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by extensive first principle simulations. However, these simulations are compu-
tationally costly. With an introduction of descriptor, machine-learning methods
afford significant advantages in such scenario. Descriptors: Smooth Overlap of
Atomic Positions (SOAP) based on charge density, BLEACH , and Local Many-
Body Tensor Representation (LMBTR) are proposed, and developed. These are
evaluated on database of AuCu, and MoS2 nano-clusters. A learning error of
0.05 eV in adsorption energy, and 1.7 me in charge on hydrogen are realised for
LMBTR; while 0.08 eV and 13.4 me, respectively for BLEACH on the AuCu
dataset. Although not as accurate as state-of-the-art SOAP-lite (3.36 meV and
0.077 me, respectively), these descriptors have their own benefits. While LMBTR
allows for bi-directional operability, BLEACH provides element-agnosticism; both
of which missing are from SOAP.
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Abbreviations and Acronyms

AAD Average Absolute Deviation
ACSF Atom Centred Symmetry Functions
BLEACH A class of descriptors based on GTO, and orbital in-

tegrals
BoB Bag of Bonds
CM Coulomb Matrix
CP2K atomistic simulation software package based on quan-

tum chemistry and solid state physics
CritCat Towards Replacement of Critical Catalyst Materials

by Improved Nanoparticle Control and Rational De-
sign

DFT Density Functional Theory
pDOS Partial density of states
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(pseudo-potential)
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HER(s) Hydrogen Evolution Reaction(s)
LMBTR Local MBTR
MAE Mean Absolute Error
MBTR Many-Body Tensor Representation
MI Mutual Information
NOMAD Novel Materials Discovery (NOMAD) Laboratory
SCF Self-Consistent Field
SOAP Smooth Overlap of Atomic Positions
SOAP-lite Surfaces and Interfaces at Nanoscale, Aalto group’s

implementation of SOAP
STO Slater Type Orbital
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Chapter 1

Introduction

Catalyst design is central to virtually all chemical processes [1]. Its applica-
tions range from heterogeneous: haber process [2], electro-catalysis [3], crack-
ing [4], etc to homogeneous [5], and biocatalysis [6]. When designed appropri-
ately, a catalyst lowers the activation energies of a reaction. This improves
reaction kinetics, but doesn’t affect its enthalpy; and potentially makes the
reaction favorable — and economical — for widespread commercial use.

However, the mechanism of catalytic action is complex; it requires exten-
sive study of every aspect of a material, to gain useful insight for development
of new catalysts, better suited for the reaction. European Union’s Horizon
2020 research and innovation programme funds one such project: CritCat.
It emphasises electro-catalysis, specifically, catalysts for hydrogen evolution
reactions(HERs) [7]. Many experimental [8–10] and theoretical [11–16] works have
studied this reaction for its vital application in fuel cell, water splitting, etc.
However, the focus, in the project, is on “...the substitution of critical met-
als, especially rare platinum-group metals (PGMs), used in heterogeneous
and electrochemical catalysis...” [17], as seen in fig 1.1. Therefore, AuCu and
MoS2 nano-clusters are considered in the thesis for catalytic action, since
they comprise earth-abundant elements.

To gauge the suitability in catalysis, a test parameter is required that is
qualitative, readily observable, and swiftly calculable. The Gibbs free energy
of adsorption (∆GH) — adsorption energy, henceforth — of hydrogen on a
catalyst is considered to be a good parameter [12,13]. It is the difference be-
tween the total energy of the adsorbed system and that of the clean adsorbate
and the adsorbent. The H2 molecule adsorbing: (a) should dissociate on the
surface of catalyst, thus, ready for further reaction; (b) should desorb hydro-
gen atom from the surface, when it is required. Thus, an adsorption energy
between -0.1–0 eV/atom ensures a good catalytic behavior, comparable to
that of PGMs [18].

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Economic importance v/s supply risk, emphasizing the need to
replace critical material [17]

Adsorption energies are typically calculated by using ab-initio Density
Functional Theory (DFT) [19]. It is widely adopted for electronic structure
calculation, and is a vital tool in quantum chemistry [20]. Ground-state ener-
gies and densities of electrons in a potential field can be calculated by solving
the Schrödinger equation — with approximations. The ground-state energy
of nano-cluster, with and without adsorbed hydrogen, and that of a hydrogen
molecule is used for adsorption energy calculation.

To find an appropriate nano-cluster catalyst thousands — ten thousand
in our case — of calculations, with different nano-cluster composition and
hydrogen positions, need to be performed. Such calculations can be done by
high-throughput [18,21,22] workflows, that can sift through DFT simulations at
an unprecedented scale. These results can also be queried from the existing
database of HERs’ catalyst; this simplifies storing and querying, and can
remove redundancy in calculations. NOMAD [23] is one such repository of
open-access data. It gathers computational materials science data, in the
order of “several millions” [23]. Further, this abundance of data moves us into
a new paradigm, as illustrated in 1.2. Here, big-data analysis [24] can iden-
tify correlations in these datasets, giving deeper insights to material design.
Results from such calculations can hint at catalyst candidates befitting our
requirements.

However, those myriad DFT calculations — including complementary
NOMAD database entries — take immense computational and human re-
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Figure 1.2: Material-design paradigms, over the years [23]

sources. Even for advanced super-computing clusters, DFT simulations are
intense. Thus, machine-learned energy predictors are introduced to ease
the design process. These machine-learning methods, once considered black
boxes, have recently been extensively used for physics and quantum chem-
istry problems, to predict, for example, band gaps, NMR spectra, energies,
phase diagrams, etc [25–28]. Thus, these methods can reliably be extended to
our use case.

But, notwithstanding the utility and efficiency of said predictors, these
can’t merely read coordinates of atoms — input for DFT simulations — and
reliably predict energy; translational, rotational, and permutational variance
of the coordinates of atoms adds to the difficulty in training. Thus, a system
needs to be implemented that accommodates such requirements, while being
lossless.

Enter: Descriptors [24]. These are the special systems that define the
atoms in a format amenable for machine learning. They fit the criteria de-
scribed in 2.3. Many descriptors have been proposed, for example, Atom-
Centered Symmetry Functions (ACSF) [29], Bag of Bonds (BoB) [30], Coulomb
Matrix (CM) [31], MBTR [32], and SOAP [33]. The performance of these de-
scriptors varies with use cases; for our applications SOAP and MBTR per-
form well, when compared to other techniques [34]. Hence, they are chosen
for adding further complications.

Descriptor based learning is often employed in material research; this
overcomes the inherent lack of geometric invariance in machine-learning tech-
niques. MBTR [32], SOAP [33] (with SIN-Group’s SOAP-lite [34]) are two such
successful descriptors for machine-learning. The descriptors designed in this
thesis are complications of these descriptors; these complications aim to add
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functionality — MBTR from local perspective — and generality — element-
agnostic approach to SOAP.

1.1 Structure of thesis

With the background above, the thesis delves into descriptor designing for
effective machine-learning in catalyst application. The following chapter
presents a comprehensive background for the thesis. It explains SOAP and
MBTR descriptors, theories of physics, and machine learning, which are the
basis for newer descriptors. It is followed by methods, which discusses the
newer descriptors developed, and the environment of the thesis. The next
chapter delineates implementation and evaluation of said descriptors; and
the chapter following that comprises discussions arising from the implemen-
tations. The thesis ends with the conclusions drawn from this exercise and
an outlook for further work.



Chapter 2

Background

A significant pre-requisite knowledge is necessary, to design the descrip-
tors described in the thesis. This comprises knowledge of the theories of
electronic-structure methods, machine-learning — and data-science — prac-
tices, and the descriptors on which the newer are based. These are further
discussed in this chapter, in that order.

2.1 Electronic structure theory

An electronic structure is the state of electrons and nuclei in an atomic
system [35]. It is calculated by representing the states into a complex-valued
probability amplitude, called wave function, and solving the Schrödinger’s
wave equation (Time-independent, in the thesis). This allows calculation of
physical observables, primarily energies.

Ĥ|ψ⟩ = E|ψ⟩ (2.1)

Where Ĥ is the Hamiltonian, E, energy, is the eigenvalue, and ψ, wave
function, is the eigenvector. However, these equations are complex and their
calculation is computationally intensive. Hence, several approximations are
introduced to ease the computation. These approximations are detailed in
following sub-sections.

2.1.1 Born-Oppenheimer approximation

Born-Oppenheimer approximation [36] assumes that the contribution of nu-
clei and electrons is separable, since the masses of ions and electrons are of
different orders of magnitude. This implies the electronic and nuclear wave
function can also be separated.

5
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ψtotal = ψelectronic ⊗ ψnuclear (2.2)

The latter term in equation 2.2 can be approximated in a pseudo-potential
comprising nuclear core of the atomic charge, along with the inner-shell elec-
trons. Thus, the solution of Schrödinger’s wave equation relies primarily on
a Hamiltonian based on the valence electrons, which greatly simplifies the
computation.

2.1.2 Basis set

The electronic part of wave functions, cf. eq 2.2, is represented by a basis
set. The Slater type orbitals (STO) appropriately represent atomic orbitals.
However, they decay as e−α·r and the integrals of such functions are convo-
luted and computationally intensive. Thus, they are replaced by the gaussian
type orbitals (GTO); since product of two gaussians is a gaussian that makes
the integration straightforward. A GTO is given as:

ψi(r⃗) = Ri(r) · Yli,mi(θ,ψ) (2.3)

Here Yli,mi is the spherical harmonics for angular part and Ri(r) is the
radial part, which is:

Ri(r) = rli · exp(−αj · r2) (2.4)

Multiple gaussians are contracted together, to accurately mimic a STO.

ψcontracted(ζ) =
L∑

i=1

βiψ
gaussian
i (αi)

STO-3G basis, is an example of 3 contracted GTOs.

ψcontracted(ζ = 1, STO − 3G) = 0.444635ψgaussian(0.109818)

+ 0.535328ψgaussian(0.405771)

+ 0.154329ψgaussian(2.22766)

This closely fits the hydrogen’s 1s STO (ζ = 1):

ψslater ≃ (ζ3/π)
1
2 e−ζ|r−Ra|

The fit is also shown in fig 2.1.
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Figure 2.1: A fit of STO basis using STO-3G basis (ζ = 1)

2.1.3 Hartree-Fock matrices

The Hamiltonian in equation 2.1 can be expressed as a Hartree-Fock ma-
trix. This matrix includes contributions from the kinetic, core-potential,
and electron-electron interactions (coulomb repulsion). These terms are a
function of the wave function. If the chosen basis set is not orthogonal —
which is not, in our case — it arises a need for an overlap matrix, during
diagonalisation of the Hamiltonian. This overlap matrix is given by

Sµ,ν =

∫
drψ∗

µ(r −RA)ψν(r −RB) (2.5)

=
L∑

p=1

L∑

q=1

β∗
p,µβ

∗
q,ν⟨µ|ν⟩ (2.6)

This is used to calculate the symmetric orthogonalising transformation-
matrix, given by

X = S− 1
2 = Us−

1
2U ′ (2.7)

where U is the eigenvector, and s is the eigenvalue of S.
The core Hamiltonian is the sum of the kinetic and nuclear potential

terms
Hcore = T + V nuclear (2.8)
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where

Tµ,ν =

∫
drψ∗

µ(r −RA)

(
−1

2
∇2

)
ψν(r −RB) (2.9)

=
L∑

p=1

L∑

q=1

β∗
p,µβ

∗
q,ν⟨µ|−

1

2
∇2|ν⟩ (2.10)

and

V nuclear
µ,ν =

∫
drψ∗

µ(r −RA)

(
−
∑

a

Za

|r −Ra|

)
ψν(r −RB) (2.11)

=
L∑

p=1

L∑

q=1

β∗
p,µβ

∗
q,ν⟨µ|

Z

r
|ν⟩ (2.12)

From this, the Fock matrix is evaluated as:

Fµ,ν = Hcore
µ,ν + 2 · Jµ,ν − V x

µ,ν (2.13)

where Jµ,ν is the coulomb interaction matrix, and V x
µ,ν is the exchange matrix.

These are given as:
Jµ,ν =

∑

λ,σ

Pλ,σ⟨µ, ν|λ, σ⟩ (2.14)

V x
µ,ν =

∑

λ,σ

Pλ,σ⟨µ, σ|λ, ν⟩ (2.15)

This fock matrix is transformed to the orthogonalised basis set, and then
diagonalised

Fo = X ′FX (2.16)

FoCo = Coϵ (2.17)

The eigenvectors Co are transformed back to give C, which is used to
make a new density matrix.

C = XCo (2.18)

Pµ,ν = 2

N
2∑

a

Cµ,aC
∗
ν,a (2.19)
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2.1.4 Self-consistent field

A self consistent field (SCF) method is used to iteratively solve for the density
matrix. The steps goes as follows:

1. Guess an initial density matrix

2. Calculate the Hamiltonian matrix, using the density matrix

3. Transform and diagonalise the Hamiltonian matrix

4. Transform the eigenvectors back

5. Derive a new density matrix

These steps are consistently performed, until a change in the derived
density matrix is under certain threshold.

2.1.5 Density functional theory

The expression of Hamiltonian in terms of the Hartree-Fock matrix, how-
ever straight-forward, overestimates the energies; this under-binds the inter-
actions [20]. The total energy derived from the Hartree-Fock method, thus,
becomes an upper-bound for the actual ground-state total energy. To remedy
this, a correlation potential is added which, along with the exchange term,
aims to cancel any spurious self-interaction terms from the coulomb-repulsion
matrix. This describes the solution to the Schrödinger wave equation as given
in the Kohn-Sham formalism [19], cf. eq 2.1, which too is iteratively solved
using SCF.

(
T + V nuclear + Jee + V ex

)
|ψ⟩ = E|ψ⟩ (2.20)

Where T, Vnuclear, Jee, and Vex are the kinetic, core-potential (or
external-potential), coulomb-repulsion (or two-electron), and exchange-correlation
terms, respectively.

For the thesis, the adsorption energy calculations, using the ground-state
total energies, are performed on CP2K [37] (version 4.1). It is a DFT atomistic
simulation tool that relies on the GTO methods. This provides a minute
control over output parameters — observable or non-physical; that helps in
the training of machine-learning tools from different variables.
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2.2 Data pre-processing and machine-learning
techniques

This thesis employs several data pre-processing and machine learning tech-
niques to draw out the inherent correlations in a dataset, within itself or with
another property. This section discusses these techniques.

2.2.1 Mutual Information

The MI [38] signifies the amount of information a variable derives from another
variable. MI between two discrete random spaces, X and Y, can be defined
as:

I(X, Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(2.21)

Where p(x) and p (y) are the marginal probability distribution functions of
X and Y, respectively, and p(x,y) is the joint probability function of X and
Y. In our application, the X (Y) space is the discriptor (observable) space.
This acts as a figure of merit, and quantifies the suitability of descriptor of
interest.

We implement our MI [39] as described by Kraskov et. al. [40]. It works
with high-dimensional feature and objective spaces, and makes the optimisa-
tion for hyper-parameters in descriptors, faster than comparing results from
machine-learned models. The disadvantage though, of this implementation,
is that: (a) comparing sets of features with unequal sizes is not straightfor-
ward, and (b) it depends on injective-ity of the descriptor and the target
spaces — discussed further in chapter 5.

A MI, in our implementation, is not scaled; it is a function of size of
dataset. Therefore, for 10000 data-points, or instances — used interchange-
ably — it ranges between 0 and 7.5. Therefore, the MI is calculated for
random samples and for SOAP-lite descriptor as a reference. These values
are in table 2.1.

2.2.2 Principal component analysis

An input-space matrix comprises multiple instance vectors stacked row-wise,
and each instance vector contains the values of our features for that instance.
However, these features can be correlated, which implies same information
can be carried by fewer features. Here, a principal component analysis (PCA)
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Table 2.1: MI values for reference

Dataset Observable MI

AuCu
Energy 1.52
Charge 1.81

MoS2 Energy 1.42
Random sample 0.85

transforms our input-space matrix into linearly-uncorrelated principal com-
ponents. This transformation is performed such that the principal compo-
nents are stacked with decreasing variance. Thus, the features can be reduced
by truncating the principal components at a certain threshold in the variance.

PCA is computed by making a covariance matrix of the transpose of in-
put space — into a matrix with each instance vector stacked column-wise.
This covariance matrix is then diagonalised. Each eigenvector, of the diag-
onalisation, gives the coefficients corresponding to a linear combination for
that principal component; the corresponding eigenvalue represents a figure
of merit proportional to the variance in that principal component. Finally,
the principal component matrix is derived by a dot product between the
input-space matrix and the eigenvector matrix.

2.2.3 Kernel Ridge Regression

Kernel Ridge Regression (KRR) is a simple regression tool, that relies on
a kernel (cf. eq 2.22) and data to behave as, or “learn”, polynomial (or
gaussian) functions in space. Its ease of application makes it a prime tool for
analysis on small datasets.

To start, we measure the distance between two instances, by using a
kernel function d. This function is then used to calculate the kernel matrix,
given as:

Kij = d(Xi, Xj)− αIij (2.22)

for all the pairs of samples Xi and Xj in a training set. Here, Iij is the
identity matrix and α is a regularisation-parameter chosen between 0 and
1. After deriving the kernel matrix, the model is ready to predict newer
instances. This is done in the similar fashion to when we trained.

Dij = d(X ′
i, Xj) (2.23)

where X ′
i is an instance of the new samples. Now, the prediction, Y ′, is given
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(a) A typical multi-layer perceptron (b) A simple RNN cell, being applied

at tth instance

as
Y ′ = Y ·K−1 ·DT (2.24)

where Y is the vector of known outputs for the training set X. This method
is applied for training all descriptors with constant feature sizes: LMBTR,
BLEACH overlap matrix, and SOAP-lite. Since this method involves invert-
ing a N × N matrix, where N is the number of instances, KRR can’t be
scaled easily for larger data-sets.

2.2.4 Multi-Layer Perceptrons

Multi-Layer Perceptrons (MLP) are the simplest of the constructs of neural
networks. They consist of many hidden layers, comprising nodes, with their
wights and biases, see fig 2.2(a). They can be trained by several optimisa-
tion techniques, like backpropagation, using BFGS, Adams, etc, or by an
evolutionary algorithm. Once trained, they act as a high order polynomial
function between the descriptor and objective space. The “depth” — number
of hidden layers — of a MLP can be increased to make the network learn
higher order polynomial relationships, by its massive non-linearly-activating
nodes.

2.2.5 Recurrent neural network

Recurrent neural network (RNN) are artificial neural networks which oper-
ate on a sequence of data, definite or indefinite. They possess an internal
state, see fig 2.2(b), which carries additional information of the past nodes,
analogous to memory, to ones ahead. It makes multiple connections between
nodes along a sequence; this forms a directed graph. It is primarily suited to
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find correlations in a stream of temporal data. Moreover, when applied to a
function, it can also quantify the changing gradient over space.

In our application, a simple RNN is chosen, with one internal state. The
input at every step is calculated as:

ht = σ(Wxt + Uht−1) (2.25)

yt = f(V ht) (2.26)

Where, in the tth instance, ht is the internal state, xt is the input, and yt is
the output. W , U , V and f , are the matrices and functions, whose variables
are learned.

2.3 Descriptors

A descriptor is a representation of an atomic system. For a complete — or
usable — representation, the descriptor adheres to a set of guidelines. In their
paper, Huo et.al. [32] summarizes the properties that makes the descriptor
desirable. These include:

• invariant to translation, rotation and atom permutation

• unique

• continuous

• general

• computationally cheap

• lossless (efficient)

Although, some application may require breaking of these properties —
for example, predicting vector observables, such as force calculation, needs
rotational variance — these guidelines are comprehensive and relevant to
any descriptor design. The descriptors investigated in the thesis are based
on SOAP and MBTR, with the aim to improve on them, for nano-catalyst
applications. The following subsections, discusses SOAP and MBTR [41].

2.3.1 SOAP

SOAP is a local descriptor, that maps the local environment of atoms,
around a point, very accurately — as much afforded by pre-selected angular-
momentum terms. It affords prediction of a local observable, for example,
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Figure 2.2: A schematic representation of the smooth overlap of atomic po-
sitions with the basis of centre atom [34]

charge, or adsorption energies. This makes it a suitable candidate for our
applications.

It is rotationally, and permutationaly invariant. This is achieved by pro-
jecting the atoms onto spherical harmonics, centred at the point of inter-
est. However, a projection of point sized neighboring atoms would need a
wastefully high number of angular momentum terms. Thus, an overlap of
smoothed out atomic positions, by gaussian smearing, are used. However,
this also makes all the elements indistinguishable. Thus, SOAP is calculated
for individual element-type; which are concatenated at the end.

ρα(r) =
∑

i

e−(r−rαi )
2

(2.27)

Where rαi is the position of ith atom of the α element. The obtained
smeared atomic position, cf. atomic density, is decomposed using Laplace
Spherical Harmonics — spherical harmonics in real space — and orthogonal
basis set: Υlm(θ,ψ) and gn(r). This maps them into coefficients of orthornor-
mal basis functions used, see fig 4.1.

cαnlm = ⟨ρα|gn(r)Υlm⟩ =
∫

V

gn(r)Υlm(θ,ψ)ρ
α(r, θ,ψ)dV (2.28)

The coefficients thus derived, are used to calculate a power spectra, and
summed for all m’s for rotational invariance.

Pα
nn′l =

∑

m

cnlmc
α∗
n′lm (2.29)
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(a) (b)

(c) (d)

Figure 2.3: Schematic representations: (a) K1 tensor; (b) K2 tensor; (c) K3

tensor (each box is a spectrum); (d) dihedral angle, when calculating K4

tensor

2.3.1.1 SOAP-lite

SOAP-lite is the analytical implementation of SOAP. It is implemented upto
l = 9, uses application-tailored basis functions, and is entirely written in C
— with python wrapper. These three features combined, makes this imple-
mentation swift, and accurate [34].

2.3.2 MBTR

MBTR is a global descriptor for a molecule/crystal. It is translational, rota-
tional, and permutation invariant; it forms tensors of combination of elements
in pair, triplets, quadruplets, etc — calledK1, K2, K3, K4, [. . . ], respectively.
The implementation used in thesis is from the Describe package [42], and
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hence, K is restricted to 3. All such combinations have a Gaussian-smeared
exponentially-weighted histogram — spectra, henceforth— associated to it.
Due to its global nature, it can predict global observables, like total energy,
enthalpy change etc. The disadvantage of this approach is that it needs high
number of features to be relevant for machine learning applications.

K1 represents the spectrum of counts of element types, indexed by their
atomic weights. Although, this puts an implicit bias, that atom simi-
larity is a function of difference in atomic numbers. In end, it becomes
a matrix of size M ×N , where M is the number of elements, and N is
the number of bins, see fig 2.3(a).

K2 represents the spectrum of inverse distances between pairs of element
types. So, it becomes a matrix of size M × M × N , where M is the
number of elements, and N is the number of bins, see fig 2.3(b).

K3 represents the spectrum of angles between triplets of element types. So,
it becomes a matrix of size M ×M ×M ×N , where M is the number
of elements, and N is the number of bins, see fig 2.3(c).

K4 represents the spectrum of dihedral angles (see fig 2.3(d)) between
quadruplets of element types. So, it becomes a matrix of size M ×
M × M × M × N , where M is the number of elements, and N is the
number of bins.

Weighting All the tensors, but K1, are weighted. This diminishes the contribution
from farther atoms, and hence, closer atoms have higher precedence.
The Describe package implements exponential weighting by default.



Chapter 3

Methods

This chapter describes the methods, developed for this work, used to de-
fine newer descriptors and to evaluate machine-learning errors. The descrip-
tors include: (a) SOAP based on charge density, numeric and analytic, (b)
BLEACH based on overlap matrix, coulomb repulsion, fock matrix, and fock
tensor, and (c) Local Many-Body Tensor Representation (LMBTR).

3.1 Descriptor design

3.1.1 SOAP based on charge density

SOAP is a powerful tool, as it accurately maps local surrounding with re-
markable accuracy. However, it loses information by its treatment of neigh-
boring atoms as gaussians of the same weight. Although it is remedied by
separately calculating the power spectra for individual element types, this
makes it lose its generality. More specifically, if a model is already trained
with certain elements, an introduction of new element will render the model
useless, and the training cycle would need to be restarted.

To overcome this, the idea is to replace the unit-amplitude gaussian with
DFT-derived charge densities. From fig 3.1, the similarity of Gaussian distri-
bution, and real charge density promotes the investigation in this direction.
These charge densities are derived numerically and analytically.

• Numerical derivation
Charge densities are interpolated from the ones directly printed by
CP2K.

• Analytical derivation
Charge densities are calculated analytically from density matrix, printed
by CP2K, and GTO basis. This is carried out as follows:

17
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Figure 3.1: The images show similar environments with different calculations
of charge distributions; (a) The gaussian smeared atoms of nano-cluster,
around the hydrogen atom, (b) The charge distribution, calculated using
DFT, around hydrogen, and (c) Charge distribution of hydrogen over nano-
cluster subtracted by, charge distribution of hydrogen, sans the nano-cluster,
and charge distribution of nano-cluster, sans the hydrogen. Purple balls are
molybdenum , while yellow are sulfur, and grey is the hydrogen atom.

ρ(r) = Trace
(
⟨χr′ |ρ|χr⟩

)
(3.1)

where |χr⟩ is the molecular orbitals (MO) vector at r, and ρ is the
density matrix

Further, partial density of states (pDOS) for hydrogen (fig 3.2) indi-
cate that, most hydrogen orbitals exist very near to the Fermi-level
When compared to difference in pDOS for S and Mo, with and with-
out the adsorbed hydrogen, it is evident that most of the meaningful
interactions happen with these select MOs. Thus, another method is
implemented, that scours the unwanted orbitals from the density ma-
trix. More specifically, a new density matrix is created ignoring the
molecular orbitals outside the energy window. This method is chosen
over merely selecting d-bands, as proposed by Hammer et. al. [43], since,
it accounts for hybridisation in the orbitals. The new charge density is
calculated as:

ρ(r) = Trace
(
⟨χr′ |ρselectMO|χr⟩

)
(3.2)



CHAPTER 3. METHODS 19

0.00 0.05
pDOS

15

10

5

0

E
ne

rg
y 

(e
V

, f
er

m
i l

ev
el

 a
t 0

 e
V

) H

0.2 0.0 0.2
 pDOS

S

0.2 0.0 0.2
 pDOS

Mo
s
p
d
f

Figure 3.2: Example of pDOS for hydrogen (left), compared to difference in
pDOS for S (mid) and Mo (right), with and without the adsorbed hydrogen

3.1.2 BLEACH

The idea of BLEACH arises from applying SOAP on charge densities. Cal-
culating power-spectrum (eq 2.29) is very close to how orbital integrals work.
This initiates the idea to instead do the entire calculation using analytical
orbital integrals. For our analysis, we develop BLEACH using different as-
pects of electronic structure approaches, specific to Hartree-Fock methods —
for ease in first adoption. Hence, overlap matrix, coulomb-repulsion matrix,
and fock matrix, from gaussian type orbitals, are implemented.

• Overlap matrix
Overlap matrix is the simplest form of interaction possible. It is calcu-
lated as (cf. 2.6):

Sij = ⟨i|j⟩ (3.3)

where i is the basis of hydrogen and j is the basis of all neighbouring
atoms.

• Coulomb repulsion, with density matrix with all or select MO
Coulomb repulsion is the dot-product of density matrix and two-center
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two-electron integral matrix (cf. 2.14), given as:

Jij =
∑

kl

ρk,l⟨i, j|k, l⟩ (3.4)

Where i and j are hydrogen atom’s orbitals, and k and l are the or-
bitals of atoms in nano-cluster — screened upto a cut-off. They are
slightly more involved than overlap matrix, and their implementation
is computationally heavy.

Similar to reasoning behind eq 3.2, the coulomb repulsion is calculated
by density matrix made of select MO, given as:

Jij =
∑

kl

ρselectMOk,l
⟨i, j|k, l⟩ (3.5)

• Fock matrix
To include further information in the model, BLEACH made from en-
tire Fock matrix is investigated. This involved adding the kinetic and
core-potential matrices to coulomb repulsion, given as (cf. 2.13):

Fij = ⟨i|−1

2
∇2|j⟩+ ⟨i|

∑

c

Zc

r
|j⟩+

∑

ij

ρk,l⟨i, j|k, l⟩ (3.6)

• Fock tensor
In our case, the unknown is really the part of density matrix that
corresponds to the hydrogen’s orbital interactions with orbital of itself
and other neighboring atoms. It indicates the amount of electrons
present in each interaction. However, in the previous approaches, when
those matrices are calculated, that part of density matrix is entirely
approximated to 1. Thus, what we see is interaction of orbitals, filled
or empty. And adding a priori weight to the summed elements seems
complicated.

The easiest way to solve the issue, in our opinion, is to not sum the
interactions, and let neural-network learn from scratch. So, the idea
becomes, that we split those interactions into corresponding orbitals,
and lay them into a vector of orbital integrals — sorted, to naively add
permutation invariance — see fig3.3(a).

To each orbital-integral vector, a bi-directional RNN is applied. This
forms a two-way directed graph, between subsequent orbital interac-
tion. The outcome of which is fed into a MLP to predict the observable.
The architecture of the model is presented in fig 3.3(b).
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(a)

(b)

Figure 3.3: (a) A schematic representation of Fock tensor; (b)The operation
of bi-directional RNN followed by MLP on BLEACH tensors

3.1.3 LMBTR

LMBTR is the local flavor of MBTR, where the element-type based tensors
are evaluated from the perspective of an atom. This drops one dimension of
each tensor, as element-types, of that dimension, are replaced by an atom of
unique element-type. In other words, a tensor, M × [. . .]n, of n+1 dimen-
sions, becomes a tensor, 1 × [. . .]n, which is equivalent to a tensor, [. . .]n,
of n dimensions. Thus, K1 loses its significance, since it only indicates the
atom’s element-type. K2 becomes M × N , cf. fig 2.3(a), which now repre-
sents the spectrum of inverse distances between the atom and different types
of elements. Similarly, K3 becomes M ×M ×N , cf. fig 2.3(b). Also, a corre-
sponding change in spectra is observed. This shift, to the atom perspective,
makes the tensor-representation a local descriptor, and hence, suitable for
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adsorption energy prediction.
Apart from adsorption energy calculations, LMBTR shows bi-directional

operability. Since LMBTR values are tangible in real space its plot, for
the geometrically optimised hydrogen positions with energy in the region of
interest, can point out the correlations in atom’s spacial environment. This
aids in scouting trends inherent in the data.

3.2 Error analysis

The performance of a machine-learning model can be tricky to comprehend
in the absence of a reference for the errors in their training. An accuracy
of 0.1 eV, for example, can be considered promising for our case, however,
with a deviation of 0.2 eV in our observables, this accuracy is inadequate in
comparison. Thus, in this thesis, average absolute deviation (AAD) (based
on mean absolute error (MAE)) is referred to gauge the accuracy of our
machine-learned model. AAD— in place of standard deviation, and variance
— is chosen as it is robust, and our model accuracies are also calculated in
MAE.

Error plot is another tool for easing our understanding of MAE. It gives
an intuitive perspective on dataset, which can promote better methods at
machine-learning. In the thesis, three such error plots are used, namely:

• Parity plot
It is the scatter plot between each predicted and observed value. This
gives a general idea of quality of fit, when bias in the data results in
accurate prediction in the regions outside our interest.

• Histogram-compare plot
It is the bar plot comparing histograms of predicted and observed val-
ues. This gives an indication of clusters in our distribution, and the
accuracy of machine in identifying such clusters.

• Density-based accuracy plot
It is the scatter plot between MAE of the instances and the fraction
of the instances in each bin of the histogram of observed values. This
representation gives accuracy based on density of dataset. Well learned
models show an exponential decay (in upper-limit of error) towards
lower MAE, while not so well learned models are spread across at higher
MAE.



Chapter 4

Implementation and evaluation

This chapter discusses the implementation of the methods described previ-
ously. It begins by declaring the environment, in which the thesis is per-
formed. It then continues to the descriptors: charge density-based SOAP,
BLEACH , and LMBTR.

4.1 Environment

The works inscribed in this thesis, employs several tools, and programming
architectures, which constitute the environment. This environment set-up
is non-trivial, hence, for accurate and quick reproduction of the work, this
section declares descriptor, machine-learning, and DFT simulation related
environments.

4.1.1 Descriptor design

Code development for SOAP based on charge density (section 3.1.1) is done
on C++ with armadillo [44]. All other codes, are developed in python, since,
python is a high-level, interpreted language, that makes for an agile code
development phase. Further, it is highly modular; python is made pow-
erful by numerous packages that can be swiftly downloaded and installed
from PyPi [45]. The work implements python packages such as: NumPy [46],
SciPy [47], Pyscf [48], Matplotlib [49], Keras [50], Scikit-learn [51], Describe [42], and
Seaborn [52].

Git [53] version control is also used, since, it streamlines, and un-complicates
collaboration during the code development.

23
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Figure 4.1: Radial part of GTO basis used: (a)DZVP-MOLOPT-SR-GTH
H; (b) DZVP Mo; (c) SOAP-lite basis set.

4.1.2 Machine learning

Scikit-learn is used for simple machine learning architecture, like KRR. A
high-level neural network API, keras — backended with tensorflow [54] — is
used to set up MLP and RNN.

4.1.3 Basis set

Double zeta type functions (DZVP-MOLOPT-SR-GTH [55]) of H, and Mo are
used for basis of H atom, in descriptor generation. Further, another basis
set, developed for SOAP-lite, is also used, see fig 4.1. The SOAP-lite basis
set introduces additional hyper-parameters, namely: number of radial basis
(n), maximum angular momentum term (lmax), and cutoff — to normalise
the integration within.
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Figure 4.2: Example of database trained on: (a) AuCu nano-cluster with
few (646) sparsely-chosen hydrogen adsorption site, and (b) One of the MoS2

nano-cluster with random (110) hydrogen adsorption sites. Gold, blue, pur-
ple, and yellow circles represent Au, Cu, Mo, and S, respectively. And the
smallest pink circles are hydrogen.

4.1.4 Database

All the implementation and evaluation of the descriptors are done on AuCu
and MoS2 nano-clusters. Each database has ten thousand calculations of
adsorption energies, to aid the training of artificial networks. The AuCu
database also has the magnitude of charge on hydrogen.

The AuCu nano-catalyst database comprises a single nano-cluster with
ten-thousand random hydrogen positions. This makes for an easy database;
due to vast number of hydrogen calculations, the entire feature space is read-
ily covered, making predictions more reliable. On the other hand, MoS2

nano-catalyst database has 91 different nano-clusters, with 110 hydrogen
atoms per nano-cluster. This makes for a rather sparse space, and a chal-
lenging machine training. These observations are also evident from fig 4.2.

AAD of these databases are calculated, cf. table 4.1, to get a reliable
reference of our MAE during training. It is evident, from the low AAD in
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Figure 4.3: Example of (a) 55-atom, (b) 80-atom, and (c) 147-atom AuCu
nano-cluster database to check bi-directional operability for LMBTR. Gold
(blue) circles represent Au(Cu)

database, that the machine-learning model accuracy should be really high,
for the model to be considered effective.

Table 4.1: Average absolute deviation in our database

Nano-cluster Observable Average absolute deviation

AuCu
Energy 0.3 eV
Charge 0.077 e

MoS2 Energy 0.52 eV

Also, to check the bi-directional operability of LMBTR, another database
of geometrically optimised AuCu nano-cluster with singly adsorbed hydrogen
is chosen, see fig 4.3. It comprises three different sizes of nano-clusters:
107 55-atom, 601 80-atom, and 187 147-atom nano-clusters, with varying
concentrations of Au and Cu. Further, redundant hydrogen positions are
removed from the database, by comparing SOAP-lite features. This makes
the database, disperse, yet complete.



CHAPTER 4. IMPLEMENTATION AND EVALUATION 27

0 2 4
DFT energies (eV)

1

0

1

2

3

4

5

P
re

di
ct

ed
 e

ne
rg

ie
s 

(e
V

)

0.1 eV margin

Figure 4.4: Parity plot when MAE is close to AAD of dataset.

4.1.5 DFT simulations

For Density functional simulations exchange-correlation function is approx-
imated with PBE [56]. Gaussian type orbitals of Double Zeta type are used,
with a core potential of type GTH-PBE. Van Der Waals potential of type
DFTD3(J) are also added. The fineness of the grid is increased with require-
ment of finer numerical charge density file. SCF calculations are converged
till energy accuracy of 1 e−6 eV. These simulations are further used to cal-
culate the molecular orbitals, partial density of states, charge densities, and
overlap matrix. All simulations for AuCu and MoS2 database described in
section 4.1.4 are static-point calculations. Furhter, to illustrate bi-directional
operability of LMBTR, geometrically optimised structures are used. These
geometric optimisations are performed using the Broyden-Fletcher-Goldfarb-
Shanno(BFGS) algorithm.

4.2 SOAP based on charge density

As discussed in section 3.1.1, SOAP based on charge density is implemented
two ways: numerically and analytically. These implementations are mod-
eled after SOAP-lite as they exactly follow the derivation of coefficients, by
integrating densities on grid given by Gaussian Quadrature rule, and cal-
culation of power spectrum from these coefficients. However, they differ in
the interface by which the densities are calculated on the grid points. These
implementation are carried as followed.
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Figure 4.5: Average (top), linear (mid), and bi-quadratic (bottom) interpo-
lations for fitting charge densities. The larger drop is a S atom, and other is
a H atom (cf. fig 3.1)

4.2.1 Numerical

In this implementation, the charge densities values are read on a specific
grid. Since, the grid queried for integration mismatches the specific grid,
average, linear, and bi-quadratic interpolations are used. As seen in fig 4.5,
the accuracy of fit increases from average to bi-quadratic, however, it also
increases the computation time. The charge density on the specific grid is
read from cube files, as printed in CP2K. In making the charge-density cube
file, CP2K gives extreme control over voxel size; it is achieved by changing
the energy cut-off for grid. In our case this energy cut-off is increased from
500 Ry. This corresponds to a voxel density of 384 voxels/Å

3
. This cut-off is

capped at 1000 Ry — 8067 voxels/Å
3
— since the sizes of individual cube file

shoot up to 800 MB, which makes the implementation impractical. Further,
a cut-off for the integration is optimised. This cut-off is increased from 5 Å
until the change in descriptor value is within 1× e−4. Hence, a cut-off of 7 Å
is chosen. With this implementation a maximum MI of 0.96 is seen. This
implies no correlation, cf. table 2.1. It becomes more evident, when this is
trained using KRR for MoS2 dataset. The MAE stands at 0.52 eV, which is
the AAD, cf. table 4.1, in our dataset.
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Figure 4.6: Plots of (a, b, and c) parity, (d, e, and f) histogram-compare,
and (g, h, and i) density-based accuracy for learning energies (left column)
and charges (middle column) on AuCu, and energies (right column) on MoS2

nano-cluster database, using overlap matrix

4.2.2 Charge density using density matrix with all and
select MO

This implementation follows the same principle as above: it returns charge
density values quarried at certain grid points. However, here the charge den-
sity values are calculated analytically. Thus, the issues with interpolations
are circumvented. The only hyper-parameter attached to this approach is
cutoff — of the neighbour region. Similar to previous approach, cut-off is



CHAPTER 4. IMPLEMENTATION AND EVALUATION 30

increased from 5 Å until the change in descriptor value is within 1 × e−4,
and hence a cut-off of 7 Å is chosen. The charge density calculations are
performed using PYSCF. Since, PYSCF package is available in python, a
python implementation of SOAP-lite is also carried out.

With this approach, the MI reaches 1.32 for MoS2 dataset. This is found
to be equal to that of SOAP without atom distinction. MAE in adsorption
energy prediction comes at 0.51 eV, which is also the AAD, see table 4.1,
in that dataset. The accuracy doesn’t improve with using bigger basis set.
Regardless of MAE a parity plot is made, for predicted v/s test observables,
as shown in fig 4.4.

4.3 BLEACH

Since, BLEACH heavily relies on PYSCF, all codes are written in python.
For convenience, a nano-cluster system is initiated in a BLEACH class, with
objects, such as density matrix, or MO matrix, and methods that attach to
PYSCF, functions — to calculate various integrals. It has the ability to take
in basis sets in CP2K and SOAP-lite formats. A .create() method makes
the descriptor of the system. MI is then calculated between the descriptor
and the observable. Also, basic file parsers are written to parse CP2K’s
density-matrix, overlap-matrix, and MO-matrix files. In this section, differ-
ent implementation of .create() method are discussed.

4.3.1 Overlap matrix

For the calculation of Overlap matrix, cutoff is the only hyper-parameter to
optimise. It is similarly optimised as methods above. A cut-off of 7 Å is
chosen, which guarantees most information of the neighbourhood, and keeps
the implementation swift. The MI, reported in table 4.3, is higher than in
previous attempt with charge density, and very close to SOAP-lite. Thus, it
is trained on a KRR model.

The highest MAE, over different basis set, is achieved at 0.25 eV, 0.013 e,
and 0.42 eV for AuCu energies and charges, and MoS2 energies, respectively.
These values matches our MI analysis, cf. table 2.1.

The plots in fig 4.6 reveal the underlying nuances in data. It is evident
from parity plots for energy in fig 4.6 (left, and right columns) that the
model fails at data with higher energy, due to lack of data-points. Further,
it also is shown in the histogram that due to over abundance of data near
mean, the predictions are centered there too. And, a disperse density-based
accuracy plot reveals heavy clustering in energy values, that lead to very
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Table 4.3: MI values for Overlap matrix implementation
of BLEACH

Dataset MI

AuCu
Energy 1.53
Charge 1.94

MoS2 Energy 1.40

few spots well represented, while others under-learnt. In the charge plots see
fig 4.6 (middle column) the prediction is within the margins. This gives well
overlapping histograms and hence, lower MAE.

4.3.2 Coulomb repulsion, with density matrix made
from all and select MO

In this iteration, the function for overlap matrix is replaced with coulomb in-
teraction, as given in section 3.1.2. Similar to other methods, a cut-off of 7 Å
is chosen after optimisation. Different basis sets of H, Mo, and SOAP-lite are
also used. Finally, for density matrix, all and select-MO are implemented. In
the case of all MO the density matrix is read directly from CP2K; and in the
case of select-MO the MO matrix is used. This matrix comprises individual
eigenvectors stacked column-wise. The eigenvalues corresponding to these
eigenvectors are their energies. These energies are shifted, so that Fermi-
level — also given by CP2K — is at 0 eV The eigenvectors corresponding
the energies, or eigenvalues, in our region of interest are kept. A dot product
of transform — since MO values are real, conjugate-transform if complex —
of select-MO and MO gives the required density matrix.

A maximum MI of 0.9 is achieved with all MOs and hydrogen basis.
Since, this value is close to random sampling, cf. table 2.1, the method is
abandoned for adding more information.

4.3.3 Fock matrix

To incorporate further interaction, Fock matrix is proposed in section 3.1.2.
Its implementation involves adding kinetic and core potential integrals to the
BLEACH integrals. Similar to other methods, a cut-off of 7 Å is chosen after
optimisation.

A maximum MI of 1.2 is achieved, using hydrogen basis. It is a slight
improvement from previous BLEACH implementations, however, this is still
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Figure 4.7: Plots of (a, b, and c) parity, (d, e, and f) histogram-compare,
and (g, h, and i) density-based accuracy for learning energies (left column)
and charges (middle column) on AuCu, and energies (right column) on MoS2

nano-cluster database, using Fock tensor

not as promising a overlap matrix.

4.3.4 Fock tensor

A fock tensor is created, with the idea to have wighted sum for orbital in-
teraction. Its implementation involves not summing orbital interactions in
making BLEACH based on Fock matrix. This implies that the orbital in-
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tegrals are kept separate into a tensor, cf. fig 3.3(a)(a). The integrals for
one permutation of hydrogen’s basis and other s, p, d, f in nano-cluster, are
kept in one vector. To remove permutation invariance, these vectors are also
sorted. The orbital integrals vectors vary in lengths, because the counts of
orbital interactions are different. To effectively learn such input, a keras
model, of a RNN-MLP architecture (cf. fig 3.3(a)(b)), is applied.

The implementation of MI does not work with arbitrary length matrices.
Hence, to get a naive idea of MI, the fock tensor is padded with 0. The MI
between padded fock tensor and observable is shown in table 4.5.

Multiple trainings with different sizes of RNN-MLP architecture are per-
formed, while considering H, Mo, and SOAP-lite basis sets. The MAE in this
process, is minimum at 0.088 eV, 0.013 e, and 0.42 eV for AuCu energies and
charges, and MoS2 energies, respectively. This is consistent with the MI. The
architecture, that achieved least MAE, comprises a bi-directional RNN with
64 filters per orbital-integral vector, followed by three neural networks of
65× 64 (bias included) dimension.

The plots in fig 4.7 also corroborate the findings. The parity charts
show a fit well within margin for charge prediction for AuCu. However,
this is not seen in other two. Further, the histogram-compare shows that
in case of charge prediction the LMBTR learns the two different clusters —
the two maximums — in our database. Histogram compare reflects MAE
as it shows that the energy prediction in MoS2 database completely mis-
predicts higher energy case, even when ample data is provided. Instead,
the model predictions cluster more towards the mean. The density-based
accuracy show that, while energy predictions can improve with further data,
i.e. high variance, the charge prediction will not, i.e. low variance.

Table 4.5: MI values for Fock tensor implementation of
BLEACH

Dataset MI

AuCu
Energy 1.83
Charge 2.36

MoS2 Energy 1.40
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Figure 4.8: Plots of (a, b, and c) parity, (d, e, and f) histogram-compare,
and (g, h, and i) density-based accuracy for learning energies (left column)
and charges (middle column) on AuCu, and energies (right column) on MoS2

nano-cluster database, using LMBTR

4.4 LMBTR

In our implementation LMBTR, K2 and K3 are considered. Both of these
K’s have count (of number of grid points), decay factor, and sigma as hyper-
parameters. These hyper-parameters are optimised with a Nelder-Mead al-
gorithm [57] that maximises MI. This gives the values in table 4.7. Using these
values, KRR is trained on LMBTR values.

The MAE, with this optimisation, is found at 0.05 eV, 1.7 me, and 0.42 eV
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for AuCu energies and charges, and MoS2 energies, respectively. This is also
consistent with our MI values, cf. table 4.8. These values are also close to
MAE for MBTR for same clusters [34].

Table 4.7: Optimised hyper-parameter values for
LMBTR

Dataset Hyper-parameter Value

AuCu

K2

decay factor 2.5
σ 0.1

count 150

K3

decay factor 1
σ 1

count 40

MoS2

K2

decay factor 1.6
σ 1.1

count 150

K3

decay factor 0.5
σ 0.25

count 40

The plots for MAE, in AuCu database are in fig 4.8. The parity plots
are linear, with some slight deviation at higher energies. The model learns
the two clusters of hydrogen position, as seen in histogram-compare plots.
However, in the MoS2 case, the points are more scattered. A trend similar
to previous cases is seen, where the model mis-predicts at higher energies.

Besides training, LMBTR can also trace real space, from observable space.
This bi-directional operabilty is exploited to find correlations in atom po-
sitions in real space with adsorption energies. For this thesis, AuCu-895
nano-cluster, with geometrically relaxed hydrogen is used. The geometry

Table 4.8: MI values for LMBTR

Dataset MI

AuCu
Energy 2.12
Charge 2.93

MoS2 Energy 1.96
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Figure 4.9: Plots of (a) distances, (b) cosine of angles, with standard devi-
ation regions, and (c) Au/Cu ratio for bi-directional operability in energy
between -0.1, 0.07 on AuCu-895 nano-cluster database, using LMBTR

relaxation for hydrogen position represents real cases more accurately. Also,
when LMBTR values are plotted for certain energies, the noise from un-
relaxed geometries — that skew the dataset, since they are least probable in
real scenarios— is avoided. This plot of LMBTR for AuCu-895 nano-cluster,
in fig 4.9, clearly imply that Cu should be higher concentration on surface,
for a catalytic site, which catalysis one hydrogen atom; although, a lower
density of Au adds to catalysis. Also, ratio of Cu to Au doesn’t change
through the nano-cluster. It is important to note these graphs are from the
perspective of hydrogen adsorption site, that fit our criteria. So all ratios
come from a point outside the nano-cluster.

This bi-directional operabilty is further exemplified when PCA of LMBTR
is performed. It is found that a majority of information of LMBTR is con-
veyed in four principal components, in the AuCu dataset. This is further
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Figure 4.10: Plot of eigenvector values (or weights) for distances (left column)
and angles (right column) corresponding to the four principal components.
These principal components are stacked row-vise with decreasing eigenvalues.

confirmed by KRR machine-learning. The KRR model gives equal MAE for
the four principal components as with the four hundred and twenty LMBTR
features. The weights of linear combinations, that make these components,
reveal further correlations. In fig 4.10, these weights are plotted for the four
principal components and following observations are made.

• First principal component (cf. fig 4.10(first row))
This component has higher coefficients for Au. This dependence on
Au distance is maximum between 2–5 Å. There is a slight negative
dependence on distances in Cu distribution, which is maximum between
3–4 Å. The dependence on angles is weak, although, a spread of weights
on Au-Au angles is visible.

• Second principal component (cf. fig 4.10(second row))
Similar to the first component, the second component’s dependence
on distance is maximum between 2–5 Å, although for Cu distribution.
Also, a weak dependence on Cu-Cu and and Cu-Au angles is seen, more
toward acute angles. Further, a weak dependence on distances of Au
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distribution is seen. This dependence is positive with Au around 3 Å
and negative around 5 Å.

• Third principal component (cf. fig 4.10(third row))
The third component also has higher coefficients for Au. Although, the
dependence on atoms around 2–3 Å is positive, while atoms around 4–5
Å is negative. An opposite dependence of Cu atoms is seen, around 3
Å, and 5Å. A weak dependence of Au-Au angles is also seen.

• Fourth principal component (cf. fig 4.10(fourth row))
Similar to third component, this component has a higher coefficient
for distances in Cu distribution. A positive dependence around 2–3
Å and negative around 4–5 Å is observed. However, a slight negative
dependence of acute angles of Cu-Cu and Cu-Au is seen. Moreover, a
positive dependence of Au atoms, around 2 and 6 Å, is also seen.

These dependences, in making the four principal components, imply an
interdependence of the spectrum for Cu and Au. This brings out the inherent
correlations in our AuCu dataset.



Chapter 5

Discussion

After a thorough development of methods and their implementation, this
chapter discusses few meaningful findings, with attached outlook.

5.1 SOAP based on charge density

The implementation based on interpolations didn’t show any “learning”,
even for very-fine grids. This casts serious doubts on interpolation based
approaches in this scenario.

Moreover, the charge density calculation derived from density matrix is
only as good as the implementation of SOAP which treats all elements the
same. This implies, the charge density approach cannot, in itself, differentiate
between atoms of different elements.

5.2 BLEACH

The overlap matrix not only performs better than coulomb repulsion, it is
also much faster to calculate. Calculating 2-center 2-electron matrix is com-
putationally heavy, and isn’t implemented for parallel execution in PYSCF.
Although, the overlap matrix method gave an accuracy of 0.25 eV on AuCu
single cluster, it fails on MoS2 multi-cluster. This is also seen with BLEACH
Fock tensor approach.

In the BLEACH Fock tensor approach RNN, with padded features, is
chosen over direct KRR approach because the accuracy of predictions are
the same, and the RNN can make simple directed graphs and overfit the
dataset. This implies a better learning is possible with bigger dataset.

Also, the select-MO derived density-matrix application doesn’t improve
on accuracy. This indicates that density matrix — and methods that rely on

39
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Figure 5.1: Learning curves for nano-cluster database of AuCu: (a) energy
and (b) charge, and MoS2: (c) energy

it — already incorporates sensitivity to orbitals at required levels.

5.3 LMBTR

LMBTR shows promise for it is simple and functional. It achieves a MAE
below 0.1 eV for energy prediction in AuCu database; which is equal to
that of MBTR dataset [34]. This implies LMBTR doesn’t lose information
in the shift from global to local scope. It reduces the number of features,
from twelve thousand two hundred and sixty to four hundred and twenty,
drastically with same hyper-parameters (cf. table 4.7). LMBTR use is, thus,
reasonable since we employ local observable and it eases machine learning.

Further, the bi-directional operability of LMBTR is of a major signifi-
cance, when compared to other descriptors. This reveals insights that can
be extended into real space. In the AuCu-895 dataset, it is found that high
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concentrations of Cu is important, while a small concentration of Au is nec-
essary too. An approximate ratio of Cu to Au of 3.3 is found appropriate for
single hydrogen adsorption energy between -0.1–0 eV. Whereas, in the case
of AuCu dataset, it is found that relevant information can be expressed as
linear combination of four principal components. These linear combinations
further reveal the principal correlations in variations of LMBTR features.
It is interesting to note that these principal components transform the data
into vectors that primarily rely on distributions of a certain element; and
that the effect of angles is less pronounced.

5.4 Learning curves

Learning curves are made for descriptors discussed, with optimised hyper-
parameters, and compared with SOAP-lite. This includes: BLEACH Fock,
BLEACH overlap matrix, and LMBTR for energy and charge prediction on
AuCu and LMBTR on MoS2.

It is evident that none of the descriptors proposed performs better than
SOAP-lite. Although, LMBTR’s accuracy comes within 0.1 eV for AuCu, it
doesn’t perform well for MoS2. Moreover, BLEACH fock matrix performs
better than overlap matrix on AuCu, but similar on MoS2, as also indicated
by MI values.
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Table 5.1: The table summarizes MI values calculated throughout the thesis.
The MI values which do not correlate with learning errors are in bold.

Descriptor Dataset MI MAE

SOAP-lite
AuCu

Energy 1.52 3 meV
Charge 1.81 0.7 µ e

MoS2 Energy 1.42 0.1 eV

BLEACH Overlap matrix
AuCu

Energy 1.53 0.25 eV
Charge 1.94 13 me

MoS2 Energy 1.40 0.42 eV

BLEACH Fock tensor
AuCu

Energy 1.83 87 meV
Charge 2.36 7.7 me

MoS2 Energy 1.40 0.48 eV

LMBTR
AuCu

Energy 2.12 48 meV
Charge 2.93 1.7 me

MoS2 Energy 1.96 0.3 eV

5.5 Error analysis

For evaluating a dataset, AAD is a vital tool to gauge the accuracy of
machine-learning models. This is also confirmed by the data visualisation
in chapter 4. Also, the parity plot, histogram-compare plots, and density-
based accuracy plot gives a better perspective on out dataset and its learning.

To compare the MI, a summary of tables 2.1, 4.3, 4.5, and 4.8 is put in
table 5.2. A correlation between MI values, and MAE for LMBTR, BLEACH
Fock, and BLEACH overlap matrix is found. However, this correlation fails
for SOAP-lite; here, the MI indicates lower information where the training
accuracies are higher — as compared to other descriptors. This is explained
by the nature of implementation as described by Krakov et. al. [40].

It is found that the implementation of MI is also dependent on injective-
ity of the descriptor and the target spaces. It implies that the implementation
projects MI reliably only for injective functions; however, its reliability de-
creases with decreasing injective-ity. To show this, MI, between x and cos2(x),
is plotted against range of x, in fig 5.2. With an increase in range multiple
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x start to give same value of cos2(x), due to its periodicity. This signifies a
decrease in injective-ity, while the information is same. It is seen that MI
value stays at maximum value till π/2 — i.e. until cos2(x) is injective; then
it starts decreasing with increasing range of x. Due to this dependence of
our implementation of MI, optimisations for LMBTR were redone while min-
imising MAE. The hyper-parameters obtained with this approach are found
same as the ones determined while maximising MI. Similar tests are done for
SOAP based on charge density, and BLEACH . The SOAP based on charge
density showed no learning, with MAE equal to AAD. This is concurrent
with our MI values, however, a direct correlation cannot be justified as MAE
is at the threshold of AAD — which is as good as learning from random vari-
ables. Although, the implementations of BLEACH showed the concurrency.
Thus, the correlation of MI with MAE for LMBTR, BLEACH is confirmed.

A significant implication of dependence of our implementation’s MI over
injective-ity is observed when compared to the error analysis. As errors in
BLEACH and LMBTR are correlated to MI, these functions can be consid-
ered to be of an injective kind — not necessarily linear; whereas, SOAP-lite
is not. While this explains the high accuracies in predicting the energies
with low MI values for SOAP-lite, it also indicates the complexity in SOAP
function that allows such accuracies.



Chapter 6

Conclusions

Earth-abundant catalyst design is a challenging task. It involves deep un-
derstanding of catalytic process. To accomplish this, theoretical techniques
can be employed; but these are computationally heavy and time consum-
ing. Here, machine-learning based on large databases is useful. This thesis
designs and describes descriptors based on MBTR, and SOAP— vital for
machine-learning applications.

In the case of MBTR, LMBTR is tested, which is proven to be an efficient,
fast, and simple descriptor for predicting local observables. It doesn’t lose
any information over MBTR, and achieves equally accurate prediction.

While, in the case of SOAP, SOAP with charge density and BLEACH is
tested. It is found that evaluation of SOAP with charge density, by numerical
integrals over interpolation fails and by analytic integrals cannot distinguish
between elements. Further, in implementation of BLEACH , the overlap
matrix based approach does succeed but MAE isn’t satisfactory. This is im-
proved in Fock tensor approach, where a massive RNN-MLP neural network
is implemented. It gives satisfactory result for simpler system (AuCu single
cluster), however, fails for a more complex one (MoS2 multi-cluster).

For error analysis, parity, histogram-compare, and density-based accuracy
plots give vital understanding of the model prediction. This supplements the
understanding by MAE. Further, AAD proves to be a robust quantity to
gauge the inherent deviation in the dataset; which gives an appropriate scale
for MAE.

The accuracy in predictions for newer methods didn’t precede SOAP-lite.
However, the relevance of LMBTR and BLEACH still stands. The backward
operability of LMBTR is crucial in visualising the inherent patterns and
correlations in the dataset; while BLEACH provides an element-agnostic
approach to descriptor methods, which can readily be extended to diverse
systems.

44



Chapter 7

Outlook

This thesis introduced new descriptors, which are modeled on SOAP and
MBTR. These descriptors are rigorously optimised and compared for better
model accuracies, and their possible application are discussed. These ex-
tensive insights reveal that further improvements in the same direction are
possible.

It is evident that LMBTR can be intuitively modeled to learn from vastly
different perspectives. It can be developed, for example, from surface-atom
centric, nano-cluster core centric, or other novel perspective. In our study the
LMBTR is developed from the perspective to hydrogen adsorption site. If we
instead choose the perspective of nano-cluster, trends like hydrogen coverage,
or stable atom-ratios can be pointed out. A modification in LMBTR can
allow it do the same. However, such methods will require a larger database.

Further, the similarities in SOAP integration and BLEACH overlap ma-
trix integrations are evident. The equation 2.28 can be understood as an
integration of product of two spherical harmonics with different centers. The
first spherical harmonic clearly is the hydrogen atom, with radial density and
angular part. While the second spherical harmonics is the density of atoms,
expressed as a gaussian. This harmonic is a s-orbital with the gaussian as
radial part, and Y00 — which is a constant — as angular part. Hence, the
SOAP integral is the overlap matrix, cf. eq 2.6. However, in our work, the
overlap matrix does not give significant MAE. This is attributed to the man-
ner in which the overlap matrix is utilised. While in BLEACH , it is simply
summed for all atoms, irrespective of element-type, the SOAP-lite circum-
vents this by storing the product into a tensor of size n×n×l — which is later
flattened, and redundant values removed — for individual element. There-
fore, an implementation of BLEACH overlap matrix, which keeps coefficient
separate, while not separating element type — as it breaks the purpose of
BLEACH — can further improve accuracy.
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