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In recent years, much progress has been achieved in the computational analysis
of the metabolic networks, as a consequence of the rapid growth of the omics
database. However, current literature analysis algorithms still lack good biologi-
cal interpretability of the analysis results. Moreover, they can not be applied on
a whole-genome level.
This thesis assesses the potential of the Principal Metabolic Flux Mode Analysis
(PMFA). The PMFA is a novel algorithm that was recently developed, which aims
to improve the interpretability of Principal Component Analysis (PCA), through
including a stoichiometric regularization to the PCA objective function. The
PMFA can determine the flux modes that explain the highest variability in the
network and it can also scale-up to a whole-genome level using the sparse version
of PMFA. Furthermore, this thesis compares the PMFA to the recent approach
Principal Elementary Mode Analysis (PEMA), which also tries to enhance the
PCA interpretability. However, this approach is computationally heavy and thus
fails to handle the large-scale networks (e.g., whole-genome). In order to further
determine the feasibility of the PMFA approach for the analysis of metabolism,
a Graph-regularized Matrix Factorization (GMF) was developed analogous to
PMFA framework, similarly by adding the network stoichiometric matrix to a
graph-structured matrix factorization framework.
The results illustrate the potential of PMFA as a metabolic network analysis for
identifying fluxes that explain maximum variation in the network and it can be
used to analyze whole-genome level. In addition, the results showed that GMF
method performed well in predicting active Elementary Modes (EMs) on sim-
ulated data but failed to work on large networks, while PEMA had the lowest
performance among all methods. Based on the results, future work can be con-
ducted to improve the GMF approach in terms of genome-scale analysis through
including sparsity.

Keywords: metabolic network analysis, PCA, elementary modes, stoi-
chiometric modelling, matrix factorization.
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MF Matrix Factorization
PEMA Principal Elementary Mode Analysis
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GMF Graph-regularized Matrix Factorization
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MCR-ALS Multivariate Curve Resolution Alternating Least

Squares
SPMFA Sparse Principal Metabolic Flux Mode Analysis
LOO Leave-One out cross validation
ROC Receiver Operating Characteristic
AUC Area Under the ROC Curve
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MSE Mean-Square Error
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Chapter 1

Introduction

Molecular biology has been the focus of intense study due to its wide range
of potential applications, such as disease diagnosis as well as the production
of new drugs, fine chemicals, industrial enzymes and biofuel [8, 22, 44]. How-
ever, the birth of Systems Biology which requires a full understanding of the
whole biological system has led to the development of numerous Omics tech-
niques with a massive data sets, used to identify all elements of the studied
level (metabolites, proteins, transcripts and genes) [32]. Since then, the con-
cern of some scientists was to study and use those massive sets in addition
to biologically interpret them.

Assembling biochemical reaction networks is one of the approaches to
study Omics data-sets by capturing all interactions between all components [32].
The scope of this thesis is focused on metabolic networks analysis. Many ap-
proaches were developed for this purpose, one of the first approaches were
Stoichiometric Network Analysis (SNA) which is used to identify unique
pathways in the network. Different algorithms were developed by modifying
SNA such as Elementary Mode Analysis and Extreme Pathway Analysis [43].
However, those approaches fail to work on a large set of samples and can per-
form only on a single sample at a time.

Consequently, metabolic networks analysis has introduced dimensionality
reduction techniques for the analysis of large sample sets. Principal Com-
ponent Analysis (PCA) [36], Singular Value Decomposition (SVD) [4] and
Matrix Factorization (MF) [11] are some of the used dimensionality reduc-
tion approaches. Although, PCA has been widely used in molecular biology
and can extract the systematic variation in the dataset. PCA results are
dense and difficult to be interpreted in terms of biology. Moreover, PCA
deals with the reactions independently and ignores the underlying struc-
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CHAPTER 1. INTRODUCTION 8

ture of the network (i.e. the connections between reactions). Accordingly,
some approaches were proposed to enhance the PCA interpretability such
as Principal Elementary Mode Analysis (PEMA) [16], where it identifies a
prior set of Elementary Modes (EMs) as PCs candidates. Hence, it requires
prior assumptions and heavy computations in the case of large networks.
Therefore, PEMA fails to work on a genome-scale network. Recently, Prin-
cipal Metabolic Flux Mode Analysis (PMFA) [9] was developed to improve
the PCA interpretability while maintaining its applicability on genome-scale
networks. Therefore, this thesis determines the feasibility of PMFA method-
ology on different datasets and compares it to other approaches. Additionally,
for the PMFA evaluation, a Graph-regularized matrix factorization (GMF)
was developed to analyze metabolic networks. GMF approximates the target
matrix by two matrices and the objective is to minimize the approximation
error. Furthermore, GMF in this thesis involves the stoichiometric matrix as
a side information, which was added as a graph.

1.1 Problem statement

The aim of this thesis is to evaluate the Principal Metabolic Flux Mode Anal-
ysis algorithm and assess its performance compared to different techniques.
In order to analyze metabolic networks and identify the flux modes in the
network, the algorithm combines PCA with stoichiometric network analy-
sis. Additionally, this thesis develops a form of Matrix Factorization for the
analysis of metabolic networks, that tries to replicate Principal Metabolic
Flux Mode Analysis framework by adding additional information about the
network structure and considering the reactions directions. Furthermore, the
thesis evaluates the GMF algorithm on different datasets.

1.2 Structure of the Thesis

The rest of this thesis is structured as follows. Chapter 2 summarizes some
of the vital biological backgrounds in order to understand the biological con-
cepts relevant to this thesis, as well as, reviews some of the literature methods
that are used in metabolic network analysis. Chapter 3 reports the datasets
used in this thesis. In addition, Chapter 3 presents the two main algorithms
that are evaluated in this thesis and defines their regularized optimization
framework. Chapter 4 analyzes the results of the experiments and assesses
the findings. Finally, Chapter 5 concludes the thesis with a discussion.



Chapter 2

Literature Review

This chapter is divided into two main sections, Section 2.1: Metabolic net-
works and Section 2.2: Methodological background. Firstly, in order to cover
the fundamental biological aspects within the scope of this thesis, section 2.1
briefly represents the metabolic network and its mathematical representa-
tion in subsection 2.1.1. Subsection 2.1.2 describes the right null space of the
stoichiometric matrix S and the network boundaries are defined in subsec-
tion 2.1.3. Additionally, subsection 2.1.4 previews stoichiometric models and
the effect of the different constraints added to the model where the feasible
flux distribution is represented as a cone. The section ends with subsec-
tion 2.1.5. This subsection defines the networks pathways and the different
types of network-based pathways. Also, it introduces the Elementary Modes
(EMs) and discusses how they differ from the extreme pathways.

Secondly, section 2.2 reviews the basic methods as well as the most recent
developed algorithms used in the analysis of omics data metabolism. Subsec-
tion 2.2.1 summarizes Principal Component Analysis (PCA) approach, PCA
formulation techniques and the application of PCA in bioinformatics data.
Subsection 2.2.2 describes Matrix Factorization (MF) method and the con-
nection between PCA and MF. Finally, Subsections 2.2.3 and 2.2.4 review
the recently developed algorithms for the analysis of metabolism.

2.1 Metabolic Networks

One of the pivotal steps to diagnose new diseases and develop drugs is to un-
derstand the physiological and behavioral activity of the human body. Such
activities can be measured from the various biological networks, where the
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CHAPTER 2. LITERATURE REVIEW 10

most characterized network among them is the metabolic network. During
the last decades, modeling biological networks and especially the reconstruc-
tion of metabolic networks has expanded rapidly from small scales to a whole
genome scale [1]. Figure 2.1 shows the steps for the genome-scale metabolic
reconstruction and some possible uses. The process starts with the modeling
step, where the model is built using the information gathered from literature
and gene-annotation data. The second step is to convert this information
into a mathematical model. Finally, the mathematical model is computa-
tionally analyzed.

Figure 2.1: The metabolic Genome-scale Reconstructions (GENREs [7])
steps and some applications. The figure is taken from [1]

The metabolic network is composed of chemical reactions that can be rep-
resented as equations. These chemical equations have all the stoichiometry
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information about the network and it can be represented in a matrix form
known as stoichiometric matrix S. Accordingly, the network properties are
resolved by mathematically analyzing the stoichiometric matrix.

2.1.1 Stoichiometric Matrix

The stoichiometric matrix contains the stoichiometry of the reactions, where
columns represent reactions (constrained by chemical rules e.g. elemental bal-
ancing) and rows correspond to metabolites. As a result, each row comprises
all reactions that involved the equivalent metabolite and hence illustrates the
connectivity between reactions. The matrix entities will reflect the produc-
tion or the consumption of the compound in the corresponding reaction.

Furthermore, the stoichiometric matrix in mathematical framework rep-
resents a linear transformation of the flux vector to a time derivatives vector
of the compound concentrations. Where v is the flux vector (consists of the n
reactions rates) and x is the concentration vector (consists of m metabolites):

v = (v1, v2, · · · , vn) (2.1)

x = (x1, x2, · · · , xm) (2.2)

In metabolic networks, the metabolites concentrations change over time,

this is shown in the S linear mapping of v to
dx

dt
:

dx

dt
= Sv (2.3)

where the network functional states are identified by the dynamic mass
balances that are represented by equation 2.3. Additionally, biochemical moi-
eties and electric charge are conserved in the stoichiometric matrix as well
as the chemical elements must be balanced. Systems Equation 2.3 can be
rewritten for each system:

dxi
dt

=
∑
k

sikvk (2.4)
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Equation 2.4 shows that metabolite xi is composed or degraded from the
summation of all fluxes vk.

2.1.2 The (Right) null space

The linear transformation of S forms fundamental four subspaces, two flux
spaces (row space and null space) and two concentration spaces (column
space and left-null space). Figure 2.2 shows the linear transformation and
the four subspaces.

Figure 2.2: The S four subspaces and the linear transformation. The figure
is taken from [32]

Understanding the four subspaces reveals essential system properties and
provide elaborated interpretation of the networks in terms of dynamics, time-
invariant and steady-state features.

The state where the metabolites concentrations are at equilibrium is
known as the steady state. Typically, the production fluxes and consumption
fluxes are identical and hence the metabolites concentration is constant. It
can be represented as [37]:

Sv = 0 (2.5)

The null space of S consists of all vectors that satisfy equation 2.5, form-
ing a linear homogeneous set of equations. There is a matrix R that spans the
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null space, where the columns of R denote a set of basis vectors ri that satisfy:

SR = 0 (2.6)

where S is composed of row vectors and R is composed of column vectors.
Each set of basis vectors has a unique weight wi for a certain v. However,
there is not a unique set of basis vectors. The importance of null space re-
sides in the fact that all the steady state pathways in a metabolic network
are defined by the R basis set. These pathways delineate the connection be-
tween the inputs and outputs in the network while the sum of the compound
concentrations is constant over time.

2.1.3 Network Boundaries

The stoichiometric matrix has different forms rely on the network scope. The
internal stoichiometric matrix Sint contains m internal metabolites xi and n
internal reactions vi that describes all the reactions that happened in the
cell, whereas the exchange stoichiometric matrix Sexch adds the exchange
reactions bi without considering the external metabolites ci, which in turn
allows the metabolites to transfer in and out of the cell boundary. In addi-
tion, the total stoichiometric matrix Stot includes the external metabolites ci.

vi bi

xi
Stot =

ci


|
|

–– – –– | – –
0 |



The partitioning of the flux vector to internal and external fluxes defines
the boundaries of the network. The network systems boundary can be open
as in the exchange stoichiometric matrix or closed system, for instance, the
internal and total stoichiometric. Illustration of the open and closed networks
is shown in figure 2.3.
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Figure 2.3: Open and closed metabolic networks. The figure is taken from
[32]

2.1.4 The Flux Cone

The cellular metabolism and biochemistry can be represented by the stoichio-
metric models that are based on the dynamic mass balances equations 2.3 [26].
The model can include additional constraints for different analysis purposes.
For example, in order to determine the network steady-state pathways, the
time derivative in the mass balances system is relaxed to zero constraining
the determined flux distribution (equation 2.5). The added constraints will
specify the feasible flux distributions space, as shown in Figure 2.4. [27] Fig-

Figure 2.4: Space of feasible steady-state flux distributions. The figure is
taken from [27]

ure 2.4 presents the null space at the left, where space is a hyperplane and
the middle plot shows the space with an added irreversibility constraint for
irreversible fluxes that flow in one direction and hence they need to be non-
negative. Inequality constraint converts the problem from a simple linear
algebra to a convex analysis and the resulting space of the flux distribution
is a convex polyhedral cone. The last space demonstrates the model when
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a third constraint is incorporated for the maximum flux values obtained
from the enzyme or transporters capacity, in this case, the fluxes values are
bounded between 0 and the maximum value constraint forming a bounded
convex polyhedral cone.

Figure 2.5: Applications of stoichiometric modelling. The figure is taken
from [27]

As mentioned earlier each set of constraints serves various purposes (illus-
trated in Figure 2.5). For instance, the convex analysis allows to include the
irreversible fluxes. Consequently, Elementary Modes Analysis and Extreme
Pathways Analysis both use convex analysis to identify all the steady-state
flux distributions of a metabolic network by producing a unique convex set
of vectors, as well as, characterizing the minimal set of systematic pathways.
These two methodologies are used for the analysis of pathways.
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2.1.5 Elementary Modes (EM)

The smallest elements of a metabolic network are the reactions, where a
metabolite is changed into another compound catalyzed by an enzyme. The
products of the reactions can be a reactant of another reaction composing
a series of consecutive chemical reactions, called pathways [30]. Figure 2.6
shows the evolution of pathways from simple reactions and then from path-
ways to networks.

Figure 2.6: The development from reactions (A) to pathways (B) to network
(C). The figure is taken from [32]

As mentioned earlier, the constraint-based null space defines the fluxes
distribution space with a convex polyhedral cone, where the edges of the cone
represent the extreme pathways. This can be described mathematically as:

C = {v : v =

p∑
i=1

αipi, αi ≥ 0, for all i} (2.7)

where C is the flux cone, pi are the extreme pathways and αi are the
weights. Another network-based pathway is the elementary modes defined
by S.Schuster [38]. They are similar to extreme pathways and usually both
terms used to refer to the same pathways. However, they differ in the reac-
tions (exchange fluxes) representation. The different representations (shown
in Figure 2.7) leads to variant polytope forms.

Figure 2.7 illustrates the difference between the extreme pathways and
the elementary modes. There are only three extreme pathways whereas, for
the same network there are four elementary modes. Having the first three
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Figure 2.7: The difference between extreme pathways and elementary modes
for a simple network, Four elementary modes shown in B) that are similar
to extreme pathways in shown C) and the fourth EIMo is a combination of
the first two pathways. The figure is taken from [32]

EMs equivalent to the extreme pathways, while the fourth EM is achieved
by the nonnegative combination of EIMo1 and EIMo2. By considering the
reversible exchange flux of compound A, the number of elementary modes
becomes higher than the extreme pathways. It is noticeable that the extreme
pathways are just a subset of the elementary modes.
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2.2 Methodological Background

This section summarizes some of the widely used approaches for the metabolism
analysis and highlights some of the recently developed algorithms.

2.2.1 Principal Component Analysis (PCA)

Principal Component Analysis is a simple unsupervised non-parametric method
that retrieves important information from complex data sets. Due to the ef-
fectiveness and simplicity of PCA, it has always been one of the most used
technique in data analysis. It can be utilized for different purposes, such as
dimensionality reduction, feature extraction or data visualization. Basically,
PCA algorithm is derived from two different viewpoints, the first viewpoint
is based on the variance maximization and the second one is based on the
minimization of the approximation cost [3, 10, 40].

Figure 2.8: The projection of the original data x to the to z

Variance Maximization

PCA projects the original high dimensional data ({xt ∈ IRd}nt=1, x ∼ N (0,Σ))
to a new lower dimensional space (k � d):

zt = wTxt, t = 1, ..., n
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In matrix form, stack the data into a matrix X ∈ IRd×n:

Z = W TX, with W = (w1, w2, ..., wk)

Where, zt ∈ IRk known as principal components (PC) and the projection
matrix W ∈ IRd×k with vectors wi called PC directions.

The linear projection is on the direction of w in such away that it will
maximize the information retained by zt ∈ IRk about data xt ∈ IRd. There-
fore [10]:

w1 = arg maxwTΣw (2.8)

s.t. ‖w‖ = 1

where, Σ =
1

n

n∑
t=1

xt(xt)T and ‖w‖ = wTw = 1.

Approximation-Error Minimization

In this approach, the data point xi is approximated by a low-dimensional
approximation:

xi ≈
k∑

j=1

wjzij (2.9)

where
zij = wT

j xi

(w1 . . . wd) is an orthonormal basis of k-dimensional subspace. w is chosen
to minimize the approximation error [10]:
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1

n

∑
‖x− x̂‖22 =

1

n

n∑
i=1

‖
d∑

j=k+1

wjzij‖22 =
1

n

n∑
i=1

d∑
j=k+1

(zij)
2

=
1

n

n∑
i=1

d∑
j=k+1

wT
j xixi

Twj =
d∑

j=k+1

wT
j Σwj (2.10)

PCA in bioinformatics

The emergence of genomics data in bioinformatics introduced high dimen-
sional measurements including gene-expression data. PCA is commonly used
to reduce the gene-expression dimensions and efficaciously describe the vari-
ation of gene-expressions. PCA lower dimensional gene expressions can be
utilized for many applications that were inapplicable on the high dimensional
gene expression data. For instance, Gene-expression visualization, clustering
genes or samples, regression analysis and many other applications. Unfortu-
nately, Principal Components (PCs) of gene expressions data are not biolog-
ically interpretable owing to the fact that the PCs are a linear combination
of a very high number of genes [28, 29]. In addition, some researchers stated
that PCA is not suitable for gene expression analysis since it clusters genes
into non-overlapping groups. In fact, genes might be present in different re-
actions. Moreover, researchers believe that negative values of PCA oppose
physics and more complex to be interpreted [18].

Consequently, many recent studies were conducted to improve the in-
terpretability of PCA for different applications in the bioinformatics field.
PEMA is an example of modified PCA for better interpretability on fluxomics
data in terms of biological, this method is discussed later in section 2.2.4. An-
other example of modified PCA in bioinformatics is the sparse non-negative
generalized PCA that is applied to metabolomics. This algorithm defines a
generalized form of PCA to be a least-square matrix decomposition. Fur-
ther, a kernel smoother is included to incorporates the structural dependen-
cies by smoothing the distances between the variables. Additionally, sparsity
is employed through adding l1 norm regularization and controlled by regu-
larization parameter. This method has reported good results for clustering
high-dimensional data, as well as, better performance than the PCA in di-
mensionality reduction and the explained variance [2].
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Other researchers prefer to employ alternative approaches to overcome
the PCA interpretability challenge, including matrix factorization and mul-
tivariate curve resolution-alternating least square that are discussed in the
following sections 2.2.2 and 2.2.4 respectively.

2.2.2 Matrix Factorization (MF)

Matrix Factorization is a dimensionality reduction technique that is mostly
used in Latent factor models for solving collaborative filtering problems [25].
The mathematical formulation of Matrix Factorization is quite simple. It
approximates the original data by multiplying two low-rank matrices. Basi-
cally, the low-rank factorization of a given data set X is formed as follows:

X = WZT + E (2.11)

where, W ∈ IRd×k, Z ∈ IRn×k,E is the noise and k � d. It is notice-
able that equation 2.11 above is similar to equation 2.9. Thus, PCA can be
denoted as a matrix factorization and particularly as an orthogonal matrix
factorization.

Then the objective function used to find the optimal solutions for the W
and Z matrices can be obtained from equation 2.11 as follows [39]:

Obj = min
W,Z
‖X −WZT‖2F (2.12)

However, since this model is a predictive model that learns from a train-
ing set and be evaluated on a different unseen test data, it is then prone to
overfitting. In order to avoid the possible overfitting, a regularization was
added to the model:

min
W,Z
‖X −WZT‖2F + λ(‖W‖2F + ‖Z‖2F ) (2.13)
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This minimization problem can be solved by two approaches, Stochastic
Gradient Descent, and Alternating Least Squares [25].

MF in bioinformatics

Matrix Factorization has been widely used in bioinformatics particularly as a
clustering tool for genes. Conversely, other clustering techniques have many
drawbacks in terms of gene clustering, such as clustering genes based on
their global similarities and fail to include local behavior, as well as, group-
ing genes into a single cluster whereas genes may participate in many clus-
ters [18, 24]. Although Matrix Factorization had overcome these limitations,
MF does not have a unique solution. For this reason, MF was improved by
enforcing sparseness to both basis factors and encoding vectors [18]. Other
researches also promote to include different constraints to enhance the MF
performance [19].

2.2.3 Multivariate Curve Resolution Alternating Least
Squares (MCR-ALS)

Due to the many disadvantages of the PCA interpretability on biological
data and specifically on analyzing fluxomics, a more reasonable approach
was proposed to identify flux distribution and to determine pathways such as
Multivariate Curve Resolution-Alternating Least Squares. MCR-ALS is orig-
inally used in chemical analysis and well known as a chemometric method.
It performs a linear decomposition of the original matrix into two matrices [5]:

X = CP T + E (2.14)

where X is the original data, C and P are the decomposed matrices and
E is the experimental error matrix.

The algorithm implements an ALS iterative process by estimating one
matrix and then optimizing the other side. In order to improve the opti-
mization results, the algorithm introduces additional information about the
system by adding constraints(e.g. Non-negativity, selectivity) to the math-
ematical model [14]. Equation 2.14 presents a similar formula as shown in



CHAPTER 2. LITERATURE REVIEW 23

matrix factorization equation 2.11, it can be seen that the MCR is a matrix
factorization method.

For the flux analysis, the MCR method can be used by defining the flux
distribution of a metabolic network as the linear combination of the path-
ways present in the network. Additionally, model constraints are allowed to
be added. Since pathways do not have to be orthogonal, thus grant more
sensible results in the biological view point [17]. Equation 2.14 in [17] is
defined as follows: P columns represents the modeled pathways and C is the
contribution of modeled pathways in different scenarios. Unlike PCA, MCR
can not preselect the number of components, this number can be obtained
by initially applying PCA [41] or SVD [21] on the data set.

Further, MCR algorithm can optionally include one of the following con-
straints: 1) non-negativity: the pathways and their contributions are set to
be non-negative, 2) closure on contributions: the balance of mass is achieved
for a closed system by setting the sum of the active pathways in each sce-
nario (C matrix rows) to be 1 and 3) selectivity: is a selective constraint for
the contribution of pathways in some scenarios, where the selected pathway
contributions will be multiplied by 1 and the non-selected pathways relative
contributions will be multiplied by 0. This constraint is usually added to
reduce the noise. The inclusion of different constraints is an advantage to
MCR-ALS over PCA. However, MCR-ALS method fails to determine the
total flux flowing through a pathway and hence scenarios comparison cannot
be achieved [17].

2.2.4 Principal Elementary Mode Analysis (PEMA)

Principal Elementary Mode Analysis (PEMA) is a recently developed method
used on fluxomics data to determine the active elementary flux modes (EMs)
in a metabolic network. The algorithm is based on the PCA method and
improves the PCA biological interpretability. PEMA pre-selects the EMs as
the PCs candidates, this is achieved by the following model:

X = ΛP T
EM + F (2.15)

where X ∈ IRd×n is the flux dataset with n fluxes, PEM ∈ IRn×k is the
Principal elementary mode matrix with k pre-selected EMs, Λ ∈ IRd×k is the
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weighting matrix and F ∈ IRd×n is the residual matrix [16].

The PEMs loadings are computed from equation 2.15:

Λ = XPEM(P T
EMPEM)−1 (2.16)

where the weightings are calculated for each EM and then the explained
variance (EV) by each EM is computed as follows:

EV = 100%(‖X‖2 − ‖F‖2)/(‖X‖2) (2.17)

Figure 2.9: Example for the PEMA selection procedure using relaxation
parameter R = 3 and branch parameter B = 2

After sorting EMs by their EV, the first PEM is selected to be the EM
with the highest EV value. Then the explained variance by the first PEM and
each EM is computed and the second PEM will be the pairs with the most
explained variance after sorting the EMs again by the EV, this is repeated
for all EMs. Clearly, the selection of the first PEM dominates the upcoming
PEM ’s and hence their explained variance. Since the EMs are not orthogonal.
Therefore, the selected EMs might not be the best.

In order to enhance the selection procedure, PEMA algorithm employed
two tuning parameters ”Relaxation R” and ”Branch number B”. The re-
laxation R specify the number of EM selected at each stage and the branch
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number B determine till which (PEM) level the relaxation is applied. For
instance, if R = 3 and B = 2 as shown in figure 2.9, PEMA in the first stage
(1st Branch for identifying the 1st PEM) will select 3 EMs (Relaxation =
3) that capture the highest EV. The second stage (2nd Branch) PEMA will
select 3 EMs for each EM that was previously selected. For the following
selections, only one EM will be chosen for each EM. As a result, for each
PEM identification there will be various combinations of EMs with different
EV that might explain more variance.

The PEMA algorithm successfully identified the active EMs for experi-
mental and simulated data sets, demonstrating biologically significant results.
Unfortunately, the algorithm fails to work on genome-scale networks due to
the explicit computation that is needed to be run for all EMs [16].



Chapter 3

Methods and Data

This chapter summarizes the data in section 3.1 that were used for the experi-
ments. Then it describes the main methods of this thesis Principal Metabolic
Flux Mode Analysis (PMFA) and Graph-regularized Matrix Factorization
(GMF) in sections 3.2 and 3.3, respectively. Both methods are modifications
of the previously discussed techniques where PMFA is a PCA modification
and GMF is a modification of matrix factorization.

3.1 Datasets used in experiments

The experiments were conducted on different datasets. A simulated data was
used to compare the obtained results with the ground truth known by the
simulated model, whilst an experimental data set was used to evaluate real-
world data performance. Additionally, a whole genome data set was used to
assess the efficiency of the algorithms on a large scale.

Simulated Data

The simulated data was taken from [45]. This set simulates the metabolic
network of Pichia Pastoris growth on glucose, glycerol and methanol (pro-
posed in [42]). It describes the fundamental catabolic pathways of the Pichia
Pastoris with 45 metabolites and 44 reactions. Reactions {2-8, 15, 22-27, 29,
34 and 41} are reversible reactions while the rest are irreversible reactions.
The internal stoichiometric matrix consists of 36 internal metabolites and
the 44 reactions. The flux data was generated in [45] based on the 98 EMs
provided by [42], through simulating 12 experimental scenarios resulting in
16 active EMs {1, 3, 7, 12, 13, 14, 16, 19, 20, 22, 23, 24, 28, 32, 33 and 37}.

26
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Experimental Data

Saccharomyces Cerevisiae metabolic network was chosen as experimental
data taken from [45]. The network was reconstructed in [20], it represents
the metabolism of the Saccharomyces Cerevisiae and contains glycolysis, the
pentose phosphate pathway, anaplerotic carboxylation, fermentative path-
ways, the TCA cycle, malic enzyme as well as the anabolic pathways. The
set comprises 42 metabolites and 47 reactions with a total number of 1182
EMs. The internal stoichiometric matrix contains 30 internal metabolites
and the 47 reactions.

Whole-genome Data

Saccharomyces Cerevisiae whole-genome data was provided by [9]. The net-
work comprises 2220 metabolites (2055 internal metabolites) and 3494 reac-
tions catalyzed by 909 genes. The transcriptomic data consist of a steady-
state set that was originated in [35] and a time-series set that was originated
in [34].

3.2 Principal Metabolic Flux Mode Analysis

(PMFA)

Metabolic flux analysis is accomplished using different approaches. PCA is
one of the most frequently used ones, due to its simplicity and low compu-
tational cost. PCA defines the relevant data from the noise and retains the
data that describes the most variation in the set. However, PCA in fluxomic
data has some disadvantages. For instance, it can not include the network
structure and hence processes the reactions independently. In addition, PCA
cannot convey outputs as pathways or EMs due to the dense nature of PCA
results. In contrast, Stoichiometric flux analysis algorithms can easily iden-
tify the metabolic flux modes. Nevertheless, these methods fail to process in
large datasets(i.e. whole-genome scale) and are not suitable for exploratory
analysis.
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In order to overcome those drawbacks, [9] introduced a novel combina-
tion of PCA and Stoichiometric Flux Analysis for the purpose of analyzing
metabolic fluxes. The new algorithm is Principal Metabolic Flux Mode Anal-
ysis (PMFA). PMFA adds the stoichiometric structure as a regularization to
the PCA optimization problem.

As mentioned earlier in Section 2.2.1. PCA finds the first PC by maximiz-
ing the variance as shown in equation 2.8. To introduce the stoichiometric
structure, PMFA admitted additional constraint (Sw = 0) that represents
the stoichiometry equation 2.5 in a steady-state. Since this is a hard con-
straint and restricted to steady-state conditions only. PMFA replaced it with
a soft constraint which was relaxed by a regularization parameter λ to al-
low the algorithm to handle states other than steady-state (i.e. transients).
Additionally, irreversible reactions weights wir were set to be non-negative
and expressed by a directionality constraint (wir ≥ 0). Considering all these
constraints the PMFA optimization problem is formed as follows:

max
w

wTΣw − λ‖Sw‖22 (3.1)

s.t. wir ≥ 0

‖w‖2 = 1

Equation 3.1 is denoted as PMFAl2 and PMF refers to the Principal
Components produced by PMFA. Assuming that the fluxomic data matrix
is X ∈ IRd×n where d is the number of reactions and n is the number of
samples, Σ is the data covariance matrix, S ∈ IRm×d is the stoichiometric
matrix where m is the number of metabolites, Sw determines the change of
metabolic concentrations for all metabolites and ‖w‖2 is the l2 norm of the
flux vector w ∈ IRd. Additionally, rev-PMFAl2 denotes the reversible version
of PMFAl2 where it assumes that all reactions in the metabolic networks
are reversible. rev-PMFAl2 is formed by disregarding reaction directionality
constraint from equation 3.1 as follows:

max
w

wTΣw − λ‖Sw‖22 (3.2)

s.t. ‖w‖2 = 1
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The Sw regularization can be of l2 norm or l1 norm (as shown in equa-
tion 3.3) depending on the data. While l2 norm favors numerous small devi-
ations from steady-state and penalize large deviations, l1 norm allows only a
few outliers and hence used in a set with a small number of large steady-state
deviations.

max
w

wTΣw − λ‖Sw‖1 (3.3)

s.t. wir ≥ 0

‖w‖2 = 1

Further, PMFA results are dense since the PMF components are a linear
combination of all reactions activities. Therefore, [9] proposed another ver-
sion of PMFA which is the Sparse Principal Metabolic Flux Mode Analysis.
This version improves the results interpretability (i.e. favors modes with few
reactions) and grants the analysis of large scales. The SPMFA optimization
uses l1 norm on w and formed as follows:

max
w

wTΣw − λ‖Sw‖22 (3.4)

s.t. wir ≥ 0

‖w‖1 = C

Equation 3.4 is denoted as SPMFAl2 and the form without the directional-
ity constraint is rev-SPMFAl2 , Where the degree of sparsity in PMF loadings
is controlled by the hyperparameter C and SPMFAl1 is formed as follows [9]:

max
w

wTΣw − λ‖Sw‖1 (3.5)

s.t. wir ≥ 0

‖w‖1 = C
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3.3 Graph-regularized Matrix Factorization (GMF)

For the analysis of gene expression data, many researchers preferred Ma-
trix Factorization over PCA and SVD, since both PCA and SVD results are
not biologically interpretable. In fact, negative values contradict physical
realities [23]. However, matrix factorization was mainly used to extract dis-
tinct patterns and few studies were done on matrix factorization to capture
metabolic flux modes. In this section, a modified form of MF is presented
that tries to replicate the PMFA framework by involving the network stoi-
chiometric structure in the optimization scheme.

[33] formed a graph-structured matrix factorization. Where, X ∈ IRd×n

is the target matrix approximated by two matrices W ∈ IRd×k and Z ∈ IRn×k

as follows:

Ŵ , Ẑ = arg min
W,Z

1

2
‖X −WZT‖2F (3.6)

The graph regularized problem assumes that the relationship between the
rows of W is encoded in the adjacency matrix of a graph (V w, Ew), where V w

and Ew represents the graph vertices and edges respectively. Additionally,
two rows or columns are near to each other in the Euclidean distance, if they
are connected in the graph by an edge:

1

2

∑
i,j

Ew
ij(wi − wj)

2 = tr(W TLap(Ew)W ) (3.7)

where the graph Laplacian Lap(Ew) is computed as follow:

Lap(Ew) = Dw − Ew (3.8)

where Dw is the diagonal matrix:

Dw
ii =

∑
j∼i

Ew
ij
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This similarly applies for adding additional information (graph) for Z.
By adding those graphs to the matrix factorization problem, the optimiza-
tion variables W and Z are forced to follow the graph structure [33].

min
W,Z

1

2
‖X −WZT‖2F +

λL
2
{tr(W TLap(Ew)W ) + tr(ZTLap(Ez)Z)}+

λw
2
‖W‖2F +

λz
2
‖Z‖2F

= min
W,Z

1

2
‖X −WZT‖2F +

1

2
{tr(W TLwW ) + tr(ZTLzZ)} (3.9)

where:

Lw =λLLap(Ew) + λwId

Lz =λLLap(Ez) + λzIn

Note:

‖W‖2F =tr(W T IdW )

‖Z‖2F =tr(ZT InZ)

The problem was then solved in an Alternating Least Squares scheme by
optimizing one side and fix the other. The following subproblem was ob-
tained to optimize Z with W fixed:

min
Z
f(Z) =

1

2
‖X −WZT‖2F +

1

2
tr(ZTLzZ)

=
1

2
tr((X −WZT )T (X −WZT )) +

1

2
tr(ZTLzZ)

=
1

2
tr(XTX −XTWZT − (WZT )TY + (WZT )TWZT ) +

1

2
tr(ZTLzZ)

=
1

2
tr(XTX −XTWZT − ZW TX + ZW TWZT ) +

1

2
tr(ZTLzZ)

=
1

2
tr(XTX − 2XTWZT + ZW TWZT ) +

1

2
tr(ZTLzZ)

(3.10)



CHAPTER 3. METHODS AND DATA 32

By setting: ∇f(Z) = 0, a Sylvester equation 3.11 was formed for Z:

ZW TW + LzZ = XTW (3.11)

Sylvester equation can be solved in a closed form using the standard
Bartels-Stewart algorithm [6]. Similarly, the following subproblem was ob-
tained to optimize W with Z fixed:

min
W

f(W ) =
1

2
‖X −WZT‖2F +

1

2
tr(W TLwW ) (3.12)

=
1

2
tr(XTX − 2XTWZT + ZW TWZT ) +

1

2
tr(W TLwW ) (3.13)

Setting: ∇f(W ) = 0

WZTZ + LT
wW = XZ (3.14)

In this thesis, graph-regularized matrix factorization method was used to
add the side information from the stoichiometric matrix to the optimization
problem resulting in an additional stoichiometric regularization.

The target matrix to be optimized is the gene-expression matrix, with
reactions as rows and samples as columns. For the reaction side, a graph
is constructed from the reaction adjacency matrix (presented in 3.15). The
topological properties are driven from the nonzero components in the stoi-
chiometric matrix. For this reason, a binary form of stoichiometric matrix Ŝ
is adopted where the matrix values are 0 or 1 depending on the presence or
absence of the compound in the reaction. Furthermore, the diagonal matrix
will represent the number of elements in each reaction.

Ew = ŜT Ŝ (3.15)

Neglecting the samples side graph, the graph-regularized matrix factor-
ization problem is formed as follow:
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min
W,Z

1

2
‖X −WZT‖2F +

λL
2
{tr(W TLap(Ew)W ) + tr(ZT InZ)}+

λw
2
‖W‖2F +

λz
2
‖Z‖2F

= min
W,Z

1

2
‖X −WZT‖2F +

1

2
{tr(W TLwW ) + tr(ZTLzZ)} (3.16)

where:

Lw =λLLap(Ew) + λwId

Lz =λLIn + λzIn

Bartels-Stewart algorithm [6] can be used to solve the closed form Sylvester
equations ( 3.11 for Z and 3.14 for W ). FreeLYAP [31] is a freely available
MATLAB implementation for the Bartels-Stewart algorithm.

Furthermore, all unnecessary parameters can be dropped to simplify the
problem. Since Z does not have additional information. The objective func-
tion will be as follows:

min
W,Z
‖X −WZT‖2F + λLtr(W

TLap(Ew)W ) (3.17)

Where the updating rules for W and Z will be as follows [12]:

wij ← wij
(XZ + λLE

wW )

(WZTZ + λLDwW )
(3.18)

zij ← zij
(XTW )

(ZW TW )
(3.19)

Similar to PMFA, additional constraints were added to attain interpretable
results. Firstly, the weights are constraints to limit them from scaling up.
Secondly, a directionality constraint has been included, where the irreversible
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reactions must be positive or zero. The following is the GMF algorithm for
metabolic network analysis:

min
W,Z

‖X −WZT‖2F + λLtr(W
TLap(Ew)W ) (3.20)

s.t. wir ≥ 0

‖w‖2 = 1

Furthermore, another version of GMF (reversible GMF) is formed by
dropping the directionality constraint, thus allows all reactions to be re-
versible.

3.3.1 Model selection

In order to select the GMF model optimum regularization parameter λL ,
a Leave-one-out (LOO) cross-validation was used on Pichia Pastoris simu-
lated data. The data was randomly partitioned into training sets and test
sets. Furthermore, a predictive model was trained with all samples except
one sample that was used for testing, this training was repeated with each
sample excluded at a time. The optimum regularization parameter is then
selected to minimize the error on test samples.



Chapter 4

Results and Discussion

This chapter evaluates the efficiency of the different methods in the analysis of
metabolic networks. The first section, section 4.1 assesses the performance
of PMFA, PEMA and GMF classifiers to predict active EMs. Section 4.2
measures the variance explained by the compared approaches (PCA, PMFA,
PEMA and GMF). The last section 4.3 validate the PMFA and SPMFA
algorithms performance on the genome-scale network.

4.1 Active elementary flux modes (EMs) pre-

diction

In this experiment, the ability of PEMA, PMFA and GMF (with optimum
regularization parameters) to correctly predict active elementary flux modes
was evaluated through the use of the precision-recall and ROC (Receiver Op-
erating Characteristic) metrics. For this purpose, the experiment was carried
out on Pichia Pastoris simulated data set, where the active EMs are known.
The correlation between each component of (PMF, PEM or GMF ”shown in
Appendix A ”) and all 98 elementary flux modes were computed to identify
active EMs predicted by the different methods. Then the EMs were sorted
according to their maximum correlation in a descending order and the top
EMs would be the predicted active elementary modes. In other words, each
method will binary classify the EMs into active and inactive EMs.

The precision-recall curve is used to evaluate the classifiers outputs. The
precision measures the positive predicted active EMs (result relevancy), math-
ematically defined in equation 4.1 as the number of true positive(tp) (i.e.,
positives correctly classified) divided by the sum of true positive counts and

35
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false positive(fp) counts. Whereas, the recall (also known as the true positive
rate) measures the truly retrieved active EMs by the classifier and mathemat-
ically defined in equation 4.2 as the number of true positives(tp) divided by
the total number of positives (i.e., the sum of true positive counts and false
negative(fn) counts). The precision and recall values for different thresholds
are outlined in the precision-recall curve [13, 15].

precision =
tp

tp + fp
(4.1)

recall = tpr =
tp

tp + fn
(4.2)

where, tp is the number of active EMs classified as active, fn is the num-
ber of active EMs classified as inactive, tn is the number of inactive EMs
classified as inactive and fp is the number of inactive EMs classified as ac-
tive.

Further, Area Under Precision-Recall curve (AUPR) is a measure used to
summarize the precision-recall curve, where high AUPR represents high pre-
cision and high recall. Another tool to summarize the precision-recall curve
is the Average precision (AP). AP is a weighted mean of precisions, for n
thresholds the weights are defined as the increase in recall from the previous
threshold.

AP =
∑
n

(recalln − recalln−1)precisionn (4.3)

Additionally, the ROC graph was also used to visualize the performance
of the different classifiers. The ROC curve plots the true positive rate (tpr)
versus the false positive rate (fpr). True positive rate measures the correctly
classified active EMs and is defined in equation 4.2 and the false positive rate
is the false alarm rate that measures the misclassified inactive EMs, mathe-
matically defined as the false positive counts divided by the total negatives
(i.e., the sum of false positive counts and true negative counts) [15].

fpr =
fp

fp + tn
(4.4)
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Figure 4.1 shows the precision-recall curves for PEMA, PMFA and GMF
on Pichia Pastoris simulated model with 0% noise in (a) and 20% added
noise in (b). As observed in Figure 4.1(a) PEMA with 3-factors has very
low AUPR (0.47) for 0% noise and has dramatically declined to 0.099 with
the increase of added noise to 20% in figure 4.1(b). Additionally, it can be
seen in figure 4.1(a), 3-components PMFA performance decreased with the
increase of added noise in figure 4.1(b), that the area under precision-recall
(AUPR) curve was 0.62 for 0% noise and decreased to 0.19 with the increase
of added noise to 20%. Figure 4.1 presents the precision-recall curves of the
3-rank GMF performance, where the GMF performance slightly decreased
with the addition of noise from 0.79 AUPR to 0.65.

Figure 4.2 illustrates the ROC curves for PEMA, PMFA and GMF on
Pichia Pastoris simulated model with 0% noise in (a) and 20% added noise in
(b). The ROC curves shown in Figure 4.2 confirm that the addition of noise
drastically degrades the PEMA performance, that the AUC for 0% noise
data was 0.69, it has dropped to 0.22 for 20% noise data in figure 4.2(b).
Furthermore, figure 4.2 shows that the ROC curves for PMFA performed
better than a random guessing classifier (i.e., above 0.5), with a reported
0.805 AUC for 0% noise and 0.515 for 20% noise.

Similarly, Figure 4.2 presents the ROC curves evaluation of the GMF per-
formance. It can be observed that the GMF is robust to noise. Additionally,
GMF reported a very high AUC (0.96 for 0% noise and 0.79 for 20% noise)
in comparison with the PMFA and PEMA classifiers. Table 4.1 summarizes
the evaluations results of the different methods.

Table 4.1: Classification performance of PMFA, PEMA and GMF.

AP AUPR AUC
0% noise 20% noise 0% noise 20% noise 0% noise 20% noise

PMFA 0.689 0.217 0.621 0.191 0.805 0.515
PEMA 0.540 0.106 0.469 0.099 0.692 0.216
GMF 0.852 0.720 0.786 0.654 0.962 0.785
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Figure 4.1: The Precision-Recall curves on 0% noise(a) Pichia Pastoris data
set and Precision-Recall curves on 20% noise(b).
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4.2 Explained variance

The main objective of the PMFA algorithm is to extract pathways with the
maximum sample variance while penalizing the projections that highly devi-
ate from the steady state. This experiment measures the explained variance
captured by the different approaches (PCA, PEMA and GMF) and compares
the results. In addition, the penalization of the deviation from steady-state
was evaluated. For this purpose, a fraction of variance (FoV) measure was
used to explain the captured variance of a sample.

FoV =
wTΣw

Trace(Σ)
(4.5)

Figure 4.3 illustrates the relationship between the change in internal
metabolites and the fraction of variance (FoV) captured by the different
methods as well as the first PMF of the PMFA approach. It can be seen
that the FoV captured by PMFA and rev-PMFA are slightly less than the
PCA and PCArev, respectively. Nevertheless, both PMFA and rev-PMFA
FoVs are converging towards PCA and PCArev FoVs values when the reg-
ularization parameter value is 0. This observation matches the theoretical
PMFA algorithm, where the PMFA turns to PCA when the regularization
is disregarded. Additionally, It can be seen from Figure 4.3 that the devia-
tion from the steady state decreased with the increase in the stoichiometric
regularization parameter λ. Furthermore, Figure 4.3 shows that rev-PMFA
has higher FoV than PMFA. This can be explained that the directionality
constraint in PMFA is reducing the captured variance. Additionally, PMFA
and rev-PMFA captured higher sample variance than PEMA approach. Sim-
ilarly, GMF (with 3 components and λ = 5) captured higher sample variance
than PEMA with (1,2 and 10 factors).

To evaluate the performance of PMFA on noisy data, the FoV captured
by PMFA was measured on Pichia Pastrios simulated data with 20% added
noise shown in Figure 4.4. The noise has affected the amount of the cap-
tured sample variance, the FoVs captured on noisy data by all methods are
less than the FoVs captured on the dataset with 0% noise. The PMFA and
rev-PMFA results are similar to the previous results. However, the PEMA
results have decreased dramatically in comparison to the results on the noise-
less data set. In addition, Figure 4.4 shows that GMF (with 3 components
and λ = 5) captured higher sample variance than the PEMA approach and
slightly less than the PMFA.
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Figure 4.3: Fraction of variance captured by reversible PCA, PCA, PEMA
(1,2 and 10 factors), GMF, reversible GMF, PMFA and reversible PMFA
with different l2 regularizer values.

Furthermore, both reversible methods rev-PMFA and GMFrev captures
higher FoVs than their corresponding alternative approach PMFA and GMF,
respectively. This indicates that the additional directionality constraint re-
duces the ability of the approaches to capture higher FoVs.

GMF explained variance

The objective of the GMF is to minimize the approximation error. Fig-
ure 4.5 illustrate the connection between maximizing the explained variance
(PMFA approach) and minimizing the mean-square error (GMF approach),
while the GMF Mean-square error (MSE) decreases the Fraction of Variance
(FoV) increases and vice versa.
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Figure 4.4: Fraction of variance captured by reversible PCA, PCA, PEMA
(1,2 and 10 factors), GMF, GMFrev, PMFA and reversible PMFA with dif-
ferent l2 regularization values.

4.3 Sparse flux modes recovery

This experiment was carried out to validate the performance of the different
approaches on the full genome metabolic network, where the data is highly
sparse. Unfortunately, GMF and PEMA failed to handle the full-genome
sparse data. Conversely, PMFA was able to efficiently captures the variance
of the samples due to its scalability up to whole-genome sets, on account of
the Concave Convex Procedure (CCP) optimization.

Figure 4.6 presents the Fraction of Variance (FoV) of the PCA, PMFA
(in red) and SPCA, SPMFA(in yellow). both SPMFA and SPCA captured
higher FoV values than PMFA and PCA, indicating that sparse versions
perform better than the regular approaches on sparse datasets. However, if
the directionality constraint is discarded rev-PMFA and PCArev (in green)
captures higher FoV than rev-SPMFA and SPCArev.
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Chapter 5

Conclusion

This thesis assesses the Principal Metabolic Flux Mode Analysis (PMFA)
approach for metabolic network analysis on various datasets types(e.g. Sim-
ulated data, Whole-genome data). The algorithm merges the well-known
PCA with the stoichiometric network analysis, resulting in a framework that
not only can easily determine the network fluxes with the highest variation
but also can acclimate to deviations from steady-state due to the regulariza-
tion parameter. As shown in Chapter 4 PMFA competed with the literature
methods(e.g. PEMA) by capturing the highest explained variance with a
minimum number of factors. Additionally, PMFA was the only approach
capable of analyzing whole-genome scale owing to the Concave-Convex Pro-
cedure(CCP).

Further, this thesis develops a Graph regularized Matrix Factorization for
the metabolic network analysis, that resembles the PMFA framework through
including the stoichiometric network graph as a side information. The GMF
achieved good results on experimental data and was able to perfectly predict
the active EMs on simulated data. However, it fails to work on the whole-
genome dataset. Moreover, since the GMF regularized by the Laplacian
of the stoichiometric network graph(tr(W TLW )). In other words, it does
not directly include the stoichiometric steady-state(Sw = 0) constraint. The
results could not present the fluxes at the steady-state. Hence, gives a reason
for further research on including the steady-state for better results. Future
research could also develop a sparse version of GMF, as it will make it possible
for the GMF to scale-up and be able to work on genome-scale networks.
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function [tpr,fpr,prec,AP] = tfpr(I,Pichia)

This function measures the tpr, fpr, precision and Average Precision.

%Inputs:
% I: Predicted EMs indexes.
% Pichia: Pichia data, Pichia.ActiveEMs: ground-truth active EMs.

%Outputs:
% tpr : true positive rate, recall.
% fpr: false positive rate.
% prec: precision.
% AP: Average Precision.

Initialization:

tpr=zeros(1,98);
fpr=zeros(1,98);
prec=zeros(1,98);
tp = 0;
fp = 0;
tprl=0;
AP=0;

for l = 1:1:98
    % increment tp count if the ground-truth active EMs is in the top
 i's
    if (ismember(I(l),Pichia.ActiveEMs'))
        tp = tp+1;
    % increment fp count if the ground-truth active EMs isnt in the
 top i's
    else
        fp = fp+1;
    end
    tpr(l) = tp/length(Pichia.ActiveEMs);
    fpr(l) = fp/(length(I)-length(Pichia.ActiveEMs));
    prec(l) =tp/(tp+fp);
    AP = AP+((tpr(l)-tprl)*prec(l));
    % Save the previous recall value
    tprl=tpr(1,l);
end

Published with MATLAB® R2017b

1
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Figure A.1: PMFAl2 loadings with λ = 5 on P.Pastoris with 0% noise
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Figure A.2: GMF loadings with λ = 5 on P.Pastoris with 0% noise
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Figure A.3: PMFAl2 loadings with λ = 5 on P.Pastoris with 20% noise
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Figure A.4: GMF loadings with λ = 5 on P.Pastoris with 20% noise
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Figure A.5: rev-PMFAl2 loadings with λ = 5 on P.Pastoris with 0% noise
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Figure A.6: GMFrev loadings with λ = 5 on P.Pastoris with 0% noise
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Figure A.7: rev-PMFAl2 loadings with λ = 5 on P.Pastoris with 20% noise
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Figure A.8: GMFrev loadings with λ = 5 on P.Pastoris with 20% noise
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