≥ 0].

Following the introduction of the concept, numerous other depth functionals have
been defined and studied in the literature. However, it doesn’t take long to recognize
one glaring weakness of most of the depth notions introduced and discussed in the
literature; Due to the global nature of the definition of most of these depth concepts,
it is often reported that statistical depth is only suited to dealing with relatively
symmetric, convexly supported unimodal distributions. Thus there have been some
very recent efforts by Paindaveine and Van Bever (2013) to extend any depth method
in a flexible way to be able to address these issues related to non-symmetric or
multimodal distributions.

Due to the robustness and distributional feature revealing properties of multivari-
ate depth functionals, it is not surprising that recently a lot of attention has been
devoted to extending various depth notions to the functional setting. Indeed, the
nonparametric nature of statistical depth makes it an attractive tool to be extended
to functional setups where modeling is known to be difficult. Most of the existing
approaches for functional statistical depth are solely interested in the -pointwise-



centrality of the functions, almost entirely disregarding notions of typicality in shape
or structure in the distribution. However, the attention in FDA literature has shifted
towards assessment of various shape properties in the data, and thus also many of
the recently proposed functional depth methods have started to address typicality
in shape as well (see for example Nagy et al. (2017), Helander et al. (2018) and
Claeskens et al. (2014)).

Arguably shape variation and shape properties are an important aspect to con-
sider in functional classification problems. The aim of any classification problem
is to construct a rule or a metric that separates the classes as well as possible. In
multivariate cases this often means that the rule is constructed such that it min-
imizes the within group variation, while maximizing the between group variation.
The distance (in some sensible metric) of a new observation to each of the class
representative cases can then be measured, and the observation is classified to belong
to the group it is closest to. In functional cases this is not easy. Examples of centrally
placed outliers in shape are very easy to construct (For example, see Helander et
al. (2018)) which often leads to poor performance of any centrality or distance
metric based attempts at separating the classes. However, functional statistical
depth can perhaps provide a solution to this problem. With the recent advances in
literature incorporating considerations of shape features and shape typicality in to
the functional depth methods, statistical depth has become a powerful nonparametric
tool for classification problems as well. This also comes with the benefit tha the usual
maximum depth classification scheme is very straightforward to construct. As depth
provides a measure of how -typical- an observation is within any given class (with
its shape, location etc.), this information can be used to allocate the observation
between the classes. In this work we consider depth based classification of functional
data, especially focusing on incorporating considerations of the shape features in
classification.

This thesis is organized as follows; In Section 2 we lay out the general framework
for functional data establishing the usual basis on which the analysis of such data
is built upon, as well as discuss statistical depth and functional depth in more
detail. Section 3 introduces depth based classification schemes for functional data. In
Section 4 we consider two different real data sets: the Kemijoki dataset introduced in
Helander et al. (2018) and the widely used Australian weather dataset, and explore
the performance of depth based classification on these data sets. Section 5 provides
a short summary to the concepts introduced in this thesis as well as the results
obtained.
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2 General functional framework
The basic philosophy for functional data analysis is to treat the observed units
as single entities arising from some continuous process, rather than as a sequence
of individual discrete observations. The coined term functional here refers to the
intrinsic continuous structure of the observed units, rather than to the explicit
functional form. Indeed, this explicit functional form is unobtainable to us as due
to the continuity we can never observe the functions entirely, as this would mean
measuring and storing uncountably many values. Thus, by nature, functional data is
only ever partially observed. In practice the observations xi are often recorded as
sequences of discrete pairs (yij, tij) where j = 1, 2, . . . , ni, yij being the snapshot of
the value of the ith function at time tij. Due to this inherent partial observability
of functional data, often one of the first steps in functional data analysis is to use
the discrete observation sequences to reconstruct approximations of the underlying
functions. This reconstruction process is discussed in detail in Section 2.1. Here we
refer to tij as time as it is the most commonly encountered continuum over which
the functions may be recorded, but certainly other continua such as spatial position,
frequency, concentration etc. are also possible. Thus we talk about the observed
units as functions, meaning that we assume the existence of a continuous function
giving rise to the observed measurement sequences. By continuity we mean that in
principle we could measure the function at any arbitrary point in time, as often as
desired.

As each observation in a dataset is typically treated independently the same way,
we shall simplify the notation by thusforth leaving out the distinction between the
observations when unnecessary. Thus, we shall focus on the treatment of a single
function x, observed as a sequence of pairs (yj, tj), j = 1, . . . , n.

In addition to continuity, we often assume a certain level of smoothness from the
underlying functions, so that when sampled frequently enough (’enough’ depending
on the level of smoothness), two adjacent data values yj and yj+1 necessarily depend
on one another and are unlikely to be far apart. However, this is not an inherent
requirement nor the goal of FDA methods. The smoothness assumption - or the
lack of it thereof - rises from our contextual knowledge of underlying process being
analyzed. In some cases modeling the roughness or the noise part of a process can
be where our interests lie (for example stock market pricing and rough volatility).
However, in most cases we know that the underlying process or trend we are interested
in is smooth and thus we might want to remove the effects of noise from our function
estimates.

By smooth function, we often mean that the function possesses one or more
derivatives, indicated by Dx, D2x, etc. so that Dmx refers to the derivative of
order m and Dmx(t) is the value of mth derivative at argument t. As the first
step when dealing with functional data, we usually want to use the discrete data
yij, j = 1, . . . , ni to construct an estimate for the function xi that possesses a
suitable number of derivatives. As revealed by our example on the girls growth
data presented in Figures 1 and 2 these various rates of change can be where the
interesting variability lies.
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Often however, the existence of the derivatives is not enough for us but we
also want to constrain them in some way, for example to control the frequency at
which the sign of the derivative can change. Without such constraints, the infinite
dimensionality allows us to construct estimates that fit the observed datapoints
exactly while also possessing an arbitrary number of derivatives. This is often
undesirable as the raw observations can be muddled by observation error or some
other kind of noise. Indeed the smoothness of the underlying function might not be
apparent at all from the raw observation vector (y1, . . . , yn) due to the presence of
noise imposed on the signal by the measurement process.

The standard way of modeling the presence of noise in the data is by an additive
model where we assume that our observed sequence of values is the sum of the
underlying relatively smooth function and an error term. That is, for each index j
we have

yj = x(tj) + εj,

where the noise or error term εj creates most of the rough variation in the raw data.
The standard model for εj’s is to assume many white noise -like properties. Namely,
that they are independently distributed with mean zero and constant variance σ2

ε .
However, in practice many of these routinely made assumptions are violated as they
are too simple for majority of functional data. For example, ε is often not a stationary
process as the variance of the residuals itself varies over the argument t. Additionally,
we can also often recognize autocorrelation in the functional residuals reflecting the
fact that the rough variation brought by εj ’s is itself likely a result of a process with
a structure we could model if needed.

Often, when the underlying function x is known to be relatively smooth, one of
the tasks we may want to achieve in our function reconstruction process is to filter
out the effects of this erroneous noise. The common methodologies for achieving this
smoothing are discussed in the following Section 2.1. However, in some cases, instead
of requiring smoothness from our reconstructed functions, we may choose to handle
the noise by instead requiring smoothness from the results of our analysis. This is
often the case with smoothed functional PCA, or smoothed functional canonical
correlation analysis (Ramsay and Silverman (2005)). Although in these cases the
focus is often on the informativeness of the results rather than in dealing with the
noise.

While seemingly straightforward, dealing with the roughness in the raw data
can be a surprisingly delicate matter. Especially when working with rapidly varying
functions (functions whose first derivative changes sign at a high frequency) it is not
necessarily obvious how much of the perceived roughness in the raw data is due to
the noise ε and how much of it can be attributed to the inherent curvature of the
underlying function x. Indeed, even if assumed relatively smooth, x can have strong
curvature at places, often measured by the size of the second derivative as reflected
in either |D2x(t)| or [D2x(t)]2. Depending on the strength of this curvature, along
with the signal to noise ratio, the resolution at which the function is being observed
is a key factor in determining what can be achieved through the means of FDA.
Especially in the presence of noise high enough sampling frequency is essential in
bringing out the features of the data; otherwise they may be lost in the noise during
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the reconstrution process. Here what is -enough- depends on the level of error and
curvature. When the level of error is low, a relatively low overall sampling frequency
may suffice as long as the sampling is focused around areas of rapid change. As the
proportion of noise in the raw data increases, a higher sampling frequency is needed.
However, there are some problems related to this as well. Even if the level of noise
is low, a high sampling frequency can tremendously amplify its effects if one tries
to directly estimate quantities such as derivatives from the raw data, using forward
differences for example. These noise related issues are often solved by fitting a linear
combination of suitable basis functions to the observed datapoints. The choice of a
suitable funcional basis and methods for fitting are disussed in the next Section 2.1.

2.1 From functional observations to smooth functions
Due to the inherent partial observability of functional data, the observations x often
arrive to us as sequences of discrete pairs (yj, tj), j = 1, . . . , n, where yj is the
value of the function at time tj. Furthermore, one of the special characteritics of
functional data is that the observations need not be recorded over the same sequence
of measurement points tj, but instead can each be measured over an arbitraru set
of points in time, preventing the direct use of any multivariate methods in analysis.
Thus, one of the first steps of any functional data analysis is to use the discrete
measurement sequences to construct approximations of the underlying functional
observations x. This is often done by fitting a linear combination of suitably chosen
basis functions to the observed measurement sequences to represent the data as
functional.

A basis function system is a set of mathematically independent functions φk
with the property that given a large enough K, we can approximate any function
arbitrarily well as a linear combination of K such basis functions. More formally,
the goal of the function reconstruction process is to represent an observation x as a
linear expansion of K known basis functions φk:

x(t) = cTφ =
K∑
k=1

ckφk(t).

where c is a vector of length K of the coefficients ck, and φ represents a functional
vector of the basis functions φk. Thus, in effect, the basis expansion represents the
infinite dimensional functional observations x in terms of finite dimensional vextors c.
However, this does not mean that the functional data simply reduces to multivariate
data analysis; the analysis is to a great effect dependent on how the basis system φ
is chosen.

Ideally, the chosen basis functions have characteristics that match those of the
functions being estimated. This makes it possible to achieve satisfactory approxima-
tions using only a comparatively small number K of basis functions. The choice of
a suitable basis system is especially important for estimating the derivatives of the
observations. Ill-advised choice of the basis system may result in having to choose K
large in order to attain satisfactory functional approximations, which can result in
small but high-frequency oscillations in the approximations that have catastrophic
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consequences in terms of derivatives. Thus, often one of the criterion for choosing
a certain basis system is to also have reasonable approximations of the derivatives.
Often used basis function systems are the Fourier basis for periodic data, and the
B-spline basis for general functional data. In this work, we will be focusing on the
B-spline basis as the more universally viable choice.

Definition 2.1 (Fourier basis)
Given a parameter w, the Fourier basis functions φk are given by:

φk(t) =


1, k = 0
sin rwt, k = 2r − 1
cos rwt, k = 2r

Definition 2.2 (B-spline basis)
Given a sequence of breakpoints τ = t0, t1, t2, . . . , the kth B-spline Bk,m of order m
are defined recursively by

Bk,1(t) :=
{

1, if ti ≤ t < ti+1
0, otherwise

and

Bk,m+1 := t− tk
tk+m − tk

Bk,m(t) + tk+m+1 − t
tk+m+1 − tk+1

Bk+1,m(t)

Then, the B-spline basis functions φk of order m with the breakpoint sequence τ are
given by φk(t) = Bk,m(t).

B-splines are piecewise polynomial functions of order m, defined over a sequence
of breakpoints τ = t0, t1, . . . , tL in a way that for splines of order m > 1, adjacent
B-spline functions must join together smoothly at the breakpoints that separate them.
Moreover, derivatives of up to orderm−2 must also match at these junctions. The kth
B-spline basis function of order m is non-zero over at most m sub-intervals, defined
by the m+ 1 breakpoints tk, . . . , tk+m+1. Thus, B-splines have similar computational
advantages to potentially orthogonal basis systems, meaning that the computational
load increases only linearly with the number of basis functions, K. As a linear
combination of spline functions is itself a spline function, B-spline representations
of our functional observations are smooth functions with up to m − 2 continuous
derivatives. As the order m increases, B-splines yield better approximations of both
the observation x, and its derivatives.

The sequence of breakpoints τ plays a key role in defining a suitable B-spline
basis. In order to gain flexibiliy in the splines we commonly increase the number
of breakpoints in the region over which the functions exhibit more complex and
high-frequency variation. B-splines can even model abrupt changes in the derivatives
of the data by stacking breakpoints that move together. In such points, there is a
loss of continuity condition for each additional coincident breakpoint, allowing us to
model abrupt changes in the data at pre-determined points. This is commonly done
over the edges of the interval over which the functions are observed, where in τ , the
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Figure 3: A cubic B-spline basis of order 4 with 5 interior breakpoints and 4
breakpoints coinciding at the edges.

first and last breakpoints t0 and tL appear m times, to allow modeling of open ended
data. As an example, a cubic B-spline basis of order 4 with 5 interior breakpoints
and 4 breakpoints coinciding at the edges is presented in Figure 3.

The common methodology for obtaining an approximation of our functional
observations x is to determine the coefficients ck of the basis function expansion by
minimizing the weighted least squares criterion

SMSSE(y|c) =
n∑
j=1

wj

[
yj −

K∑
k=1

ckφk(tj)
]2

,

where the weights wj are determined by the covariance matrix of the residulas εj
about the true curve x. Recall that the common way of modeling the presence
of measurement error in the observed sequence of pairs (yj, tj) is by an additive
model yj = x(tj) + εj. Thus, one of the things we want to achieve in reconstructing
approximations of the functional observation x is to smoothe out the effect of the
often volatile measurement errors εj.

The degree of smoothing achieved is often determined by two factors. The first is
the choice of the number K of basis functions used to represent the functional obser-
vations. If the number of basis functions K is equal to the number of measurement
points n, we can have exact interpolation of the observed sequence, measurement error
included, such that x(tj) = yj. Thus, decreasing the number K of basis functions
inherently smoothes the data to a degree. Further smoothing can be achieved by the
common way of penalizing the roughghness in the resulting functional approximation
by adding a penalty term PENm(x) =

∫
[Dmx(t)]2dt with respect to the derivatives

of order m, often m = 2. This results in the commonly used roughness penalty
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smoother

PENSSEλ(y|c) =
n∑
j=1

wj

[
yj −

K∑
k=1

ckφk(tj)
]2

+ λ

n

n∑
j=1

[
K∑
k=1

ckD
2φk(tj)

]2

,

that defines a compromise between data fit and smoothness by removing the influence
of the error terms εj, often seen in the form of high-frequency oscillations that can
have catastrophic consequences for derivative approximations. The interested reader
is encouraged to visit Ramsay and Silverman (2005) for further details of spline-
smoothing and basis function representation of functional data.

2.2 Theoretical framework
In this section we lay out some important concepts often needed when working
within the theoretical framework of FDA. The section is divided into two parts.
First, in Section 2.2.1 we discuss the underlying probability space that gives rise to
the distribution of functions from which we are observing our individual functions.
Then, in Section 2.2.2, we recall essential definitions needed to build up towards
the definition of Hilbert spaces, which are the spaces our observed functions live in.
Finally, we conclude by discussing the theoretical functional framework adapted in
this thesis, needed in the following sections. Section 2.2.1 is based on Durrett (2010),
and Section 2.2.2 is based on Horváth and Kokoszka (2012).

2.2.1 Probability spaces

A probability space is a triple(Ω,F , P ), consisting of three parts; A sample space
Ω is the set of all possible outcomes of a random process. The σ-algebra F on Ω
is interpreted as a collection of events, each of which can be assigned probabilities
of occuring. Finally, the probability measure gives a systematic way of assigning
probabilities to the events in F . The natural way of building understanding towards
the definition of probability spaces begins from σ-algebras, which are in the centre
of focus of probability theory.

A σ-algebra Σ on a set X is a collection of subsets of X that includes the universal
set X , and is closed under complementation and countable unions.

Definition 2.3 Let X be a non-empty set and P(X ) the power set of X . Then a
set Σ ⊆ P(X ) is a σ-algebra on X if it satisfies the following properties:

(i) X ∈ Σ

(ii) if A ∈ Σ, then also (X \ A) ∈ Σ. (Closed under complementation)

(iii) if Ai ∈ Σ for i = 1, 2, . . . , then also ⋃∞i=1 Ai ∈ Σ. (Closed under countable unions)

Note that due to (i) & (ii), the empty set ∅ also belongs to the σ-algebra. The
primary importance of σ-algebras is the definition of a measure. Given a set X and
a measure defined on X , it would be ideal if we could measure all possible subsets
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of X . However, often this is not possible and instead we assign a measure only to
some suitable subsets of X ; the collection of such subsets on X for which a measure
is defined is necessarily a σ-algebra.

In probability theory, σ-algebra is interpreted as the collection of events, for which
we can assign probabilities. There, the σ-algebras are often the focus of interest as
the interest lies in what kinds of events the σ-algebra on a probability space contains,
and on the other hand, how functions of those events (random variables) behave.

A non-empty set X together with a σ-algebra defined on X form a measurable
space;

Definition 2.4 A measurable space is a pair (X ,A), where X is a non-empty set
and A is a σ-algebra on X

Note that Measurable space doesn’t need to be equipped with a measure. Instead
the σ-algebra tells us which subsets of X will be assigned a measure.

A measure on a set X gives a systematic way of assigning a number, to suitable
subsets of X . Intuitively, a measure of a set is interpreted as its size, and thus acts
as a generalization of the concept of volume. As such, a measure is a function that
assigns a non-negative real number or ∞ to the measurable subsets (elements of the
σ-algebra) on X . For consistency, we also want a measure to be countably additive;
The measure of a subset of X that can be decomposed to "smaller" disjoint subsets,
is the sum of the measures of the "smaller" subsets. Furthermore, the empty set
∅ is given measure 0, although this is not necessarily the only subset of X with 0
measure.

Definition 2.5 Let X be a non-empty set and Σ a σ-algebra on X . Then a function
µ : Σ→ R ∪ {−∞,∞} is a measure if it satisfies the following properties:

(i) For all A ∈ Σ, µ(A) ≥ 0(Non-negativity)

(ii) µ(∅) = 0 (Null empty set)

(iii) if Ai ∈ Σ for i = 1, 2, . . . are pairwise disjoint, then µ(⋃∞i=1 Ai) = ∑∞
i=1 µ(Ai)

(Countable additivity)

Together with the properties of a σ-algebra, this results in a measure µ being
monotone in the sense that if A,B measurable with A ⊆ B, then µ(A) ≤ µ(B).

Perhaps the most important example of a measure is the Lebesgue measure, which
gives the usual way of assigning a measure to the subsets of Rn. For n = 1, 2,
and 3, Lebesgue measure coincides with the concepts of length, area, and volume
respectively. Here, as an example, we present the Lebesgue measure on R, although
it can be naturally extended to any Rn. Let l(I) = b − a denote the length of an
interval I = (a, b). Then, the Lebesgue outer measure λ∗(E) of a subset E ⊆ R is
defined as

λ∗(E) = inf{
∞∑
k=1

l(Ik) : (Ik)k∈N is a sequence such that E ⊆
∞⋃
k=1

Ik}
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The Lebesgue measure is defined on the Lebesgue σ-algebra which is the collection
of all sets E which satisfy the condition that, for every A ⊆ R,

λ∗(A) = λ∗(A ∩ E)λ∗(A ∩ Ec).

For any set in the Lebesgue σ-algebra, its Lebesgue measure λ is given by its Lebesgue
outer measure: λ(E) = λ∗(E).

We are now ready to define a probability space:

Definition 2.6 A probability space is a triple (Ω,F , P ) where:

(i) The sample space Ω is an arbitrary non-empty set

(ii) The σ-algebra F is a set of subsets of Ω, called events

(iii) The probability measure P : F → [0, 1] is a measure on F fulfilling the additional
condition P (Ω) = 1

A probability space is a type of measure space; That is, a measurable space (Ω,F),
which is also equipped with a measure P . The sample space Ω is often interpreted as
the set of all possible outcomes of a random trial. However, in our case the concept
is much more abstract as no direct information of the sample space can be extracted.
Instead, the underlying sample space Ω is merely thought of as some continuous set,
and the focus of our attention is solely devoted to studying the σ-algebra F together
with the probability measure P .

A probability measure P is a measure on the sets in F fulfilling the properties
of Definition 2.5, with the additional constraint that P : F → [0, 1] with P (Ω) = 1.
That is, the probability measure assigns to each set in F , interpreted as the collection
of events, a probability of the event occuring. This is also where most of our interest
lies, as the probability measure P on F gives raise to the underlying distribution of
functions from which we are observing. In practice we do not have a direct access to
the events in F as the σ-algebra serves as an abstract mathematical tool. However,
indirect information, in the form of a sample distribution Pn, can be acquired from
the observed realizations of our random function.

In probability theory, a random variable is a measurable mapping from a prob-
ability space (Ω,F , P ) to a measurable space (E,B). A measurable mapping is a
function between two measurable spaces, (X ,A) and (Y ,B), such that the preimage
of any measurable set on Y is measurable.

Definition 2.7 Let (X ,A) and (Y ,B) be measurable spaces, that is, X and Y are
sets equipped with respective σ-algebras A and B. A function f : X → Y is said to
be measrable if the preimage of B under f is in A, for every B ∈ B.

f−1(B) := {x ∈ X : f(x) ∈ B} ∈ A, ∀B ∈ B

Definition 2.8 A random variable X : Ω→ E is a measurable mapping from the
probability space (Ω,F , P ) to a measurable space (E,B).
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In our case, we opt to talk about a random function rather than a random variable,
as the random process X we are observing maps from the underlying probability
space (Ω,F , P ) to a Hilbert space (H,B) where the elements are interpreted as
functions rather than vectors. Each of the functions on our Hilbert space H is itself
deterministic. Thus the randomness is induced by the probability measure P on our
underlying probability space, resulting in a distribution of functions from which our
functional data arises. The next Section 2.2.2 is devoted to building understanding
towards the definition of Hilbert spaces in which our observed functions lie, and ties
the probability theoretical concepts laid out in this section into the FDA theory.

2.2.2 Hilbert spaces

The concept of a Hilbert space generalizes the notion of Euclidean spaces and extends
the methods of vector algebra and calculus to spaces with any number of dimensions,
which in our case is infinite. A Hilbert space is an abstract vector space with a
structure given by an inner product, that is also complete, meaning that it contains
all of its limit points allowing the techniques of calculus to be used. Note that even
though we refer to the basic elements in the following definitions as vectors, our
functions can be viewed as such vectors over an uncountably infinite index set. Thus,
Hilbert spaces naturally extend many useful tools to the functional setting we are
dealing with.

We begin our journey towards defining a Hilbert space by first defining an inner
product space. Starting from the definitions of a general vector space, and an inner
product;

Definition 2.9 Let K be a real or complex valued scalar field. Then a K-vector
space V is a set of vectors u, v, w, · · · ∈ V that is endowed with vector addition and
scalar multiplication operations:

(i) (u, v) 7→ u+ v : V × V → V

(ii) (λ, u) 7→ λu : K× V → V

such that it adheres to the following axioms:

(i) u+ (v + w) = (u+ v) + w (Associativity)

(ii) u+ v = v + u (Commutativity)

(iii) There exists an element 0 ∈ V such that v+ 0 = v (Identity element (addition))

(iv) There exists an element −v ∈ V such that v + (−v) = 0 (Inverse element)

(v) λ(µv) = (λµ)v, for all λ, µ ∈ K (Compatibility)

(vi) 1v = v where 1 denotes the multiplicative identity of K (Identity element
(multiplication))

(vii) λ(u+ v) = λu+ λv, for all λ ∈ K (Distributivity (vector))
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(viii) (λ+ µ)u = λu+ µu, for all λ ∈ K (Distributivity (scalar))

Definition 2.10 Given a K-vector space V, an inner product is a mapping

(u, v) 7→ 〈u, v〉 : V × V → K

that satisfies the following properties

(i) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

(ii) 〈λu, v〉 = λ〈u, v〉, for all λ ∈ K

(iii) 〈u, v〉 = 〈v, u〉∗

(iv) 〈u, u〉 ≥ 0

(v) 〈u, u〉 = 0 ⇒ u = 0

In vector spaces, an inner product gives us refined information on not only distances,
but also on the concept of "angle" between two elements of the space. As the concept
of "angle" doesn’t carry over to infinite dimensional spaces in the usual sense from
finite dimensional ones, our functional inner products instead reveal information
about the multiplicative amplitude of the functions over the overlapping sections
of their support. This information is especially useful as it enables the concept of
orthogonality which is a very desirable property for our functional basis system when
reconstructing the functional observations. In functional context, the usual inner
product is given by

〈·, ·〉 : H×H → R : (X, Y ) 7→ 〈X, Y 〉 =
∫
V
X(t)Y (t)ν(dt),

where V gives the support of our Hilbert spaceH and ν denotes the Lebesgue measure.
Finally, an inner product space is a general vector space equipped with an inner
product.

Definition 2.11 An inner product space is a pair (V , 〈·, ·〉), where V is a K-vector
space and 〈·, ·〉 an inner product.

Along with the structure given by an inner product, Hilbert spaces are complete.
To explore the concept of completeness, we first need a metric. Here, it is natural to
only focus on metrics induced by a norm, since in the inner product spaces we are
interested in an inner product in turn induces a norm.

Definition 2.12 Given a K-vector space V, a norm is a mapping

u 7→ ||u|| : V → [0,∞)

that satisfies the following properties

(i) ||u+ v|| ≤ ||u||+ ||v||
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(ii) ||λu|| = |λ|||u||, for all λ ∈ K

(iii) u 6= 0 ⇒ ||u|| > 0

Then, given a K-vector space V and a norm || · ||, the metric induced by || · || is
the map

d : V × V → [0,∞) : (u, v) 7→ d(u, v) = ||u− v||.
Generally, a metric is a broader concept than a norm, and the metrics induced by
a norm have additional properties that a general metric is not required to have.
Namely, translation invariance: d(u + w, v + w) = d(u, v) and scaling property:
d(λu, λv) = |λ|d(u, v) for any λ ∈ K. However, in the context we are interested in,
due to the following property, it is enough to focus on norm and the metric induced
by a norm; On an inner product space (V , 〈·, ·〉), the inner product induces the norm

||u|| := 〈u, u〉1/2

called the canonical norm of u ∈ V .

Definition 2.13 A normed vector space is a pair (V , ||u||), where V is a K-vector
space and ||u|| a norm on V.

Thus, every inner product space is also a normed vector space.
With normed vector spaces defined, we are now ready to work towards the

definition of completeness. For this we still need to define converging sequences and
Cauchy sequences.

Definition 2.14 Let (V , ||u||) be a normed vector space. A sequence (uk)∞k=1 of
vectors uk ∈ V converges to u ∈ V if limk→∞ ||uk − u|| = 0.

Definition 2.15 Let (V , ||u||) be a normed vector space. A sequence (uk)∞k=1 of
vectors uk ∈ V is a Cauchy sequence if ∀ε > 0 ∃Nε ∈ Z+ such that ||uj − uk|| <
ε ∀j, k ≤ Nε.

More informally, a Cauchy sequence is a sequence of vectors such that the distance
between two consecutive elements of the sequence tends towards zero as we move
along the sequence. However a Cauchy sequence might not be converging if the space
V it lives in does not contain a suitable limit u fulfilling Definition 2.14. Thus, we
say that a normed vector space is complete, if it contains enough of these limit points
such that all of its Cauchy sequence have a limit to converge to in the space.

Definition 2.16 A Normed space (V , ||u||) is complete if all of its Cauchy sequences
converge.

We are now finally ready to define a Hilbert space; A Hilbert space is a complete
metric space with a structure given by an inner product.

Definition 2.17 A Hilbert space H is an inner product space that is also a complete
metric space.
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The functional framework often encountered in literature, and the one we will
be working with here, assumes that the data points are random realizations in a
Hilbert space H. The choice of H is vast and depends on the type of data observed.
It is often assumed that H is a set of functions defined over V , a compact subset of
Rd, that satisfy some further regularity conditions appropriate to the context. A
compact set is closed, meaning that it contains all of its limit points, and bounded,
meaning that all of its points lie within some fixed distance of each other. Intuitively
this is very natural assumption as it ensures that the functions being observed have
well defined boundaries and no missing values, meaning that we can measure them
at any arbitrary point in V. In practice the dimension of V is often small, and for
example in this thesis we will be focusing on univariate functional data.
H is often given additional regularity conditions to constrain the behaviour of the

functions, usually to ensure that they are bounded in some suitable sense, and then
equipped with an appropriate inner product. By far the most studied and assumed
such space in literature is

H = L2(V ,R),
the set of real-valued square integrable functions on V with respect to the Lebesgue
measure ν, equipped with the inner product

〈·, ·〉 : L2(V ,R)× L2(V ,R)→ R : (X, Y ) 7→ 〈X, Y 〉 =
∫
V
X(t)Y (t)ν(dt).

More formally, letting Ω denote the underlying sample space, we observe a random
function X = {X(v) : v ∈ V} := {X(w, v) : w ∈ Ω, v ∈ V}. That is, a measurable
mapping X : Ω → H from the probability space (Ω,A, P ) to (H,B), where B is
the σ-algebra generated by the open sets with respect to the norm induced by 〈·, ·〉,
the inner product on H. Note that for any fixed w ∈ Ω, X(w, ·) is a deterministic
function that maps from V to K, the scalar field of H. Thus the random function
X is only random in it’s first argument w ∈ Ω, and the distribution of functions is
given by P , the probability measure on the underlying probability space (Ω,A, P ).
The distribution P is often thought to be continuous, meaning that the resulting
functional space is also continuous. As an illustrative example, consider a surface
X(v, t) : [0, 1]× [0, 1]→ R2, and a random variable w ∈ [0, 1] with distribution Pw.
Thus, a realization of the random variable w fixes a ray along which we move on the
surface, giving us the function X(w, t) = Xw(t) : [0, 1]→ R.

Other common examples of spaces often considered in the literature include
restricting H by adding further smoothness conditions (for example the space of
continuous functions Ck(V) on V with k continuous derivatives), Lp(V) the space
of Lebesgue p-integrable functions on V and the Sobolev space W k,2(I) for some
appropriate k and I, a closed interval in R. Recall that W k,2(I) is the space of
Lebesgue square integrable functions L2(I,R) whose weak derivatives up to order
k are also square integrable. Sometimes even more general Hilbert spaces such
as multivariate functional spaces and functional manifolds are used. However, in
most cases the spaces worked with in literature are assumed to possess a structure
generated by an inner product. Note that the choice of the inner product is not
trivial in functional spaces. In finite dimensions the choice doesn’t matter as all
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norms are equivalent, but in infinite dimensional cases, such as the Hilbert spaces we
are working with, this equivalence doesn’t hold, and the choice of the inner product
affects the structure of the space.
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3 Depth based classification
In this section we introduce statistical depth, as well as some of the concepts
surrounding the various depth methods and their usage in statistical analysis. Starting
in Section 3.1 we introduce statistical depth methods in the multivariate context
where they were originally conceived. We explore some well known examples of
statistical depth functions presented in literature, discuss previous work related to
the properties of depth functions, and introduce the axiomatic approach formulated
by Zuo and Serfling (2000) that has been widely accepted in literature. In Section 3.2,
we expand our multivariate statistical depth to the functional context, and discuss
the challenges brought about by the functional structure. Section 3.3 discusses the
key concept of this thesis; the usage of statistical depth functions in classification
problems. Finally, the following subsections are devoted to introducing the functional
depth methods considered in this thesis, used in Section 4 in classification of two
different real datasets, the Kemijoki dataset and the Australian weather dataset.

3.1 Statistical depth
Statistical depth functions have become a widely used nonparametric inference tool
for multivariate data. Not only does statistical depth provide relevant information
of centrality and outlyingness, but also reveals numerous features of the underlying
distribution, such as asymmetry, spread and shape (Liu et al. 1999). Originally,
the goal of statistical depth was to provide a natural center-outward ordering in
multivariate context, and to give a measure of centrality for multivariate data. That
is, a depth function D : Rd → R : x 7→ D(x, P ) associates to each x ∈ Rd a measure
of its centrality with respect to the distribution P on Rd. Thus, depth gives a P -based
ordering for multivariate data from a depth based center outwards. As no natural
ordering for multivariate setups exists, statistical depth has been suggested as the
basis for defining multivariate analogues of univariate rank and order statistics, as
well as to alleviate the absence of the notion of quantiles in multivariate contexts
(Tukey (1975), Serfling (2010)).

Of course, to provide a meaningful center-outward ordering, a relevant notion of
center is required. This also suggests that that points closer to that center should
have higher depth, with the depth based center consisting of a set of points globally
maximizing depth. In literature one routinely comes across three different notions
of symmetry and center of symmetry, varying in generality. A standard notion of
symmetry widely encountered in literature is that a random vector X in Rd is said
to be centrally symmetric about θ if (X − θ) ∼ (θ −X). Liu (1990) defines X to
be angularly symmetric about θ if (X − θ)/||X − θ|| is centrally symmetric about
the origin. The broadest of these notions, introduced in Zuo and Serfling (2000)
defines X to be halfspace symmetric about θ if P (X ∈ H) ≥ 1/2 for every closed
halfspace H containing θ. These notions of symmetry are presented here in an order
of generality; It is well established that C-symmetry → A-symmetry → H-symmetry.

Statistical depth funtions and their properties have been profusely studied in
literature. Following the introduction of the celebrated halfspace depth by Tukey
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(1975), countless other multivariate statistical depths have been introduced. The
halfspace depth HD of x ∈ Rd with respect to a distribution P is given by the
minimum probability mass carried by any clsed halfspace containing x, that is,

HD(x, P ) := inf
u∈Sd−1

P [uT (X − x) ≥ 0].

Liu (1990) introduced the notion of simplical depth SD of x, defined as the
probability x belongs to a random simplex in Rd, that is,

SD(x, P ) := P (x ∈ S[X1, . . . , Xd+1]),

where X1, . . . , Xd+1 is a random sample from the distribution P , and S[x1, . . . , xd+1]
denotes the d-dimensional simplex with vertices x1, . . . , xd+1, the set of all points in
Rd that are convex combinations of x1, . . . , xd+1.

The Mahalanobis depth MhD, often attributed to Mahalanobis (1936), considered
by for example Liu and Singh (1993), is defined at x ∈ Rd with respect to P as

MhD(x, P ) := (1 + (x− µP )TΣ−1
P (x− µP ))−1,

named after the Mahalanobis distance dMh(x, y) =
√

(x− y)TΣ−1
P (x− y), where µP

and ΣP denoting the mean vector and dispersion matrix of P respectively.
Serfling (2002) introduced the spatial depth SSD, notable for its direct connection

with the spatial quantiles introduced by Chaudhuri (1996), defined as

SSD(x, P ) := 1− ||E[S(x− Y )]|| = 1−
∣∣∣∣∣∣ ∫ S(x− y)dP (y)

∣∣∣∣∣∣
where || · || denotes the usual Euclidean norm in Rd and SS : Rd → Rd is the
multivariate spatial sign function given by

SS(x) =


x
||x|| , x 6= 0
0, x = 0

These and countless other examples of statistical depth functions have been
considered in literature. Rousseeuw and Hubert (1999) introduced regression depth,
Koshevoy and Mosler (1997) introduced a zonoid depth based on zonoid trimming,
and Bartoszyński, Pearl and Lawrense (1997) introduced a depth method based
on interpoint distances in the context of multivariate goodness-of-fit tests. Liu
and Singh (1993) considered HD, SD and MhD along with majority depth, in
developing methodology for assessing outlyigness of a population with respect to
another, quantified by a parameter called quality index. Liu, Parelius and Singh (1999)
considered seven different depth functions, including a depth based on outwards-in
ordering via convex hull peeling, and a likelihood based depth method, and developed
methodology for practical use of depth in exploratorty statistical analysis. Rousseeuw
and Ruts (1996), Ruts and Rousseeuw (1996) and Rousseeuw and Struyf (1998)
studied computational problems regarding depth functions and depth based contours.
Zuo and Serfling (2000b) studied nonparametric notions of multivariate scatter
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measure based on statistical depth functions. Vardi and Zhang (1999) introduced
methodology for constructing depth functions based on notions of a multivariate
median.

Depth functions have been vastly explored and introduced in great variety in
the literature. However, this has been mostly ad hoc in nature as, prior to Zuo
and Serfling (2000a), statistical depth didn’t have a formal set of criterion to fulfill.
Consequently, prior to this formal definition, there was no real systematic basis for
evaluating and prefering a depth function over any other. Drawing upon the ideas
discussed in Liu (1990), Zuo and Serfling (2000a) gave the first formal definition for a
statistical depth function, that has since been widely embraced in the literature. The
definition lists four desirable properties as criterion any statistical depth function
should fulfill; Affine invariance, maximality at centre, monotonicity relative to the
deepest point, and vanishing at infinity. Additionally, a depth function should be
bounded and nonnegative, although, for any bounded function nonnegativity is but
a matter of shift by a constant. Recall that a function f on a set X is bounded if
there exists a M ∈ R such that for all x in X , we have

|f(x)| ≤M.

We shall state the desirable properties first informally, and then collect them in
precise notation under the Definition 3.1. For any function to effectively provide a
consistent center-outward ordering of points in Rd, it should be non-negative and
bounded, and adhere to the following properties:

P1 Affine invariance. The depth of a point x ∈ Rd should not be dependant on
the underlying coordinate system, or on the scaling of the underlying measures.
Thus a statistical depth function should be invariant to any coordinate system
transformations, and only consider the location of the point x relative to the
distribution P .

P2 Maximality at center. For any distribution with a uniquely defined center (the
point of symmetry with respect to some notion of symmetry), a statistical depth
function should attain its maximum value at this center.

P3 Monotonicity relative to deepest point. As the point x ∈ Rd moves away from the
depth based center along any fixed ray through the deepest point, the depth at
x should decrease monotonically. Thus, intuitively, when moving away from the
center of the probability mass towards the edges of the distribution we should
see a corresponding monotonic decrease in depth.

P4 Vanishing at infinity. Intuitively the depth of a point x should approach zero
as its distance from the center of the distribution grows without bounds. This
property is often stated simply as the depth of a point x approaching zero as
||x|| approaches infinity.

Collecting these into the formal definition for a statistical depth function, we
have;
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Definition 3.1 (Zuo and Serfling (2000a)) Let P denote the class of distributions
on the Borel sets of Rp and P = PX denote the distribution of a random vector X.
The bounded and non-negative mapping D(·, ·) : Rp × P → R is called a statistical
depth function if it satisfies the following properties:

P1 Affine invariance; D(Ax+ b, PAX+b) = D(x, PX) holds for any non singular p×p
matrix A and b ∈ Rp where the Rp valued random vector X has distribution PX
and PAX+b denotes the distribution of AX + b.

P2 Maximality at centre; D(θ, P ) = supx∈Rp D(x, P ) holds for any P ∈ P having a
unique centre of symmetry θ with respect to some notion of symmetry.

P3 Monotonicity relative to the deepest point; For any P ∈ P having a deepest point
θ, D(x, P ) ≤ D(θ + α(x− θ), P ) holds for all α ∈ [0, 1].

P4 Vanishing at infinity; D(x, P )→ 0 as ||x|| → ∞, for each P ∈ P.

The corresponding sample version of D(x, P ), denoted by Dn(x, Pn) is attained
by replacing P by a suitable empirical measure Pn.

Depending on the use case and the context, weaker variants of these conditions
are sometimes seen. For example, due to its construction the Pareto depth introduced
by Helander et al. (2017) is only translation invariant, and does not fulfill the propety
P4 as stated. However, Pareto depth is intended to be used for ordering functional
observations after they have been transformed to Rd through a collection of dmeasures
quantifying some important features of the observed functions. Thus the geometry of
the resulting dataset in Rd is not relevant and having translation invariance is enough
for efficient ordering. For a similar argument, Pareto depth also concedes the property
P4 in favor of a weaker variant; P4′ : D(x, P )→ 0, as min{x1, . . . , xd} → 0.

In their work, Zuo and Serfling (2000a) also consider a significant number of
existing depth functions in the light of the properties P1− P4. It is reported that
many of the existing depth constructions fail to satisfy one or more of these properties,
thus only being effective under the specific circumstances they were introduced for.
Especially Likelihood-based depth methods were found to generally fail to satisfy any
of the P1−P4, and thus are only effective under models with ellipsoidal densities, or
where sensitivity to multimodality is required. Among the depth methods that were
found to satisfy all of the desired properties, halfspace depth and projection depth are
reported to stand favorable over their competition due to their robustness properties.
These two depth methods are very similar in spirit, both being based on considering
all one-dimensional projections of the dataset. This approach provides great power
in extracting information, although at the cost of substantial computational load.

Due to the properties P1−P4, statistical depth tends to ignore any multimodality
properties of the distribution P , and is often reported to be suitable for dealing
with unimodal convexly supported distributions only. To achieve sensitivity for
multimodality features, the depth based center (set of points maximizing depth)
should not only include the points globally maximizing depth, but the local maxima
aswell. This comes with the trade off of compromising the idea of center-outward
ordering, as points close to the geometric center of the distribution could be assigned
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low depth. However, such multimodal or non-convexly supported distributions are
met in many applications. Thus, given how versatile and powerful nonparametric
modeling tool statistical depth has become, it is not surprising that there have
been some recent efforts at extending depth to be able to better deal with such
distributions.

Paindaveine and Van Bever (2013) provide one such extension, called local depth.
Unlike previous attempts at local depth in the literature that typically converge
to a density measure or a constant as locality becomes extreme, the construction
they propose is able to take any global depth measure, and at any locality level
provide a centrality measure without losing its genuine depth nature. This is achieved
through first suitably symmetrizing the distribution, and then conditioning the global
depth on a depth based neighbourhood, around the point of interest. To make the
concept purely based on depth, the recently introduced depth based neighbourhoods
from Paindaveine and Van Bever (2012) are used. The resulting local depths have
interesting inferential applications and are shown to accurately capture the features of
the underlying distribution, even in less well behaved cases, extending the usefulness
of depth measures to a much wider range of distributions.

3.2 Functional Depth
As the measurement technology becomes ever increasingly sophisticated and the
storage capacity keeps growing, we have begun to encounter more and more complex
datasets commonly. This has sparked an increasing need for inferential tools for very
high dimensional and even functional data. Thus, given the versatility of statistical
depth in not only capturing distributional properties but also having applications in
classification and modeling problems, it is not surprising that we have seen many
recent attempts at extending depth to the functional context aswell. However, this
is not straight forward, as direct generalizations of existing multivariate depths to
functional data often neglect shape and structure properties completely, or give
rise to depth constructions with absurd computational load (López-Pintado and
Romo (2009), Dutta et al. (2011), Chakraborty and Chaudhuri (2014a)). For
example, the commonly seen approach of integrating some pointwise centrality
measure such as a multivariate depth over the domain may lead to a depth definition
that misses the global and even local shape structure of the functions, focusing on the
pointwise centrality only. Naive approaches to functional depth designed to fulfill the
requirements for multivariate depths can even lead to degenerate depth definitions
where, especially if the data is very overlapping, most if not all of the observations
are given almost same depth values.

Although there have been many efforts in the literature at extending the notion
of statistical depth to the functional context, functional depth still lacks a formal
definition with scientific consensus. This is a problem that has resulted in a wide
range of functional depth definitions with wildly differing properties and possibly only
very specialized use-cases. The need for such formal definition and the lack of one
thereof was first pointed out by Nieto-Reyes (2011) where a first attempt at fleshing
out and addressing the problem was made. Suitable properties for functional depth
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have been actively discussed in literature, and the most notable attempt at formally
defining functional depth was presented by Nieto-Reyes and Battey (2016). As with
the Definition 3.1 for multivariate statistical depth, we shall first informally discuss
the intuition behind the proposed properties FP1− FP6 below, before collecting
them formally under the Definition 3.3.

FP1 Distance invariance. This is a property that follows in close spirit from the
property P1 for multivariate depths. Similarly to statistical depth remaining
unaffected by affine transformations in Rd, the functional counterpart should
remain unaffected by transformations through a function from H to H that (up
to a scaling factor) preserve the relative distances between the elements in the
d metric. This property ensures for example that depth remains unaffected by
shifts such as recentering around the zero function, because, for any functional
norm || · ||, ||x− y|| = ||(x− µ)− (y − µ)||.

FP2 Maximality at centre. Statistical depth was originally introduced to provide
meaning for the concept of centre of symmetry, and to act as a notion of
outlyingness through giving a measure of centrality. Thus in the functional
context as well, if the distribution P ∈ P possesses a unique centre of symmetry
θ ∈ H with respect to some notion of functional symmetry, the functional depth
should attain its maximum at this centre.

FP3 Strictly decreasing with respect to the deepest point. Analogously to the property
P3 in Definition 3.1, to achieve efficient ordering in H, for any P ∈ P such
that the deepest point z with D(z, P ) = maxxH D(x, P ) exists, the functional
depth at a point x is required to decrease as x moves away from the depth-
based centre of P . Since for some function spaces H there are more than
one natural metric d, this requirement is formulated such that the depth D
prescribes successively lower depths to functions that only lie on successively
larger d-metric balls around the deepest point z. This of course also implies
that limx:d(x,z)→∞D(x, P ) = infx∈HD(x, P ).

FP4 Upper semi-continuity in x. In R, statistical depth and the cumulative distribu-
tion function FX(x) = P (X ≤ x) are clearly linked. Indeed, depth at a point
x ∈ R can be naturally defined through the cumulative distribution function,
for example by D(x, P ) = min{P (X ≤ x), P (X ≥ x)}. Thus, in order for
functional depth to retain its property of revealing features of the underlying
distribution, it should be required to satisfy the same properties as a cumulative
distribution function, that is, to be non-decreasing and upper-semicontinuous.

FP5 Receptivity to convex hull width across the domain. In practice, the functional
datasets often contain subsets of the domain L ⊂ V over which the functional
observations exhibit little variability, and overlap with one another significantly.
Thus the property FP5 obligates the functional depth to give much larger
weight to the values of the observations over V \ L, than over L where the
functions nearly coincide. This property is especially designed to negate the
effects of measurement error, as over L, even the existence of relatively small
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measurement error can lead to reconstructed functions that overlap in drastically
different ways than when observed without measurement error, leading into
drastically different ordering of the data.

FP6 Continuity in P. The property FP6 has two essential implications. For
any depth function fulfilling this property, the depth based on the empiri-
cal distribution Pn converges almost surely to the population counterpart;
D(·, Pn)→ D(·, P ) P -almost surely. This is an extremely important property
that allows for the depth to be used in practice for statistical inference. FP6
also addresses the partial observability of functional data. As discussed in
Sections 2 and 2.1, Pn is not accessible to us in its entirety, as the observations
themselves arrive to us as discrete measurement sequences. This is a problem
usually adressed through a preliminary interpolation or smoothing of the data
to obtain reconstructions that approximate the functional observations. Then
provided the reconstruction of the functional data is done in a way such that
the empirical distribution of the reconstructed observations, P̂n converges to the
true empirical distribution, P̂n → Pn P -almost surely, FP6 ensures the desired
convergence of the functional depth.

Collecting these in precise notation under the Definition 3.3, we have the definition
for functional depth proposed by Nieto-Reyes and Battey (2016). Note that the
requirement FP5 relies on the following preliminary definition of the convex hull of
H:

Definition 3.2 Let (H,A, P ) be a probability space where H is a Hilbert space with
compact support V, A is the σ-algebra on H generated by the open d metric balls
for some suitable metric d, and P ∈ P, the space of all probability measures on H.
Define E to be the smallest set in the σ-algebra A such that P (E) = P (H). Then the
convex hull of H with respect to P is defined as

C(H, P ) := {x ∈ H : x(v) = αL(v) + (1− α)U(v) : v ∈ V , α ∈ [0, 1]},

where U := {supx∈E x(v) : v ∈ V} and L := {infx∈E x(v) : v ∈ V}.

Definition 3.3 (Nieto-Reyes and Battey (2016)) Let (H,A, P ) be a probability space
as in Definition 3.2. The bounded and non-negative mapping D(·, ·) : H×P → R is
called a statistical functional depth if it satisfies the following properties:

FP1 Distance invariance; D(f(x), Pf(X)) = D(x, PX) for any x ∈ H and f : H → H
such that for any y ∈ H, d(f(x), f(y)) = af · d(x, y), with af ∈ R \ {0}.

FP2 Maximality at centre; For any P ∈ P possessing a unique centre of symmetry
θ ∈ H with respect to some notion of functional symmetry, we have

D(θ, P ) = sup
x∈H

D(x, P ).
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FP3 Strictly decreasing with respect to the deepest point; For any P ∈ P such that
D(z, P ) = maxx∈HD(x, P ) exists, D(x, P ) < D(y, P ) < D(z, P ) holds for any
x, y ∈ H such that min{d(y, z), d(y, x)} > 0 and max{d(y, z), d(y, x)} < d(x, z).

FP4 Upper semi-continuity in x; D(x, P ) is upper semi-continuous as a function of
x, i.e., for all x ∈ H and all ε > 0 there exists a δ > 0 such that

sup
y:d(x,y)<δ

D(y, P ) ≤ D(x, P ) + ε.

FP5 Receptivity to convex hull width across the domain; D(x, PX) < D(f(x), Pf(X))
for any x ∈ C(H, P ) as in Definition 3.2 with D(x, P ) < supy∈HD(y, P ) and
f : H → H such that f(y(v)) = α(v)y(v) with α(v) ∈ (0, 1) for all v ∈ Lδ and
α(v) = 1 for all v ∈ LCδ , where:

Lδ := arg sup
H⊆V

{
sup

x,y∈C(H,P )
d(x(H), y(H)) ≤ 0

}

for any δ ∈ [infv∈V d(L(v), U(v)), d(L,U)) such that λ(Lδ) > 0 and λ(LCδ ) > 0.

FP6 Continuity in P; For all x ∈ H, for all P ∈ P and for every ε > 0, there exists
a δ(ε) > 0 such that |D(x,Q) − D(x, P )| < ε P -almost surely for all Q ∈ P
with dP (Q,P ) < δ P -almost surely, where dP metricises the topology of weak
convergence.

Unlike in the multivariate case, for functional data its far more difficult to sum-
marize which properties a functional depth should satisfy. Although the contribution
of Nieto-Reyes and Battey (2016) towards formally defining functional depth, and
the survey of the properties of various such depths existing in the literature is highly
relevant, the ideas presented in the paper have not reached similar consensus to
the widely accepted Definition 3.1 for the multivariate counterpart. Even though
the properties FP1− FP6 and the intuition behind them makes sense for a depth
function, they have received some critique in the literature and might need further
exploration or reformulation (Gijbels and Nagy (2017)).

In functional spaces, the property FP1 was found to be very demanding without
further restrictions, and a depth definition fulfilling this can be hard to achieve.
Yet, suitable invariance properties are desirable to allow the use of depth as a tool
for comparisons between distributions. Therefore, in literature, the invariance of
depth with respect to more specific types of mappings, specifically, function-affine
mappings and scalar-affine mappings is often considered. The condition FP2 is a
straightforward translation of P2. However, even in the multivariate context there
exists no unique notion of symmetry. Therefore, Nieto-Reyes and Battey (2016)
considered the alternative property, FP2G: Maximality of D at a Gaussian process
mean, which is a straightforward translation of property P2 towards functional data,
stating:

FP2G Maximality at Gaussian process mean: For P a zero-mean, stationary and
almost surely continuous Gaussian process on V , D(θ, P ) = supx∈HD(x, P ) 6=
infx∈HD(x, P ), where θ is the zero mean function.
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Finally, the property FP5 might not be suitable for a -general- definition of functional
depth. Although the property is sensible in some applications where measurement
error is of special concern, it is too restrictive in general, and in some cases can
lead into excluding information that would give valuable insight into the nature of
the process being analyzed. Furthermore, FP5 has been found to have negative
implications on the, as a property, more desirable invariance with respect to function-
affine transformations, often considered in literature.

Typically, the functional depth approaches encountered in the literature can be
roughly divided into the following two classes. The first style of approach integrates
some centrality measure, often a suitable multivariate depth, over the domain of the
observations. This category includes for example approaches such as the integrated
depth (Fraiman and Muniz (2001)), the random projection depth and the double
random projection methods discussed in (Cuevas et al. (2007)), the integrated dual
depth (Cuevas and Fraiman (2009)), the (modified) band depth (López-Pintado and
Romo (2009)), the (modified) half region depth (López-Pintado and Romo (2011)),
and the multivariate functional halfspace depth (Claeskens et al. (2014)). The second
class of definitions consists of notions that aim to provide an expected distance from
the function x to the distribution of functions P . This class includes approaches such
as the h-mode depth (Cuevas et al. (2007)), the functional version of spatial depth
(Chakraborty and Chaudhuri (2014a,b)), and the recently introduced kernelized
version of functional spatial depth (Sguera et al. (2016)).

Most approaches presented in the literature focus on the pointwise centrality of
the functions as a measure of depth in the distribution P . As a result they ignore
important shape related features unique to functional data. This often leads to
centrally placed shape-outliers being given high depth values. This may result in
poor or unpredictable behaviour in applications such as classification - one of depth’s
primary use-cases in the functional context.

Examples of central shape outliers that can even be centrally placed in one or
more derivatives, yet be clearly outlying in shape, are not difficult to construct. For
example, let A,B be random variables from distributions FA and FB with expected
values µFA

and µFB
respectively. Consider F , a set of n observations each of the

form fi(x) = Aix + Bi, with an outlier function o(x) = µ̂FA
x + C sin(wx) + µ̂FB

,
where µ̂FA

and µ̂FB
are the sample means of the observed distributions of A and

B, F̂A and F̂B respectively, C is a scaling parameter dependent on the spread of
F̂B, and w is a frequency parameter. Then, with a suitable choice of C, o(x) is
clearly central in F , as well as its derivative function o′(x) = µ̂FA

+ C cos(wx) being
central in F ′, the set of the derivative functions of F . To illustrate this example, a
random sample of 10 such curves f(x) was simulated. The parameters A and B were
chosen randomly from the uniform distributions on the intervals [0.5, 1.5] and [−1, 1]
respectively. Then an outlying curve o was added with the parameters C = 0.15 and
w = 10. The random curves together with their derivatives are presented in Figure
4, with the outlying curve o highlighted in black. Of course, this is a very simple
pathological example, and the interested reader is encouraged to visit for example
Cuevas et al. (2007), Claeskens et al. (2014), Nagy et al. (2017) or Helander et al.
(2017) for more thorough examples and discussion.
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Figure 4: Example of a centrally located shape-outlyer which is also a centrally
located shape-outlyer in its first derivative.

Shape and shape outlyingness for functional data have recently received a lot of
attention in the literature. Especially the focus of the discussion has revolved around
identifying observations differing or outlying merely in shape, a task functional depth
has been reported ineffective at. As a partial remedy to the problem it has been
proposed for the functional depth method to, alongside with the observed curves,
take into consideration derivatives of various degrees or some other auxiliary curves
such as time registration curves. This approach is mainly applied in the case of
integrated depths (Fraiman and Muniz (2001)) and infimal depths (introduced by
Mosler (2013)) where, instead of considering a pointwise univariate depth over the
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domain, we consider a multivariate depth over the pointwise multivariate sample.
More formally, let H be a Hilbert space with a compact support V and P ∈ P , the
space of all probability measures on H. Consider x ∈ H, and let x(t) denote the value
of the function x at t, and PX(t) denote the corresponding marginal distributions
of X ∼ P , for all t ∈ V. Then, the classical way of defining integrated and infimal
depths, with respect to the univariate depths D(x(t), PX(t)), are

FD(x, P ) =
∫
t∈V

D(x(t), PX(t))dt

and
ID(x, P ) = inf

t∈V
D(x(t), PX(t))

respectively. Then, to incorporate consideration for shape into the depth definition,
one might instead consider for example the functions x together with their derivatives
x′, leading into the following two depth functionals

FD(2)(x, P ) =
∫
t∈V

D((x(t), x′(t))T , P(X(t),X′(t))T )dt

and
ID(2)(x, P ) = inf

t∈V
D((x(t), x′(t))T , P(X(t),X′(t))T ),

where D((x(t), x′(t))T , P(X(t),X′(t))T ) denotes the multivariate depths of the pointwise
multivariate sample (x(t), x′(t))T of the function values at t ∈ V, with respect to
P(X(t),X′(t))T , the joint marginal distribution of X and X ′ at t ∈ V . Note that, instead
of considering only the the derivative functions x′ (of order one or more) as in the
example, other auxiliary curves, such as for example registration curves, containing
information of the features of x can be considered. Recall that registration curves
φi : V → V : t 7→ φi(t) are monotonically increasing and continuous transformations
of t ∈ V , constructed such that the key features of xi align for the composed functions
(xi ◦ φi)(t) = xi(φi(t)).

However, as the approach is often used in conjunction with derivatives of various
orders, it relies on x and the random function X both being (almost surely) differen-
tiable. Thus, the outcome of the method depends crucially on not only the method
chosen to estimate these derivatives, but also on the way the functional observations
are reconstructed in practice. This plays an enormous role when considering deriva-
tives of higher order, especially in the presence of measurement error. Furthermore,
as the approach proceeds with pointwise consideration of the multivariate depths, it
misses the global features of the data.

Another approach discussed in literature for incorporating consideration for shape
in functional depth is to map the original functions to a different functional or
multivariate space through some suitable projections or transformations, and then
to proceed with known functional or multivariate depth methods. This approach
was proposed for example by Helander et al. (2018). The method adopted in the
paper first maps the functional observations into a multivariate space through a
set of measures called statistics of interest (SOI) that quantify some important
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and interesting features of the data, and then proceedes to assign depths to the
observations based on a new multivariate depth definition, Pareto Depth, applied
on the vector of the SOI. The approach was demonstrated to achieve very powerful
result in supervised classification, as the flexible choice of SOI allows measuring and
focusing on the important features of the data enabling accurate distinction between
the classes. However, while powerful, the method is constructed ad hoc and heavily
relies on the analysts contextual knowledge of the data and the phenomenon at hand.

Despite the recent attention shape has received in the FDA context, previously,
part of the difficulty has been due to the lack of an accurate definition describing
shape outlyingness. However, such definition was given recently by Nagy et al. (2017),
who considered depth-based recognition of shape outlying functions and introduced
definitions and methodology for enabling functional depth better receptivity for
differences in shape. Assume that some particular definition for outlyingness in the
multivariate context is agreed upon. For example, define a multivariate outlier as
an observation with a particularly low depth with respect to the rest of the random
sample. Then, a functional observation can be classified as a functional outlier
through the following recursive definition:

Definition 3.4 (Nagy et al. (2017)) Let be H a Hilbert space with a compact support
V. Let P ∈ P, the space of all probability measures on H, X ∼ P and x ∈ H. If
there exists t ∈ V such that x(t) ∈ R is outlying with respect to PX(t), the marginal
distribution of X at t, then we say that x is a 1st order outlier with respect to P .

For J = 2, 3, . . . , assume that the collections of jth order outliers with respect
to P are given for j = 1, . . . , J − 1. If there exists a set of points (t1, . . . , tJ)T ∈ VJ
such that (x(t1), . . . , x(tJ))T ∈ RJ is outlying with respect to P(X(t1),...,X(tJ ))T , the
joint marginal distribution of X at points t1, . . . , tJ , and at the same time x is not a
jth order outlier with respect to P for any j = 1, . . . , J − 1, then we say that x is a
Jth order outlier with respect to P .

According to this definition, 1st order outliers are functions outlying in location
usually considered as the outliers in literature. The higher order outliers for J =
2, 3, . . . on the other hand would be functions outlying in shape. As the joint
distribution P(X(t1),X(t2))T relates to the difference of functional values X(t1) and
X(t2), the 2nd order outliers are the curves violating the pattern of the functions
from P in terms of linear growth. Similarly, 3rd order outliers violate the pattern in
convexity / concavity (acceleration) etc. Thus, in essence, 2-dimensional projections
can be used to emulate differences in first derivative, 3-dimensional projections to
emulate differences in 2nd derivative and so forth.

Based on these observations and the idea of the outlyingness from Definition 3.4,
Nagy et al. (2017) presented the following definitions for Jth order integrated and
infimal depths, that respectively quantify the average and maximum outlyingness of
an observation, up to order J :
Definition 3.5 For J = 1, 2, . . . the Jth order integrated depth of x ∈ H with respect
to X ∼ P ∈ P is defined as

FDJ(x, P ) :=
∫
V
· · ·

∫
V
D((x(t1), . . . , x(tJ))T , P(X(t1),...,X(tJ ))T )dtJ . . . dt1.
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Moreover, the Jth order infimal depth of x with respect to X ∼ P is defined as

IDJ(x, P ) := inf
t1,...,tJ∈V

D((x(t1), . . . , x(tJ))T , P(X(t1),...,X(tJ ))T ).

Note that due to the invariance properties of statistical depth, in the above definition,
D only needs to be evaluated for points (t1, . . . , tJ)T ∈ VJ such that tJ ≤ · · · ≤ t1.
Furthermore, Nagy et al. (2017) showed a direct connection between the above
defined Jth order depth functions and the depth of x at point t considering the
derivatives of x up to order J , assuming x is J-times differentiable. Later, Nagy et al.
(2018) further expanded upon the Definition 3.5 providing the following definition of
the Jth order integrated moment depth and exploring its properties;

Definition 3.6 Let J ∈ N and k ≥ 1. For x ∈ H, a Hilbert space with compact
support V and P ∈ P, the space of all probability measures on H the Jth order kth
moment integrated depth of x with respect to P is given by

FDJ
k (x, P ) :=

(∫
V
· · ·

∫
V

∣∣∣∣D((x(t1), . . . , x(tJ))T , P(X(t1),...,X(tJ ))T ) + 1
2

∣∣∣∣k dtJ . . . dt1
)1/k

−1
2 ,

where the depth D stands for the usual multivariate halfspace depth in RJ .

Due to the substantial computational burden the multiple integrals impose, in
practice it is not feasible to compute the FDJ

k in full. Thus, for M ≥ 1 consider a
random sample (T1,1, . . . , T1,J)T , . . . , (TM,1, . . . , TM,J)T ∈ VJ of M combinations of J
time indices from the uniform distribution on VJ , with no permutations. Then, the
approximated version of FDJ

k is given by

AFDJ
k (x, Pn) =

(
1
M

M∑
m=1

∣∣∣∣D((x(Tm,1), . . . , x(Tm,J))T , P(X(Tm,1),...,X(Tm,J ))T ) + 1
2

∣∣∣∣k
)1/k

−1
2 .

In most cases the approximated version of the Jth order integrated moment
depth provides reliable results if M is chosen large enough. Nagy et al. (2017)
explored similar treatment for the Jth order integrated depth of Definition 3.5 and
suggested the following approach for choosing M ; First, the depths of each datapoint
is approximated m∗ > 1 times independently, using different choice of the parameter
M = Mj for each replication. Then, the value ofM is chosen as the smallestMj such
that the average correlation coefficient of the m∗ vectors of depths corresponding
to Mj exceeds some chosen treshold value, for example 0.99. Thus, the final choice
of M has little effect on the resulting ordering of the curves without sacrificing
computational efficiency. In this thesis, values of M between 5000 and 10 000 were
chosen.

Following in the spirit of Nagy et al. (2018), in Section 4 we shall focus on
the application of AFDJ

k in supervised classification problems for two different real
datasets, comparing its performance to two other recently proposed depth methods,
the multivariate functional half-space depth (MFHD) (Claeskens et al. (2014)) and
the kernelized functional spatial depth (Sguera et al. (2016)).
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3.3 Depth based classification
The natural theoretical framework of any supervised classification problem is given
by the random pair (Y,G), where Y is a multivariate or functional random variable
and G is a categorical random variable expressing the class membership. Here, we
focus on functional classification problems and as such, Y is a functional random
variable. Often for each class G = g, we have Y = Yg ∼ Pg where Pg denotes the
distribution associated the gth class. From now on, we assume that G only takes
values 0 or 1 and that we observe the sample (yi, gi), i = 1, . . . , n of n = n0 +n1 pairs
taken from the distribution of (Y,G), such that we have n0 observations from the
group 0 and n1 observations from the group 1. Additionally, we have an independent
random curve x distributed as Y but with unknown class membership Gx. Thus,
using the information contained in the observed sample of the pairs (yi, gi) the goal
of the supervised functional classification problem is to provide a rule that predicts
Gx.

There is a rich body of work surrounding supervised functional classification and
several such methods have been proposed in the literature. For example, Marx and
Eilers (1999) considered the application of generalized linear regression model to
functional supervized classification using a P-spline approach. James and Hastie
(2001) proposed a functional version of the multivariate linear discriminant analysis,
applied on spline reconstructions of the observations. Hall et al. (2001) suggested
a dimension reduction approach using functional principal component projections
and solving the resulting multivariate problem with discriminant analysis or kernel
methods. Ferraty and Vieu (2003) developed functional classifiers based on kernel
estimators of prior probabilities. Biau et al. (2005) and Cérou and Guyader (2006)
considered the extension of k-nearest neighbors method and its properties in infinite
dimensional spaces. Epifano (2008) developed classifiers based on functional shape
descriptors. Finally, Delaigle and Hall (2012) considered classifiers based on dimen-
sion reduction through partial least squares or carefully chosen functional principal
component projections, and studied their asymptotic properties.

Due to its many desirable properties, depth based methods have also been
considered for functional supervised classification problems. The main difference
between the depth based classification procedures and the ones mentioned above
is that, due to depth being a measure of typicality and outlyingness, the depth
based methods are specifically designed to be suitable for datasets that may contain
outlying curves. There are three examples of depth based supervised functional
classification methods in the literature; Distance to the trimmed mean procedure
and weighted average distance procedure, that were considered by López-Pintado
and Romo (2006), and within maximum depth procedure first considered in the
multivariate context by Ghosh and Chaudhuri (2005), and then for functional data
by Cuevas et al. (2007).

Given a proportion α, the distance to the trimmed mean procedure computes the
mean of the 1−α deepest curves of each group mα

g , called the α-trimmed mean, and
assigns x to the group which minimizes ||x−mα

g ||. Thus, basing the estimation of
the mean on the chosen proportion of the deepest, -most typical-, functions allows to
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obtain robust mean functions that more accurately describe the different classes. In
the weighted averaged distances procedure, for each group, the weighted averages of
the distances ||x− yi||, i = 1, . . . , ng are computed such that the weights are given
by the within-group depth values of yi, D(yi, P̂g), where P̂g denotes the empirical
distribution of the class g. Then, x is assigned to the group for which the weighted
averaged distances are minimized. Finally, the within maximum depth procedure
computes the depth value of x with respect to the empirical distributions of each
group, and assigns x to the group in which the highest depth is achieved.

Generally, any functional depth can be used in conjunction with any of the
depth based methods discussed above to perform supervised functional classification.
However, given the discussion in Section 3.2 on the importance of shape for functional
data, in order to ensure the classification accurately captures the features of the
underlying functional distribution, depths receptive to the shape properties should be
considered. Thus, in Section 4 we will apply the within maximum depth classification
procedure to two different real datasets using the approximated version of the Jth
order integrated moment depth (AFDJ

k ), the multivariate functional halfspace depth
(MFHD) (Claeskens et al. (2014)) and the kernelized functional spatial depth (KFSD)
(Sguera et al. (2016)), and compare their performance in supervised functional
classification.
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4 Real data examples
In this section, we consider two different real data examples, the Kemijoki dataset
and the Australian rainfall dataset. For both datasets, we consider the performance
of three recently introduced functional depth definitions in supervised functional
classification, using the within maximum depth classification procedure as described
in Section 3.3. The functional depths considered are:

(i) the approximated version of the Jth order kth moment integrated depth AFDJ
k

(Nagy et al. (2018)) for different values of J and k,

(ii) the multivariate functional halfspace depth (MFHD) (Claeskens et al. (2014))
applied to the functional observations and their derivatives, and

(iii) the kernelized functional spatial depth (KFSD) (Sguera et al. (2016)) with a
Gaussian and automatic bandwidth selection provided by the authors.

A leave-one-out classification scheme was conducted between each pairing of
classes within each dataset. One at a time, for each classification pairing, each
observation was taken out of the pooled sample and then classified to the group
with respect to which it had the higher depth value. In case of ties, the group
belonging was chosen randomly, weighted by the relative sizes of the two groups.
The classification was conducted for each pairing in both datasets, using each of the
three depth functions discussed above.

Additionally, for comparison, a similar leave-one-out classification scheme was
conducted between the same pairings using the principle component (PC) and partial
least squares (PLS) classifiers introduced by Delaigle and Hall (2012). The methods
are based on calculating a statistic of the form T (x) = (〈x, ϕ〉 − 〈µ̂1, ϕ〉)2− (〈x, ϕ〉 −
〈µ̂0, ϕ〉)2 for each observation x, where 〈x, ϕ〉 =

∫
V xϕ and ϕ is a function on V . x is

then classified based on the sign of the statistic to belong to group 1 when T (x) is
positive or to group 0 when T (x) is negative. The classifier is based on the careful
selection of the function ϕ to guarantee optimal classification properties (see Delaigle
and Hall (2012) for more details). Both methods for choosing ϕ suggested by the
authors, PC and PLS, were explored.

Detailed descriptions of both datasets and the pairwise classification problems, as
well as the leave-one-out misclassification rates, are presented in Sections 4.2 and 4.1.

4.1 Australian weather dataset
The Australian rainfall dataset1 (first analysed by Lavery et al. (1992)) depicts the
daily rainfall measurements at the 191 Australian weather stations, taken over the
interval from January 1840 to December 1990. Each of observed functions depicts the
rainfall measurements over a year at one of the 191 weather stations. For each station,
the rainfall measurement at time t is given as an average over those years for which
the station had been operating, where this averaging is given by a local polynomial

1Available at https://rda.ucar.edu/datasets/ds482.1/

https://rda.ucar.edu/datasets/ds482.1/
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smoother passed through the discrete observations. The 190th station was left out,
as its rainfall pattern was clearly outlying in shape compared to those of all the
other stations. The data is presented in Figure 5 with randomly chosen observations
highlighted in solid black line to help perceive the overlapping observations.

Figure 5: Yearly Australian rainfall data from the 190 weather stations with randomly
chosen observations highlighted in black.

There are two natural clusterings of the data based on the geographical location
of the stations, for both of which the shape properties between the clusters are
much more distinguished than for the Kemijoki dataset. The commonly considered
clustering, presented in Figure 6 divides the observations to North (top) and South
(bottom) clusters. This clustering is also very natural from the perspective of the
rainfall pattern, as it divides the observations to a group with a ”tropical” pattern
with most of their rainfall over the year falling on the summer months (north cluster),
and to a group with most of its rain on the cooler months (south cluster). The three
observations that obtained the highest depth values for AFD2

1 in each cluster are
highlighted in Figure 7. Along with the North-South (NS) clustering, the West-East
(WE) clustering, presented in Figure 8, was considered. Although not quite as
distinct, the WE clustering provides a clear separation in shape pattern aswell. The
West cluster (top) typically has a more distinguished amplitude variance over the
year, with sharply defined seasons where the precipitation falls on either warm or
cold months. However, for the East cluster (bottom), the rain falls much more
uniformly over the year with little to no separation between the seasons, and a stable
precipitation throughout the year instead. The three observations that obtained the
highest depth values for AFD2

1 in each cluster are highlighted in Figure 9.
The geographical location of each of the weather stations based on which the

two clusterings were decided is presented in Figure 10. The North (grey) to South
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Figure 6: The North (top) to South (bottom) clustering of the Australian rainfall
dataset with randomly chosen observations highlighted in black.

(black) clustering is highlighted on the left, where as the West (grey) to East (black)
clustering is highlighted on the right.
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Figure 7: The North to South clustering with the three observations that obtained
the highest depth values for AFD2

1 highlighted in black.
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Figure 8: The West (top) to East (bottom) clustering of the Australian rainfall
dataset with randomly chosen observations highlighted in black.
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Figure 9: The West to East clustering with the three observations that obtained the
highest depth values for AFD2

1 highlighted in black.
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Figure 10: The geographical locations of the Australian weather stations with the
NS (left) and WE (right) clusterings highlighted in grey and black.
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The approximated Jth order kth moment depth AFDJ
k was computed using the

orders J = 1, 2 and 3. For J = 1, the depths were computed across all possible
time indices. For J = 2 and J = 3, the depths were computed over MJ uniformly
sampled unique combinations of J time indices (with permuations removed), where
M2 = 10 000 and M3 = 5 000. For each J , the moments k = 1, 2 and 3 were used.

The leave-one-out misclassification rates for AFDJ
k are presented in Table 1,

and those for MFHD, KFSD and the PC and PLS classifiers, are presented in
Table 2. For the WE cluster, both the competing depth methods as well as the
PC and PLS classifiers perform similarly well, with the PLS having a slightly
higher misclassification rate compared to the others. With any combination of the
parameter J and k values, AFDJ

k clearly outperforms the other methods, aside from
the PC classifier, compared to which it still performs slightly favourably. For the
NS clustering, the performance of the depth methods, MFDH, KFSD and AFDJ

k for
J < 3, decreases drastically, while the performance of the PC and PLS classifiers
stays reliable. However, for J = 3, AFDJ

k is able to perform comparably, having
only a slightly worse performance to the PC classifier.

Interestingly, the value of k did not seem to affect the performance of AFDJ
k

for the WE clustering, but had a large impact in the case of the NS clustering. To
confirm this, a leave-one-out crossvalidation scheme was conducted for the parameter
k. For both classification problems, one at a time, each observation was left out of the
pooled sample. Then, for the remainder of the sample, a leave-one-out classification
was performed using a wide range of different values of k. Then, the value of k which
had the lowest misclassification rate was used to classify the observation that was
originally left out.

For the crossvalidation, the order J was chosen to be 1, and the values of k
from between −100 000 and 100 000 were tried. The value of k did not seem to
have a meaningful effect on the misclassification rate for the WE clustering, and
even with the crossvalidation, the misclassification rate was 6.3%. However, for the
NS clustering, the crossvalidation had a significant impact as the misclassification
rate fell down to 0.5% with only a single observation misclassified. Furthermore,
the cluster from which the left out observation came from seemed to have a strong
impact on the resulting crossvalidated value of k. This dependence on the left out
observation is extremely rare for crossvalidation shcemes, inviting further exploration.
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Table 1: Leave-one-out misclassification rates for WE and NS clusters for the Aus-
tralian rainfall dataset based on within maximum depth classification with AFDJ

k .

WE cluster NS cluster
AFD1

1 0.063 0.274
AFD1

2 0.068 0.284
AFD1

3 0.068 0.289
AFD2

1 0.063 0.174
AFD2

2 0.063 0.184
AFD2

3 0.058 0.195
AFD3

1 0.079 0.132
AFD3

2 0.079 0.142
AFD3

3 0.074 0.158

Table 2: Leave-one-out misclassification rates for WE and NS clusters for the Aus-
tralian rainfall dataset based on within maximum depth classification with MFHD
and KFSD, and based on the PC and PLS classifiers.

MFHD KFSD PC PLS
WE cluster 0.100 0.121 0.084 0.168
NS cluster 0.258 0.316 0.084 0.136
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4.2 Kemijoki dataset
The Kemijoki dataset2 (first analysed by Helander et al. (2018)) depicts the surface
level of three different water reservoirs of mutually disconnected hydro power plants
on the Kemijoki river. Each observation depicts the development of the reservoir
surface level over a single day, and the data consists of observations from 484 different
days drawn from multiple years. For each day, the measurements are given as a
difference from the maximum reservoir level in meters, measured every 10 minutes
resulting in observation sequences of 144 measurements for each day. For simplicity,
these differences are henceforth referred to as ”levels”. The data is presented in
Figure 11 with randomly chosen observations highlighted in solid black line to help
perceive the overlapping observations.

Reservoirs A and C are very similar in both location and spread, but differ
in shape. Their daily means (average level during a given day) are close to one
another, with an average value of −0.23 and −0.24 respectively, and are very similarly
spread aside from some clearly outlying observations. Aside from the slightly tighter
grouping of the majority of the data of reservoir C, the notable differences between
the two reservoirs are in the shape of the observations. Observations from reservoir A
tend to have less surface level fluctuation and exhibit a slightly increasing trend until
time 45-50, after which the amplitude and volatility of the fluctuations increase and
the trend turns to stable or slighly decreasing. For reservoir C, the general trend is
much more stable and the surface level fluctuations are much slower and less volatile,
resulting in lower but more even roughness in the data compared to reservoir A.
Reservoir B stands clearly separate from the other two in both location and shape.
Its observations are located around a daily mean level of −0.15 and exhibit much less
overlap than those of reservoirs A and C. The observations of reservoir B fluctuate
much less over the course of a day, with the water level typically staying very stable
for long periods of time compared to the rapidly fluctuating levels of the other two
reservoirs. Furthermore, reservoir B is much less spread than the other reservoirs,
having a standard deviation of its mean levels of only 0.035 , compared to that of
0.072 and 0.079 for reservoirs A and C respectively. The three observations that
obtained the highest depth values with AFD2

1 for each reservoir pair are highlighted
in Figure 12.

Given the clear difference in both shape and location between reservoir B and
reservoirs A and C, pairwise classification between B and either of the other two is
relatively straightforward. However, due to the overlap of the reservoirs A and C
and with the only notable differences between these reservoirs being in the general
shape of the observations, classification between these two reservoirs is a difficult
task and relies heavily on the shape receptivity of the depth function.

2The data is shared by Kemijoki Oy to the scientific community for academic research purposes
by the original request of Department of Mathematics and Systems Analysis at Aalto University,
Finland. Any other use of the data is not allowed. Due to possible competitive advantage reasons,
any distinguishing information of the data, including the dates and specific reservoirs, have been
removed. The data is not publicly available, but can be redistributed for research purposes on
request.
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Figure 11: Kemijoki hydro power plant reservoir levels with randomly chosen obser-
vations highlighted in black.
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Figure 12: Kemijoki hydro powerplant reservoir levels with the three observations
that obtained the highest depth values with AFD2

1 for each reservoir highlighted in
black.
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The daily measurements were interpolated to form the functional observations
using a B-spline basis of order 4 with knots placed at each measurement point. Thus,
the resulting functional observations xi(t), i = 1, . . . , 484 interpolate the data almost
exactly, without removing the roughness.

For AFDJ
k , the moment k = 1 was held constant, and the orders of J = 1, 2 and

3 were used. With J = 1, the depth was computed across the entire index set, and
for J = 2 all

(
144
2

)
unique pairs of index points were used. With J = 3, the depths

were computed over 5 000 uniformly sampled unique time index triplets, with no
permutations.

The leave-one-out misclassification rates for all of the compared methods for the
three reservoir pairings are presented in Table 3. The PC classifier clearly outperforms
the other tried methods. The compared depth methods performed similarly well
across each classification problem, with AFD3

1 performing favourably. However, the
weaker performance of the depth based methods, especially of AFDJ

k , compared to
the Australian rainfall dataset may be explained by the roughness of the data. As
the Kemijoki data was not smoothed, the present very volatile roughness in the data
nearly drowns out the subtle differences in trend between the reservoirs interfering
with the ability of the depth functions to capture the differences in shape.

Table 3: Leave-one-out misclassification rates for each reservoir pair based on within
maximum depth classification with AFDJ

k , MFHD and KFSD and based on the PC
and PLS classifiers.

AFD1
1 AFD2

1 AFD3
1 MFHD KFSD PC PLS

AvB 0.236 0.217 0.198 0.229 0.249 0.126 0.234
BvC 0.204 0.201 0.192 0.214 0.207 0.157 0.200
CvA 0.325 0.256 0.240 0.262 0.243 0.182 0.266
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5 Summary
In this thesis work we considered depth based classification of functionl observations.
Most depth based methods presented in the literature fail to recognize shape features
important to functional data. Our goal was to address this problem. That is why we
concentrated on shape receptive depth functionals. In particular, we focused on the
Jth order kth moment integrated depth and its application in supervised functional
classificaiton using within maximum depth procedure. We presented the method,
considered its properties, and illustrated its excellent performance in two different
real data examples.

The Jth order kth moment integrated depth is based on integrating over the kth
moments of J-variate crossectional depths. This approach enables to measure both
shape and location even in the case when the derivatives of the functions do not
exist. In the sample version, the integration is replaced by sums.

The method is computationally intensive, especially if J is chosen to be large.
Thus, in the future, our goal is to provide a computationally more efficient algorithm
(based on sampling randomly but wisely). Also, we plan to present a modified version
of the Jth order kth moment integrated depth, where we consider not only J-variate
cross sectional depths, but also simultaneously all j-variate cross sectional depths,
with j = 1, . . . , J . Moreover, we plan to apply Jth order kth moment integrated
depths in clustering.
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