
Ville Kapanen

TCP/IP Acceleration for Telco Cloud

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 22.10.2018

Thesis supervisor:

Prof. Mario Di Francesco

Thesis advisor:

M.Sc. (Tech.) Tuomas Taipale

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/162136945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of science

abstract of the
master’s thesis

Author: Ville Kapanen

Title: TCP/IP Acceleration for Telco Cloud

Date: 22.10.2018 Language: English Number of pages: 8+51

Department of Computer Science

Professorship: Computer Science Code: SCI3042

Supervisor: Prof. Mario Di Francesco

Advisor: M.Sc. (Tech.) Tuomas Taipale

Mobile traffic rates are in constant growth. The currently used technology, long-
term evolution (LTE), is already in a mature state and receives only small incre-
mental improvements. However, a new major paradigm shift is needed to support
future development. Together with the transition to the fifth generation of mobile
telecommunications, companies are moving towards network function virtualiza-
tion (NFV). By decoupling network functions from the hardware it is possible to
achieve lower development and management costs as well as better scalability.
Major change from dedicated hardware to the cloud does not take place without
issues. One key challenge is building a telecommunications-grade ultra-low-latency
and low-jitter data storage for call session data. Once overcome, it enables new
ways to build much simpler stateless radio applications.
There are many technologies which can be used to achieve lower latencies in the
cloud infrastructure. In the future, technologies such as memory-centric comput-
ing can revolutionize the whole infrastructure and provide nanosecond latencies.
However, on the short term, viable solutions are purely software-based. Examples
of these are databases and transport layer protocols optimized for latency. Traf-
fic processing can also be accelerated by using libraries and drivers such as the
Data Plane Development Kit (DPDK). However, DPDK does not have transport
layer support, so additional frameworks are needed to unleash the potential of
Transmission Control Protocol/Internet Protocol (TCP/IP) acceleration.
In this thesis TCP/IP acceleration is studied as a method for providing ultra-low-
latency and low-jitter communications for call session data storage. Two major
frameworks – namely, VPP and F-Stack – were selected for evaluation. The major
finding is that the frameworks are not as mature as expected, and thus they failed
to deliver production-ready performance. Building robust interface for applica-
tions to use was recognized as a common problem in the market.

Keywords: TCP/IP Acceleration, VPP, F-Stack, Network Function Virtualiza-
tion, Cloud Infrastructure

aalto-yliopisto
perustieteiden korkeakoulu

diplomityön
tiivistelmä

Tekijä: Ville Kapanen

Työn nimi: TCP/IP kiihdytys pilvipohjaisessa mobiiliverkossa

Päivämäärä: 22.10.2018 Kieli: Englanti Sivumäärä: 8+51

Tietotekniikan laitos

Professuuri: Tietotekniikka Koodi: SCI3042

Valvoja: Prof. Mario Di Francesco

Ohjaaja: DI Tuomas Taipale

Mobiiliverkon datamäärät ovat jatkuvassa nousussa. Nykyisin käytössä olevaa
neljännen sukupolven matkapuhelintekniikkaan (4G) tehdään enää pieniä päivi-
tyksiä. Jotta tulevaisuuden datamääriin pystytään vastaamaan, täytyy tekniikan
ottaa seuraava suuri harppaus. Siirryttäessä viidennen sukupolven matkapuhelin-
tekniikkaan (5G), siirtyvät yritykset myös kohti verkon funktioiden virtualisointia.
Erottamalla verkon funktiot laitteistosta pystytään saavuttamaan entistä mata-
lammat kehitys- ja hallintakustannukset, sekä parempi skaalautuvuus.
Siirtymä erityislaitteistosta pilveen on haasteellinen. Yksi keskeisimmistä on-
gelmista on matalaan ja tasaiseen viiveeseen pystyvän tietovaraston rakentaminen
yhteyksien käsittelyyn. Jos tähän haasteeseen pystytään vastaamaan, mahdollis-
taa se uudenlaisten yksinkertaisten tilattomien radioapplikaatioiden suunnittelun.
Matalaa viivettä pystytään tavoittelemaan monella tapaa. Tulevaisuudessa muis-
tikeskeinen laskenta saattaa mullistaa koko infrastruktuurin ja mahdollistaa
nanosekuntien viiveet. Tämä ei kuitenkaan ole mahdollista lyhyellä mittakaavalla,
joten ratkaisuja pitää etsiä ohjelmistoratkaisuista. Tämä tarkoittaa esimerkiksi
tietokannan tai kuljetuskerroksen protokollan optimointia viivettä ajatellen. Lii-
kenteen prosessointia voi myös kiihdyttää erilaisilla kirjastoilla ja ajureilla, kuten
Data plane development kitillä (DPDK). DPDK ei tue kuljetuskerroksen kiihdy-
tystä, joten tähän joudutaan käyttämään erillisiä ohjelmistoja.
Tässä diplomityössä tutkitaan, pystyvätkö TCP/IP-kiihdytystä tarjoavat ohjel-
mointikehykset lyhentämään viivettä riittävästi yhteyksien tilannedatan varas-
toinnin tarpeisiin. Kahden yleisimmän ohjelmiston, VPP ja F-Stack, suorituskyky
mitataan. Tutkimuksen tuloksena havaittiin, että kumpikaan ohjelmisto ei ole riit-
tävän valmis tuotantokäyttöön. Yhteinen ongelma kaikissa tutkituissa ohjelmis-
toissa oli rajapinta, jota tarjotaan applikaation käytettäväksi.

Avainsanat: TCP/IP kiihdystys, VPP, F-Stack, verkon funktioiden virtual-
isointi, pilvi-infrastruktuuri

iv

Preface
I would like to thank my thesis supervisor Professor Mario Di Francesco for all the
guidance I received during the process. His excellence in academic writing and both
calming and supportive attitude towards my stress truly made my thesis something
it would not have been without his support.

This thesis was conducted at Nokia Oyj in Espoo, Finland. I would like to thank
my advisor Tuomas Taipale and our technical lead Jussi Mäki-Äijälä for all their
support and guidance. These two individuals truly know what they are talking
about. At Nokia I would also like to thank Markku Niiranen and Osmo Kaukanen
for the opportunity to work on this project. Thanks also belong to my colleague
and old friend Samu, who is solely the reason I found my way to Nokia.

For me this thesis is much more significant than half a year I spend working
on it. In its way, this is the ending of a very special part of my life. During this
time I have met more awesome individuals than I could have ever imagined. I have
learned about so many topics I didn’t even know are taught in the university. I have
also learned that quite a bit of learning can also happen outside of the lecture halls
in the active student community of Otaniemi. I’m grateful for the community SIK
has been able to offer me. It’s hard to even think how much I have experienced
with the peers over there. Especially I want to thank boards of ’14 and ’16 for the
years I will never forget. In addition I want to thank FTMK14, ITMK13 and all the
other committees I got to take part at AYY. Thanks go also to my second family
Joutomiehet, with whom I have experienced some of the most unexpected events in
my life.

Last but not least, I want to thank my actual family who have always supported
me on everything and made sure I have what I need to pursue my dreams.

Espoo, 22.10.2018

Ville O. Kapanen

v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Symbols and abbreviations vii

1 Introduction 1
1.1 Research scope and goals . 2
1.2 Contributions . 2
1.3 Structure . 3

2 Technology Enablers of 5G 4
2.1 Telco Cloud: An Overview . 4

2.1.1 5G . 4
2.1.2 Network Function Virtualization 7
2.1.3 Cloud Computing . 9

2.2 Call Session Data Storage . 10
2.2.1 Data Center Networking . 11
2.2.2 Database . 12
2.2.3 Operating System Network Stack 13

2.3 Reducing Latency . 13

3 Accelerating TCP 16
3.1 Background . 16

3.1.1 TCP . 16
3.1.2 The TCP/IP stack in the Linux Kernel 19
3.1.3 DPDK . 22

3.2 TCP/IP Acceleration . 24
3.2.1 Vector Packet Processing (VPP) 24
3.2.2 F-stack . 27
3.2.3 Other Solutions . 27

4 Evaluation 29
4.1 Measurement tools . 29
4.2 Experimental setup . 31

4.2.1 Hardware testbed . 31
4.2.2 Host . 32
4.2.3 Guest . 35

4.3 Methodology . 35
4.3.1 VPP, F-Stack and Linux kernel with Redis-benchmark 35
4.3.2 VPP and Linux kernel with VPP socket test application . . . 36

vi

5 Experimental results 38
5.1 Results . 38
5.2 Analysis . 44

6 Conclusions 46

References 47

vii

Symbols and abbreviations

Symbols

Opetators

Abbreviations

4G Fourth generation of mobile telecommunications
5G Fifth generation of mobile telecommunications
ACK Acknowledgment
ADC Analog-to-Digital Converter
API Application Programming Interface
ARPA Advanced Research Projects Agency
ARPU Average Revenue Per User
BIC Binary Increase Congestion
COTS Commercial Off-The-Shelf
CPU Central processing unit
DAC Digital-to-Analog Converter
DB Database
DCTCP Data Center TCP
DDoS Distributed Denial-of-Service
DMA Direct Memory Access
DMM Dual Mode, Multi-protocol, Multi-instance
DPDK Data Plane Development Kit
FASP Fast and Secure Protocol
FMO Future Mode of Operations
FPGA Field-Programmable Gate Array
Gbps Gigabits Per Second
HFT High Frequency Trading
HPE Hewlett Packard Enterprise
IaaS Infrastructure as a Service
IEEE Institute of Electrical and Electronics Engineers
iLO Integrated Lights-Out
IOMMU Input–output Memory Management Unit
IoT Internet of Things
IP Internet Protocol
KVM Kernel-based Virtual Machine
L2 Layer 2
L3 Layer 3
L4 Layer 4
LKM Loadable Kernel Module
LTE Long-Term Evolution
LTS Long Term Support
MIMO Massive Multiple-Input Multiple-Output

viii

MME Mobility Management Entity
MSS Maximum Segment Size
NF Network Function
NFV Network Function Virtualization
NIC Network Interface Controller
NIST National Institute of Standards and Technology
NNTP The Network News Transfer Protocol
NVM Non-Volatile Memory
OFP OpenFastPath
OPEX Operating Expense
OS Operating System
OvS Open vSwitch
PCI Peripheral Component Interconnect
PMD Poll Mode Driver
PMO Present Mode of Operations
PoC Proof of Concept
PRR Proportional Rate Reduction
QUIC Quick UDP Internet Connections
RDMA Remote Direct Memory Access
RFC Request for Comments
RNC Radio Network Controller
RTT Round-Trip Time
SDN Software-Defined Networking
TCP Transmission Control Protocol
Telco Telecommunications
TLDK Transport Layer Development Kit
TTM Time to Market
UDP User Datagram Protocol
UIO Userspace I/O
VCL VPP communications library
VFIO Virtual Function I/O
VMM Virtual Machine Monitor
VPP Vector Packet Processing
vSwitch Virtual Switch

1

1 Introduction
Internet traffic trend has been growing both rapidly for years, and this trend is not
expected to end in the foreseeable future [27]. Traffic growth is especially fast in
the mobile market, where both the number of connected devices and data rates per
device have been quickly growing. The increasing amount of connected devices and
applications will demand more throughput and less latency in the future [70]. In
addition, the number of connected devices and Internet of Things (IoT) solutions in
the industry will grow and expand in the following years. These industry applications
will also put other demands on radio technology, such as lower latency and ultra-
reliability. The fifth generation of mobile telecommunications (5G) is developed to
answer to these needs in the close future.

As these requirements tighten, the need for improvements in every part of the
radio network rises. Modern radio solutions are built on top of cloud infrastructure,
which gives plenty of benefits over dedicated solutions: scalability, cost savings
and ease of maintenance to name a few [35]. Radio applications can significantly
benefit from these properties. For example, the load on the network can be highly
varying, so scaling is a very useful feature. Using the cloud infrastructure also
makes deployment easier and new features can be released at a faster pace. The use
of commercial off-the-self (COTS) hardware can increase the flexibility even more,
since solutions from different providers can be combined. Of course, using the cloud
also has its disadvantages. Especially with COTS hardware, it can be harder to
achieve the highest possible performance and additional levels of abstraction bring
more complexity to the systems. [35]

Compared to other cloud solutions, telecommunications (telco) cloud has some
specific requirements [72]. Especially with the coming of IoT and industry appli-
cations, latency and reliability requirements of cloud are much stricter. There is
pressure to get end-to-end latency in 5G network close to 1 ms and maintaining
ultra-reliability [8]. These requirements put also pressure to the core network and
its solutions. One important part of it is information sharing between radio appli-
cations inside the cloud. Future radio applications need low-latency, low-jitter and
reliable data storage to ensure correct behavior of the service.

Even inside the cloud infrastructure there are many variables which affect latency
and jitter between the application and data storage. These could be divided in
three main parts: physical network, database (DB) and operating system (OS)
network stack. There are also multiple ways to approach the problem. In most
COTS solutions, the focus is on selecting the database most appropriate to the
needs. In addition to DB selection we can try to accelerate the traffic processing
at both the application and the database server. This can be done by changing
the communication protocol of the database to something more suitable to low-
latency and low-jitter processing. However, this usually comes with its trade-offs in
reliability and development effort. Traffic processing can also be accelerated by using
libraries and drivers such as the Data Plane Development Kit (DPDK) [3], which
provides faster processing than the native Linux networking stack. However, also
DPDK has its limitations by not offering the Transmission Control Protocol (TCP).

2

Several other frameworks offer this functionality on top of the DPDK. Lastly, for
the trade-off of losing flexibility offered by COTS hardware there are also dedicated
hardware like memory-centric solutions. One example is The Machine [52], where
all the compute nodes are connected to shared memory via a proprietary interface.

1.1 Research scope and goals

Low-latency and low-jitter communications in telco cloud can be facilitated with
multiple technologies. In the scope of this research only Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) acceleration is studied in detail. Other methods
are briefly investigated to allow proper comparison between technologies. One of
the main reason for targeting TCP/IP acceleration is finding method which could
be utilized in a quick pace.

Two major frameworks offering TCP/IP acceleration are selected for the exper-
imental part of the thesis. These are Vector Packet Processing (VPP) and F-Stack.
We focus on these and evaluate what other benefits these technologies could give us
in addition to pure guest-side TCP/IP bypass. In particular the scope of the thesis
is as follows:

• Measurement tools: selecting, building and modifying tools for measuring TCP
latency. Due to the novelty of considered frameworks, there are not many tools
which are integrated with those frameworks. Integration effort is not in the
scope of the research, so tools are selected from a limited pool and multiple
tools are needed instead of a “do-it-all” solution. The main question is to find
a trade-off between versatility and support.

• Evaluating performance of frameworks: analyzing VPP and F-Stack in an
environment which is similar to a production telco cloud. The scope includes
determining the parameters which impact on performance, and optimizing
those with traffic which resembles actual traffic in the radio cloud. These
results are also compared to a baseline when TCP/IP acceleration is not used.

• Drawing conclusions: performance is not the only factor dictating TCP/IP
acceleration’s suitability to solve the problem of latency in the telco cloud.
We draw conclusion on the suitability of TCP/IP acceleration in telco cloud
through research data on maturity, deployment effort and performance of dif-
ferent frameworks.

1.2 Contributions

The contributions of the study are the following:

• This study is a starting point for the research of TCP/IP acceleration in telco
cloud. It provides a clear view of the current market of the solutions and
their features, which has not been done as one coherent study. This includes
classifying which of the claims by developers of the frameworks actually hold
true.

• A methodology to compare the considered frameworks was developed and
supporting software was realized to manage the test environment and run
experiments.

• A benchmarking tool for the Redis database was modified to provide more
useful output in terms of latency-oriented testing.

• The study ends in a clear analysis and recommendations of how the research
in this area could be continued.

1.3 Structure

This chapter has provided the introduction to the topic of the thesis. The rest of this
thesis is divided into five chapters. First of all, Chapter 2 details in the root problem
and introduces the technology behind 5G and telco cloud. After that, Chapter
3 discusses TCP and its Linux implementation in detail. The same chapter also
introduces the major TCP/IP acceleration frameworks, along with their common
components (e.g. DPDK).

Chapter 4 explains the experiment methodology and the setup used for the tests.
It also individually explains each test performed. Chapter 5 introduces and analyzes
the measurement results in depth. This chapter also includes a broader analysis
which takes the results of the literature review into account to give a complete
picture on TCP/IP acceleration frameworks. Lastly, Chapter 6 provides a summary
of the considerations as well as directions for future work.

4

2 Technology Enablers of 5G
5G is becoming reality sooner than anticipated before. The Institute of Electrical
and Electronics Engineers (IEEE) has published the 5G roadmap where they expect
the fifth generation of mobile telecommunications to land consumer market in the
early 2020’s [45]. However, first telco operators have started to launch 5G as early
as late 2018 [24]. The first 5G-capable smartphones are expected to hit the market
in the beginning of the 2019 [49]. At the same time all major networking companies
are pushing telco cloud products to support future networks.

This chapter aims to give a proper background on why TCP/IP acceleration
should be researched for 5G. In section 2.1 5G and its technical requirements are
described. The section continues with an explanation on how network function
virtualization (NFV) and cloud computing benefit 5G. Section 2.1 wraps up with
defining cloud computing. In section 2.2 the specific problem of call session storage
round-trip time (RTT) is introduced and studied in the three main components of
latency. Finally in section 2.3 different solutions for the problem are introduced and
researching TCP/IP acceleration is justified.

2.1 Telco Cloud: An Overview

Telco cloud is effort to bring benefits of modern cloud architecture to highly de-
manding industry of telecommunications. In this section huge effort of architecture
change is rationalized and peculiarities of the industry are presented.

2.1.1 5G

Mobile traffic rates and number of users are constantly growing and there seems to
be no end for it. Nokia Bell Labs forecasts over 31-fold increase in control plane
traffic between years 2016 and 2025 due to growing number of devices. Bell Labs also
forecasts bearer traffic to grow 61 to 115 times in the same timeline [70]. Ericsson is
expecting similar growth by predicting yearly global mobile data traffic to have an
eightfold increase between years 2017 and 2023 [44]. The currently used technology,
long-term evolution (LTE), is already mature and receives only small incremental
improvements, which simply are not enough to provide future proof performance.
To support future development of mobile data rates, a new major paradigm shift is
needed, as the four previous generations of cellular technology also have been [28].

As for each major paradigm, the technical requirements for 5G are very high in
comparison to 4G. Main engineering requirements for 5G are high data rate and
low latency, energy and cost [28]. However, all the requirements do not have to be
fulfilled to their peak performance at the same time. Most applications only rely
on some of the requirements. For example, autonomous driving needs very reliable,
low-latency connection, but the data rates are very moderate. Streaming services
are at the other end of spectrum, where the data rate is crucial, but latency does
not really matter. Figure 1 overviews the requirements in 5G, the most important
of which are detailed next.

5

5G
Extreme
mobile

broadband

Critical
machine

communication

Massive
machine

communication

``Unlimited experience''

``F
or

 e
ve

ry
th

in
g'

' ``Instant action''

wherever needed
100 Mbps

x more traffic
10 000

peak data rates
>10 Gbps

x more devices
10 - 100

ultra low cost
M2M

on battery
10 years Ultra

reliability

radio latency
<1 ms

Figure 1: 5G requirements [8].

• Data rate can be defined in many ways. Peak data rates of 5G should be
measured in tens of Gigabits Per Second (Gbps) . Edge rate, which is defined
as 95th percentile data rate, should range from 100 Mbps to as high as 1
Gbps. Both of these requirements are about 10–100 times higher than in 4G.
In addition to data rate, area capacity, i.e. how much data can be transferred
in given area, should increase significantly. It should increase around 1,000
times in comparison to 4G.

• Latency. End-to-end latency of 5G network should be below 1 ms. In com-
parison, 4G has a requirement of latency below 15 ms. Tighter latency re-
quirements support applications like autonomous driving, online gaming and
augmented reality. Tight end-to-end latency also gives strict constraints for
core network performance.

• Energy and cost. When network performance grows in multiple orders of mag-
nitude, it is needless to say that the energy consumption can not follow the
trend. Just to maintain the current energy consumption, we need to decrease
the energy consumption per bit over 100-fold. One key element to this devel-
opment is small cells, which are more cost- and energy-efficient than macro
cells [28]. Another important factor is finding cost and energy savings from
cloud computing.

6

Growing performance in orders of magnitude can not be done by just tweaking
current technologies. There is a need for new innovations which can carry out the
performance increase. The three key technologies are ultra-densification, mmWave
and massive multiple-input multiple-output (MIMO). Densification of network is
not a new technology, but it has to be taken to the next level. In the early 1980s
cell sizes were as large as hundreds of square kilometers. In the modern day 4G
network base stations can be as close as few hundred meters apart from each other.
In the future 5G networks this can be taken even further by introducing cells as
small as the current WiFi nodes. Increasing density has very distinct advantages
and disadvantages. Increasing density requires more base stations, which may create
additional costs and energy consumption. However, smaller cells can be built to be
more cost- and energy-efficient. A beneficial side effect is that new base stations
affect network performance in many ways, and the network capacity grows more
than the number of base stations. More base stations mean that spectrum can be
reused more efficiently, as the same frequency can be used for different transmissions
in proximity. It also decreases the number of users per node, which leads to more
resources for everyone. This is especially important in high-traffic areas, where edge
data rates can be low. High density of base stations also decreases the distance a
signal needs to travel, so higher frequencies can be used without problems [28].

mmWave, or Millimeter Wave, is the frequency range from 3 GHz to 300 GHz
[33]. In this range the wavelength varies from 1 mm to 100 mm. mmWave is
often used to describe only the higher end of the frequency range (30-300 GHz),
as that is the part of the range which is not yet utilized as much and has thus
less interference. mmWave can be a huge opportunity for 5G, but it definitely
has its challenges. The challenges are worth solving, since current used spectrum
is around 600MHz wide and re-purposing spectrum from other purposes can only
free around 80MHz more. In the millimeter spectrum there can be even tens of
gigabits of spectrum free for 5G. Even though there is a large amount of millimeter
spectrum available, it is not trivial to put it into use. Increasing frequency means
also increasing problems with propagation, blocking and absorption. These can be
fought with adequate placement of base stations and directional antenna arrays [28].
In addition to signal characteristics, both analog-to-digital converters (ADCs) and
digital-to-analog converters (DACs) for wide frequency bands are problematic. With
current technology they are hard to manufacture and take a significant amount of
energy [33].

Massive MIMO is closely related to introducing higher frequencies of mmWave.
MIMO does exactly what the name tells: it enables communication via multiple
antennas per base station. MIMO itself is not a new technology in the radio do-
main, but massive MIMO is set to be leap of improvement in comparison to old
implementations. Multi-user MIMO used in 4G generally uses approximately the
same number of antennas and terminals and is limited to few users at the time. It
works well, but is not scalable at all; Massive MIMO was indeed developed to solve
that problem. Massive MIMO uses arrays of directional antennas, and the number
of antennas is intended to be large in comparison to amount of active terminals.
This way energy can be focused to the areas where it’s needed, which leads to sig-

7

nificant improvements in energy consumption. With an increased number of served
terminals and enabling use of higher frequencies, Massive MIMO can increase the
capacity by a order of magnitude [54].

To comply with the 5G requirements, telco operators and manufacturers face
several challenges. The problem is not only to get enough throughput and latency
from the network, but that it also needs to be done in a cost-effective manner,
which is troublesome with present mode of operations (PMO). Telecommunications
services are based on Network Functions (NF). Network functions implement clearly
defined components of networks such as the Mobility Management Entity (MME) or
the Radio Network Controller (RNC). In the traditional model (i.e., without cloud),
NFs would run on dedicated hardware, which is a poorly scalable way to operate.
Network function virtualization, which is introduced in the next section, offers a
solution to this by using a virtualization technology to allow network functions
to share resources, be more easily manageable, run on COTS hardware and scale
significantly better [35].

2.1.2 Network Function Virtualization

Network function virtualization means decoupling the network functions from the
underlying hardware, namely taking telecommunications to the cloud. Instead of
running radio services directly on dedicated hardware, networks functions run on
top of a virtualized platform. These platforms consist of three main components:
physical servers, a virtual machine monitor (VMM or Hypervisor) and virtual ma-
chines (VMs). Network functions are installed into virtual machines instead of
regular physical machines. A virtual machine abstracts the physical machine and
its functionalities. Hypervisor is a software which manages the virtual machines and
physical resources. It determines which physical resources are given to the virtual
machine and provides a platform for managing it. Physical machines themselves
are not very different from traditional network function deployment. In the NFV
framework physical machines are located in data centers, network nodes or end-user
facilities. Machines with very high capacity and performance are mostly used since
the resources are shared and distributed dynamically [43]. The major difference
in comparison to traditional deployment is the lack of proprietary hardware such
as acceleration cards. In virtualized environment proprietary hardware is avoided,
because all the network functions should be designed to work on COTS hardware.
This way hardware and software are truly decoupled, and NFs can run on any server.

The lack of proprietary hardware, such as acceleration cards, is indeed one of
the main challenges of NFV. However, this problem can be minimized with modern
software. Hardware compatibility problems are not limited to special cards either.
Even generic servers from different manufacturers can have minor differences, which
can cause unexpected problems. This can be solved with standardization. When
hypervisors are developed further, hardware manufacturers gain a better under-
standing of what is expected from their hardware. There are also many challenges
on the software side. Virtualizing a telecommunications service is a complex task
and there is the risk of making an already complex platform into something that is

8

even more complex and hard to understand. While developing NFV, it is crucial
that everything is automated so operating expense (OPEX) benefits can be utilized.
Security also needs to be considered in a virtualized platform. Application logic is
not always drastically changed when migrating to NFV model, but the hardware is
shared by multiple VMs in NFV, so the security of the hypervisor must be ensured
[35].

There are many challenges associated with NFV, but the benefits do outweigh
them. The most important factor is the lower cost, which makes it possible to
respond to the growth in users and bandwidth while keeping the current revenue
model. Due to the poor scalability of the traditional telecommunications service
model, the cost of PMO is increasing faster than Average Revenue Per User (ARPU).
This trend leads to the PMO exceeding ARPU, which is not sustainable for telco
operators. This is illustrated in Figure 2 where PMO outgrows APRU. With scalable
network function virtualization operators can match the cost of their Future Mode
of Operations (FMO) to the growth of APRU, and thus be able to respond to the
growing data usage. However, as shown in Figure 2, the initial set up costs for the
cloud are higher than those for dedicated hardware [72].

t

$ ARPU

Cost of FMO
Cost of PMO

Figure 2: Cost reduction by introducing cloud to telco [72].

Using NFV and cloud instead of dedicated hardware brings a wide range of
cost savings. First, telco cloud can be built with commercial off-the-shelf hardware.
COTS hardware offers operators more flexibility, as they can buy their solution
from multiple vendors instead of buying the whole stack from hardware to software
from a single vendor as a package. In addition, cloud hardware is usually based on
x86 architecture servers [72], which are cost-effective compared to more specialized
hardware. Not only the hardware is potentially cheaper, but it is also easier to
deploy the needed amount of resources in the cloud. As shown in Figure 3, the
cloud model supports adding capacity just in time, which leads to better average

9

utilization and cost-efficiency. The cloud can also be scaled up and down for daily
or seasonal fluctuations.

Average utilization = 54% Average utilization = 81%

Capacity
demand

Installed
capacity Capacity

demand

Just-in-time
capacity

Traditional Model Cloud Model

t

C
ap

ac
ity

C
ap

ac
ity

t

Figure 3: Average utilization with traditional and cloud model. [62]

Cloud deployments are easier to realize in comparison to dedicated deployments.
This makes the costs in planning and deploying stay lower. Automation handles
most of the work which would have been done by personnel in the traditional model
and lowers OPEX. Together these factors allow a lower Total Cost of Ownership
(TCO), because less servers and labor are needed. Scaling the cloud also enables
energy savings, as during the off-peak hours it is possible to consolidate the workload
on a subset of servers and set the rest in energy saving mode [35].

The switch to cloud gives plenty of direct cost-savings, but there are also other
advantages. Since the cloud is easily accessible and COTS hardware, software de-
velopment is easier and faster. New functionalities can be shipped in a significantly
faster pace, as there is no need for new hardware deployments. This reduces the
time to market (TTM) significantly. [35] This allows more innovation, which leads
to many other benefits. Grown flexibility does not only give cost savings, but it also
makes it easier to provide a reliable service, which leads to customer satisfaction.

2.1.3 Cloud Computing

Cloud computing has existed for over ten years now. Amazon published world’s first
public pay-as-you-go computing with Elastic Compute Cloud in 2006 [29]. After
this we have seen many players from large technology companies like Microsoft
and Google to newcomers like DigitalOcean entering the market as public cloud
providers. In addition, large companies have been building huge private clouds to
support their business.

Definition of cloud computing has not always been clear, and during the early
days of cloud computing the term was often misused. Some of the technologies were
not new either, which caused some frustration in the industry. In 2009 the former
CEO of Oracle Larry Ellison gave an interview stating “The interesting thing about
cloud computing is that we’ve redefined cloud computing to include everything that
we already do I don’t understand what we would do differently in the light
of cloud computing other than change the wording of some of our ads.” [30, 58].
However, the industry moved forward fast and cloud computing became well defined
in a few years.

10

In short, cloud computing offers easy provision of hardware resources and allows
users to quickly ramp up and scale down their usage. In 2011 the United States
National Institute of Standards and Technology (NIST) defined cloud computing
with five essential characteristics [59]:

• On-demand self-service. User can provision computing capabilities without
human interaction. For example, in private cloud this would often be Open-
Stack dashboard which is used to manage instances in most popular open
source Infrastructure as a Service (IaaS) platform [67].

• Broad network access. Service is accessible through network and can be used
by variety of clients from mobile phones to workstations.

• Resource Pooling. Computing resources are pooled and serve multiple tenants
dynamically.

• Rapid elasticity. Customer can rapidly ramp up and scale down the resources
they use.

• Measured service. Use of resources is measured automatically and can be
transparently monitored by both the provider and the user. Billing is often
based on these measurements (Used core hours, active user accounts, used
storage etc.)

2.2 Call Session Data Storage

One key element in moving telco to cloud is shared storage for call session data.
Traditionally this information has been stored in each node itself but moving the data
to the cloud makes it possible to build shared data storage for network functions.
If the shared call session storage can meet very strict latency and jitter standards
it gives significant advantage over old solutions. Low-latency shared storage allows
building stateless radio applications, which is considerably simpler, more efficient
and faster to build and innovate. Stateless network functions also scale better and are
readier to be deployed in a container-based micro-service architecture [51]. Currently
most of the telco clouds are still build on top of traditional virtual machines, but
containers have clear benefits over them. For example, deployment times can be
reduced and software updates are easier to deploy [69].

Figure 4 overviews how network functions and data storage might communicate
through the telco cloud. Radio applications are deployed in virtual machines, which
are located on cloud host machines. Data storage services can be on same or different
host computers with radio network applications. The host machines are connected
with modern data center networking, which means 10 Gigabit Ethernet (GbE) at
minimum. On the host side, a virtual switch is deployed to route traffic to and from
the virtual machines. In this scenario, the RTT of a network function communicating
to the data storage and back can be divided in three main components. These are
network processing on both computers, physical transmit network and time spent
in data storage.

11

Server

Virtual Machine

Server

Virtual MachineVirtual Machine

Database Application Database

Physical hardware

Linux kernel

DPDK + Virtual Switch

Linux kernel Linux kernel Linux kernel

Physical hardware

Linux kernel

DPDK + vSwitch

Physical hardware

Linux kernel

DPDK + vSwitch

Figure 4: Overview of the network.

Here is a concise overview of the current achieved latency. According to previous
studies it is possible to estimate the RTT to around 120µs [36, 53]. This estimate
is broken down in Figure 5 and detailed in Sections 2.2.1 - 2.2.3. This estimate is
to be taken with a grain of salt. It has been consolidated from multiple sources and
there are a lot of contributors to the varying latency from exact hardware to software
and measurement methodology. Other significant shortcoming of the estimate is the
lack of taking tail latency in account. Low jitter is a very essential part of building
stateless applications. However, the estimate should be adequate and give a good
picture of which parts of the stack contribute to the latency the most and could thus
be improved.

~15-20μs ~5μs ~15-20μs~2μs 15μs

G
ue

st

G
ue

st

Ho
st

Ne
tw

or
k

Ho
st

Da
ta

ba
se

~5μs

RTT = ~120μs

Figure 5: Estimated breakdown of the latency between radio application and call
session storage.

2.2.1 Data Center Networking

Data center networking architecture is a broad topic which we briefly consider here
for the sake of completeness. Both selected hardware and network topology have
a significant impact on performance metrics such as latency and throughput. The
only topology considered in this thesis is racks with top of the rack (TOR) switch.
The topology outside the rack is also not considered, as even one full-sized rack can
handle significant radio cloud processing. The current market has a huge amount
of specialized hardware to optimize performance for specific metrics and use cases.

12

These include solutions like Infiniband and Myrinet, which have lower latency and
better throughput than Ethernet [53]. There are also solutions which do not re-
place Ethernet, but use proprietary hardware like Field-programmable gate array
(FPGA) Network Interface Controllers (NICs). Like Infiniband or Myrinet, these
solutions are proven to offer very good performance. In FGPA solutions some of
the software network stack is often offloaded to the FPGA itself. For instance, the
high-frequency trading (HFT) world uses FPGAs to get as low as 1 µs wire-to-wire
TCP latencies, which is one to two orders of magnitude faster than the best recent
software implementations [57]. However, it is good to keep in mind that HFT is a
very different use case than telco cloud.

In such as use case, the specialized low-latency networking hardware is not an
option. As explained in Section 2.1.2 telco cloud significantly benefits from COTS
hardware. In addition to that network latency and jitter are both low in comparison
to other parts of the transfer between NF and data storage. According to Larsen’s
testing in 2007 TCP packet spends around 2 µs between the NICs, when software is
not involved [53]. This includes around 3 ns per meter of cable, 300 ns in the switch,
670 ns in sending and 1.1 µs at the receiving end. It is important to remember that
Larsen’s tests are over 10 years old, and parts of the data are estimates. Nevertheless,
even 2 µs is such a low latency that it is not significant compared to the total latency.

2.2.2 Database

Data storage and its features are a key element in building high-performance telco
cloud. The choice of data storage does not only define the time spent on queries, but
it can also determine which transport layer protocols can be used or how much work
is required to integrate acceleration technology in the storage. In more specialized
cases the storage selection can even replace Ethernet with proprietary interfaces in
between servers to minimize the latency.

Telco cloud sets different requirements for databases as opposed to regular use
cases. Many databases offer quite extensive features, but in case of call session
data storage, a very simple key value storage with get and set operations is enough.
Another peculiarity in selecting data storage is defining the meaning of “fast”. Most
of the especially fast databases are built with throughput in mind. In case of telco
cloud only latency and jitter matter. Data rates are not very high, but packets
should be handled as fast as possible. In telco cloud, a shared database should
be also capable of serving multiple clients at the same time without significant
performance degradation.

Redis [15] is an example of a database which could be suitable for telco cloud. It
is a fast and reliable in-memory database and has done well in tests against other fast
databases [26, 50]. Even though Redis is one of the fastest databases using Ethernet
as a communication channel it largely undermines its strengths without any tweaks.
In fact, Redis only supports TCP as a transport protocol, which does impact on
latency. As a matter of fact, TCP is built for long and unreliable connections, while
those in a data center are not. This creates overhead which could be avoided. 1

1Additional details on TCP will be provided in Section 3.1.1

13

In Figure 5 the latency caused by the database is found to be 15 µs. This estimate
is based on doing 1024 byte set operations on a local Redis-server through an UNIX
socket application programming interface (API) 2. In the test 90th percentile latency
was consistently around 16µs. However, tail latencies were quite spread out, and
even 95th percentile latencies are considerable worse.

2.2.3 Operating System Network Stack

Last part affecting the RTT between the application and the data storage is the
kernel network stack. In the worst case scenario, the packet has to be processed
through the kernel stack four times per direction, as it moves through both host
kernel and guest kernel in both servers.

Processing done in host and guest systems is not identical. The host system
only handles layer 2 (L2) and layer 3 (L3) since the application is located on a guest
machine. In addition to handling L2 and L3, the guest system also needs to carry
out layer 4 (L4) processing. In most cases L4 is TCP, but this could also be some
other protocol, for example User Datagram Protocol (UDP), Quick UDP Internet
Connections (QUIC) or Fast and Secure Protocol (FASP).

A different option is to use the DPDK’s datapath at the host to provide direct
communication between the NIC and the virtual switch (vSwitch). DPDK3 is a
well-established solution and it provides solid low-jitter processing with less than 5
µs latency [56]. However, DPDK does not have TCP termination implemented so
we rely on Linux kernel L4 processing at the guest where the application and the
data storage are located.

Chuanxiong and Shaoren [36] have measured and broken down the latency of
the TCP/IP stack of the Linux kernel. They concluded that sending a TCP packet
took 22.5 µs, which of 15.8 µs was spent before the IP layer. Receiving packets is a
little bit more expensive: 36 µs, 22.9 µs of which used after the IP layer. In their
testing they used payloads of 1024 bytes, which is close to real-life loads. From these
results, we can estimate that TCP termination in Linux kernel takes around 15-20
µs per end, which would mean four times that number when calculating the RTT.
This means that it is a significant part of the RTT and improving it could provide
noteworthy results in the total RTT. TCP/IP acceleration is the main candidate for
reducing latency in a call session storage, as discussed in Chapter 3.

2.3 Reducing Latency

As shown in Figure 5, two main latency overheads in the RTT between the NF and
the data storage are the TCP processing in the Linux network stack and the data
storage itself. There is a wide range of solutions which can improve these. Assessing
the solutions is quite complex, as they all introduce different type of costs, variety
of constraints and huge differences in time to develop and deploy. We detail these
next.

2The environment used for testing is described in more detail in Chapter 4
3Detailed in Section 3.1.3

14

Memory-Centric Computation

First, there are proprietary data storage solutions, which can provide ultra-low la-
tency even in comparison to fastest of in-memory databases. In the fastest end of
selection is memory-centric computation [39]. In memory-centric computation mem-
ory becomes the center of computing instead of central processing units (CPUs). In
practice this means placing boxes of shared Non-Volatile Memory (NVM) in racks or
even having racks of shared memory to be used by the compute nodes. Applications
write directly to the memory via special interfaces, as Ethernet is not fast enough
for the speed that memory-centric computing can achieve. One example of such
interface is Gen-Z, which is used for example by Hewlett Packard Enterprise (HPE)
in their The Machine [52].

At the moment, memory-centric computation comes at a high cost. Data cen-
ters need to be accommodated with memory racks and servers need to have Gen-Z
interfaces. Also, the cost of wiring can be surprisingly high. At the moment memory-
centric hardware could be considered to be quite far from COTS hardware. However,
this might change in the future if the market starts to adopt such a new technology.
Also, the Gen-Z interface is an open standard, so it could become an essential part
of the telco data centers.

Remote direct memory access

Direct memory access is also possible without expensive memory-centric hardware.
Remote direct memory access (RDMA) means making direct changes to another
computers memory. There are multiple different implementations of RDMA. Some
of the implementations use special hardware for networking, but there are also solu-
tions which use Ethernet [65]. RDMA could provide a similar solution compared to
memory-centric computation, but with a much lower cost. However, direct memory
access is still a relatively new technology and has to be studied more for the use
case.

Replacing TCP

Without going to technologies requiring special hardware and huge architecture
changes, there is still much more that can be done to reduce latency even when
using standard in-memory databases. One of the main latency concerns of current
in-memory databases is TCP transport. In short, TCP has many features which keep
track of packets and optimize throughput over latency. Tweaking those can help up
to a certain extend but replacing TCP with a more suitable protocol is a definite
option. In a cloud environment lighter protocols work well, as it is very unlikely
to lose packets on data center-grade networking. The most known alternative for
TCP is UDP, which is very latency oriented at cost of reliability. Both UDP and
TCP are old protocols, and recent development has also offered many protocols like
QUIC and Data Center TCP (DCTCP), which offer functionality between these two.
Replacing TCP requires development and maintenance work on both the server and
the client side but could be a simple and cost-effective way to reduce latency.

15

TCP/IP Acceleration

As an alternative to removing TCP there is also the possibility to accelerate TCP
further than just making tweaks to its functionality. There are some frameworks
which do the TCP termination in Linux user space and most of them are built to
be used with DPDK. These techniques are usually referred as TCP/IP acceleration
or kernel bypass and they are detailed in Chapter 3. This thesis concentrates on
TCP/IP acceleration, because from all the options, it has the most potential to
give fast results with low cost and development work. However, frameworks which
offer TCP/IP acceleration are quite new and built for very specific tasks, so their
suitability for telco cloud environment needs to be carefully analyzed.

16

3 Accelerating TCP
In most of the cases TCP/IP acceleration is done by replacing the Linux kernel
space TCP processing with user space stack. There are multiple open-source frame-
works which provide either their own TCP stack or one borrowed, for example, from
FreeBSD. This thesis focuses on these open-source options. In addition to TCP/IP
acceleration, the term kernel bypass can also be used.

This chapter begins with an explanation of essential technologies to explain
TCP/IP acceleration. These include an introduction of TCP, Linux kernel TCP
stack and DPDK. After introducing the native Linux stack, section it describes
different frameworks used to accelerate TCP/IP.

3.1 Background

Before proceeding further, we introduce the necessary background to understand
TCP Acceleration. Accordingly, we start by reviewing how TCP works and which
are the main problems in terms of latency. After that, the TCP/IP stack of the Linux
kernel is detailed as a term of comparison for accelerated solutions. Lastly, DPDK
is introduced, since it is the most widely used software for IP stack acceleration.
This is also because of its reputation and wide support for hardware.

3.1.1 TCP

The transmission control protocol has been used for a long time. It was introduced
in a request for comments (RFC) dated 1981 and the development of TCP started
before that in the Advanced Research Projects Agency (ARPA) [23]. After many
years most of the traffic in the Internet are still TCP: Around 95%, according to
[55]. The original RFC specification is still valid, but that does not mean that TCP
is exactly the same as forty years ago. For example congestion control was first
introduced by V. Jacobson in 1988 [47]. The related TCP variant is known as TCP
Tahoe [25] and has been followed by tens of different congestion control algorithms.

TCP is designed to be a reliable connection-oriented protocol. As a consequence
it works very well in unreliable networks and guarantees in-order delivery of packets.
It is also an end-to-end protocol, meaning that it only establishes a connection
between two endpoints, i.e, does not support multicast. The ability of TCP to work
with unreliable networks is both a strength and a weakness. In its original use in
the military, or even in a modern commercial network, reliable communication is
extremely important, but the additional functionality to achieve this can restrict
the performance of the network in some cases. For example, data center networks
are highly reliable and have precise requirements on latency and throughput. In
this environment TCP is not optimal, but there are many ways to improve the
performance on such settings.

17

Fundamentals of TCP

A connection must be established before sending or receiving TCP packets. Even
this fundamental feature of TCP affects latency. If a connection is not already
established, it takes considerably more time to send a packet. Luckily, there are
many different ways for overcoming this problem. For example, a connection can be
reused instead of terminating and re-establishing a new one. After a connection has
been established, every packet sent has to be acknowledged (ACK) by the receiver.
Also, this can cause problems in some situations. For example, if sent packets are
small and each packet is acknowledged, a very significant portion of the connection
is used for ACKs and headers [34]. Each sent packet has a sequence number and
the receiver is responsible for reordering packets and discarding duplicates.

Simply sending packets and acknowledging them as fast as possible is obviously
not enough. TCP has several features to adjust the flow to be as optimal as possible.
The main contributors are flow control and congestion control. Flow control is a
receiver-side feature, which is used to adjust the sending speed, so that the receiver
can keep up with incoming packets. Flow-control data is sent in ACK packets and
sequence numbers are used to tell the sender which packets can be sent. This method
is called the sliding window, since the range of allowed packets advances overtime
accordingly [23].

Congestion Control

Congestion control aims to adjust a TCP flow according to the network conditions.
The standard way to carry out congestion control takes place only at the sender.
However, there are many different algorithms, some of which also require modifi-
cations to the receiver or even the routers. A window is also used in congestion
control, and it is usually adjusted by the data gathered from ACKs. For example,
many algorithms use the RTT and lost packets as input. Most of them have three
main phases at least in some form: slow-start, congestion avoidance and retransmit.
The goal of slow-start is to get from zero packets to a rate of equilibrium of the path.
Even though the name is slow-start, it is often an exponential or a very fast process.
Congestion avoidance is the default sending mode of TCP and its behavior is very
dependent on the specific algorithm used. Congestion avoidance is interrupted by
packet loss. Usually at this point algorithm does some kind of retransmit and goes
back to congestion avoidance with a lower data-rate which starts to increase slowly
[47].

Tahoe and Reno are few of the first congestion control algorithms. Reno has
also been updated with small changes in TCP NewReno [41]. The operation of
both algorithms is based on two main variables: a congestion window (cwnd) and
a slow-start threshold (ssthresh). When sending starts, TCP is in the slow-start
phase and cwnd = 1 packet. Every time an ACK is received, cwnd is increased
by one and sending continues. This leads to an exponential growth of cwnd. At
some point either a timeout or a duplicate ACK occurs and the algorithms need to
enter the fast retransmit phase. An ACK timeout means that packet is lost, which
hints that the line is congested. Duplicate ACKs signify incorrect order of packets.

18

Both of these situations are dealt as loss in Tahoe. All unacknowledged packets are
retransmitted, ssthresh is set to half of cwnd and cwnd back to one. This leads to
a new slow-start, but this time the slow-start turns to congestion avoidance when
cwnd grows past ssthresh. In the congestion avoidance mode cwnd is increased by
1/cwnd.

Tahoe has an obvious issue in its implementation. When loss occurs, both band-
width and latency are significantly affected. Even though slow-start recovers very
fast, latencies grow more than what is allowed in a telco cloud. Reno builds from
Tahoe but tries to solve this obvious problem with simple changes. Reno handles
timeouts similar to Tahoe, but in case of duplicate ACKs there it does not perform
slow-start if packets are still moving. In this case both ssthresh and cwnd are re-
duced to cwnd/2 so congestion avoidance can continue without slow start. Reno
also uses fast recovery mode for duplicate ACKs. A packet which is missing the
ACK is resent and the algorithm waits for one RTT. If the ACK is received, it can
continue straight to congestion avoidance, but otherwise a timeout occurs. Reno
has less problems with latency and bandwidth, since duplicate ACKs do not trigger
slow-start. Still, Reno is not ideal for low-latency and low-jitter scenarios. New
Reno improves Reno by sending packets to the transmit buffer during fast recovery
[41]. This significantly increases performance under high error rates.

Tahoe and Reno built the foundations for TCP congestion control but they are
not very relevant for modern cloud scenarios. However, they demonstrate very well
the relation between congestion control and lost/reordered packets. In their study
of gaming traffic Chen et al. found that packet reordering and loss are a major
component in latency and significantly affect jitter [34]. In their measurements,
lost packets increased jitter by 60%, so everything that can be done to improve
congestion control is beneficial to the telco cloud.

When diving deeper in the latency and jitter of modern cloud, new congestion
control algorithms should be introduced. While there are many specialized conges-
tion control algorithms build with data centers in mind, there are few even more
relevant options. For example, recent versions of Linux kernel have used many
different default congestion control algorithms.

Causes of Latency Overhead

Even though congestion control is an important part of TCP flow management, there
are many other details which cause latency problems, but can also be addressed to
some extent. Minshall et al. [60] they present a case where co-existence of Nagle’s
algorithm, delayed acknowledgements and The Network News Transfer Protocol
(NNTP) create significant latency problems. Even though their case concentrates
on how these functions do not work together, they can also be problematic alone.

Nagle’s algorithm is implemented in TCP to reduce the number of small packets
in the network. It prevents sending small packets unless everything sent previously
is ACKed. Small packet is one lower than the Maximum Segment Size (MSS). In
a normal network Nagle gives a significant benefit, as the number of small packets
decreases notably and the impact on latency is low. This only causes problems

19

when combined with delayed ACKs, i.e., the receiver does not send ACK instantly
but waits to see if it could piggyback the ACK into some data packet going in
the other direction. This creates the situation where a packet waits for an ACK
and an ACK waits for something to be sent to the other direction [61]. However,
Nagle and delayed ACKs are both problems in latency and jitter sensitive networks
even if they do not interfere with each other. Nagle’s algorithm can introduce extra
latencies of one RTT while waiting for an ACK. This is very significant on a low-
latency application. Luckily, Nagle’s algorithm can be turned off by means of the
TCP_NODELAY flag. In low latency applications it might be also a good idea to
reduce the delayed ACK timer so ACKs will not wait too long on the receiver side
[68].

Since the most used congestion control algorithms are created for the Internet,
there is room for improvement. In a data center environment the RTT is very
predictable and much lower than in the Internet. TCP has timers for timeouts such
as connection, retransmission and probing for a lost packet. These timers are set to
relatively conservative values and performance on low-latency environment can be
improved by setting these to lower values. This helps especially with tail latencies,
while problems are detected and corrected faster [68].

3.1.2 The TCP/IP stack in the Linux Kernel

Linux is used everywhere and in a wide variety of scenarios. As a consequence, its
network stack needs to cover very different use cases. Among these, ultra-low-latency
networking has not received much attention. In this chapter, we take a latency-
oriented look to the Linux networking stack and especially its TCP implementation.

Overview

The receiving and sending side of the Linux TCP/IP stack are obviously different,
but most of the components are still same. This section refers to the receiving side
as example, as it is a bit more complex, uses more time and introduces more severe
latency problems [36, 71]. The Linux TCP/IP stack can be divided into three main
parts: device driver, kernel space and user space [71].

The kernel networking stack mainly relies on two data structures: sk_buff and
sock. sk_buff is used to save packet data during processing. Almost all functions
of packet sending and receiving are called with the sk_buff passed as a parameter.
If any packet field is updated, a change is made in sk_buff. The sock structure is
used to keep information on a connection. sock is created every time when a socket
is created in the user space. The sock structure is extended with tcp_opt where all
TCP-specific data is saved. [64]

Device Driver and IP Processing

The packet receiving process is illustrated in Figure 6. To receive a packet an empty
sk_buff has to be already initialized. Empty sk_buffs are located in rx_ring ring
buffer. When a packet arrives to the NIC, the device driver will invoke the Direct

20

Kernel SpaceDevice Driver User Space

Interrupt
Generator

DMA

NIC Memory

Ring Buffer

Kernel Memory

Interrupt Handler

IP Processing TCP Processing

Application

Poll Queue

TCP ProcessingIP Processing

Figure 6: Overview on receiving a packet in Linux. [64, 32]

Memory Access (DMA) engine, which tries to save a packet descriptor in a free
sk_buff and the full packet directly into kernel memory. As soon as the packet
is completely transferred, interrupt handler is called from the NIC. The interrupt
handler has multiple tasks, but first it will add the device into the poll queue of the
CPU. This means that soon the CPU will poll the device to get the packets which
are in rx_ring. After a packet is passed further, the packet descriptor in rx_ring
can be reinitialized and used again. If packets arrive when rx_ring is full they are
dropped. Because of this rx_ring also defines an upper limit for the connection
window and limits the throughput if sk_buffs is set to too low [32, 71].

Every time a packet is pulled from rx_ring, function ip_rcv() is called. It does
the basic checking of the packet. If the packet is not corrupted ip_rcv_finish() is
called to handle routing. If the packet is set to be delivered to the current hop, IP
fragment reassembly is handled. After that, the IP header is trimmed and layer 4
processing can start. In case of TCP stack this means that tcp_(v4/v6)_rcv() is
called [71].

TCP Processing

In the Linux kernel TCP packets can be processed in either process context or
interrupt context. Considering latency, all packets would ideally be processed by
interrupt context, since that is considerably faster. The difference is significant
when the processor is heavily loaded. The interrupt context gets still high priority
and is executed almost instantly. However, process context is a user level process
and has lower priority, thereby ends up waiting for processor time. Packet handling
by interrupt or process context depends on a few variables related to the status of
receiving end [71].

The first step of TCP preprocessing is checking the TCP header. After checking
the header tcp_v4_lookup() is run to check if the packet has a corresponding socket.
If there is no socket, the packet is dropped. Otherwise processing aims to get packet
to user space application as fast as possible. This is illustrated in Figure 7. As
seen in the figure, the first matter to confirm is that if the target socket is locked
or open. If the socket is locked, the packet is placed in the backlog queue. If the

21

IP Processing

IP Processing

TCP Preprocessing

Sock Locked? Receiver
sleeping?

Backlog

Prequeue

tcp_v4_do_rcv()

Y Y

N

Figure 7: TCP packet preprocessing in interrupt context. [64]

socket is open, processing confirms the status of the data receiving. If processing is
sleeping, the packet is put to prequeue. Both backlog and prequeue are emptied by
the process context later. Only in case of prequeue overflow the interrupt context
is used, because it need to be processed as soon as possible. If the packet does not
end up in prequeue it is immediately passed to the main TCP processing function
tcp_v4_do_rcv() [71].

The first step in TCP processing is to check if the packet can be delivered directly
to the user space through the fast path. The fast path uses header prediction tech-
nology introduced in RFC1323 [48] to process the packet ultra-fast if the sequence
number of the packet is expected [64]. After this, the packet can be directly sent
to the user space if the right process has packet receiving turn and there is enough
space in the memory location provided by the application. If these conditions are
not met, the packet is sent to the slow path which is illustrated in Figure 8. The
first action in the slow path is to check if the packet is in sequence; if not, it is sent
to out of the sequence queue. Packets from this queue are transferred to the receive
queue when missing packets come later. If a packet is in sequence in the slow path
check, it can be still copied to the user space directly if the requirements for the
interrupt context are still met. Otherwise the packet is sent to the receive queue to
wait for the process context [71].

Packets which are not delivered rapidly by the interrupt context are delivered
by the process context. The process context starts by locking the socket, which also
means that the interrupt context cannot push packets during the process context
and packets are not mixed. After locking the socket, the process context empties
all queues except the out of sequence queue. It first copies data from the receive
queue, which is trivial since packets are already in the right order. After that, the
prequeue and backlog are emptied, and packets are processed. When all queues are
empty, the socket is unlocked. The application has defined how much data it should
receive. If it did not receive enough, it will remain waiting for data. Then it wakes

22

TCP Processing User Space

Fast path? iov copy?

Out of Sequence
Queue

Receive Queue
In sequence?

Y Y

N

N

N

Y

Applicationtcp_v4_do_rcv()

Figure 8: TCP Packet processing in interrupt context [64].

up and starts all over again by locking [71].
TCP processing in Linux has few weaknesses latency-wise. In a worst case sce-

nario, a packet might end up waiting in the backlog for more than one second [71].
This is already enough to trigger retransmits and cause significant problems even
in the context of a normal user. This happens due to the load of the server keeping
the process context waiting for its turn. When analyzing the stack from an ultra-
low-latency standpoint, even the number of queues in the process context affect
performance. The stack is quite efficient with its processing, but in certain use cases
extra wasted processor cycles do not matter if latency can be reduced.

3.1.3 DPDK

DPDK [3] is a set of libraries and drivers for fast packet processing. It runs mostly
in Linux user space and supports a wide variety of hardware. DPDK was first
introduced in 2010 by Intel under an open source license and has now gathered a
wide open source community around it. Nowadays it is a Linux foundation project
and very well recognized in the world of accelerated packet processing. One of
the key ideas in DPDK is poll mode driver (PMD). In its essence, PMD means
moving from traditional interrupt-centric way of sending to constantly polling for
new packets instead.

Polling is not a new invention, but only recent advancements on hardware has
made it a plausible candidate for sending and receiving traffic. To do efficient polling-
based transmit, at least one CPU core has to be fully allocated to PMD only. Any
interrupt by other applications or kernel slows DPDK down and causes jitter. With
PMD packets are directly pulled to the user space from the rx_ring buffer of the
NIC. Also transmit is done directly from the user space to tx_ring buffer. Figure
9 shows the PMD receiving flow and can be compared to Figure 6 which refers to
processing in the Linux kernel.

23

User Space

Mempool

Device Driver

DMA

NIC Memory

Ring Buffer

Application

PMD

RTE Ring

m
bu

f

Cache

Core 0

Core 1

Core 0

Core 1
... ...

Figure 9: DPDK PMD packet processing.

DPDK includes three major libraries: Mbuf, Mempool and Ring. The mbuf
library provides the structure to save packets to in DPDK. It can be generalized to
be corresponding to the sk_buff structure of the Linux kernel. Mbufs are stored
in mempool which does allocation of the space from memory. Mempool handles
are usually based on a ring buffer implemented in the ring library. Mempool also
implements a small cache which has a table of pointers for each core. This way,
recent packets are even faster to process further. Multiple DPDK cores can share
mempool, but caches are only accessed by the core which owns the cache table. If
there is only one interface which DPDK is receiving data from, it only needs one
core. However, if there are multiple interfaces or NIC rx/tx buffers, each needs its
own processing core [4].

Memory for the DPDK is allocated in hugepages. Hugepages are crucial for
the performance of DPDK. Normally memory is allocated in 4KB pages, which are
enough when there is only a limited amount of data or no performance constraints.
Normal pages are slow due to memory. The more memory is used, the harder it is to
figure out which of the 4k pages has the right data. For this reason if the application
needs a lot of memory, it is better to allocate the memory for that application in
hugepages. In Linux hugepage sizes are usually 500-fold, so the normal pages are
either 2MB or 1GB [11]. The hugepage cannot be shared with multiple applications,
so too large pages should be avoided. For example, it might sound appealing to
reserve a 1GB page for 500MB worth of data so it would fit in one page. However,
in 2MB pages 500MB of memory is saved, and the lookup for 250 pages is still very
fast.

Another important factor in DPDK is the number and availability of processing
cores. PMD requires at least one core in the use of DPDK. Without any setup
there is nothing which would prevent other applications from using that core other
than kernel scheduling, which would run other applications on other cores if they
are available. However, this does not take into account two things. First of all, if
the whole processor is running at a 100% load, the scheduler is going to assign work
for the PMD core. At that point the performance, and especially the jitter will take
a great hit. This can be prevented by pinning the core for DPDK. In Linux core
pinning is done by modifying the grub command line [9].

As DPDK is in direct contact with NIC over a Peripheral Component Intercon-

24

nect (PCI) lane, PCI drivers are a crucial part of the performance. The ideal driver
for DPDK is Virtual Function I/O (VFIO). VFIO uses the input–output memory
management unit (IOMMU) for secure and robust communication. VFIO requires
support from kernel, BIOS and hardware, which brings some limitations to its use.
In addition, the IOMMU groups can cause problems with some hardware. For ex-
ample, if the hardware is a NIC with multiple ports and the ports happen to be in
the same IOMMU group, all or none of the ports must be bound to VFIO. Alter-
native for VFIO is Userspace I/O (UIO). Performance of UIO is similar to VFIO in
an ideal case, but it lacks features and is less secure. If UEFI secure boot is in place
instead of BIOS, Linux can disable UIO completely [9].

DPDK provides ultra-fast communication from the NIC to the user space, but it
is not enough for regular applications. In fact it does not provide TCP termination,
so it cannot process packets directly to the applications like database servers or
clients. This is also not on the roadmap of DPDK, since the use cases for DPDK
are different and community expects L4 to be handled by some other project. The
main use case for DPDK is delivering traffic to a virtual switch, which can then
route traffic forward. Since DPDK provides an ultra-fast way from the NIC to the
user space, basically all frameworks for TCP/IP acceleration are using DPDK for
fetching the packets.

3.2 TCP/IP Acceleration

DPDK together with vSwitch can handle traffic up to Layer 3 (L3), but to fully
bypass the kernel and use applications like database servers, TCP acceleration is
also needed. In this chapter, the two most well-known acceleration frameworks are
introduced, i.e., VPP and F-Stack. In addition, few smaller projects are briefly
overviewed. TCP acceleration frameworks take TCP processing out of the Linux
kernel and to the user space. Most of them use DPDK to receive packets directly
from the NIC.

3.2.1 Vector Packet Processing (VPP)

VPP is a packet processing framework which offers modular vSwitch and vRouter.
It originates in Cisco’s VPP which is widely used in Cisco’s products, but is now
available as an open source project. VPP is a key component of FD.io - The Fast
Data Project of Linux Foundation [21]. VPP’s name comes from the fundamental
way of processing packets. Regular scalar packet processing processes one packet at
the time; in contrast VPP processes packets in vectors, which are essentially lists of
packets. This reduces overhead and increases cache performance. VPP is especially
attractive for call session data storage applications, since it also has an user space
TCP stack. VPP is also promising, since it is one of the largest projects providing
user space TCP and has an active developer community [22].

25

ethernet-
input

Packet vector

...

ip6-input ip4-input arp-input...

custom
plug-in
node

...ip6-rewrite-
transmit ip6-local

dpdk-input

custom
plug-in
node

custom
plug-in
node

Figure 10: Example of VPP graph processing.

How VPP works

The core of VPP is the packet processing graph illustrated in figure 10. Vectors of
packets come into the system and are processed according to the graph. If packets
are not all the same, the vector is split in different nodes. All the basic processing in
VPP is done in vSwitch/vRouter, but due to the high modularity users can create
their own nodes to process the packets. As is apparent from the Figure 10, DPDK
is common way to attach the NICs in the VPP.

The communication between VPP and DPDK is detailed in [38]. Let us consider
the receiver, as described in Section 3.1.3 DPDK busy loops the CPU and gets
packets from the NIC. In particular, DPDK fetches packets in bursts of size b,
which currently defaults to a maximum of bmax = 32. This default is based on the
current tests on modern hardware. Similarly, VPP has vector size of v, which is
limited to a maximum of vmax = 256 packets. Around hundred packets is the best
setting for high performance in VPP. Note that VPP does not start vector processing
every time it receives packets from DPDK. If DPDK delivers bmax packets, there is
a chance that it will bring another burst immediately, so the VPP waits and fills the
vector. The vector processing starts each time the DPDK brings b < bmax packets
or when v = vmax. The first case means that there are no more packets at that
given instant, so there is no reason to wait. The second case means that the system
is achieving the limits of the VPP performance since that is the point where VPP
cannot run any faster and the receive buffer of the NIC can fill up easily, resulting
in dropped packets.

As mentioned earlier, one of the main performance gains of the VPP comes from
better use of caches. Modern CPUs have multiple caches, which differ in latency
and size. The L1 cache is the smallest and fastest, so ideally it is used as much as
possible while running a program. The L1 cache is divided into instruction cache and
data cache. In case of packet processing the instruction cache is the most important

26

factor. If a packet is processed in a scalar manner, so many instructions are used for
processing the packet that when the next one starts the needed instructions are not
in the L1 cache anymore. This is an example of cache trashing. With vector packet
processing, where processing is done for all packets in the vector, one node at the
time, L1 cache usage is much more efficient, which leads to better performance [38].

VPP Hoststack

VPP is a project still developing very fast. In version 18.07, the latest one at
time of writing, there is a functional hoststack which can be used through many
different APIs, but it is also under refactoring and the APIs might be changing in
the process. In the current VPP version there are three main ways to communicate
with the hoststack from a third-party application. Lowest level of these is a binary
API, which requires tedious integration work for it to be used with the application,
and it is not intended to be used directly for that. VPP communications library
(VCL) offers a higher-level API to build software against. VCL is currently the
recommended way of using the VPP hoststack. The last option is using VCL with
LD_PRELOAD. This method does not require integration work, but does have a
very limited compatibility with applications [37].

Application

VPP

LD_PRELOAD

VCL

SVM
Infra Binary API Segment and fifo manager

Session Layer

Transport Protocol

L2/L3

Figure 11: Overview of the VPP hoststack [37].

Raw session layer binary API is the lowest level API provided in the VPP host-
stack. It does not provide support for asynchronous communication [37]. It is not
meant to be used for integrating applications to VCL. This can be done if the limited
functionality is not a problem from the standpoint of the application, but it is not
recommended and there are no guarantees on stability of the API.

VPP Communication Library (VCL) API is the most modern and recommended
way to leverage the VPP hoststack [40]. It does provide its own implementations
of Linux I/O event notification facility epoll which provides more support for in-
tegration work [37]. Despite the fact that the VCL API is the recommended way

27

of accessing the hoststack, VPP’s own socket test program seems to be the only
publicly available application which uses the VCL API. However, the VCL API is
still quite new and has not yet stabilized, so its support is expected to be better in
the future.

VCL also has a POSIX API which can be used through LD_PRELOAD [37].
LD_PRELOAD allows a user to load any libraries before others when starting
applications in Linux. This enables the user to replace any function provided by
other libraries. This way LD_PRELOAD can be used to link an application to
VCL without changing the application binary as long as it uses the POSIX API.
This could be one of the key selling points of the VPP as it is the only acceleration
framework which supports integration without changing the software. There is very
limited information available on the use of LD_PRELOAD in VPP, so its actual
status will be examined in testing part of the study.

3.2.2 F-stack

F-Stack is an open source high-perforce network framework [6]. Like VPP it is based
on DPDK and it has its roots in a major technology company, as Tencent Cloud has
originally developed F-Stack as a countermeasure to distributed denial-of-service
(DDoS) attacks. Due to its very specific original use case, it is a much more limited
tool, which can be both a strength and a weakness. It ensures that development is
not targeted to irrelevant parts of the framework but, on the other hand, it might
mean that out of scope use cases might be left unsupported.

Like VPP, F-Stack provides an API to link applications against it. In comparison
to VPP, they only have one API, which has good documentation [5]. The API does
provide a standard Kqueue/Epoll interface for ease of the integration. F-Stack also
has more applications which are already supported by the development team. The
list is not long, but both Nginx and Redis are widely used applications and makes
testing the platform notably easier as both of them also have multiple already-
existing testing tools. However, the main question is how well maintained these
interactions are, as the supported Redis version is quite old (i.e. version 3.2.8,
which has been outdated by another stable release in 2017).

F-stack has an interesting approach to their user space TCP stack. Building
and maintaining a full TCP stack with all of its functionality can be costly, so they
have integrated the TCP stack used in FreeBSD 11.01 to cut on development effort.
However, the FreeBSD stack is not directly copied, but a large amount of irrelevant
features are removed to provide better performance [6]. This makes a detailed
comparison of the F-Stack TCP stack hard, as there is no extensive documentation
on the optimizations made.

3.2.3 Other Solutions

There is also a handful of other frameworks providing similar functionalities as
VPP and F-Stack. These other frameworks were left out of our study after a short
evaluation of capabilities and activity of the projects. However, it is still meaningful
to shortly summarize what these applications do.

28

The transport Layer Development Kit (TLDK) is definitely one of the most well-
known projects in this category. Like VPP it is also an FD.io project [16]. Its idea is
to provide an easy-to-use host stack for VPP [17]. TLDK is implemented with VPP
functionality like graph nodes and plugins, but it aims to hide that from applications
so it could use TLDK without knowing about VPP. Like F-Stack, TLDK also has
already been integrated to Nginx. TLDK was left out from the closer look since it
seems to be not active anymore.

Like F-Stack, OpenFastPath (OFP) leverages the FreeBSD network stack to
provide high performance user space networking [12]. OFP is a very promising
project and provides a wide variety of functionality. However, the project is still
young, and as stated in their Technical Overview, the TCP implementation is only
functional and not optimized for performance.

The accelerated network stack (ANS) is a DPDK-native TCP/IP stack. Like
F-Stack and OFP, it also uses the FreeBSD network stack to provide its own stack
in the user space [1]. As many others, DPDK-ANS provides an API with epoll
implementation. DPDK-ANS does also include the longest list of software which
has already been ported to work with it. This includes Nginx, Redis and Iperf,
though not the newest stable versions. At the point of scoping the thesis DPDK-
ANS seemed like a small and inactive project. However, it has potential for growth,
as it aims to provide very narrow functionality instead of complete networking suite.

Dual Mode, Multi-protocol, Multi-instance (DMM) is yet another FD.io project
[2], which could solve the problem of this study from another angle. DMM is a very
young project started after scoping of the thesis. It tries to provide a framework
between the application and the transport layer. The main idea behind DMM is
not to lock on to a single implementation of the networking stack, but to provide an
abstraction layer which can be used by both the application and the network stack.

29

4 Evaluation
This chapter details the experiment methodology. It first starts with an introduction
of the measurement tools followed by a description of the experiment setup. Lastly,
the chapter details the methodology used in the experiments.

4.1 Measurement tools

The selection of measurement tools is a key aspect in assessing different acceleration
frameworks. Fair tool selection is challenging for multiple reasons. First, all the
frameworks require applications to be modified in order to be used with their inter-
face. This means that if a common testing tool is selected or a new tool is created,
it has to be integrated to work with all the frameworks separately. Unfortunately,
this was not in the scope of this research. Other option is to select tools from a pool
offered by frameworks or other third parties. Unfortunately, all tested frameworks
are so young that the catalogue of supported applications is very narrow.

While performing measurements, it is very important to identify what is to be
measured and only focus on that. In this study the two main factors considered are
latency and jitter. Unfortunately, most network performance testing tools are very
much throughput-oriented. As a consequence, they often do not measure or report
latency and jitter.

Another key aspect to successfully measure performance of TCP acceleration
is to avoid any bias, namely, to ensure that only latency and jitter caused by the
acceleration framework is measured. For example, databases like Redis can be used
to conduct measurements where we can draw a conclusion that using acceleration
provided a positive or a negative effect on performance. However, it can be hard to
conclude if for example the jitter was due to the framework or the database server
having problems. This can also happen outside of the testing software. For example,
if other applications running on the server take CPU resources, this can manifest as
jitter in the measurements.

It is impossible to eliminate or even acknowledge all factors affecting the mea-
surement, however, the factors with the largest impact we tried to take into account.
With the limitations in mind Redis and platform specific software were selected to
be used in the evaluation to give a comprehensive picture of the frameworks. Un-
fortunately, there is no tool which works directly with all APIs of both considered
frameworks, so the obtained results are compared to a baseline represented by the
Linux kernel TCP stack.

Platform specific tools

As explained in Section 3.2.1, the VCL API provides the most suitable way to link
the application to VPP. However, VCL API is still quite a new technology and there
is not much support for it in the industry. The only publicly available testing tool
for the VCL API is a socket test shipped with VPP and it focuses on bandwidth
measurements. However, a higher data-rate in the test indicates better per packet

30

latency. The VCL testing tool supports both the kernel TCP stack and VCL, so it
gives a good idea if VPP could offer any benefit over kernel.

Redis

Redis is a mature in-memory database, which can serve a significant amount of
requests per second, thus is one of the most suitable databases for low-latency ap-
plications. Redis could very well be used in the call session data-storage use case.
In addition, Redis is supported by both TLDK and F-Stack and can be tested with
VPP’s LD_PRELOAD.

Redis also has its own benchmark utility, which can be used for low-latency
testing with some modifications. Such a tool, called redis-benchmark [66] offers
back-to-back packet transfer, which means that it sends the next packet as soon as
it gets a reply for the previous packet. The software is used from the console and
can be configured through command-line options. Those used in this work are listed
in Table 2. From the standpoint of latency measurements, number of clients and the
data size are the most important ones. If both these values are too large, the redis-
server may become the bottleneck of the system, and the tests do not tell anything
about the latency in the TCP stack. However, if both the amount of clients and the
payload size are low enough, redis-benchmark is a very good latency measurement
tool since back-to-back transfers limit the bandwidth it can use. One important
note is that increasing the number of clients does not increase the amount of sent
packets: the number of packets is rather divided for sending clients.

Option Function
-h <hostname> Server hostname (default 127.0.0.1)

-p <port> Server port (default 6379)
-s <socket> Server socket (overrides host and port)
-c <clients> Number of parallel connections (default 50)

-n <requests> Total number of requests (default 100000)
-d <size> Data size of SET/GET value in bytes (default 3)
-t <tests> Only run the comma separated list of operations.

The operation names are the same as the ones produced as output.

Table 2: Subset of redis-benchmark options.

In this study, some modifications were made to the C code of redis-benchmark.
The main weaknesses of the tool were related to its way to report latencies. It does
report latencies in milliseconds, which is not enough for a low-latency study. In
addition to this, the tool reports latencies only by grouping the results by time,
which makes analyzing the data difficult. Both of these problems were solved by
around 70 lines of code in total.

The resolution of the latency measurements was changed to microseconds. This
makes reading the output of the tool even harder, because the time groups are now
divided in resolution of a microsecond. This is fixed by introducing 3 new options.

31

If none of these are used, the benchmark leaves latency reporting completely out.
The new features are following:

• --report_time does keep the old functionality of latency reporting if that is
ever needed. Only change to original is that resolution used is micro seconds.

• --report_latencies reports tail latencies of the test. These are grouped in
90th, 95th, 99th, 99.9th, 99.99th and 100 percentile latencies. This option is
for initial testing and gives a good overview on the performance with a quick
glance.

• --report_full is used to get per packet latencies in sending order. This tool is
used to get all the data about a transmit so graphs and other in-depth analysis
can be done.

In addition to changes in redis-benchmark, a tool was written to analyze the
output of redis-benchmark with the --report_full option. This tool was written in
Python and it calculates simple statistical numbers and draws graphs from the data.
With multiple changing variables, some of the tests created a substantial amount of
data, so an efficient handling was important.

4.2 Experimental setup

During the study, experiments were conducted in multiple different environments,
but all the results presented in the thesis were run on the same setup. The test setup
consists of two dedicated servers and a switch between them. This provided more
control to the host side than using a cloud infrastructure. However, if any changes
were to be found that would be required on the host side, all of the changes can be
made also on a slightly different cloud architecture.

4.2.1 Hardware testbed

The servers used in the evaluation are two identical HP ProLiant BL460c Gen9s.
Each server has two Intel Xeon E5-2680 v3 CPUs, which have 12 cores each and
run at 2.5GHz. Both servers have 96GB of memory per processor which totals
192GB per server. The last important component in the setup is a HPE Ethernet
560M 10Gb network interface controller which uses a 10GbE Intel 82599 controller.
The NICs in both servers are connected to a HPE 6125XLG Ethernet Blade Switch
with a 10GbE downlink ports. Having two servers makes it possible to perform all
the experiments in both single host and multi-host environments. In the single host
environment, traffic only stays within one server, while in the multi-host environment
the endpoints are located in different machines.

HP Proliant servers have many proprietary tools, like Integrated Lights-Out
(iLO) which is used to manage the servers. Other than those, HP servers still are
practically COTS hardware. However, there are some unfortunate limitations. In
the terms of the TCP/IP acceleration study, the most severe problem is their VFIO

32

implementation. In fact, HP uses Reserved Memory Region Reporting (RMRR) to
communicate management data of the server in some of their Proliant servers and
that conflicts with VFIO [10].

4.2.2 Host

Three main tasks of the host system include starting the virtual machines, switching
traffic to them and passing hardware resources like CPU cores or NICs. Virtual
machines are used instead of containers, because that corresponds better to current
telco cloud implementations. In cloud host machine could run some specific use case
related to the operating system, but in this test the host system runs Ubuntu 16.04
with Linux kernel 4.4.0-134 which is also run on the virtual machines. In addition
to the operating system the host needs to have vSwitch software and a machine
emulator to run VMs. The whole host setup presented in this chapter is illustrated
in Figure 12.

Server

User Space
Virtual MachineVirtual Machine

Application Application

Physical hardware

Kernel

Linux kernel Linux kernel

VirtioVirtio

UIO Driver

NIC

KVM

O
vS

 +
 D

PD
K

QEMU OvS

DPDK vhost-user

DPDK PMD

Figure 12: Overview of the host of the experiment setup.

vSwitch

Directing traffic to the virtual machines is facilitated with vSwitch. There are many
different virtual switches, but in this study only Open vSwitch (OvS) [63] is used.
OvS was released in 2009 and it has had enough years to develop into production-
quality vSwitch. It is also open source and is well-recognized by software-defined
networking (SDN) and NFV developers [46]. There are two types of OvS ports
used in the test setup. Physical Ethernet ports of the NIC are connected to DPDK
datapath. This way the packets are forwarded from the NIC directly to OvS without
kernel intervention. The DPDK poll mode drivers take care of catching the packets
nearly immediately, so the latency of the host is very low. Connection from the

33

host to the virtual machines is handled with DPDK vHost User. vHost User is a
remarkably new technology released in 2014. It is based on an idea of sharing file
descriptors between a guest and the host via Unix domain sockets [18].

Section 3.1.3 explained the most important performance tuning factors. In our
test setup, we had plenty of extra processing power and no other applications running
on the server, so CPU time was not a problem as it could be with poll mode drivers.
Also the OvS DPDK setup guide [13] suggests that modern Linux kernels are so
efficient that CPU pinning does not have a huge effect.

Since there was plenty of memory available, 10GB were allocated to OvS DPDK
in 2M pages. All hugepage allocations of the setup were done in the startup by
reserving pages upon booting. This was achieved in grub boot (etc/default/grub)
with:

GRUB_CMDLINE_LINUX_DEFAULT=
"default_hugepagesz=2M hugepagesz=2M hugepages=5000"

In addition to reserving memory, hugepage also needs to be mounted, which was
done in fstab by adding the following line:

nodev /mnt/huge hugetlbfs pagesize=2M,size=10G 0 0

After covering hugepages and CPU, the last part of the OvS DPDK setup is the
NIC in the PCI slot. As mentioned earlier, the DPDK datapath is used to connect
the NIC to OvS, but the NIC must be used with DPDK-compliant drivers. As seen
in Section 3.1.3, VFIO is the best option to use with DPDK and NIC. As the HPE
Proliant servers do not fully support VFIO, an UIO driver was used instead. First,
the loadable kernel module (LKM) has to be loaded in the kernel. This can be done
with the modprobe utility. After loading the module the dpdk-devbind tool was
used to bind the PCI device to the driver in the following way:

dpdk-devbind -b uio_pci_generic 00:04.0

Hypervisor

There are multiple options when choosing a hypervisor for cloud or the experiment
setup. VMware is one of the first and most well-known virtualization platforms
launched in 1998 [20]. Platforms like OpenStack still support VMware, but there
are new contestants which take the majority of users. In 2005 QEMU user space
emulator was launched [31]. It provides wide functionality and is open source.
However, VMs run with only QEMU do not reach native processor speeds. In 2008
Kernel-based Virtual Machine (KVM) open source project was launched [42]. KVM
is developed as a kernel module and provides virtually native performance. Both
QEMU and KVM recognized their advantages and using a combination of QEMU
and KVM is currently one of the most used virtualization techniques. QEMU and
KVM are also used in the test setup.

The hypervisor is used to provide everything virtual machine needs. Configur-
ing resources can be done in many ways, but in this setup simply the command

34

qemu-system-x86_64 is run inside bash script and configurations are done by giving
options to that command. Most important of the options is -enable-kvm, which puts
KVM into use.

Starting from the computing resources, memory is provided for the VM in
hugepages. For the VM memory 1GB hugepages are used and 16GB of memory
is provided per VM. Setting up the memory goes through same process as allocat-
ing memory for DPDK. This time "hugepagesz=1G hugepages=64" is added in the
end of the grub command line and an own row is added in fstab, so it is easy to use
both 2M and 1G pages and allocate them to different applications.

There are many options when emulating the CPU for the virtual machine.
QEMU supports emulating many different processors with diverse feature sets. How-
ever, if there is no need to change the processor on the host side or run different
processors in the cloud, the best performance is achieved with the -cpu host option
which passes the host processor features to the VM. Other important CPU related
option is Symmetric multiprocessing (SMP). In QEMU it can be used to determine
how many processors, cores and threads are passed to the VM. In this test setup
simple -SMP 10 is used. This creates 10 unique CPUs [14]. Creating 10 CPUs in
comparison to creating for example a 5-core machine with 10 threads has a differ-
ence in performance since the scheduler handles them differently, but the difference
is expected to be low, since there are plenty of extra resources in the test setup.

Networking of the test setup was already covered to the edge of OvS. OvS DPDK
vHost User has created the socket, which is now passed to the VM with QEMU. Also
the receiving end in the VM is configured with QEMU. In this setup virtio-net-pci
device is used to provide the networking device in the guest machine. Virtio [19] is
the main IO virtualization platform of KVM and provides a very good performance.
In addition to the link between the virtio device and vHost User also the device
management link is configured with port forwarding. This way there is an easy
connection to internet via the host machine’s extra NIC and only the test traffic
uses OvS and the 10GbE NIC, so there is absolutely no extra traffic going through
the testing link. The configuration of test link looks like this:

-chardev socket,id=char1,path=${SOCK_PATH} \
-netdev type=vhost-user,id=mynet1,chardev=char1,vhostforce \
-device virtio-net-pci,mac=${MAC_ADDR},netdev=mynet1 \

Virtio is not only used to handle the network connectivity. As it is IO virtu-
alization, it can also handle the hard drive of the VM. In the test setup there are
multiple image files which have different guest configurations. These are loaded to
the VM with the virtio interface. As a part of this thesis there were two bash scripts
created totaling in around 200 lines of code. These scripts are used to easily launch
wanted virtual machines with the intended options. They also include a possibility
to change OvS to VPP by changing just one option.

35

4.2.3 Guest

The guest side of the VM includes two images, one for VPP and one for F-Stack.
They both have different requirements for the accompanying software and their
versions. For the majority of experiments CPU pinning and interrupt optimizations
were turned off. An exception to this was an experiment solely conducted to evaluate
the impact of those optimizations. Hugepages were allocated in 2M pages in a similar
manner that was used in the host machines.

The software setup on both images is minimal. In the VPP image there are
installations of VPP, Redis and DPDK. VPP was cloned from the Git repository
[7]. From the repository version 18.07 stable was selected, as it is the most current
stable code. DPDK can be built together with the VPP straight from the VPP
repository. The newest DPDK version supported by VPP is 18.05, and it was the
version used in our evaluation. Redis is installed separately and version 4.0.9 is used.
redis-benchamrk.c was changed to the modified version before building as previously
discussed.

F-stack is a less dynamic project and supports a bit older software versions. F-
Stack comes with both DPDK and Redis. The DPDK version is latest long term
support (LTS), 17.11. Redis version is 3.2.8. Our modified redis-benchamrk.c also
works with this redis-server version without any problems.

As a part of the study, there were scripts created for the guest VMs to setup
the machines for testing. This includes the setup for VPP which binds the NICs to
the drivers, starts VPP and runs VPP testing. For F-Stack there is a very simple
script which does the initial configuration of F-Stack, so it is ready to use after a
reboot. Lastly, there is a simple script for redis-benchmark which loops packet sizes
and number of clients, so everything can be tested on a single run. It also prints the
results to text files which are ready to be processed with the Python script which
calculates statistics and draws plots.

4.3 Methodology

This section outlines the experiments performed and the specific methodologies used
therein. There were two main experiments, both consisting of multiple measurement
runs. The obtained results are presented in Section 5.1.

4.3.1 VPP, F-Stack and Linux kernel with Redis-benchmark

The first experiment aims to compare the performance of VPP, F-Stack and the
Linux kernel with a close to real-life software setup. The test is performed by
running redis-benchmark over each of the three stacks in both single and multi-host
environment. This is the main measurement of the thesis and other tests are planned
to support the results gained. The major limitation in this experiment setup is the
interface used for testing the performance of VPP. Using VCL directly would be
the best option for VPP, but VCL does not have direct support for redis. Due to
this, VCL is linked with LD_PRELOAD which might introduce performance and

36

stability issues. The second experiment is conducted to mitigate this problem in
testing.

The experiment consists of six runs. The first two runs are conducted with both
redis-server and redis-benchmark running on top of the Linux kernel TCP/IP stack
for baseline. In the first run the test applications are on separate VMs but on the
same machine (i.e., single host). In the second run VMs are running on different
physical servers. Tests three and four represent single and multi-host tests with
F-Stack. During these test runs F-Stack was only running on server side, since there
is no implementation to work with the redis-benchmark software. In the last two
runs, the client side is set to use VPP by linking redis-becnhmark to VCL with
LD_PRELOAD. On the server side there is the Linux kernel TCP/IP stack since
LD Preload was not stable with redis-server during initial testing.

Each test round consist of running series of SET and GET operations with a
varying amount of clients and payloads. During each sequence 10,000 database
operations are run with a constant client count and payload size. The amount of
clients is varied from 1 to 24 and the size of the payload is varied from 4 bytes
to 8 kilobytes. Even though Redis supports a wide variety of database operations,
tests are only run with SET and GET, since those are the most relevant for the
use case. These selected values should provide a wide enough view to cover possible
real-life scenarios and indicate if different frameworks have specific weaknesses and
strengths.

4.3.2 VPP and Linux kernel with VPP socket test application

Virtual Machine

Application

Binary API

DPDK PMD

Virtio

TCP

Linux Kernel

VCL

Shared Memory

Session

UIO Driver

Figure 13: VCL. [40]

This experiment aims to give comparable results between direct VCL and Linux
kernel. This test is conducted to provide more information alongside test 1, since
LD_PRELOAD is the best way to link applications against VCL. The VPP socket_test
tool is not accurate for drawing conclusions about the latency and jitter of the con-
nection, but because of limited software support for VCL it still provides interesting

37

data about the possible performance of directly using VCL. This test is performed
in both single host and multi-host environments. Figure 13 illustrates how packets
reach application through the VCL API.

All the runs consists of 10 identical series with 10 million packets each. From
these series, the mean is calculated when the results are processed. The payload size
is set to 8KB. The experiment is conducted in an unidirectional mode, which means
that the payloads are only transferred in one direction. socket_test has support for
multiple simultaneous clients, but during the initial testing this feature was found
broken on both kernel stack and VCL. In this test only one client is used.

38

5 Experimental results
This chapter presents the results of the experiments carried out to evaluate TCP/IP
Acceleration. In section 5.1 there are three subsections which represent experiments
introduced in section 4.3. In this section the results are presented and explained.
Further analysis of implications of all the tests is in section 5.2. In this section
technical results are also connected to other observations done during the research,
such as the maturity of the frameworks.

5.1 Results

Both of the defined tests had their own peculiarities. In this chapter the results
are presented in a manner that both takes the constrains into account and tries to
highlight the interesting observations from the data. The first test contained 502
series of 100,000 operations run against the database server. Because of the high
amount of data, only selected parts of it will be visualized in this thesis. On the
other hand, in the second test the amount of sent packets was even higher, but due
to the limitations of the tools, the data received is very limited.

Test 1: VPP, F-Stack and Linux kernel with Redis-benchmark

0 100 200 300 400 500
Latency (microseconds)

0

20

40

60

80

100

Pe
rc

en
til

e

Native Kernel single host
Native Kernel multi-host
F-Stack single host
F-Stack multi-host
VPP LD_PRELOAD single host
VPP LD_PRELOAD multi-host

Figure 14: Latency distribution of a client sending 100,000 SET operations with a
1024 byte payload in six different environments.

Figure 14 represent the closest simulation of performance of the frameworks in
a real-life scenario. In this particular test run the payload was set to 1024 bytes
and packets were sent by one client. The 1024 byte packet size was selected as it is
realistic in these kind of systems. Only one sending client is considered closest to
real-life, because of how the redis-benchmark is implemented. It is sending packets
in back-to-back mode, so the load is already considerably high with one client. The

39

operation used in the test was SET. All the tests were also run with GET operation,
but because the results were very similar, only the results of SET operations are
presented.

Test Statistics Percentile
Min Max σ 90% 95% 99% 99.9%

LD_PRELOAD single host 19 516 8.3 25 29 42 65
LD_PRELOAD multi-host 29 1553 15.0 44 49 54 302
Native Kernel single host 24 936 11.9 32 39 48 166
Native Kernel multi-host 36 1000 36.0 60 65 280 539
F-Stack single host 139 1042 21.4 198 199 212 533
F-Stack multi-host 128 1064 21.4 198 198 227 447

Table 3: Statistics of one client sending 10000 SET operations with a 1024 byte
payload in six different environments.

In this particular test VPP with VCL used through LD_PRELOAD was per-
forming the best with a short margin. In a single host environment native Linux
kernel TCP stack was very close to same performance, but generally behind 5-10
µs as seen in Table 3. In multi-host environment the gap grew closer to 10-20 µs.
In addition to slower transfer times the Linux kernel TCP also delivered higher
standard deviation (σ), which shows also well in the 99.9th percentile results where
Linux obtains over 100 µs worse transfer times in both categories.

The performance of F-Stack was surprising as it delivered a majority of the pack-
ets in slightly under 200 µs, which is considerably worse than below 99th percentile
of the results achieved with other stacks (65 µs). Another peculiarity was the fact
that F-Stack delivered the packets in a very similar speed both over the physical
switch and from VM to VM in a single machine. Because of these experiments in-
volving anomalies, F-Stack tests were re-run multiple times, but the results stayed
within the margin of error, so the first ones were used.

When taking a look on the other runs it can be seen that the gap between
LD_PRELOAD and native kernel is even narrower. Figure 15 illustrates the 95th

percent times of each test run. Test runs are presented in the running order, which
is running the payloads in an increasing order for each amount of clients in an
increasing order. The amount of clients is presented with c in the figure and the size
of the payload with b. 95th percentile latency provides a solid view on the latencies
the majority of packets are experiencing.

According to this metric, LD_PRELOAD provides the best performance with a
small margin until higher data rates are reached. However, with 4 sending clients
and a 8192 byte payload, the Linux kernel TCP reaches a better latency in both
multi-host and single host environments. In runs with more than 4 clients, the
Linux kernel constantly reaches better results excluding the heaviest runs with 16
and 24 clients with a payload of 8192 bytes. When the data rate is high enough,
VPP with LD_PRELOAD is failing. In the test runs this shows in the single host
test with 24 clients and a 8192 bytes payload where LD_PRELOAD does not have

40

c:
 1

, b
: 4

c:
 1

, b
: 6

4
c:

 1
, b

: 5
12

c:
 1

, b
: 1

02
4

c:
 1

, b
: 2

04
8

c:
 1

, b
: 4

09
6

c:
 1

, b
: 8

19
2

c:
 2

, b
: 4

c:
 2

, b
: 6

4
c:

 2
, b

: 5
12

c:
 2

, b
: 1

02
4

c:
 2

, b
: 2

04
8

c:
 2

, b
: 4

09
6

c:
 2

, b
: 8

19
2

c:
 4

, b
: 4

c:
 4

, b
: 6

4
c:

 4
, b

: 5
12

c:
 4

, b
: 1

02
4

c:
 4

, b
: 2

04
8

c:
 4

, b
: 4

09
6

c:
 4

, b
: 8

19
2

c:
 8

, b
: 4

c:
 8

, b
: 6

4
c:

 8
, b

: 5
12

c:
 8

, b
: 1

02
4

c:
 8

, b
: 2

04
8

c:
 8

, b
: 4

09
6

c:
 8

, b
: 8

19
2

c:
 1

6,
 b

: 4
c:

 1
6,

 b
: 6

4
c:

 1
6,

 b
: 5

12
c:

 1
6,

 b
: 1

02
4

c:
 1

6,
 b

: 2
04

8
c:

 1
6,

 b
: 4

09
6

c:
 1

6,
 b

: 8
19

2
c:

 2
4,

 b
: 4

c:
 2

4,
 b

: 6
4

c:
 2

4,
 b

: 5
12

c:
 2

4,
 b

: 1
02

4
c:

 2
4,

 b
: 2

04
8

c:
 2

4,
 b

: 4
09

6
c:

 2
4,

 b
: 8

19
2

Settings

100

200

300

400

500

600

La
te

nc
y

(m
icr

os
ec

on
ds

)

Native Kernel single host
Native Kernel multi-host
F-Stack single host
F-Stack multi-host
VPP LD_PRELOAD single host
VPP LD_PRELOAD multi-host

Figure 15: 95th percentile latencies of sending 100,000 SET operations with varying
a payload size and number of clients in six different environments.

any results. The problem occurs a few seconds after the start of the run. The
number of operations per second manages to reach a steady rate for a while, but
then it drastically drops and starts to approach zero semi-asymptotically. Additional
investigations show that the problem is indeed related to the data rate. For example
if the payload is doubled and the number of clients is reduced in same proportion,
the problem still occurs. It also appears on other operations. For example MSET
can be used to trigger the problem with a lower payload and number of clients,
because it carries the payload M times to set multiple values at once.

Interestingly, F-Stack gets closer to the other frameworks on 95th percentile met-
ric when the load gets higher. In scenarios with 24 clients it manages to achieve the
best latencies for multiple lower payload runs in both environments. It also achieves
its minimum 95th percentile latency with 8 clients instead of the lowest load one
client experiment.

Until this far mainly general latency is considered. 95th percentile tells a lot
about the general latency, but it does not describe jitter very well. Jitter can be
quantified in many ways like the standard deviation, but in this study the best way
is tail latencies like the 99th percentile or the 99.9th percentile. These tell exactly
how poor latencies do the worst performing packets get. In this case these two have
surprisingly different results. Figure 16 shows that VPP with LD_PRELOAD can
perform up to the tail latencies. In the same figure multi-host performance cannot
provide reliable, under 100 µs, latencies anymore. However, in a single-host mode

41

c:
 1

, b
: 4

c:
 1

, b
: 6

4
c:

 1
, b

: 5
12

c:
 1

, b
: 1

02
4

c:
 1

, b
: 2

04
8

c:
 1

, b
: 4

09
6

c:
 1

, b
: 8

19
2

c:
 2

, b
: 4

c:
 2

, b
: 6

4
c:

 2
, b

: 5
12

c:
 2

, b
: 1

02
4

c:
 2

, b
: 2

04
8

c:
 2

, b
: 4

09
6

c:
 2

, b
: 8

19
2

c:
 4

, b
: 4

c:
 4

, b
: 6

4
c:

 4
, b

: 5
12

c:
 4

, b
: 1

02
4

c:
 4

, b
: 2

04
8

c:
 4

, b
: 4

09
6

c:
 4

, b
: 8

19
2

c:
 8

, b
: 4

c:
 8

, b
: 6

4
c:

 8
, b

: 5
12

c:
 8

, b
: 1

02
4

c:
 8

, b
: 2

04
8

c:
 8

, b
: 4

09
6

c:
 8

, b
: 8

19
2

c:
 1

6,
 b

: 4
c:

 1
6,

 b
: 6

4
c:

 1
6,

 b
: 5

12
c:

 1
6,

 b
: 1

02
4

c:
 1

6,
 b

: 2
04

8
c:

 1
6,

 b
: 4

09
6

c:
 1

6,
 b

: 8
19

2
c:

 2
4,

 b
: 4

c:
 2

4,
 b

: 6
4

c:
 2

4,
 b

: 5
12

c:
 2

4,
 b

: 1
02

4
c:

 2
4,

 b
: 2

04
8

c:
 2

4,
 b

: 4
09

6
c:

 2
4,

 b
: 8

19
2

Settings

100

200

300

400

500

600

700

La
te

nc
y

(m
icr

os
ec

on
ds

)

Native Kernel single host
Native Kernel multi-host
F-Stack single host
F-Stack multi-host
VPP LD_PRELOAD single host
VPP LD_PRELOAD multi-host

Figure 16: 99th percentile latencies of sending 100,000 SET operations with a vary-
ing payload size and number of clients in six different environments.

Linux kernel still holds up.
To call any framework reliable in this test, it should be able to achieve even

reliable 99.9th percentile latencies. In the Figure 17 it shows that almost all of
the measurements are far from reliable and almost any of the test series can throw
99.9th percentile latency easily to over 100 µs category. However, in a single host
environment VPP used via VCL and LD_PRELOAD still hold up in tests where
the payload and number of clients is moderate.

Analyzing the reasons for tail latencies further, a histogram timeline of the re-
ceived packets reveals some potential reasons. In the timeline each individual packet
is drawn as a dot to the figure, where time runs on x-axis and latency in y-axis. This
can, for example, reveal if the latencies follow some kind of pattern. By drawing
this kind of a figure for each of the 252 runs with SET operations, a few patterns
were recognized.

Figure 18 presents timeline of multi-host native Linux kernel TCP with payload
of 1024 bytes and one sending client. This is the same run which was used as part
of Figure 14 in the beginning of this section. In this timeline there is a pattern
which can be seen in the most of series run. There is a visible group of packets
with latency of bit over 300 µs and again around 500-600 µs. This pattern is quite
visible with all tested frameworks in both single host and multi-host environments.
It does not show as well in the series with higher load, but it is present at least
in all of the results with 4 clients or less. Since the same phenomenon is found

42

c:
 1

, b
: 4

c:
 1

, b
: 6

4
c:

 1
, b

: 5
12

c:
 1

, b
: 1

02
4

c:
 1

, b
: 2

04
8

c:
 1

, b
: 4

09
6

c:
 1

, b
: 8

19
2

c:
 2

, b
: 4

c:
 2

, b
: 6

4
c:

 2
, b

: 5
12

c:
 2

, b
: 1

02
4

c:
 2

, b
: 2

04
8

c:
 2

, b
: 4

09
6

c:
 2

, b
: 8

19
2

c:
 4

, b
: 4

c:
 4

, b
: 6

4
c:

 4
, b

: 5
12

c:
 4

, b
: 1

02
4

c:
 4

, b
: 2

04
8

c:
 4

, b
: 4

09
6

c:
 4

, b
: 8

19
2

c:
 8

, b
: 4

c:
 8

, b
: 6

4
c:

 8
, b

: 5
12

c:
 8

, b
: 1

02
4

c:
 8

, b
: 2

04
8

c:
 8

, b
: 4

09
6

c:
 8

, b
: 8

19
2

c:
 1

6,
 b

: 4
c:

 1
6,

 b
: 6

4
c:

 1
6,

 b
: 5

12
c:

 1
6,

 b
: 1

02
4

c:
 1

6,
 b

: 2
04

8
c:

 1
6,

 b
: 4

09
6

c:
 1

6,
 b

: 8
19

2
c:

 2
4,

 b
: 4

c:
 2

4,
 b

: 6
4

c:
 2

4,
 b

: 5
12

c:
 2

4,
 b

: 1
02

4
c:

 2
4,

 b
: 2

04
8

c:
 2

4,
 b

: 4
09

6
c:

 2
4,

 b
: 8

19
2

Settings

200

400

600

800
La

te
nc

y
(m

icr
os

ec
on

ds
)

Native Kernel single host
Native Kernel multi-host
F-Stack single host
F-Stack multi-host
VPP LD_PRELOAD single host
VPP LD_PRELOAD multi-host

Figure 17: 99.9th percentile latencies of sending 10000 SET operations with a vary-
ing payload size and number of clients in six different environments.

from a wide variety of tests, the reason probably is in some common nominator. In
this case most probably TCP is the root cause. The pattern, where most of the
packets have similar extra delay of around 150 to 250 µs, would point towards TCP
re-transmissions.

In addition to possible TCP retransmissions, there is also another interesting
pattern found in the histograms. In Figure 19 there is a comparison of two runs done
with F-Stack in a single host environment. In both tests the payload was 1024 bytes
as in other examples. The only difference between the runs is the amount of used
clients. For an unknown reason 4 and more clients split the majority of the packets
into two categories. The most interesting detail is that the faster half of the packets
in 4 client mode is significantly faster than F-Stack in one client mode. This hints
that F-Stack is not performing up to its capabilities, and there is a problem with
either the API to redis, the tested F-Stack version or the configuration. This was
retested multiple times and the results were similar. This anomaly is not limited
to only these parameters. The same results show also on different payloads and
number of clients. However, the effect is best shown with four clients, as with eight
clients there is four groups and with more clients groups are not as recognizable.

43

0 20000 40000 60000 80000 100000
Packet id (in send order)

0

200

400

600

800

1000

La
te

nc
y

(m
icr

os
ec

on
ds

)

Figure 18: Per packet latency of every send packet sent in Linux kernel multi-host
series with a payload of 1024 bytes and one sending client.

(a) (b)

Figure 19: Per packet latency with F-Stack in a single host environment for (a) 1
client and (b) 4 clients. Both runs have a payload of 1024 bytes.

Test 2: VPP and Linux kernel with VPP socket test application

In the VPP and Linux kernel TCP stack comparison there were 5 tests runs in the
end. First both VCL and kernel TCP performance was measured in both single and
multi-host environments. After this VCL was optimized further and run again on a
single host environment. This test was not run on a multi-host environment, since
the switch between the physical machines was already limiting the throughput of
the first test. This optimization was done by pinning ten CPU cores for VPP. By
pinning CPU cores VPP does not get interrupted by other applications. Amount of

44

cores is less critical, and eight of the ten cores reserved were idle.
In both single host and multi-host scenarios VPP through VCL API performs

considerably better than the Linux kernel TCP stack. In a single host environment
VCL provided 2.04 times better performance. With pinned CPUs the performance
was 2.17 times better than the one provided by the Linux kernel TCP stack. In a
multi-host environment VPP performed only 1.82 times better. The exact measure-
ment data is presented in Table 4. The most likely reason for this difference in the
performance is hitting the limits of 10 Gbps networking. The test measured the data
rate from the transferred payload, so with overheads from packets the throughput
is close to 10 Gbps.

Kernel VCL VCL optimized
single host 4.859 Gbps 9.905 Gbps 10.555 Gbps
multi-host 4.781 Gbps 8.740 Gbps -

Table 4: Average throughput through ten socket test runs in each environment.

Even though the socket test application demonstrates how VPP can achieve
twice as good data rates, it is not possible to draw direct conclusions based on this
test. Better data rate does not directly imply better latency and does not have any
connection with jitter. Socket test also sends data in a pattern that is not realistic
in a telco cloud. In the socket test all data is pushed through the link as fast as
possible. VPP benefits a lot from this kind of scenario, because it can get full vectors
which virtually means free packet processing for a majority of the packets. However,
this data pattern would not be encountered in a real telco cloud and thus VPP’s
performance would be hindered.

5.2 Analysis

There is no single part in testing or background research which would point at
specific implementation of single framework and prove that it solves the problem.
However, the results seen in the section 5.1 and the background research done also
leaves a possibility that these frameworks could be used to solve the problem.

F-Stack did not perform well on the test series which were considered to simulate
real-life scenarios best. For example, with one client and a 1024 byte payload, F-
Stack had over four times slower 99th percentile than VPP on both environments.
Also the native Linux kernel left it clearly behind in most of the statistics. However,
F-Stack had very interesting anomalies and patterns which are described in detail in
section 5.1. Part of these were division of the latencies in a manner where it actually
was able to deliver half of its packets with considerably low latency when there
were many clients. These kind of anomalies led us to believe that there might be
something wrong with the used version of either F-Stack or the API used to connect
to Redis. It is also possible that the light documentation led to misconfiguration
which caused the problems. However, the tests were rerun multiple times and the
results repeated on all tests.

45

F-Stack is originally developed by Tencent Cloud, which hints that it should be
production mature code. On the other hand, as stated in the description of the
project it is developed to a very different use case [6]. It is also possible that the
Redis API is more of an unmaintained demo than an actual part of the product.
However, in the light of the results in the literature and the experiments, VPP is
showing more consistent results.

VPP did not deliver the desired results, but from the different pieces it is possible
to draw a conclusion that VPP could be used to solve the problem with reasonable
resources. Prior to any testing LD_PRELOAD was one of the top features of VPP.
In comparison to any other framework providing TCP/IP acceleration VPP was
the only one to promise to do it without extra work on developing the API for
libraries or the application. However, after initial tests and communication with
VPP development community, it is clear that the support for LD_PRELOAD was
only an early demo for VCL library and is not supported or intended to work with
just anything connected to it. In the initial tests VCL was very unstable and did only
handle some special scenarios. However, it was able to handle the redis-benchmark
client, which provided some results of the VPP in real action.

In the first test VPP proved that it can outperform the native Linux kernel
TCP stack with a very narrow margin even with a very poorly optimized setup. In
the second test VPP outperformed the native Linux kernel TCP stack clearly on a
bandwidth oriented test. It is clear that a direct conclusion cannot be drawn from
this test, but it seems that with proper API VCL can provide a solid performance.
If the first test could be ran with VPP with a proper API in both ends, there could
be better conclusions drawn and there is a high change that the results would speak
for VPP.

VPP is developed by quite an active community. The application and its libraries
are constantly changing and for example whole hoststack was receiving a major
rewrite during the writing of the thesis, so the status of the project from the view
angle of TCP/IP acceleration might change drastically to better or to worse in
the near future. In some areas of the project there is also a lack of coordination
and information, as the marketing for LD_PRELOAD functionality shows. It also
seems that there are many features which are so new that they might not be in wide
production usage. For example, a suggestion of the community is to use hoststack
via VCL, but there is not a single software ported to it and publicly available. VPP
is a large project which will definitely be around for years, but it seems to experience
some lack of maturity and growing pains currently.

As the last point, the native Linux kernel TCP stack surprised by its performance
in the testing. If the frameworks do not provide better results in future tests, it is
very much possible that optimizing the native TCP stack could provide a solid
start. However, this could also tell about a lacking testing setup. Even though the
route of the packet was very similar to a possible real-life scenario, the setup does
not represent actual production cloud with all of its extra layers of complexity and
unexpected traffic patterns.

46

6 Conclusions
One of the premises for this study was the idea of using TCP/IP efficiently to reduce
latency and jitter in call session data storage. It is safe to say that for multiple
reasons the goal was not achieved and this study does not end in a simple proposal
of a simple way to solve the problem completely. However, both of the major
frameworks in the field provided some results which can be used as foundation for
future studies.

The major finding was that the maturity of VPP was not as high as expected.
The best example from this was the lack of compatible software for the VCL API
and inconsistent functionality achieved with LD_PRELOAD. However, VPP is in
a quickly developing state and changes made to host stack can quickly change it to
be a more suitable solution. F-Stack seems to be in a more stable condition, but
latency-oriented TCP/IP acceleration does not seem to be the core of the project.

User space TCP/IP acceleration frameworks domain are in the early stages. Even
the major players have not been available for longer than a few years and there
are many novel solutions started every year. It seems that the interface between
the transport layer and the application is the common problem which no one has
not been able to properly address. Mostly, this has been approached by porting
each application individually, which has led to a few unmaintained frameworks only
supporting old versions of popular applications. On the other hand, projects like
VPP have not yet been successful in defining a more universal API.

Based on the literature review as well as the performed experiments there are
a few recommendations to take into account for future research. First of all, VPP
showed adequate results to justify putting the effort towards linking either Redis or
another database solution directly into the VCL API. The VPP community should
be monitored in the meantime, so the APIs could be made to work after major
changes in the hoststack. If VPP keeps its promises, there are few aspects to consider
while planning the deployment. As VPP has a wide set of functionality, it could
also be used in the host as a vSwitch. In this deployment, a future study could
investigate if VPP could benefit from its position on both the guest and the host by
having only the VCL library on the guest and linking that to the VPP application
running on the host.

If VPP does not provide a suitable solution, also work with F-Stack can be
continued. With a very reasonable effort results provided in this study could be
analyzed further, which could give a answer on how far from usable F-Stack is. F-
Stack did show some strengths, and it can be just one bugfix away from providing
the intended performance. As a different option TCP stack optimization in the
Linux kernel could also be examined.

47

References
[1] ANS: TCP/IP stack for DPDK. https://github.com/ansyun/dpdk-ans. Ac-

cessed: 14.10.2018.

[2] DMM. https://wiki.fd.io/view/DMM. Accessed: 14.10.2018.

[3] DPDK. https://www.dpdk.org/. Accessed: 10.8.2018.

[4] DPDK docs: Programmer’s guide. https://doc.dpdk.org/guides/prog_
guide/index.html. Accessed: 1.9.2018.

[5] F-Stack api reference. https://github.com/F-Stack/f-stack/blob/
master/doc/F-Stack_API_Reference.md. Accessed: 14.10.2018.

[6] F-Stack readme. https://github.com/F-Stack/f-stack. Accessed:
14.10.2018.

[7] FD.io gerrit: VPP. https://gerrit.fd.io/r/vpp. Accessed: 1.9.2018.

[8] Get ready for 5G. https://networks.nokia.com/5g/get-ready. Accessed:
3.9.2018.

[9] Getting started guide for Linux. https://doc.dpdk.org/guides/linux_gsg/
index.html. Accessed: 2.9.2018.

[10] HPE support communication - customer advisory c04781229. https:
//support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04781229&
sp4ts.oid=5249566. Accessed: 27.8.2018.

[11] Hugepages. https://wiki.debian.org/Hugepages. Accessed: 2.9.2018.

[12] OFP: Technical overview. https://openfastpath.org/index.php/service/
technicaloverview/. Accessed: 14.10.2018.

[13] Open vSwitch with DPDK. http://docs.openvswitch.org/en/latest/
intro/install/dpdk/. Accessed: 28.8.2018.

[14] Qemu version 3.0.0 user documentation. https://qemu.weilnetz.de/doc/
qemu-doc.html. Accessed: 29.8.2018.

[15] Redis. https://redis.io. Accessed: 9.8.2018.

[16] TLDK. https://wiki.fd.io/view/TLDK. Accessed: 14.10.2018.

[17] TLDK project proposal. https://wiki.fd.io/view/Project_Proposals/
TLDK. Accessed: 14.10.2018.

[18] Vhost-user protocol spesification. https://git.qemu.org/?p=qemu.git;
a=blob;f=docs/specs/vhost-user.txt;h=7890d7169;hb=HEAD. Accessed:
28.8.2018.

https://github.com/ansyun/dpdk-ans
https://wiki.fd.io/view/DMM
https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/index.html
https://doc.dpdk.org/guides/prog_guide/index.html
https://github.com/F-Stack/f-stack/blob/master/doc/F-Stack_API_Reference.md
https://github.com/F-Stack/f-stack/blob/master/doc/F-Stack_API_Reference.md
https://github.com/F-Stack/f-stack
https://gerrit.fd.io/r/vpp
https://networks.nokia.com/5g/get-ready
https://doc.dpdk.org/guides/linux_gsg/index.html
https://doc.dpdk.org/guides/linux_gsg/index.html
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04781229&sp4ts.oid=5249566
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04781229&sp4ts.oid=5249566
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04781229&sp4ts.oid=5249566
https://wiki.debian.org/Hugepages
https://openfastpath.org/index.php/service/technicaloverview/
https://openfastpath.org/index.php/service/technicaloverview/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://redis.io
https://wiki.fd.io/view/TLDK
https://wiki.fd.io/view/Project_Proposals/TLDK
https://wiki.fd.io/view/Project_Proposals/TLDK
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/specs/vhost-user.txt;h=7890d7169;hb=HEAD
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/specs/vhost-user.txt;h=7890d7169;hb=HEAD

48

[19] Virtio. https://www.linux-kvm.org/page/Virtio. Accessed: 29.8.2018.

[20] VMware media resources. https://www.vmware.com/company/news/
media-resources/press-kits.html. Accessed: 27.8.2018.

[21] What is the fast data project (fd.io)? https://fd.io/about/. Accessed:
6.9.2018.

[22] What is VPP? https://wiki.fd.io/view/VPP/What_is_VPP%3F. Accessed:
3.9.2018.

[23] Transmission Control Protocol. RFC 793, September 1981.

[24] Elisa first in world to launch commercial 5G. Jun 2018.

[25] Ghassan A. Abed, Mahamod Ismail, and Kasmiran Jumari. Exploration and
evaluation of traditional TCP congestion control techniques. Journal of King
Saud University - Computer and Information Sciences, 24(2):145 – 155, 2012.

[26] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. Experimental eval-
uation of NoSQL databases. International Journal of Database Management
Systems, 6(3):1, 2014.

[27] Cisco affiliates. The zettabyte era: Trends and analysis. 06 2017.

[28] Jeffrey G Andrews, Stefano Buzzi, Wan Choi, Stephen V Hanly, Angel Lozano,
Anthony CK Soong, and Jianzhong Charlie Zhang. What will 5G be? IEEE
Journal on selected areas in communications, 32(6):1065–1082, 2014.

[29] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. Above the clouds: A berkeley view of cloud computing. 01
2009.

[30] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58,
April 2010.

[31] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[32] Helali Bhuiyan, Mark McGinley, Tao Li, and Malathi Veeraraghavan. TCP
implementation in Linux: A brief tutorial. http://www. ece. virginia.
edu/cheetah/documents/papers/TCPlinux. pdf.

[33] Federico Boccardi, Robert W Heath, Angel Lozano, Thomas L Marzetta, and
Petar Popovski. Five disruptive technology directions for 5G. IEEE Commu-
nications Magazine, 52(2):74–80, 2014.

https://www.linux-kvm.org/page/Virtio
https://www.vmware.com/company/news/media-resources/press-kits.html
https://www.vmware.com/company/news/media-resources/press-kits.html
https://fd.io/about/
https://wiki.fd.io/view/VPP/What_is_VPP%3F

49

[34] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. An em-
pirical evaluation of TCP performance in online games. In Proceedings of the
2006 ACM SIGCHI international conference on Advances in computer enter-
tainment technology, page 5. ACM, 2006.

[35] Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger, Michael
Bugenhagen, Waqar Khan, Michael Fargano, Chunfeng Cui, Hui Deng, et al.
Network functions virtualisation: An introduction, benefits, enablers, chal-
lenges and call for action. In SDN and OpenFlow World Congress, volume 48.
sn, 2012.

[36] Guo Chuanxiong and Zheng Shaoren. Analysis and evaluation of the TCP/IP
protocol stack of LINUX. In WCC 2000 - ICCT 2000. 2000 International Con-
ference on Communication Technology Proceedings (Cat. No.00EX420), vol-
ume 1, pages 444–453 vol.1, Aug 2000.

[37] Glorin Coras. (vpp/hoststack). https://wiki.fd.io/view/VPP/HostStack.
Accessed: 11.9.2018.

[38] Christian Dumitrescu. Introduction to DPDK. https://www.youtube.com/
watch?v=ewsrzoKwwz0. FD.io /dev/boot.

[39] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan S Milojicic.
Beyond processor-centric operating systems. In HotOS, 2015.

[40] Dave Barach Florin Coras. VPP host stack. https://wiki.fd.io/images/1/
15/Vpp-hoststack-kc-eu-18.pdf. Accessed: 1.9.2018.

[41] Sally Floyd, Tom Henderson, and Andrei Gurtov. The NewReno modification
to TCP’s fast recovery algorithm. Technical report, 2004.

[42] Irfan Habib. Virtualization with kvm. Linux Journal, 2008(166):8, 2008.

[43] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal. NFV: state of the art, chal-
lenges, and implementation in next generation mobile networks (vepc). IEEE
Network, 28(6):18–26, Nov 2014.

[44] Niklas Heuveldop. Ericsson mobility report november 2017. 2017.

[45] IEEE. Ieee 5G and beyond technology roadmap white paper. 2017.

[46] Intel. Open vSwitch enables SDN and NFV transformation. 2017.

[47] V. Jacobson. Congestion avoidance and control. In Symposium Proceedings on
Communications Architectures and Protocols, SIGCOMM ’88, pages 314–329,
New York, NY, USA, 1988. ACM.

[48] V Jacobson, R Braden, and D Borman. RFC 1323: TCP extensions for high
performance, may 1992. Obsoletes RFC1072, RFC1185 [12, 13]. Status: PRO-
POSED STANDARD.

https://wiki.fd.io/view/VPP/HostStack
https://www.youtube.com/watch?v=ewsrzoKwwz0
https://www.youtube.com/watch?v=ewsrzoKwwz0
https://wiki.fd.io/images/1/15/Vpp-hoststack-kc-eu-18.pdf
https://wiki.fd.io/images/1/15/Vpp-hoststack-kc-eu-18.pdf

50

[49] Fredrik Jejdling. Ericsson mobility report june 2018. 2018.

[50] Abdullah Talha Kabakus and Resul Kara. A performance evaluation of in-
memory databases. Journal of King Saud University - Computer and Informa-
tion Sciences, 29(4):520 – 525, 2017.

[51] Murad Kablan, Blake Caldwell, Richard Han, Hani Jamjoom, and Eric Keller.
Stateless network functions. In Proceedings of the 2015 ACM SIGCOMM Work-
shop on Hot Topics in Middleboxes and Network Function Virtualization, Hot-
Middlebox ’15, pages 49–54, New York, NY, USA, 2015. ACM.

[52] Kimberly Keeton. Memory-driven computing. In FAST, 2017.

[53] S. Larsen, P. Sarangam, and R. Huggahalli. Architectural breakdown of end-to-
end latency in a TCP/IP network. In 19th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD’07), pages
195–202, Oct 2007.

[54] Erik G Larsson, Ove Edfors, Fredrik Tufvesson, and Thomas L Marzetta. Mas-
sive MIMO for next generation wireless systems. IEEE communications mag-
azine, 52(2):186–195, 2014.

[55] DongJin Lee, Brian E Carpenter, and Nevil Brownlee. Media streaming obser-
vations: Trends in UDP to TCP ratio. International Journal on Advances in
Systems and Measurements, 3(3-4), 2010.

[56] J. W. Lockwood and M. Monga. Implementing ultra low latency data center
services with programmable logic. In 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, pages 68–77, Aug 2015.

[57] John W Lockwood, Adwait Gupte, Nishit Mehta, Michaela Blott, Tom English,
and Kees Vissers. A low-latency library in FPGA hardware for high-frequency
trading (hft). In 2012 IEEE 20th annual symposium on high-performance in-
terconnects, pages 9–16. IEEE, 2012.

[58] S. Marston, Z. Li, S. Bandyopadhyay, and A. Ghalsasi. Cloud computing - the
business perspective. In 2011 44th Hawaii International Conference on System
Sciences, pages 1–11, Jan 2011.

[59] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing. 2011.

[60] Greg Minshall, Yasushi Saito, Jeffrey C. Mogul, and Ben Verghese. Application
performance pitfalls and TCP’s Nagle algorithm. SIGMETRICS Perform. Eval.
Rev., 27(4):36–44, March 2000.

[61] Jeffrey C Mogul and Greg Minshall. Rethinking the TCP Nagle algorithm.
ACM SIGCOMM Computer Communication Review, 31(1):6–20, 2001.

[62] Nokia. The value of telco cloud. 2016.

51

[63] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The
design and implementation of open vSwitch. In NSDI, volume 15, pages 117–
130, 2015.

[64] Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard Hughes-Jones, Jean-
Philippe Martin-Flatin, and Yee-Ting Li. A map of the networking code in
Linux kernel 2.4. 20. Technical Report DataTAG-2004–1, 2004.

[65] Allyn Romanow, Jeffrey C Mogul, Tom Talpey, and Stephen Bailey. Rfc 4297:
Remote direct memory access (RDMA) over ip problem statement. Technical
report, Technical report, IETF Network Working Group, 2005.

[66] Salvatore Sanfilippo. Redis-benchmark. http://download.redis.io/
redis-stable/src/redis-benchmark.c, 2009–2012.

[67] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: to-
ward an open-source solution for cloud computing. International Journal of
Computer Applications, 55(3):38–42, 2012.

[68] D. Sidler, Z. István, and G. Alonso. Low-latency tcp/ip stack for data center
applications. In 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–4, Aug 2016.

[69] Samu Toimela. Containerization of telco cloud applications. 2017.

[70] Marcus K. Weldon. The Future X Network: A Bell Labs Perspective. CRC
Press, Inc., Boca Raton, FL, USA, 2015.

[71] Wenji Wu and Matt Crawford. Potential performance bottleneck in Linux TCP.
International Journal of Communication Systems, 20(11):1263–1283, 2007.

[72] Xu Zhiqun, Chen Duan, Hu Zhiyuan, and Sun Qunying. Emerging of telco
cloud. China Communications, 10(6):79–85, 2013.

http://download.redis.io/redis-stable/src/redis-benchmark.c
http://download.redis.io/redis-stable/src/redis-benchmark.c

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Research scope and goals
	Contributions
	Structure

	Technology Enablers of 5G
	Telco Cloud: An Overview
	5G
	Network Function Virtualization
	Cloud Computing

	Call Session Data Storage
	Data Center Networking
	Database
	Operating System Network Stack

	Reducing Latency

	Accelerating TCP
	Background
	TCP
	The TCP/IP stack in the Linux Kernel
	DPDK

	TCP/IP Acceleration
	Vector Packet Processing (VPP)
	F-stack
	Other Solutions

	Evaluation
	Measurement tools
	Experimental setup
	Hardware testbed
	Host
	Guest

	Methodology
	VPP, F-Stack and Linux kernel with Redis-benchmark
	VPP and Linux kernel with VPP socket test application

	Experimental results
	Results
	Analysis

	Conclusions
	References

