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Abstract

In modern software development many kinds of verification is performed to prevent
regressions and to ensure robustness of the software. Execution of verification tasks
is usually automated with continuous delivery (CD) systems built on CD-platforms.

Currently available CD-platforms (Jenkins, Concourse, GoCD) are essentially
job schedulers based on traditional job scheduling model. They execute tasks to
completion in order of arrival. This model is known to cause user dissatisfaction
due to long wait-times when the variation in task execution times is high. It’s also
known to exhibit low resource utilization. This prevents integration of new kinds of
verification, reduces cost-effectiveness and decreases developer productivity.

Preemption, that is task-switching, enables much more flexibility to scheduling.
It greatly improves the system’s responsiveness by reducing wait-times. It solves
the problem of short tasks having to wait extendedly for long tasks to complete.
By enabling time-slicing of resources it increases their utilization. The result is
interactive service for developers, supporting more kinds of verification in CD and
enabling more value to be extracted of available compute resources.

Implementation of preemption requires ability to suspend and resume the execu-
tion of verification tools. We evaluate system-level checkpointing, a technique used
for preemption in high performance computing, that does not require modification
of the verification tools. We selected Checkpoint and Restore in Userspace (CRIU)
as the checkpointing utility to be evaluated. We evaluated CRIU’s capability to
checkpoint verification tools and measured checkpoint creation time and checkpoint
image size. We selected AFL, AddressSanitizer, Valgrind and Android Emulator as
the tools to be tested.

Our results show CRIU is not yet capable of preempting arbitrary verification
tools as only AFL and Valgrind were checkpointable. Checkpoint creation was fast
making it feasible for interactive use in a CD-system. Checkpoint image’s size was
found to depend on the verification tool’s memory size, as expected, meaning most
tools would be feasible for preemption to network storage in a cluster.

Keywords Continuous Delivery, Scheduling, Preemption, Checkpointing, Verification
Tools
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Tiivistelmä

Nykypäivän ohjelmistokehityksessä käytetään monenlaisia laadunvarmistusmenetel-
miä regressioiden estämiseen ja ohjelmistojen vikasietoisuuden takaamiseksi. Tällais-
ten tehtävien suoritus yleensä automatisoidaan jatkuvan toimituksen (CD) järjestel-
millä, jotka on rakennettu jollekin CD-alustalle.

Saatavilla olevat CD-alustat (Jenkins, Concourse, GoCD) ovat pääpiirteissään
perinteiseen ryväslaskennan vuoronnusmalliin pohjautuvia tehtävävuorontajia. Ne
suorittavat tehtäviä saapumisjärjestyksessä alusta loppuun. Tehtävien keston vaihdel-
lessa odotusajat kasvavat pitkiksi, joten mallin käyttökokemus on huono. Resursseja
ei myöskään hyödynnetä tehokkaasti. Nämä estävät uusien varmistusmenetelmien
käytön sekä heikentävät kustannustehokkuutta ja ohjelmistokehittäjien tuottavuutta.

Tehtävien vuorottelu tekee vuoronnuksesta joustavaa. Se lyhentää odotusaikoja
huomattavasti. Lyhyet tehtävät eivät enää joudu odottamaan pitkäkestoisten teh-
tävien päättymistä ja resursseja hyödynnetään tehokkaammin. Näillä saavutetaan
ohjelmistokehittäjille vuorovaikutteinen käyttökokemus, uudenlaisia varmistusmene-
telmiä voidaan ottaa käyttöön ja laskentaresursseista saadaan parempi hyöty.

Vuorottelun toteuttamiseksi laadunvarmistustyökaluiden suoritus täytyy olla
keskeytettävissä. Työssä arvioimme järjestelmätason varmistusvedostusta, joka on
suurteholaskennassa käytetty menetelmä tehtävien vuorotteluun. Menetelmä ei vaadi
muutoksia työkaluihin. Tarkastelemme Checkpoint and Restore in Userspace (CRIU)-
varmistusvedostustyökalua, sen kykyä laadunvarmistustyökalujen vuorotteluun sekä
vedoksen luontiin kuluvaa aikaa ja vedoksen kokoa. Kokeiltuja laadunvarmistustyö-
kaluja olivat AFL, AddressSanitizer, Valgrind sekä Android Emulator.

Ilmeni, että CRIU ei vielä kykene kaikkien laadunvarmistustyökalujen vuorotte-
luun sillä kokeilluista työkaluista vain AFL ja Valgrind voitiin vedostaa. Vedoksen
luonti oli nopeaa, mikä tekee varmistusvedostuksesta käyttökelpoisen vuorovaikut-
teisissa CD-järjestelmissä. Kuten oletettiin, vedoksen koko riippui laadunvarmistus-
työkalun muistin koosta, joten yleisimpien työkalujen vuorottelu verkkotallennusta
käyttävissä laskentaryppäissä olisi mahdollista.

Avainsanat Jatkuva toimitus, Vuoronnus, Varmistusvedostus,
Laadunvarmistustyökalut
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1 Introduction
In modern software development the use of continuous delivery (CD) with automated
verification keeps increasing. Verification is utilized for a range of purposes such as
detecting regressions, finding defects, analyzing stability and measuring performance.
Tools used in verification are complex and computationally intensive applications
that require highly varying amounts of execution time to complete. In continuous
delivery this verification is performed every time the software is changed.

How verification tasks are scheduled for execution has a significant impact on
developers’ experience of the continuous delivery process, in turn affecting their
productivity. Scheduling affects also how cost-effectively the available compute
resources can be utilized. By introducing the possibility to take checkpoints of the
progress of verification tools we enable them to be preempted, that means the actively
executing task can be switched when necessary. This makes scheduling of verification
tasks flexible leading to a number of benefits, such as short waiting times, interactive
service and high compute resource utilization. Preemption also enables introducing
new kinds of verification tools that require an extended execution time.

Previous research on checkpointing has focused on its use for fault-tolerance and
high availability where the primary interest is in retaining the state of a critical
application in case of the failure of the host computer. This is important for compu-
tational applications in high-performance computing (HPC) and service applications,
such as database management systems, in enterprises. We explore the limits of
checkpointing by utilizing it for the preemption of verification tools. The challenges
in this scenario are the complexity of the applications to be checkpointed and the
performance impact of the checkpointing procedure.

In practice, verification is automated with CD-systems that execute the build,
verification and delivery steps of the development workflow. CD-systems are built on
CD-platforms that provide task scheduling, execution, monitoring and development
tool integration. Developers interact with these systems many times a day meaning
interactive user experience and high performance of these systems is critical for the
velocity of the software development process.

Popular CD-platforms we looked into (Jenkins, Concourse, GoCD) rely on tradi-
tional job scheduling model. Tasks are queued in order of arrival and executed to
completion. This model is known to suffer of a number of problems. First, when
there is high variation in tasks’ length waiting time for short tasks will increase.
Second, it exhibits low resource utilization due to resource fragmentation. In practice,
verification tools that require a very long execution time (eg. fuzz-testers) cannot
be executed on these platforms. To overcome the limitations of the traditional
job scheduling model the literature recommends preemption, that is achievable by
checkpointing.

To implement checkpointing of verification tools requires a method to save the
progress of their execution. Verification tools rarely support this and implementing
state-saving retroactively is very difficult. However, in system-level checkpointing the
operating system saves the state of the requested processes. This means modification
of the applications to be checkpointed is not necessary. On the other hand, this
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method may suffer of a high performance overhead.
The use of checkpointing raises several questions: is system-level checkpointing

the optimal choice and is this method capable of capturing the diverse kinds of
resources used by verification tools? In addition, for good developer experience
CD-systems should process tasks interactively and without delay so we would like to
know how much execution time penalty preemption by checkpointing causes. Lastly,
because some verification tools can require substantial resources we would like to
know how large the resulting checkpoint images will be. In the following problem
statement we describe in more detail how we plan to answer these questions in this
thesis.

1.1 Problem Statement
Our main problem is that current continuous delivery platforms use inflexible and
inefficient scheduling methods. This leads to long waiting, uninteractive service,
low resource utilization and difficulty integrating more kinds of verification tools.
Preemption is suggested in literature to make job scheduling more flexible and
efficient and checkpointing has been proposed as one method of performing it. We
want to find out whether verification tools can be preempted by checkpointing.

Checkpointing of verification tools is not expected to be easy due to their com-
plexity. The problem is that these tools utilize many system resources in uncommon
ways which is likely to make their checkpointing difficult. The selected checkpointing
method needs to be able to record the state of these resources. In addition, verifi-
cation tasks often consist of multiple parallel processes and their state needs to be
recorded consistently together.

The final aspect of the problem is the performance of preemption. Because one of
our reasons for enabling preemption is to increase the interactivity of scheduling in
CD-platforms preemption itself should not cause too much execution time overhead.
Since CD-platforms are cluster computing systems where network attached storage
is used the data associated with the checkpoints must not be too large.

The goal of this thesis is to evaluate the capabilities and performance of checkpoint-
and restore for saving the state of software verification tools. We focus on system-level
checkpointing because it doesn’t require verification tools to be modified. Currently
the most actively developed system-level checkpointing utility for Linux is Checkpoint
and Restore in Userspace (CRIU) which we will evaluate.

To evaluate the selected utility we will empirically test its capabilities by check-
pointing several verification tools. We have chosen the tools so that they present a
sample of functionality used in software verification that is commonplace and likely
to expose issues and limitations of the checkpointing utility.

We report the capabilities of CRIU in checkpointing the resources utilized by the
tools. We also report our findings regarding the steps required for making the tools
checkpointable. We will also measure the size of the resulting checkpoint images and
the time taken by the checkpointing to determine the suitability of checkpoint- and
restore for interactive use.
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1.2 Research Questions
In this thesis we focus on answering the following questions:

• Can checkpoint and restore be used for saving the state of software verification
tools?

• Can all resources used by verification tools be saved by the checkpointing
method? Does the selected checkpointing utility support all of these resources?

• Is creating a checkpoint fast enough to be usable in an interactive continuous
delivery system? Does the size of the checkpoint files permit the use of network-
attached storage?

1.3 Contribution
This thesis provides the following contribution:

• Literature review of continuous delivery practice, the evolution of continuous
delivery platforms, modern cluster management systems and basic cluster
scheduling practices. Discussion of the benefits of enabling task preemption on
CD-platforms.

• Analysis of the feasibility of process checkpointing as a task preemption mech-
anism for CD-platforms, focusing on its use with software verification tools.

• Evaluation of the feasibility of Checkpoint/Restore in Userspace (CRIU) for
preempting common verification tools. Implemented by testing the checkpoint-
ing of American Fuzzy Lop (AFL), Valgrind, AddressSanitizer and Android
Emulator.

• Cursory evaluation of the performance of preempting AFL and Valgrind with
CRIU.

1.4 Outline
The rest of the thesis is structured as follows: In section 2 we will describe the
background of the thesis in more detail and present the relevant concepts discussed
in the thesis. In section 3 we will describe the methods we used for answering
the research questions. The implementation of our evaluation of the checkpointing
system is described in section 4. In section 5 we present the results of our evaluation.
In section 6 we discuss the results and in section 7 we conclude the work and our
findings.
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2 Background
In this section we present the context of this thesis and its motivation. We present
the scheduling problems in continuous delivery that led us to investigate preemption
and process checkpointing. We provide an introduction to the concepts relevant
for understanding the contribution of this thesis and throughout the text address
the current literature of the field. We also look at the current state of available
CD-platforms, cluster management and checkpointing methods.

We begin in section 2.1 with an introduction to continuous integration (CI) and
continuous delivery (CD) followed by a discussion about their importance in modern
software development. In section 2.2 we discuss continuous delivery platforms that
are used for the practical implementation of automated CD-systems. We compare a
number of different platforms ranging from dated to state-of-the-art.

Because continuous delivery at any significant scale requires cluster computing
we will in section 2.3 present how general purpose cluster management systems are
used for managing compute resources and simplifying application development. With
that knowledge we will in section 2.4 return to CD-platforms and discuss how they
schedule work to a cluster. We note several deficiencies in this scheduling for which
preemption, discussed in section 2.5, is proposed as an improvement.

We conclude in section 2.6 by introducing process checkpointing and the major
techniques of implementing it. We also discuss the state of currently available
checkpointing utilities with more focus on the CRIU-utility we evaluate in this thesis.

2.1 Continuous Integration and Delivery
Continuous integration (CI) is an agile way of doing software development. In
continuous integration software developers submit their source code changes frequently
to a common code repository managed with a version control system (VCS). This
automatically triggers a build of the software and the execution of tests and other
software verification tasks in a CI-system making any integration problems visible at
the earliest opportunity [18].

Continuous delivery (CD) extends this automation system to cover the additional
steps required for delivering the software product to its users. These steps can
include user acceptance testing, performance benchmarking, security scans, software
packaging in addition to the final deployment to staging or production environments
[3, 11]. The CD-workflow is illustrated in figure 1. From now on we shall refer to
this complete automation system as just the CD-system.

Continuous integration and continuous delivery are significant contributors to
the efficiency and speed of modern software development [3, 22]. Hilton et. al. have
found that, among other benefits, the use of CI has made software projects release
twice as often compared to projects not using CI [22]. The rapid integration of
changes increases the productivity of developers and decreases the time to market
[3]. CI and CD enable a short feedback loop leading to faster iteration cycles which
perfectly supports the iterative model of agile development.

According to Fowler, the main characteristics of continuous integration are the
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Figure 1: Continuous delivery workflow.

use of a version control system, automation of builds and tests and the frequent
integration of changes back to the mainline. The CI way of working is supported by
a continuous attention to maintaining the build in working order and keeping it fast.
Confidence is gained in the quality of the software by having the test environment
mirror the production environment as closely as possible. To make the CI workflow
transparent it is common to have build monitors that display the status of the CI
[18]. We will now discuss the main characteristics in more detail.

The basis for continuous integration is in the VCS. It is used to keep a master
copy of the source code known as the mainline. With the VCS it is simple for
developers to get a working copy of the latest source code and to maintain the local
changes they have made. In addition, the VCS is used for integrating the source
code changes back to the mainline and hence is often accompanied by a code review
system. The VCS also enables the use of branches that can be used to manage
pending code changes during their progression from development to production and
to maintain fixes to released versions of the software, though the use of branches is
better avoided to not complicate the development process [18].

Automating the build and test process saves time and makes the integration
faster. It reduces the probability that integration errors go unnoticed. Recording
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the dependencies of the software makes the build results reproducible and enables
developers easily build the complete software in their development environments.
This automation is important to give developers the ability to build and test the
software to reveal integration problems in their changes before submitting them
to the mainline. In addition, it is recommended that for every change the build
and tests are executed automatically in an integration server before the changes are
accepted to the mainline [18].

Frequent integration of changes is necessary to detect integration problems as soon
as possible. Fowler states that frequent integration is also a form of communication
that makes it visible if multiple developers are working on conflicting code. Since
developers are expected to integrate their changes to mainline at least daily others
will soon know if their changes will not work with the latest mainline [18].

We have now discussed what continuous delivery is and what its benefits are. We
will next have a look at how continuous delivery is implemented in practice with
continuous delivery platforms.

2.2 Continuous Delivery Platforms
We discussed earlier how changes are built and verified before they are integrated
into the mainline. In continuous delivery there is also a multitude of other tasks to
execute before every delivery, such as packaging and additional forms of verification.
The CI literature refers to the environment where these tasks are executed as the
integration server. In practice, however, these environments can be much larger than
a singular server. In addition, software is required for building the automation for
executing and monitoring the tasks. We call as continuous delivery platform the
software that enables developers to build an automated CD-system for their project.

Some of the first systems for automating continuous integration were CruiseCon-
trol1, Hudson2 and TeamCity3. These systems were initially not much more than
simple batch task executors. Triggered by a schedule or a change submitted to
the VCS they would execute a configured list of tasks and notify developers of the
results [25, 37]. In the beginning all tasks were executed locally, but support for
remote execution was quickly added to Hudson and it is nowadays also supported by
TeamCity [25].

From Hudson spun off the now very popular Jenkins project4. The recent versions
of Jenkins allow the continuous deployment process to be defined as a pipeline of
consecutive jobs, each job consisting of one or more tasks to be executed. Parallel
execution of tasks is also supported. There are a large number of plugins for Jenkins
that enable additional functionality and integration to many development tools.

The task scheduling model in Jenkins remains similar to Hudson at its core. Jobs
are placed to a queue and executed to completion in first-in first-out (FIFO) order.
Jobs can be executed in parallel if multiple Jenkins executor instances are available.

1CruiseControl, http://cruisecontrol.sourceforge.net
2Hudson, http://hudson-ci.org/
3TeamCity, http://www.jetbrains.com/teamcity/
4Jenkins, https://jenkins.io/

http://cruisecontrol.sourceforge.net
http://hudson-ci.org/
http://www.jetbrains.com/teamcity/
https://jenkins.io/
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With a plugin it is possible to assign different priorities for jobs that affects their
place in the queue, but once started jobs are executed to completion regardless of
their priority.

In recent years there has been a proliferation of platform-as-a-service (PaaS) cloud
services for continuous delivery, including TravisCI5, Appveyor6 and CircleCI7. These
provide a set of features mostly comparable to Jenkins, but are not as customizable.
Their greatest advantage is that since they are offered as services they are very easy
to take into use. Their task scheduling models have some minor differences, but
generally compared to Jenkins are more streamlined. TravisCI and Appveyor provide
a fixed pipeline of steps that execute user-defined tasks, whereas CircleCI allows
defining more complex pipelines similar to Jenkins.

In addition to the PaaS-services, there are also some new competitors for self-
hosted continuous delivery platforms. Concourse8, GoCD9 and Drone10 are some of
the most recently introduced. They promise good usability, such as a clear ways of
defining the pipelines, powerful visualizations and easier debugging.

A great advantage of the newer platforms Concourse, GoCD and Drone is the
easy modeling of CD processes with clear sequential pipelines and steps. However,
the disadvantage of all of these is that their task scheduling model is designed for
batch execution and more flexible scheduling schemes are not supported. This limits
the kind of tasks that can be executed in these systems. In addition, all of these
systems require their own environments for executing the tasks, which means that a
dedicated cluster is required for the system.

In literature we can find some descriptions of state-of-the-art continuous delivery
platforms developed at Google and Microsoft. First we have the Test Automation
Platform (TAP) and its closely related build system Bazel developed at Google [32].
The second is CloudBuild and its successor Concord developed at Microsoft [39].
What is common in them is that they have been designed for large-scale use to enable
a single distributed CD platform to be used at the scale of the whole enterprise.
For Google TAP, Memon reports that the system executes almost one million build
tasks and more than 150 million verification tasks daily [32]. Esfahani reports that
Microsoft’s CloudBuild employs 10 000 machines, has more than 4 000 users with the
daily number of executed build tasks exceeding 20 000 [15].

The problem TAP and CloudBuild try to solve is to scale continuous delivery for
thousands of developers. The main issue is how to build and verify all the changes
submitted at a high rate to the companies’ monolithic code bases. Simply keeping
up with the high rate of changes is a problem in itself, but the high computation
cost of supporting CD at this scale and providing developers fast feedback are other
equally important concerns [15, 32].

TAP and CloudBuild solve these problems mainly by tight integration with the
5TravisCI, https://travis-ci.org/
6Appveyor, https://www.appveyor.com/
7CircleCI, https://circleci.com/
8Concourse, https://concourse-ci.org/
9GoCD, https://www.gocd.org/

10Drone, https://drone.io/

https://travis-ci.org/
https://www.appveyor.com/
https://circleci.com/
https://concourse-ci.org/
https://www.gocd.org/
https://drone.io/
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novel build systems they are accompanied with and their data-parallel approach to
task scheduling. Granular dependency information maintained by the build system
enables the effective distribution and massive parallelization of build, verification
and other CD tasks. In addition, striving for strict determinism in the build and
verification steps enables aggressive caching of build outputs and verification results
enabling a significant amount of computational work to be avoided [15, 32].

The current continuous delivery platforms Jenkins, GoCD, Concord and the
others presented all perform simple batch scheduling of tasks, which naturally follows
from the way these systems represent CD-pipelines as consecutive jobs of tasks.
However, TAP and CloudBuild use task scheduling models similar to those used
in data-parallel computing frameworks. Data-parallelism means the data set to be
processed, in this case consisting of source code, build artifacts and development
tools, is distributed to a cluster of compute nodes where it is processed in parallel by
multiple nodes [44].

Esfahani has stated that the design of CloudBuild was influenced by Apache
Tez, which is a DAG-scheduling11 framework, and Apache YARN, which is a cluster
resource management framework [15, 45]. From dependency information CloudBuild
computes what tasks need to be executed (and what can be reused from cache) and
then uses DAG-scheduling to schedule the execution of the tasks in the cluster [15].

An emerging theme in the CD-platforms we discussed is the use of cluster
computing to enable the platforms to scale out to support a higher workload. The
use of data-parallel computing makes the modern CD-platforms increasingly similar
to systems used in scientific computing and big-data processing. An advantage of
this is we can utilize the learnings made in the research of those fields to increase the
efficiency and flexibility of CD-platforms. Utilizing data-parallel cluster computing for
CD has its challenges as well, such as the SDK-problem12 of distributing development
tools that take time to install.

We have now discussed the characteristics of continuous delivery platforms. We
also presented some history of the software that implements such a platform and
described several current- and state-of-the-art solutions. Because at large scale
continuous delivery relies on cluster computing and the trend in CD is to utilize
data-parallel techniques we will next take a moment to discuss how clusters are
managed and how they execute work.

2.3 Cluster Management Systems
We will now introduce the main features of cluster management systems. Most
importantly, we will discuss work scheduling that is the primary function of these
systems. With this knowledge we are able to better describe the work scheduling
models used by the CD-platforms we presented in section 2.2 and to see their
advantages and limitations. By understanding continuous delivery platforms as
applications of cluster computing systems we can see how more efficient and responsive
task execution is achievable if more flexible scheduling models are available.

11directed acyclic graph
12software development kit
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Developing applications that utilize a cluster of computers is a problem for orga-
nizations in many fields, notably scientific computing and Internet service enterprises
[23]. For this reason there exists a number of competing solutions to make the
application development easier and to maximize the efficiency of cluster resource
utilization. These can be categorized to cluster management systems and cluster
computing frameworks. Older solutions are generally monolithic systems that couple
together the application programming paradigm and resource management, which
means these groups are partially overlapping [23, 45].

Cluster computing frameworks, like MapReduce and Pregel are designed for
solving particular kinds of data processing problems. They tightly couple the compute
resource management with the programming model [23]. Hadoop YARN is an attempt
to decouple the programming model from the compute resource management enabling
many programming models to be used concurrently in one cluster [45]. Mesos is
a similar effort, that uses two-level scheduling to divide the resource management
responsibility between the cluster management system and the application to enable
multiple cluster computing frameworks to share a cluster [23].

Cluster management systems provide a platform for executing tasks of many
kinds. Apollo is a DAG-scheduler that is intended for tasks that can be represented as
an acyclic graph of dependent jobs [7]. Borg and Omega were designed for executing
a mixed workload of batch- and service jobs [41, 46]. Kubernetes is similarly designed
for a mixed workload, but with focus on easy building of distributed services [10].

The purpose of a cluster management system is similar to an operating system
kernel, but at the level of a cluster of machines. The cluster management system
manages tasks that are executed in the cluster, isolates them from each other
and makes sure resources are shared according to configured policies. But most
importantly, the cluster management system operates the cluster scheduler that
decides the placement of tasks in the cluster [40].

Scheduling is a resource management problem where a number of tasks compete
for a set of shared resources. Solving the scheduling problem requires finding a
sequence of the tasks where each gets to use the resources on their turn. In addition,
there is usually an objective to be maximized and a cost to be minimized, and
possibly constraints on the assignment of jobs to resources. The resulting sequence
of task to resource assignments is the placement [2].

The scheduling problem has a number of different forms in cluster computing.
Scheduling is performed locally within each host and globally at the cluster level.
The tasks to be scheduled can be dependent (ie. DAG-scheduling) or independent
(job scheduling). Lastly, the placement can be decided in advance before execution
begins (static scheduling) or during execution (dynamic scheduling) [2].

The traditional model of job scheduling is based on a fixed partitioning of the
machines in the cluster. A set of work queues is assigned to each partition. When
there is idle capacity within a partition more work is pulled from one of the assigned
queues. Jobs are assigned to a specific queue according to the job’s characteristics.
The job queues themselves can be assigned varying priorities, enabling giving priority
to certain kinds of jobs. Within a queue jobs are ordered in a strict first come first
served (FCFS) ordering [17]. This model is illustrated in figure 2.
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Figure 2: Example of the traditional cluster scheduling model.

Feitelson has described several shortcomings of the traditional model caused
by its inflexibility and inefficiency. First, in this model jobs are always executed
to completion. This results in poor responsiveness because the execution of long
jobs blocks the execution of short jobs leading to extended waiting and thereby
uninteractive user experience. Second, the sizes of the resource partitions are fixed
and do not accommodate jobs of varying sizes or jobs that change size over their
lifetime. Equipping this model with variable resource partitioning results in the
additional problem that, since the scheduler cannot see the future it will make
unoptimal choices in which jobs to start leading to fragmentation of the resources
[16, 17].

To increase the flexibility and the efficiency of job scheduling Feitelson has listed
some better scheduling techniques that could be used. Dynamic partitioning of
resources would lead to their more efficient utilization by better accommodating jobs
of varying sizes. Job preemption would enable gang-scheduling and time-slicing of
resources leading to shorter response times and better user experience. Time-slicing
solves the problem of having to execute an a posteriori unoptimal choice of jobs to
completion therefore increasing resource utilization [16, 17]. Preemption is also the
focus of this thesis.

We have now discussed the way cluster resources are managed, how work is
scheduled in a cluster and how choices in scheduling affect a system’s flexibility and
efficiency. Equipped with this information we can return to continuous delivery
platforms and evaluate them from the point of view of their work scheduling practices.
We will do so in the next section.

2.4 Scheduling in Continuous Delivery Platforms
The increasing adoption of continuous delivery and the advances in software verifica-
tion put more pressure on the CD-platforms that execute the jobs that build, verify
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and deliver software products. When the number of users and jobs in a CD-system
grows and the job variety increases the rudimentary scheduling models used by most
of the current CD-platforms will show their limitations. Job execution becomes slow
and uninteractive and increasing the system’s capacity is increasingly costly. This is
clearly a scalability problem.

To increase the scale of continuous delivery we need to be able to utilize the full
capacity of the available computation infrastructure. But there are also times when
the full capacity of the infrastructure is not needed. For example, an enterprise’s
software development activities may be localized to certain neighboring time zones
which means the infrastructure will be underutilized outside the regular office hours
and on weekends. For cost-effective operation we would like to get as much out of
the resources as possible.

Our goals of making a CD-platform get the most capacity out of cluster resources
and maximizing their utilization are the same goals cluster management systems
and workload management systems, discussed in section 2.3, have tried to meet. We
can therefore use the research and learnings regarding those systems to evaluate
the current state of CD-platforms. We will focus on characterizing the platform’s
scheduling models.

As the most widely used CD-platform our primary interest is in Jenkins. The
scheduling model in Jenkins is very similar to the traditional job scheduling model
described by Feitelson [17]. A pipeline in Jenkins defines a sequence of stages. When
the pipeline is triggered the stages are placed in a queue and executed in order by
free executors13. In scheduling vocabulary the Jenkins stages correspond to jobs and
executors to partitions of the available compute resources.

Jenkins allows stages and executors to be assigned labels. The labels enable
certain kinds of stages to be executed on specific executors. This achieves effectively
the same as the queues-to-partitions mapping in the traditional job scheduling model.
However, since Jenkins uses only a single queue all pending stages will be blocked if
there is no free executor satisfying the requirements of the stage at the front of the
queue.

In Jenkins the stages are executed to completion and preemption is not supported.
This means that scheduling in Jenkins shares the deficiencies of the traditional job
scheduling model, most significantly long waiting times when there is high variability
in the execution times of jobs. This limits the types of tasks we are able to perform
as part of CD and harms users’ satisfaction with the system.

With a plugin it is possible to assign stages static priorities14. However, since
preemption is not supported there is no way to perform priority preemption that
is preempting running jobs to free up resources for pending jobs of higher priority.
Therefore the effectiveness of prioritization in Jenkins is limited.

In GoCD a pipeline defines a set of jobs. When triggered, the GoCD Server
schedules the jobs by assigning them to available GoCD Agents that match the jobs’

13Jenkins – Defining Execution Environments. https://jenkins.io/doc/pipeline/tour/
agents/

14Jenkins – Priority Sorter Plugin. https://wiki.jenkins.io/display/JENKINS/Priority+
Sorter+Plugin

https://jenkins.io/doc/pipeline/tour/agents/
https://jenkins.io/doc/pipeline/tour/agents/
https://wiki.jenkins.io/display/JENKINS/Priority+Sorter+Plugin
https://wiki.jenkins.io/display/JENKINS/Priority+Sorter+Plugin
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requirements15. The agents periodically poll the server to know when new jobs have
been assigned to them and if the agents are free they will begin executing them.

The job scheduling model of GoCD is not documented very extensively. Moreover,
in the user interface of GoCD there is currently no way to see what jobs are pending16.
These make it difficult to characterize the scheduling model of GoCD. However,
based on what we can see the model appears similar to the traditional job scheduling
model, likely sharing the same limitations as Jenkins.

The other available CD-platforms are not significantly different from the two
we just discussed. Greater differences can be found in the state-of-the-art solutions
TAP and CloudBuild that are based on DAG-scheduling. They make use of the
tight integration with their related build systems to extract a graph of jobs to be
scheduled and utilize an external cluster management system for the job scheduling
and execution.

The modern CD-platforms (eg. GoCD) are beginning to support execution in
shared clusters managed by external cluster management systems (eg. Kubernetes).
This enables CD-systems to share computing resources with other cluster computing
frameworks increasing resource utilization. It also enables the CD-platform to benefit
of the more flexible scheduling model provided by the underlying cluster management
system. However, currently available CD-platforms don’t seem to make use of this
yet.

We have now seen that the current scheduling practices in CD-platforms don’t
quite enable us to reach our goals of interactivity and utilization. What we believe is
the greatest deficiency in the scheduling models of the platforms is that they focus on
sequential queuing of tasks and execution to completion. They do not allow tasks to
be paused and resumed or migrated. Prioritization of tasks only affects their queue
positions but once tasks are running they will execute to completion regardless of
pending tasks of higher priority.

The consequence of these poor scheduling practices is that we don’t get the full
capacity of the cluster resources and the platform becomes non-interactive when
there are tasks that take a long time to execute. Since the resource partitioning is
fixed and tasks cannot be migrated the options for task placement are limited leading
to suboptimal placements. Because tasks cannot be preempted the prioritization
of tasks is ineffective and long running tasks cause short tasks to experience a long
latency.

One solution to improve the scheduling in CD-platforms is to enable task preemp-
tion. Task preemption would enable migration of tasks enabling better placements
through rescheduling. It would also allow more effective prioritization by priority
preemption. In the next section we will present preemption in more detail and discuss
how it can help in reaching our goals.

15GoCD Developer Documentation. https://developer.gocd.org/current/4/4.2.html
16https://github.com/gocd/gocd/issues/14

https://developer.gocd.org/current/4/4.2.html
https://github.com/gocd/gocd/issues/14
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2.5 Preemption
Preemption means an active task is involuntarily paused to give another task the
turn to execute. In preemptive scheduling the scheduler is allowed to switch active
tasks to meet its objectives. This is in contrast to co-operative scheduling, where
the scheduler can only start another task after the first one finishes or yields control
voluntarily. Preemptive scheduling of tasks at the cluster level is also known as gang
scheduling [16].

Preemption makes scheduling much more flexible. The main benefit is that it
enables resources to be time-shared between competing tasks. Time-sharing leads
to higher utilization of compute resources [16]. Combined with task migration
preemption enables rescheduling to achieve more efficient placements [19]. It enables
effective prioritization of tasks and short response times even when the tasks are of
highly varying lengths [16].

Time-sharing improves the utilization of compute resources because it reduces
the effects of their fragmentation. Feitelson has argued that because the length of
tasks is usually not well known in advance and because the scheduler cannot know
what future tasks will arrive this will lead to fragmentation of compute resources.
Fragmentation causes low utilization of the resources because tasks of different sizes
may not fit for execution at the same time. Time-sharing overcomes the problem of
fragmentation and therefore leads to higher utilization [16].

Another advantage of time-slicing is that it enables the system to be used for
interactive work. With time-slicing long running tasks will no longer cause short
tasks to experience a high latency. As Feitelson has stated, users expect short tasks to
finish in a short time [17]. This means time-slicing makes the system more responsive.
This also enables the system to execute tasks of greater variety without harming the
system’s interactivity.

With support for task migration preemption enables the scheduler to move running
tasks to different nodes. This can result in better placements because existing tasks
can be rescheduled. Rescheduling means the scheduler considers all of the tasks in
the system, including those that are already executing, when deciding placement [19].
This enables the scheduler to spread, consolidate and arrange tasks in such way that
the efficiency of their execution is maximized, reducing resource fragmentation [17].

Preemption enables tasks to be effectively prioritized, since it allows low priority
tasks to be evicted to execute a task of higher priority. This is called priority
preemption. This reduces the waiting time high priority tasks experience until
the start of their execution. Without priority preemption the task prioritization
would not be as effective since the tasks would have to wait for free resources before
execution can begin [29].

The advantages of preemption are interesting for a CD-platform. Time-slicing
would alleviate the problem of long-running verification tasks blocking the execution
of short tasks. It would also increase the utilization of the CD resources increasing
their cost-effectiveness, compounded by prioritization that enables utilizing the idle
capacity of the system. In addition, better placements would increase the performance
of CD-systems overall.
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Figure 3: State captured by each checkpointing method.

Of these advantages, the increased responsiveness has an additional twofold
benefit for CD-systems: it would improve the responsiveness of existing systems
and enable us to comfortably execute a larger variety of tasks of different execution
times. This would make it possible to integrate new kinds of verification tools such
as fuzz-testers and load testing into CD-systems.

We have presented what preemption is and what kind of benefits preemptive
scheduling would have for CD-platforms. However, to actually implement it a
mechanism to preempt tasks, that are a group of one to many processes executing in
a node of the cluster, is needed. Since our focus is in CD-platforms we are interested
in how this works with verification tools specifically. One way to implement task
preemption is process checkpointing which we introduce in the next section.

2.6 Process Checkpointing
Process checkpointing means saving the state of a process to a file. This enables the
execution of the process to be stopped and later resumed. The main difference to
process preemption of the operating system is that a checkpoint enables the process
to be terminated and its resources freed when it’s not executing. Some checkpointing
methods allow the checkpoint to be taken of a group of processes together.

Checkpointing has been studied for many purposes. It has mainly been used for
increasing the fault tolerance of large computation jobs in scientific high performance
computing (HPC) applications [9, 27, 38, 47]. It can also be used to increase service
availability and to implement load balancing [27]. In this thesis, however, we will
focus on using it for enabling task preemption. This use has been discussed earlier
by eg. Roman, Arora and Zhong [5, 38, 47].

There are a number of methods to implement checkpointing at different levels
of the system. These include application-level checkpointing (ALC), library-level
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checkpointing (LLC), system-level checkpointing (SLC) and compiler-assisted check-
pointing. Each method has its own advantages and disadvantages depending on the
intended use and tool availability for utilizing these methods varies by platform. We
have illustrated the state each method captures in figure 3. Next, we will shortly
introduce the methods.

The most basic checkpointing method is ALC. In ALC an application simply
saves its own progress and exits. To resume the checkpoint the application loads
the state of its previous progress and starts execution from that point. This is what
many ordinary applications already support. However, implementing this can be
difficult and time-consuming for many applications and even more so to retrofit it
to existing applications. Since ALC-checkpointing is built-in and unique for each
application this method is not universal [4].

The greatest advantage of ALC is that it produces the smallest checkpoints since
each application only has to save what state is necessary to reconstruct the progress
at the checkpoint. This means that ALC is also the fastest method. ALC produces
portable checkpoints, since only the progress of the application’s work is saved [4].

Compiler-assisted checkpointing works in similar way as ALC, but the code to
record the state of the application’s work is automatically added by a special compiler.
This method is therefore comparable to ALC in performance. The automatic code
generation makes this method easier to take into use than ALC, but is limited by
the availability of such compilers. Silva has noted that this method cannot support
arbitrary applications, since the state of external resources (eg. communication
channels) cannot be captured by the application [43].

In LLC an application is started with a wrapper library that intercepts and tracks
the application’s system calls enabling the state of the application’s resources to be
checkpointed. This requires the wrapper library to implement a considerable amount
of functionality to support all system calls of the kernel. A result of this is that not
all system calls may be supported by an LLC-system [38].

An advantage of LLC is that it can be implemented in user-space. Duell has stated
that for some use-cases this can be a disadvantage too, since it may not be possible
to modify all process’ resources from user-space. Duell states therefore that LLC
cannot restore all types of resources limiting its application support [14]. However,
Duell has listed as examples of such resources process IDs, which for instance in
current versions of Linux can be specified by user-space. We gather that the research
on LLC is not fully up to date, but the argument may be valid for certain resources
in other operating systems.

SLC is checkpointing implemented in the operating system. In SLC the operating
system saves the state of all of the application’s resources. SLC’s main advantage is
that it is transparent for the application to be checkpointed and does not require
wrappers or other preparation of the application. A disadvantage that results from
this ease of use is that SLC-checkpoints will be large since they consist of the state
of the whole application, which may contain unnecessary or redundant data [43].

We have introduced checkpointing and some methods for performing it. This
concludes our review of literature and practices. In the next section we will choose a
checkpointing method for use with verification tools and present how we evaluate it.
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3 Methods
In this section we describe what methods we have chosen for answering our research
questions. We will weigh the advantages and deficiencies of the methods and discuss
how they affect the validity of our results. We will also describe in detail the empirical
tests we are about to perform.

We will first describe how we approach our primary research question of the
feasibility of preemption by checkpointing. We explain how we selected a check-
pointing technique and a checkpointing utility that would be suitable for preempting
verification tools. We will then discuss why there is a need to perform empirical tests
of the utility to reveal its usability.

We continue with a discussion on how we performed the empirical tests of the
checkpointing utility we selected (CRIU). We also present the measurements we
used for evaluating the interactivity of the utility. This involves measurements
of the checkpoint creation time and size. Since we perform empirical tests of the
checkpointing utility this section is concluded by a detailed description of the four
verification tools we selected for testing.

3.1 Finding out the Feasibility of Checkpointing
Our hypothesis for the primary research question is that checkpointing is a feasible
technique for preempting verification tools. To verify the hypothesis we need to
show that there exists a checkpointing utility capable of saving and resuming the
execution of verification tools. Since we cannot test all verification tools that exist we
will focus on several selected tools that we consider to be representative of common
functionality used in software verification. Because of the many kinds of verification
tools and the different ways to configure them our results may not apply to all of
them and under all configurations.

Processes can be checkpointed on different levels of the system. The first step
of verifying the hypothesis is to choose a checkpointing technique that best suits
our needs. Our use case of checkpointing verification tools in a continuous delivery
system places some requirements on the checkpointing method. We will now list the
criteria we had for choosing the method.

Verification tools use many kinds of system resources, including uncommon ones,
and in ways that are not common for ordinary applications. The main requirement
for the checkpointing method is that it needs to be able to capture all of these
resources. The second requirement is that the checkpointing technique must not
require modification of the verification tools since that can be very difficult. Lastly,
to maintain the interactivity of the CD-system the checkpointing should not cause
too much performance overhead.

In addition to these general requirements the practical implementation of check-
pointing places some more criteria on the choice of the method. First of all, we need
an actively maintained checkpointing utility for our x86-64 Linux platform to perform
the checkpointing. To ease the integration to CD-platforms the checkpointing method
should not require a nonstandard kernel or additional kernel modules. Overall, we
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Advantages Disadvantages
Application-level
• Small checkpoints • Tool-specific
• Fastest • Hard to implement in existing tools
• Tool decides when to checkpoint
Library-level
• Tool may decide when to checkpoint • Limited resource support

• May change tool behavior
• May require tool modification

System-level
• Can capture all resources • Checkpoints may not be portable
• No tool modification • Large checkpoints
• Actively maintained utility exists • Slowest
Compiler-assisted
• Fast • Not available for our platform

• Requires tool’s source code

Table 1: Comparison of checkpointing techniques for use with verification tools.

prefer the checkpointing method that is the easiest to introduce.
We will next compare checkpointing methods according to the criteria we defined.

The methods of Application-level, Library-level, System-level and Compiler-assisted
checkpointing are compared. The comparison is also presented in table 1.

In application-level checkpointing (ALC) the verification tool itself would be
responsible for saving its execution state. Unfortunately our verification tools mostly
do not support saving their state and we also believe that generally few verification
tools have that feature. Implementing ALC support into the verification tools is very
likely a complicated task requiring lots of effort, so we do not expect the tools to
feature it soon [5, 38, 43]. Thereby we reject ALC and have to look at the other
options.

The second option is compiler-assisted checkpointing. In compiler-assisted check-
pointing the verification tool is compiled with a specialized compiler that automatically
inserts state-saving code into the application [43]. Since we are not aware of any
actively maintained projects offering such a compiler for our x86-64 Linux-platform
we reject this technique. Another reason to reject this technique is that it is not
usable without access to the source code of the verification tool which we may not
have for proprietary tools.

The third option is library-level checkpointing (LLC). Depending on the LLC
solution used it can require the target application to be modified. Because LLC
works by tracking the system calls of the target application it can be limited in its
capability of checkpointing all system resources required by verification tasks. It can
also affect the behavior of the target program. We will therefore not consider LLC
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in this thesis, but it can be a feasible solution in some cases.
Our final option is system-level checkpointing (SLC), which means that the

operating system is able to checkpoint the state of processes without any support
from the processes themself [5, 14, 38, 1, 43]. Because it does not require any
modification of the target processes we therefore choose to focus on system-level
checkpointing. In the next section we will discuss it in more detail.

3.2 System-Level Checkpointing
In this thesis we focus on system-level checkpointing. We chose this checkpointing
technique primarily because it is transparent to the processes being checkpointed.
It does not require any support from the tools that are checkpointed [5, 43]. The
verification tools used in our CD-system are from multiple providers and have not
been designed to support checkpointing. Therefore SLC is the easiest checkpointing
technique to take into use.

Another reason to choose SLC is that the operating system kernel has the most
complete view of system resources utilized by the verification tools and therefore has
the best capability to checkpoint them. This is in contrast to LLC, that depends
on capturing system calls made by the target application and may not support
checkpointing all the system resources it uses [14, 38]. Capturing system calls would
also cause an execution performance penalty that does not happen with SLC.

System-level checkpointing is also able to fully restore the state of all system
resources. User space solutions are unable to restore some resources, such as process-
and session IDs [14].

Our final motivation for choosing SLC is because there exist actively developed
SLC utilities for our x86-64 Linux platform. There is also recently published research
about these tools.

System-level checkpointing does have some disadvantages for use in preemption.
Out of the available options it is known to have the highest performance penalty
and produce the largest checkpoint images [43]. This is because the checkpointing
system does not know which resources of the target processes are necessary to save
and which are not. The large size of the checkpoint image causes the checkpoint
creation to take more time and to require more data transfer than the alternatives
[5].

Another disadvantage of SLC is that due to the hardware and kernel specific
attributes of processes such as available CPU instruction sets, system-level checkpoints
are dependent on the host system and may not be portable to different hosts [43].
This means that using SLC checkpointing can require using homogeneous hosts to
execute the verification tools.

Because in this thesis we choose to focus on SLC it means that if some verification
tool is not checkpointable with SLC-checkpointing it could still be checkpointable
with some other checkpointing technique like LLC and likely with ALC. Therefore
the choice of SLC necessarily limits the validity of our results.

Since we chose to use system-level checkpointing we needed an SLC checkpointing
utility for x86-64 Linux. Currently there exist two options: Berkeley Lab Check-
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point/Restart17 (BLCR) and Checkpoint- and Restore in Userspace (CRIU).
BLCR has been designed for use in scientific computing with the primary purpose

of enabling gang scheduling and migration of processes. BLCR consists of a kernel
module and a user space library the target application must be loaded with [14].
CRIU, however, only requires a recent kernel of version 3.11 or later18. The CRIU-
project also seems more actively developed since the last software release from the
BLCR-project is from year 2013.

The ability to use an unmodified kernel and to not require the target applications
to be launched with additional libraries would make the integration of checkpointing
into our CD system much easier and therefore we choose to evaluate CRIU in this
thesis. There are also recently published articles reporting successful use of CRIU
which further motivated our choice [24, 1].

3.3 Evaluating CRIU
To evaluate whether CRIU is capable of checkpointing verification tools we will test it
with several selected tools. Although the system resources CRIU is able to checkpoint
are documented quite thoroughly it is difficult to determine the checkpointability
of the verification tools based on the documentation alone. Documentation can
be incorrect or incomplete and we must verify the actual capabilities of the tool.
More importantly, we do not have sufficient documentation of what resources the
verification tools require. Finding out that information would require extensive
studying of the source code of the verification tools and may easily omit something.
In addition, since there can be limitations in how system resources can be utilized
while still allowing CRIU to checkpoint them we consider empirical testing to be
necessary to reveal the practical effectiveness of CRIU.

With empirical testing of the CRIU utility there is a possibility that the verification
tools we test are checkpointable under our configuration, but may not be under
some other configuration we did not test. This is a threat to the validity of our
results. However, we attempt to reduce this effect by following the instructions
of the verification tools and testing them in a recommended configuration. The
opposite is also possible, that the verification tools are not checkpointable under
our configuration, but are in some other configuration. To get valid results we
need to thoroughly investigate the root cause of checkpointing failures to rule out
configuration mistakes.

Our first test of CRIU is to execute each verification tool and to checkpoint the
entire process tree of the tool while it executes. This shows that CRIU is capable of
checkpointing all processes started by the verification tool and the system resources
they use. If CRIU is unable to checkpoint a tool we will investigate if it is possible
with a reasonable amount of work to configure the tool such that it is checkpointable.

Because the state of the verification tool changes during its execution we do not
know what resources are in use at the exact time we perform the checkpoint. Therefore

17Berkeley Lab Checkpoint/Restart (BLCR) for Linux. http://crd.lbl.gov/departments/
computer-science/CLaSS/research/BLCR/

18CRIU, Installation. https://criu.org/Installation

http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
https://criu.org/Installation
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strictly speaking we do not have a complete certainty of the checkpointability of
the tools from a single trial. However, our subsequent tests of CRIU will include
repeated checkpointing of the verification tools and we assume that any issues would
be revealed then. Since we try to model a scenario where the verification tool is
preempted by the checkpoint we always create full checkpoints and not incremental
checkpoints19 which could be used for speeding up successive checkpoints.

After a successful checkpoint we will resume the tool to verify that it is able
to continue execution. This is because some resources including system time and
process statistics20 change during the checkpoint- and resume procedure and we
want to verify this doesn’t cause the verification tool to fail continue execution. The
way we determine the execution of the tool continues successfully is specific to each
verification tool and we will discuss this more when we present the individual tools.

3.4 Interactivity of CRIU
After we have verified the tools can be successfully checkpointed and resumed we
proceed to measure the time taken by creating a checkpoint that is our second test.
Because continuous deployment systems are used in an interactive way and it is
commonly preferred by software developers that build- and verification tasks execute
in less than 10 minutes, no more than 2 minutes being preferable, the system should
always be responsive [28]. Therefore when a new important task is submitted to the
system it should not take too long to preempt a currently executing less important
task to free resources for the new task. Measuring the time it takes to create a
checkpoint tells us whether checkpointing with CRIU can be used for preempting
verification tasks in a CD-system allowing us to use it for a greater variety of tasks of
different execution time requirements and priorities without losing the interactivity
of the system.

The measurement of the checkpoint creation time is performed by starting the
verification tool and repeatedly creating a checkpoint of it. The verification tool is not
reset between measurements and CRIU is configured to leave the tool running after
the checkpoint is created. Performing the measurement this way gives us information
if (and how) the checkpoint creation time changes over the lifetime of the verification
tool.

Since the verification tools we are interested in are expected to require long
execution times measuring the checkpoint creation time at different points in the
lifetime of the tool yields us more describing results. In addition, since the verification
tools may require some time after their start up to ramp up the actual work, due
to eg. preprocessing of test input data, resetting the tool in between measurements
would not yield realistic results. We repeat the measurement 10000 times with 10
seconds between each measurement. This results in taking measurements of the
checkpoint creation time of the verification tool for over 24 hours.

Our third test of CRIU is to measure the size of the checkpoint images. A
checkpoint image is the state of the running processes written to disk. The checkpoint

19CRIU, Incremental dumps. https://criu.org/Incremental_dumps
20CRIU, What can change after C/R. https://criu.org/What_can_change_after_C/R

https://criu.org/Incremental_dumps
https://criu.org/What_can_change_after_C/R
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image contains the virtual memory of the processes including program text, data
segments (static, heap) and stack. The CPU execution state including the contents
of all registers is also saved to the checkpoint image. In addition, the state of all of
the processes’ associated kernel resources, such as file descriptors, signal handlers,
IPC channels, timers and sockets are also saved to the image [30, 38].

Because we are interested in distributed continuous deployment systems where
the checkpoint images would possibly be stored in network attached storage it is
important that the checkpoint images are not so large as to take a long time to
transfer over network. In addition, since storage space in these systems is often
limited and is always a cost we would prefer the checkpoint images to be as small as
possible. Therefore the size of the checkpoint images directly affects the feasibility of
checkpointing in an interactive CD system. Because the virtual memory segments
of the verification tools can be substantial and as Li has shown the memory size of
the processes correlates with the image size we would like to know how large the
resulting checkpoint images will be [29].

Since some of verification tools use virtual memory in unconventional ways, which
we will later discuss in more detail, we are interested in seeing whether it has an
adverse effect on the size of the resulting checkpoint images. We would also like to
know how the different kinds of virtual memory segments, such as shared memory,
file-backed memory or unreserved memory are handled by CRIU and whether they
have an effect on the image size.

CRIU saves the checkpoint image as a collection of files into an image directory
we specify so the size of the checkpoint image is essentially the total size of the files
in the directory. We measure the checkpoint image size by calculating a simple total
size of the contents of the image directory using the standard du utility.

For the same reasons as with the checkpoint time measurement, we will measure
the image size at different points in the lifetime of the verification tasks by measuring
it repeatedly with 10 second intervals for 10000 samples. In practice we combined this
measurement with the checkpoint time measurement to allow both to be performed
with a single test run.

We have discussed so far our general methods of evaluating the capabilities and
performance of CRIU. We will now present the sample verification tools we use as
the target processes to be checkpointed with CRIU.

3.5 Short-Lived Processes
We begin the evaluation of CRIU with a verification tool that rapidly creates new
processes that execute only a short time before terminating. We are interested in
testing the checkpointing of this kind of short-lived processes because they commonly
occur when executing software robustness tests. For example in fuzz-testing a target
application is repeatedly executed in parallel with different inputs and the execution
of the processes can be very short and often ends with a crash.

This kind of verification tool can reveal deficiencies in the checkpointing utility if
it does not properly guarantee consistency of the checkpoint image when processes
change rapidly and concurrently. Problems can be caused by race conditions due
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Figure 4: AFL process hierarchy and communication.

to the process tree changing or the state of the processes or their system resources
changing during the checkpoint creation or restoration. Consistency of the processes
is maintained by freezing their execution for the duration of the checkpoint creation
and restoration and we want to see how well CRIU performs this [27].

To test CRIU’s behavior with short-lived processes we tried checkpointing the
American Fuzzy Lop21 (AFL) fuzz-tester. AFL is a popular, easy to use and freely
available fuzz-testing tool. It repeatedly executes a target application with different
generated inputs and attempts to make the application take execution paths that
lead to crashes or hangs. To speed up the repeated execution AFL is usually launched
with several parallel instances. Rapid process creation and concurrency make AFL
well suited for testing the consistency of the CRIU checkpoints.

We also needed to choose an application to use as the fuzzing target of AFL. For
this purpose we chose the Opus Interactive Audio Codec22. We chose Opus because
it’s open source which enables us to compile it with the instrumentation required by
AFL. What makes Opus good for our purposes is that it has already been fuzz tested
extensively. Because discovering bugs in the target application is out of the scope of
this thesis it’s more worthwhile to use an already well fuzz-tested application as a
target.

Testing an application with AFL involves compiling the target application with
AFL-specific instrumentation. AFL uses the instrumentation to guide the test input
generation that makes it highly efficient in finding interesting execution paths [20].

To speed up repeated execution of the target application AFL uses a scheme
21American fuzzy lop. http://lcamtuf.coredump.cx/afl/
22Opus Interactive Audio Codec. https://opus-codec.org/

http://lcamtuf.coredump.cx/afl/
https://opus-codec.org/
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called execve fork server23. AFL makes a small modification to the target application
that causes it to pause after its initialization procedure and to wait for commands
from AFL. AFL executes the modified target application as a child process (which
is the fork server) and communicates with it over pipes. AFL commands the fork
server to create additional copies of itself that will be the processes that are used
for the actual fuzzing. By forking the target application from an already initialized
state AFL is able to significantly speed up its repeated execution. Hierarchy of the
processes AFL uses is shown in figure 4.

To record the branching decisions executed by the application under test AFL
uses System V shared memory24. The AFL process allocates an area of shared
memory where the instrumentation in the target application records counts of unique
branching decisions. After execution of the target application is completed AFL
analyzes the shared memory for new interesting execution paths.

3.6 Large Virtual Memory Allocation
Memory error detection is a common form of software verification. In memory error
detection the memory accesses of a target program are analyzed for problems such
as out of bounds access, use after free and read of uninitialized values. Because
of the shadow memory used by many memory error detection tools the size of the
program’s allocated virtual memory can be significant which presents a challenge for
checkpointing tools that attempt to save the state of the process’ virtual memory
areas (VMAs).

Shadow memory is an area of memory used for keeping metadata of the program’s
data. It is commonly used by memory error detection tools like AddressSanitizer to
keep track of the program’s memory. In AddressSanitizer shadow memory is used
for determining the addressability of each byte of the program’s memory. For this
purpose AddressSanitizer maps one eighth of the program’s address space as shadow
memory [42].

AddressSanitizer is not a stand-alone tool. Instead it is implemented with the
help of compile-time instrumentation and an accompanying run-time library. Ad-
dressSanitizer can detect out-of-bounds accesses in heap, stack and global data. It
can also detect memory use-after-free issues. AddressSanitizer works by mapping
every 8 byte sequence of the application’s memory to the shadow memory area and
with the instrumentation it checks all memory accesses for the addressability of the
requested address. Accesses to stack are bounds-checked using red zones inserted at
compile time. The way AddressSanitizer maps memory addresses to shadow memory
is represented in figure 5 [42].

Because the amount of virtual memory AddressSanitizer maps as shadow memory
is much larger than a typical host has physical memory (exceeding 20TB on our 64-bit
host) this kind of verification tool could easily reveal limitations in the checkpointing
utility. For this reason we chose to test CRIU checkpointing with AddressSanitizer.

23lcamtuf’s blog, Fuzzing random programs without execve(). https://lcamtuf.blogspot.com/
2014/10/fuzzing-binaries-without-execve.html

24American fuzzy lop 2.52b source code, afl-fuzz.c line 1351.

https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
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Figure 5: AddressSanitizer’s address mapping as presented by Serebryany. Regular
areas are mapped to shadow addresses. Addresses in the shadow areas are mapped
to the bad area [42].

We want to know primarily whether CRIU is able to checkpoint this kind of verification
tool at all, but would also like to see how the large size of the VMAs affects the
checkpoint creation time and the checkpoint image size.

AddressSanitizer is used by compiling a target application with the sanitizer
instrumentation. As a target application for AddressSanitizer we used Stress-ng25

which is a freely available stress testing tool for Linux. With Stress-ng we create
a workload that repeatedly allocates, modifies and frees memory. This workload
resembles the activity AddressSanitizer is designed to analyze. Testing the check-
pointability of AddressSanitizer is performed by checkpointing the Stress-ng process
executing with the AddressSanitizer instrumentation.

Because of the way AddressSanitizer is implemented as instrumentation of a target
application we are by definition unable to test it in isolation. It has to be tested with
a target application which may impose its own limitations for checkpointing. If CRIU
is unable to checkpoint a target application instrumented with AddressSanitizer we
verify the validity of this result by attempting to checkpoint the target application
without the instrumentation to see if the result is the same.

25Stress-ng. http://kernel.ubuntu.com/~cking/stress-ng/

http://kernel.ubuntu.com/~cking/stress-ng/
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3.7 Valgrind Virtual Machine
We will now present the third verification tool which is Memcheck of the Valgrind suite
of tools. Memcheck is a very popular memory management analyzer implemented
with the Valgrind framework. The popularity of Memcheck combined with the
complexity and performance intensity of the virtual machine of Valgrind make this
an interesting target to evaluate CRIU with.

Valgrind26 is a dynamic analysis framework for building tools that analyze the
behavior of programs at run-time. Valgrind enables tools to add analysis code to
the target program’s machine code during execution and to record shadow values
representing interesting metadata of the program’s execution state. Modifying the
program’s code by dynamic binary instrumentation enables Valgrind tools to be used
with any program without access to its source code and with no modification which
makes it easy to take into use [34, 35].

The use of shadow values enables Valgrind tools to perform many kinds of in-depth
analyses of a program’s behavior. The tools can track accesses to both memory and
registers during the program’s execution. One of the Valgrind tools is Memcheck,
which analyzes the memory management of a program revealing memory leaks, use
of uninitialized values and other defects. Other Valgrind tools exist for purposes
such as data-race detection and heap profiling. We focus on Memcheck because it is
the most popular [35].

Valgrind operates as a just-in-time compiling (JIT) virtual machine. It disassem-
bles the machine code of the executing program block-by-block into an intermediate
representation (IR), lets the analysis tool instrument the IR-code, applies several
optimization passes and finally translates the IR back to native machine code to
be executed. Valgrind wraps system calls in order to enable the analysis tool to
track how the system calls access the program’s memory and registers. Valgrind
also intercepts signal handlers to keep the target program under Valgrind’s control.
Execution of parallel threads is serialized by Valgrind to make the shadow value
updates atomic [35].

The compilation steps and the use of shadow values for memory and registers
adds considerable overhead to the program’s execution. In addition, the serialization
of parallel execution makes only a single thread of the program execute at a time.
This means executing a program in Valgrind has a significant performance penalty.
Therefore Valgrind is suitable for implementing in-depth analysis tools providing
results valuable enough to outweigh the performance impact. For example, for the
Memcheck tool Nethercote states the average execution slowdown factor to be 22.2
[35].

In addition to the significant performance impact it has Valgrind is also a very
complex application. Because of the way it executes the analyzed program within its
own address space, performs JIT-compilation, captures system calls and signals, has
its own internal C-library (to not clash with the one used by the target program)
and schedules thread execution it behaves in many ways differently than common
user applications [35]. This makes Valgrind especially worthwhile to be tested

26Valgrind. http://valgrind.org/

http://valgrind.org/
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with checkpointing, since there are many possibilities it can reveal edge-cases and
limitations in the checkpointing utility.

We evaluate CRIU’s capabilities to checkpoint Valgrind by executing the Stress-
ng load generator tool under the Memcheck analyzer. Similarly to our test of
AddressSanitizer we will use a Stress-ng workload that repeatedly allocates, modifies
and frees memory. However, unlike in the AddressSanitizer test we now use the
Stress-ng tool compiled in its default configuration since Valgrind is based on run-time
instrumentation and does not require modification of the target program.

3.8 Android System Emulation
System emulation is used when there is a need to execute software built for a
hardware platform different from the host platform. The differences may be in
hardware architecture, type of processor and what peripheral devices are available.
One use case for system emulation is to enable the verification of software for
embedded and mobile devices on the commodity x86 machines used for the software’s
development. This is why we have chosen to test the checkpointing of the Android
Emulator27, a system emulator for devices using the Android operating system.

Android is a widely used operating system for mobile devices. The Android
Emulator simulates most of the hardware capabilities of these devices and provides
software images of the many versions of the operating system. It also provides CPU
emulation of the ARM processors a majority of mobile devices are using. This enables
fast, convenient and accurate verification of Android applications compiled for the
target hardware. A screen capture of the emulator emulating a smartphone is shown
in figure 6.

The Android Emulator is an extension of the open source QEMU machine
emulator. QEMU consists of CPU and device emulators, a debugger and user
interface components. The CPU emulator in QEMU is based on dynamic translation
of the target instructions to the host CPU instructions. The device emulators emulate
various PC peripheral devices using the generic devices provided by the host operating
system [6]. The Android Emulator extends these by providing emulators for hardware
found in mobile devices, such as cameras and touchscreens and a user interface for
operating them.

Since the Android Emulator is based on QEMU the advanced features of QEMU
are available. This includes hardware-assisted virtualization when the target and host
architectures are the same and supported by the host machine. Also included is live
migration of the guest software to another instance of QEMU. This kind of complex
features make the Android Emulator an interesting target to be tested regarding
its checkpointability. Especially the live migration feature can cause problems for
checkpointing since this overlaps with the functionality provided by checkpointing
tools.

To test the checkpointability of Android Emulator we will start it in headless mode
with an Android system image for an ARM CPU and attempt to take checkpoints of

27Android Developers, Run apps on the Android Emulator. https://developer.android.com/
studio/run/emulator

https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
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Figure 6: Screen capture of the Android Emulator emulating a smartphone.

the running system. This simulates preempting the emulator if it was used as part
of a CD-system for verifying mobile applications. It reveals us what resources the
emulator uses and whether they can be checkpointed. Since emulation is performance
intensive, we will also measure checkpoint creation time and checkpoint image size
similar to the other verification tools.
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4 Test Implementation
In this section we present the implementation of our evaluation of the capabilities and
performance of CRIU for preempting verification tools. We first discuss on a general
level how we used CRIU to create checkpoints. We will then discuss the practical
details of checkpointing each of the verification tools. After that we will describe
our test environment and how we performed the measurements of the checkpointing
time and checkpoint image size.

4.1 Usage of CRIU
Checkpoints are created with the command criu dump. With the --tree-parameter
we specify the PID of the root process of the process tree to be checkpointed, that in
our case is a shell script executing the verification task as child processes. By default
the checkpoint image is written to the current directory but with the --images-dir
parameter we specify a separate directory so that we can later easily measure the size
of the checkpoint image. CRIU also provides an option --shell-job for conveniently
disconnecting the session, controlling terminal and pseudo terminal of the target
processes, which we will now discuss in more detail.

A process started from a shell session is usually coupled to the shell in a few
ways. Because it is sharing resources with the shell CRIU will not dump the process.
Processes started from a shell session by default belong to the session of the shell
and are connected to its controlling terminal. Unless otherwise specified a process
also has its standard I/O streams connected to the same terminal. In order to be
checkpointed CRIU requires that the root process is a session leader. The root
process must also have no controlling terminal and no pseudo terminals attached.

We can satisfy these requirements by making the root process of the verification
task a session leader by starting it in a new session using the setsid command
from the util-linux package. This also disconnects the task from the controlling
terminal of its parent shell. By closing or redirecting the standard I/O streams we
disconnect the processes from the shell’s pseudo terminal. The --shell-job option
of CRIU could relieve us of these steps, which makes dumping interactive tasks more
convenient, but requires CRIU to become the parent of the process tree when the
task is restored. Since we are checkpointing non-interactive verification tasks we
chose to perform these steps ourselves and keep the restored process tree identical to
the original.

Checkpoints are restored with the criu restore command. Similarly to the
dump command, we use --images-dir to specify where the checkpoint image is
located. Another important argument for this command is --restore-detached,
which makes CRIU detach from the restored process tree. By default CRIU stays
attached and terminates when the restored processes terminate. We enable this
option to have the restored state of the verification task resemble its original state
as closely as possible.
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4.2 Checkpointing American Fuzzy Lop
In our early tests we found out that checkpointing the AFL verification task requires
additional steps due to the System V shared memory AFL uses. Because System V
IPC objects lack ownership semantics CRIU does not know which shared memory
segments should be included in the checkpoint of the processes. In addition, because
the identifiers of the shared memory segments are global in the system CRIU will
not be able to restore them.

However, if we execute the target processes in a Linux IPC namespace CRIU
can simply dump all shared memory segments within that namespace. When the
checkpoint is resumed CRIU can use a namespace to recreate the shared memory
segments with their original identifiers. Therefore by starting the AFL verification
task in an IPC namespace we are able to checkpoint it.

We execute the verification task in an IPC namespace using unshare, also
available in the util-linux package, with the option --ipc. Since creating a
namespace requires the CAP_SYS_ADMIN capability28 we must execute the command
with superuser privileges. However, we do not want to execute the verification task
itself with superuser privileges so we have to change user ID after the namespace
has been created. In figure 7 we show how we executed AFL in an IPC namespace
including changing the access privileges and the earlier discussed session setup and
I/O redirection.

# TASK=./run-afl.sh
# AS_USER=user
# unshare </dev/null &>/dev/null --ipc \

su --command "setsid $TASK" "$AS_USER"

Figure 7: Executing AFL in an IPC namespace in a new session.

We configured AFL following the recommendations in its instructions. To speed
up the execution of the fuzzing it is recommended to use parallelism29 and for this
purpose we used a shell script run-afl.sh to execute as many parallel AFL instances
as there are CPU cores in the host machine. In our test environment we had 8
parallel instances.

We also set the CPU frequency scaling governor30 to performance as suggested
by AFL. The version of the AFL we used was 2.52b. Prior to executing the tests
we compiled the Opus encoder opusenc with instrumentation according to the AFL
instructions.

Checkpointing and resuming the AFL verification task is performed using the
same CRIU dump and restore commands we presented earlier. The shell script we

28The Linux kernel user-space API guide, unshare system call. https://www.kernel.org/doc/
html/v4.14/userspace-api/unshare.html

29American Fuzzy Lop 2.52b documentation. parallel_fuzzing.txt
30Linux CPUFreq Governors. https://www.kernel.org/doc/Documentation/cpu-freq/

governors.txt

https://www.kernel.org/doc/html/v4.14/userspace-api/unshare.html
https://www.kernel.org/doc/html/v4.14/userspace-api/unshare.html
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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use to to start the AFL instances also writes its own PID to a file. This allows us
to easily read the verification task root process PID from the file when we want to
checkpoint the process tree.

To verify the task can be successfully resumed from the checkpoint we check
the status of the restored AFL instances using the afl-whatsup tool. Given the
AFL master–slave instance synchronization directory (syncdir) as an argument
the tool shows whether the instances are running and reports some metrics of their
performance. We inspect that none of the instances report as dead and follow the
performance counters for a moment and verify they are changing to be assured the
instances were restored successfully.

4.3 Checkpointing AddressSanitizer
Tests of checkpointing AddressSanitizer were performed by compiling the Stress-ng
stress-testing tool with the AddressSanitizer instrumentation. AddressSanitizer itself
did not require any specific configuration. The Stress-ng tool was started with vm
workers with no execution timeout. We then attempted to checkpoint the running
task.

The vm31 workers of Stress-ng repeatedly allocate, modify and free memory. We
chose this type of workload because it resembles the memory allocation and addressing
that is the kind of activity AddressSanitizer is intended to track. Similar to the
previous test of AFL the number of worker processes was equal to the number of
CPU cores on the host system.

Since our main focus is in AddressSanitizer, which is implemented as instrumenta-
tion added to the target application, we needed to verify that the Stress-ng tool does
not affect the checkpointability of the task. For this reason we also tested checkpoint-
ing the tool under the same configuration but compiled without the AddressSanitizer
instrumentation.

We noted in our early tests that the Stress-ng tool maintains a UNIX datagram
socket to send log entries to the system log daemon. The socket is created even
when logging to system log is not enabled. This is a problem for CRIU checkpointing
because the other end of the UNIX socket is maintained by the system log daemon
which is not part of the checkpoint. For CRIU this is known as an external UNIX
socket32. By default CRIU will not checkpoint processes that have such sockets
because it cannot guarantee the availability and state of the endpoint outside the
checkpoint at the time the checkpoint is resumed.

However, since the socket is in this case used for sending log entries we assume
the communication to be unidirectional towards the logging daemon. In addition,
we expect the logging daemon to be always available. The Stress-ng tool also wasn’t
our main focus in this test so its functioning after checkpoint restoration was not
a significant concern to us. With these assumptions we considered it to be safe to

31Stress-ng, General Commands Manual. http://kernel.ubuntu.com/~cking/stress-ng/
stress-ng.pdf

32CRIU, External UNIX socket. https://criu.org/External_UNIX_socket
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https://criu.org/External_UNIX_socket
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instruct CRIU to checkpoint the task regardless of leaving one end of the UNIX
socket outside the checkpoint.

CRIU provides a command line argument --external for defining filters for
external resources that shall be ignored when the checkpoint is created. Using a filter
like unix[<stress_sock_id>] we can ignore the UNIX socket of Stress-ng. The ID
of the UNIX socket stress_sock_id is found by parsing the open files of the main
Stress-ng process with the help of the lsof command.

Stress-ng was compiled with the AddressSanitizer instrumentation using the GCC
compiler. Since AddressSanitizer is part of the compiler package the version of
AddressSanitizer tested is therefore the version included with the compiler.

4.4 Checkpointing Valgrind
We tested the checkpointing of Valgrind by running the Stress-ng load generator
under the Memcheck tool of Valgrind.

Stress-ng was configured to use the same vm workers that we used with Address-
Sanitizer as described in section 4.3. Because the memory size of the processes is
the most significant factor on the checkpoint size and the creation time [14, 33, 29]
we configured the workers to use the minimum 4 kB memory size in attempt to get
results that describe the behavior of CRIU and not only the I/O-performance of the
host.

For this test an unmodified version of Stress-ng was used because Valgrind relies
on runtime instrumentation. Required by Stress-ng, the same external UNIX-socket
filter was also used with CRIU as in the previously described AddressSanitizer test.

4.5 Checkpointing Android Emulator
Checkpointing of Android Emulator was tested by starting the emulator from a
snapshot and attempting to take checkpoints of the emulator while it’s running. The
emulator was executed in a new session similarly to the other verification tools. To
simulate use in a CD-system the emulator was executed in headless mode. To reflect
its use for verifying mobile applications compiled for the target architecture we used
an Android system image for ARM architecture.

Snapshots record the state of the emulator such that its execution can be resumed
later from the same state. The reason for using them is because the cold-boot of
the Android operating system in the emulator requires about 6 minutes on our host
before an idle state is reached. This is partly due to the slowdown caused by the
performance intensive CPU emulation. Snapshots enable us to cold-boot the Android
system once and run tests starting from this state. Booting the Android system is
therefore not included in the tests or measurements.

Headless mode means the emulator executes without initializing its graphical
user interface. By default the emulator displays this interface to enable the user to
operate the simulated device and provide inputs for its sensors and other peripherals.
However, we are interested in the emulator’s use in automated CD-systems where
verification tools are executed without interactive user input. In addition, a graphical
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user interface would complicate checkpointing since the emulator would require
additional resources for connecting to the user’s display compositor and potentially
a graphics acceleration device. For these reasons the emulator was executed with the
user interface and audio output disabled.

The Android operating system to be executed in the emulator was chosen to be
Android 24 since this is available as the default version that has full user privileges
available33 and is available for the ARMv7 mobile CPU.

4.6 Measurements
We performed our measurements in an x86-64 PC running Debian Buster GNU/Linux
operating system. Complete specification of the test environment is presented in
appendix A.

To measure the time elapsed to create a checkpoint we started the verification
tools and created checkpoints of them during their execution. We used CRIU’s
--leave-running option to create the checkpoints without terminating the tool. To
get measurements at different times over the execution of the verification tools the
measurement was repeated for 10000 times with 10 seconds between each trial. We
used the default mode of CRIU to create a full checkpoint each time.

We measured the time elapsed for creating a checkpoint with the built-in time
command of the Bash shell. With this command we get the real elapsed time of the
criu dump command execution in millisecond precision. This measurement includes
the time taken by the creation of the checkpoint and the time required to load and
execute the CRIU tool itself. This gives us a practical figure of the time required to
create a checkpoint but will be subject to various sources of variation.

There are several factors that add variation to execution time measured this way.
Most significant are the effects of the operating system’s I/O caching. Because of
the caching the measurement will not include the complete time required to write
the checkpoint image to storage. When the checkpointing tool exits the checkpoint
image may still be in the I/O cache of the operating system and not fully written.
Also because of caching the loading time of the CRIU tool will likely be shorter on
subsequent executions than the first one adding outliers to measurements. Other
factors that cause variation include process scheduling and other activity in the
system.

Despite the variation we believe this way of measuring the execution time to
yield meaningful results since it describes the real elapsed time of the checkpoint
creation. Our large number of measurement samples should enable us to see the
scale and direction of change of the time over our measurement period. Spurious
outliers resulting from the way of measurement should be discernible.

We measured the checkpoint image size by simply calculating the size of the
image directory of each checkpoint created. This tells us the size of the data that is
needed to restore the execution of the preempted processes but does not include the

33Android Studio, Create and manage virtual devices. https://developer.android.com/
studio/run/managing-avds#system-image
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external data of the tested application. Thus the real-world size of the checkpoint
would be larger.

The image directory contains the saved state of the checkpointed processes system
resources including the contents of its memory pages. Notably, it does not contain
the files the processes are accessing during their execution. This means that data files,
named pipes and file-backed shared memory are excluded from the measurement.

This concludes the discussion of our test implementation and the environment we
used. In the following section we will present the results of the tests we performed.
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5 Results
In this section we report our findings of checkpointing the verification tools we
introduced in the previous section. We will first discuss how CRIU succeeded in
checkpointing the tools overall and what we discovered. We will then proceed to the
performance analysis and describe our results of the checkpoint creation time and
checkpoint image size measurements.

Our tests revealed that CRIU can successfully checkpoint and restore the AFL
task. Checkpointing and restoring the Valgrind task was successful after a minor
modification of the CRIU tool to not require restored processes to have a vDSO
segment mapped. Checkpointing the AddressSanitizer task was not successful and
requires more significant changes to how CRIU processes VMA areas. The latter is a
known issue in CRIU34 and the former we reported to the developers35.

We discovered that all of the tasks require some preparation when they are
executed in order to either contain or ignore certain resources that prevent the
task from being checkpointed by CRIU. To make sure checkpointed processes can
be successfully restored CRIU will not checkpoint tasks that share resources with
processes outside the checkpoint. CRIU will also not checkpoint processes that use
resources with no ownership.

In the applications we tested resources such as System V shared memory segments,
UNIX sockets, I/O streams and terminals required measures to enable processes using
them to be checkpointed. With the help of Linux namespaces and some commonly
available utilities this was not difficult to achieve but the required operations make
it necessary to have higher privileges to start the tasks.

We also found reliable restoration of the checkpointed processes to require con-
sideration. The first problem is the possibility of a PID clash unless the processes
are restored within a PID namespace. The second and more difficult problem is
that CRIU cannot ensure the consistency of the file system when the processes are
restored which is an issue for tasks that access files during their execution. We will
next discuss results of the individual verification tasks and their checkpointability in
more detail.

5.1 American Fuzzy Lop
The AFL tool was successfully checkpointed and restored. Checkpointing of the tool
required a few steps to contain the System V shared memory segment it uses but this
was not difficult. Restoration of the checkpoint was reliable and the tool continued
execution without interruption. Challenges in the preemption of this tool are in the
high privileges required for creating namespaces and because files accessed by the
tool need to be available in the same location when execution is resumed.

We tested the tool as described in section 4.2. As mentioned, we noted that the
34CRIU Issue: CRIU can’t dump huge mappings. https://github.com/checkpoint-restore/

criu/issues/392
35CRIU Issue: Unable to restore processes with vDSO unmapped. https://github.com/

checkpoint-restore/criu/issues/488

https://github.com/checkpoint-restore/criu/issues/392
https://github.com/checkpoint-restore/criu/issues/392
https://github.com/checkpoint-restore/criu/issues/488
https://github.com/checkpoint-restore/criu/issues/488
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tool utilizes a System V shared memory segment to enable communication between
the tool and the system under test. To enable the shared memory segment to be
checkpointed the tool was executed in a Linux IPC-namespace. This enabled the
tool to be successfully checkpointed.

After a checkpoint was successfully created we tested its restoration. The restora-
tion was without trouble and the tool continued execution. We used the afl-whatsup
utility to verify the liveliness of the AFL instances after the restoration and observed
the performance counters to be changing. We concluded that all instances continued
without interruption and the preemption and restoration of AFL was successful.

We noted two main challenges in the checkpointing of this tool. The first is that
creating the IPC-namespace needed requires high privileges. The same applies for a
PID-namespace required for reliable restoration of the checkpoint to avoid a clash of
PIDs. The former implies that the tool needs to be started by a privileged process.
Since high privileges are already required for restoring checkpoints the latter issue is
not as significant.

The second challenge is to ensure the files accessed by the tool during its execution
are available in the same location when execution is resumed from the checkpoint.
Since AFL accesses files during its execution to record information of the fuzzing
inputs these files need to be present when the checkpoint is restored. These files are
located in the working directory of the tool and need to be available in the same
location after restoration.

5.2 AddressSanitizer
Checkpointing of an AddressSanitizer instrumented application was not successful.
AddressSanitizer utilizes sophisticated features of the kernel’s memory mapping API
to be able to allocate a large part of the application’s address space as shadow memory.
At this time CRIU does not take into account this kind of memory allocations and
fails to process the excessively large shadow memory areas. We found this to be a
known limitation of CRIU.

We executed the Stress-ng tool with AddressSanitizer instrumentation as described
in section 4.3. Attempting to checkpoint the running process failed with an error
from CRIU as shown in figure 8. The error states that CRIU has attempted to
allocate an exceedingly large amount of memory. We investigated the cause of this
kind of error from the source code of CRIU and determined that this memory is
required to process metadata of AddressSanitizer’s shadow memory areas.

Error (criu/pagemap-cache.c:54): pagemap-cache: pmc_init: ←↩
Can’t allocate 30064246792 bytes

Figure 8: CRIU unable to checkpoint AddressSanitizer.

AddressSanitizer allocates the shadow memory in such way that the memory areas
are not reserved physical memory. This in conjunction with memory overcommitting36

36As documented in proc(5) of Linux man-pages, version 4.04
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enables the shadow memory to exceed the size of physical memory in the host but
does not guarantee how much of the memory can be written to. In our system
the largest of these areas was 15TB in size while the total size of the instrumented
application’s VMAs was 22TB.

To verify how the shadow memory segments are allocated we looked into the
source code of the AddressSanitizer run-time library. We found that the shadow
memory segments are allocated with the MAP_NORESERVE37 option of mmap(2) that
instructs the kernel to not reserve swap space for the VMAs. This combined with
memory overcommitting enables the reserved shadow VMAs to exceed the physical
memory, but will cause a segmentation fault if more data is written to these areas
than there is memory physically available.

CRIU fails to create a checkpoint of AddressSanitizer because it does not take
into account that VMAs may not be backed by physical memory and therefore can
be excessively large. CRIU attempts to allocate a buffer for caching the pagemap38

entries of the application’s VMAs. The size of this buffer would be 30GB (as seen in
figure 8) that exceeds the available memory in our host.

Pagemap is a data structure exposed by the Linux kernel that presents metadata
for every memory page of a process. Most importantly, for pages backed by physical
memory the pagemap contains the number of the corresponding physical page frame.
This is illustrated in figure 9. For every page of memory there is a 64 bit long entry
in the pagemap.

We studied the source code of CRIU to determine whether the pagemap cache
(PMC) functionality can be disabled to enable processing large VMAs without
allocating prohibitive amounts of memory for the PMC. We found that there exists
a configuration variable CRIU_PMC_OFF used for a Linux kernel bug workaround, but
this setting unfortunately does not affect memory allocation of the PMC. Memory is
still allocated for the PMC even when this option is set.

We concluded that because of how the pagemap processing is currently imple-
mented in CRIU a nontrivial amount of changes is required to make tasks with very
large VMAs checkpointable. We also found out that this is an already known issue39

reported to CRIU developers, but at the time of writing the issue is still outstanding.
To have more evidence of the root cause of the failure we also verified that the

size of the PMC buffer CRIU attempts to allocate corresponds with the expected
memory size of holding the pagemap entries of AddressSanitizer’s largest VMA. We
performed this by tracking the size of the memory allocations of AddressSanitizer
with the strace utility. We then calculated how much memory the pagemap entries
the largest allocated VMA would require and compared this with the allocation we
saw from CRIU.

With strace we tracked memory allocations with the MAP_NORESERVE option set
and selected the largest (15 392 894 357 504 bytes). A VMA of this size would require

37As documented in mmap(2) of Linux man-pages, version 4.04
38Pagemap, from the userspace perspective. https://www.kernel.org/doc/Documentation/

vm/pagemap.txt
39CRIU Issue #392: CRIU can’t dump huge mappings. https://github.com/

checkpoint-restore/criu/issues/392

https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://github.com/checkpoint-restore/criu/issues/392
https://github.com/checkpoint-restore/criu/issues/392
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Figure 9: The pagemap provides metadata of pages and maps them to physical page
frames.

3 758 030 849 page frames on our host with 4096 byte page size. Since based on the
Linux kernel documentation the pagemap entries consist of 64 bits for each page
frame this means that the pagemap entries of this VMA require 30 064 246 792 bytes
of memory. This corresponds with the size of CRIU’s failed memory allocation we
observed.

5.3 Valgrind
Checkpointing of Valgrind was successful but required a small modification of the
CRIU tool to enable the checkpoint to be successfully restored. When a checkpoint
is restored CRIU currently expects all processes to have a vDSO segment mapped.
However, Valgrind unmaps this segment from its address space which results in its
checkpoints to not be restorable. We also noted that Valgrind uses named pipes and
shared memory files during its operation requiring these files to be available when
the checkpoint is restored.

We tested the tool as described in section 4.4. Creating a checkpoint of the tool
was without trouble. However, attempting to restore the processes resulted in failure
and an error message from CRIU. The error is shown in figure 10. The error states
that CRIU could not find a vDSO segment in the memory image of a process to be
restored.

The vDSO (virtual dynamic shared object) is a shared library mapped to every
processes’ address space by the Linux kernel. The purpose of this library is to avoid
system call context switches when calling kernel functions that are read-only and
can be implemented entirely in user space. Functions in the vDSO segment read the
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pie: 7: Error (criu/pie/parasite-vdso.c:252): ←↩
vdso: Can’t find vDSO area in image
pie: 7: Error (criu/pie/restorer.c:1689): Restorer fail 7

Figure 10: CRIU unable to restore Valgrind.

data they require from another read-only segment called vvar the kernel exposes [8].
By studying the source code of Valgrind we verified that Valgrind unmaps the

vDSO segment. The start address of the vDSO segment in the processes’ address
space is identified by the AT_SYSINFO_EHDR entry in the auxiliary data vector the
kernel passes to every program it executes40. In Valgrind the code that processes
this entry simply unmaps the segment. From the version history of the source code
of Valgrind we discovered the reason to unmap the vDSO is because its position is
randomized and therefore it can cause issues with analyzing programs that require
control over the position of their memory mappings41.

We also studied the source code of CRIU to determine the root cause of the
checkpoint restoration failure. We identified that CRIU expects to find a vDSO
segment in a checkpoint image and terminates otherwise. This check is part of
the vDSO proxification CRIU performs when it restores a checkpoint. The vDSO
proxification is performed for all restored checkpoints and currently there is no option
to bypass it.

vDSO proxification is a feature of CRIU that enables checkpoint images to be
restored under a different Linux kernel version that potentially has a different internal
layout in the vDSO exposed to programs42. Based on the documentation of CRIU if
CRIU detects the vDSO segment of the restored process is different from the vDSO
of the running kernel CRIU modifies the restored vDSO to be a trampoline that
invokes functions at their locations in the new kernel’s vDSO.

Because creating the checkpoint of Valgrind was without trouble we investigated
if the vDSO proxification feature can be disabled altogether, without excessive effort,
to enable us to evaluate the overall feasibility of checkpointing and restoring Valgrind
despite this shortcoming of CRIU. By making a small modification to the checkpoint
restoration procedure we successfully disabled the vDSO proxification which enabled
Valgrind to be successfully restored.

Since Valgrind unmaps the vDSO it shouldn’t be an issue that no proxification
is performed when the checkpoint is restored. However, since the kernel maps the
vDSO for all new processes it can be a problem for Valgrind, that has explicitly
unmapped the vDSO, to have it mapped again in the new process restored from the
checkpoint. Therefore for reliable operation a fix would be needed to CRIU.

We also noted during the testing of Valgrind that it creates several named pipes
and shared memory files under the /tmp directory. For successful restoration of the

40As documented in getauxval(3) of Linux man-pages, version 4.04
41Valgrind Commit. https://sourceware.org/git/?p=valgrind.git;a=commit;h=

3a004915a2cbdcdebafc1612427576bf3321eef5
42CRIU, Vdso. https://criu.org/Vdso

https://sourceware.org/git/?p=valgrind.git;a=commit;h=3a004915a2cbdcdebafc1612427576bf3321eef5
https://sourceware.org/git/?p=valgrind.git;a=commit;h=3a004915a2cbdcdebafc1612427576bf3321eef5
https://criu.org/Vdso
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processes these files must be available in the same location.

5.4 Android Emulator
Checkpointing of the Android Emulator was unsuccessful because of its use of
userfaultfd(2). At this time CRIU does not support checkpointing of this kernel
feature that is used by QEMU to enable fast live migration of guest software. Enabling
the Android Emulator to be checkpointed would require either CRIU to support
checkpointing userfaultfd or disabling post-copy migration support in QEMU.

Userfaultfd is a recently introduced feature of the Linux kernel that enables
applications to process their page faults in user space. The main users of this feature
are currently QEMU and CRIU that use it for enabling migrated applications to start
execution before all of their memory pages have been transferred to the destination
host. Userfaultfd enables these tools to be notified when a migrated application
accesses a page that has not yet been transferred43 [13].

Applications use userfaultfd by calling the userfaultfd(2) system call44 to
create a userfaultfd file descriptor. The application reads the file descriptor to receive
an event when a page fault occurs for a memory range the application has registered.
Memory ranges are registered using ioctl(2) on the userfaultfd file descriptor.

In QEMU userfaultfd is used for post-copy memory copying in the live migration
of guests45. QEMU gets notified of page faults in its guest system enabling it to
prioritize the retrieval of a page before its access takes place. The use of userfaultfd
is enabled for all Linux builds of QEMU (and therefore the Android Emulator) and
there is no runtime option for disabling this feature.

We observed the failure to checkpoint the Android Emulator in the error message
of CRIU shown in figure 11. We can see that CRIU is unable to process the file
descriptor of userfaultfd type which implies that checkpointing applications utilizing
userfaultfd is not supported at this time.

(00.058807) Error (criu/files-ext.c:96): ←↩
Can’t dump file 26 of that type [600] (anon anon_inode:[userfaultfd])

Figure 11: CRIU cannot checkpoint userfaultfd file descriptor.

To enable CRIU to checkpoint the Android Emulator it needs to be able to save
the state of the emulator’s userfaultfd object. This situation is complex because we
are effectively using an application that performs process migration on an application
that also performs process migration. Because CRIU itself is already using userfaultfd
to enable post-copy migration of processes there is additional complexity to enable
the nested use of userfaultfd.

43CRIU, Userfaultfd. https://criu.org/Userfaultfd
44As documented in userfaultfd(2) of Linux man-pages, version 4.16
45QEMU, Features/PostCopyLiveMigration. https://wiki.qemu.org/Features/

PostCopyLiveMigration

https://criu.org/Userfaultfd
https://wiki.qemu.org/Features/PostCopyLiveMigration
https://wiki.qemu.org/Features/PostCopyLiveMigration
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Supporting the nested use of userfaultfd is not achievable at this time because
it requires additional kernel support. Corbet has stated that this remains an open
issue [12]. For CRIU we did not find information about future plans of implementing
checkpointing of userfaultfd. A possible alternative solution would be to disable
migration support in QEMU since this functionality is provided by CRIU in our use
case. Because there is no runtime option for this in QEMU this would require code
changes.

5.5 Performance
For AFL and Valgrind that were checkpointable we did performance measurements
as presented in section 4.6. We found the time to create a checkpoint to have a
linear correlation with the checkpoint image size. The largest files in the checkpoint
images were the contents of the memory pages of the processes. We can conclude
that the performance of creating a checkpoint is mostly dependent on the size of
the verification tool’s allocated memory that agrees with previous research [29, 33].
Overall, we observed good performance without notable issues.

In our measurement AFL showed seemingly logarithmic growth for the checkpoint
creation time and the size of the image throughout the measurement period. We
observed the creation time stay below 200 ms and the image size reach approximately
100 MB. Since the measured times were in 100-millisecond range they showed a high
variance due to random effects of the system that are visible at this scale. We also
found the checkpoint creation time to seem to correlate linearly with the image size.

Graphs of the measurements of AFL are presented in figures 12 and 13. In figure
12 we have omitted the first measurement of the checkpoint creation time. This
particular value was a significant outlier at 621ms. Although a quite high value, we
believe this outlier was likely caused by a combination of the operating system’s I/O
caching, disk latency and scheduling. On the first execution the checkpointing utility
needs to be loaded from disk which causes latency. On subsequent executions much
smaller values were observed.

Checkpoint creation time of AFL increased from 100 ms to 160 ms approximately,
staying below 200 ms. The growth of the values seemed to be logarithmic. High
variance of 40 ms – 50 ms was observed in the values.

We attribute the variance in the checkpoint creation time to noise caused by the
measurement technique. Our time measurements are subject to the effects of the
operating system’s I/O caching, scheduling and interference from other activity in
the system. Because CRIU’s execution times in this test are in the scale of 100 ms –
200 ms these random variations are visible.

The size of the checkpoint image of AFL we observed to increase from approxi-
mately 25 MB to 100 MB. Similar to the time measurement the growth in these values
seemed logarithmic. Since the the largest contributor to the size of the checkpoint
images is the memory size of the processes the logarithmic growth is likely the result
of how AFL internally uses memory.

For Valgrind our measurements showed linear growth for both values. Checkpoint
creation time increased up to approximately 1440 ms and image size up to approx-
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imately 1413 MB. Both settled to a constant level during the last 6 hours of the
measurement.

The measurements of Valgrind are presented as graphs in figures 14 and 15. In
figure 14 we can see a similar outlier than we saw in the results of AFL. Since its
value of 1286 ms fits within the range of the other values it was left visible.

Creating a checkpoint of Valgrind took between 750 ms to 1440 ms. The times
seemed to grow linearly until the end of the measurement. For the last 6 hours the
values remained at a constant level only showing random variance. Variance in the
values was small. The checkpoint images of Valgrind grew in size with a similar
linear progression. The sizes increased from 1150 MB to 1420 MB. There was little
if any random variance in the sizes of the images.

5.6 Analysis
Our results show that verification tools are a difficult target for CRIU. Most of the
tools revealed limitations in CRIU and only two out of four could be checkpointed
with reasonable effort. Preemption of arbitrary verification tools by checkpointing
is therefore not easily achieved at this time. We also noted that many of the steps
require high access privileges which is a challenge for integrating preemption to CD-
platforms. In addition, files accessed by the verification tools need to be transported
with the checkpoint which requires additional tools to be practical. Lastly, some
tools need to be prepared for checkpointing by executing them in a namespace.

From our results we can deduce that to checkpoint verification tools CRIU has to
not only support checkpointing of many different kinds of system resources but it also
needs to take into account the many options that change their semantics. There are
also ways to use system resources that make their checkpointing complicated. With
AddressSanitizer we saw that options of the mmap API make it possible to allocate
more memory than physically available, which CRIU does not take into account.
With Valgrind we found that it unmaps its vDSO memory segment, usually present
in all applications, leading to an unexpected situation for CRIU. Checkpointing of
userfaultfd used by Android Emulator was not supported at all.

We found that most of the verification tools we tested are using resources that
are complex to checkpoint. Processes have a large surface area consisting of many
kinds of system resources and the state of each of them needs to be processed in
a different way. Our results confirm our expectation that verification tools are
even more troublesome than ordinary applications because they utilize uncommon
and sophisticated kernel features. Our tests of CRIU show that the feasibility of
checkpointing verification tools is at this time largely dependent on the tools in
question. Preemption of arbitrary verification tools is prevented by the number of
resources that are not well supported by CRIU.

When we performed our tests we noted that many of the necessary commands
require high privileges. Creating and restoring checkpoints itself require high privi-
leges. However, privileges are also required for creating namespaces that isolate the
processes’ resources. This was needed for starting the AFL tool since it required
an IPC-namespace. High access privileges are a problem for integrating preemption
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Figure 16: Correlation of checkpoint image size and checkpoint creation time.

with CRIU into an existing CD-platform.
Files accessed by the tools pose another problem for checkpointing. To be able to

resume the execution of the verification tool the files it accesses need to be available
in the same location they were in before the processes were checkpointed. This not
only concerns data files of the verification tool but also temporary files, named pipes,
and files used as shared memory that are stored in the file system. The issue with
these files is that the tools place them in various places. For example, AFL keeps its
files in the working directory whereas Valgrind places them in /tmp.

We also noted that there exist resources, such as the System V shared memory
used by AFL, that need to be isolated in order to enable the tool to be checkpointed.
This requires that the verification tool is executed in a namespace.

Our performance measurements did not reveal any particular issues with check-
pointing AFL and Valgrind. We saw the checkpoint creation times correlate linearly
with the checkpoint image size. This implies the memory size of the verification
tools has the greatest effect on the checkpointing performance. The checkpointing
times of the tools were in the range of 200 ms and 2 s respectively which is usable in
CD-systems.

The relationship of the checkpoint image size and creation time is illustrated in
figure 16. We can see a strong linear correlation between these variables. Creating a
checkpoint involves saving the memory contents of the processes into the checkpoint
image which is written to disk. Therefore the size of the processes’ memory areas
has a significant effect on the performance of checkpointing. This is consistent with
previous results of Duell, Laadan and Li [14, 27, 29]. For instance, for another
checkpointing system Laadan found that 80% of the checkpointing time was taken
by the saving and restoring of the processes’ memory contents [27].

The scale of the checkpoint creation times means preemption by checkpointing
is feasible in an interactive CD-system. Comparing to the 10 minute maximum
acceptable build waiting time found by Laukkanen the preemption times of 200 ms
to 2 s are not significant [28].

In our results we saw outlying measurements that suggested the effects of the
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operating system’s I/O caching and scheduling. In our results we ignored these
outliers since they do not describe the performance of the checkpoint creation itself.
However, this kind of outliers do raise the question of whether in the real-world use
of CRIU for preemption the interactivity would be negatively affected by the time it
takes to load CRIU itself. If we expect preemption to be an uncommon operation
the tool will not be found in the operating system’s cache. Investigating this effect
would require specifically measuring the checkpointing performance with an empty
cache.

The size of checkpoint images not only affects the performance of creating the
checkpoint. When a task is preempted in a cluster we may want to resume it in
another host. This means that the images need to be transferred over network and
therefore their size affects performance. For this reason it can be worthwhile to
compress the images before transferring them. Since most of the data in the images
is taken by the processes’ memory contents the compressibility of the images largely
depends on this data. For example, we could compress the checkpoint images of AFL
and Valgrind with factors of 90% and 97% using LZMA-compression.

We have now presented our findings from the tests and measurements we per-
formed. We discussed how some of the verification tools were not successfully
checkpointed due to shortcomings in CRIU. We also showed that the performance of
checkpointing depends on the verification tool’s memory size. The interpretation
and implications of these results we will discuss in the next section.
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6 Discussion
Our results show that system-level checkpointing of verification tools is possible,
but there are still considerable limitations in the capabilities of the CRIU check-
pointing utility tested. This hinders its adoption to wider use. The performance of
checkpointing verification tools with CRIU was found suitable for interactive use in
clusters. Previous research was found to be in favor of our choice of system-level
checkpointing and supported our use-case of preemption for improving scheduling
interactivity and resource utilization. We found the previous research on checkpoint-
ing to consider mostly its use-cases in improving fault-tolerance and availability. Our
research contributes to widening the use-cases to achieving interactivity and higher
resource utilization.

6.1 Preemption of Verification Tools with CRIU
Based on our results it is possible to implement preemption of verification tools using
CRIU. However, we saw in our evaluation that two out of four tested verification
tools could not be checkpointed due to limitations in CRIU’s capability to checkpoint
certain resources. The number of verification tools we could test was necessarily
limited so making strong claims of the overall checkpointability of verification tools
is not possible. However, our result indicates that at this time it’s likely that many
verification tools will not be preemptible with this method.

To make checkpointing as a preemption mechanism acceptable for wider adoption,
outside using it with a few selected verification tools, effort needs to be put into
making the checkpointing utility support all available system resources. This means
also less commonly utilized resources and their different configurations (eg. memory
overcommitting) need to be taken into account by the utility. Comprehensive
capabilities are especially important if checkpointing is to be used in a CD-platform
offered as a service, since users will be upset if their jobs are terminated due to a
failed preemption.

The capabilities of checkpointing have been discussed in previous research, but
most of the research has focused on its use with computational and service applications
and exploring the limits of the technology has not been the main focus of the research.
These applications have been discussed by eg. Huang and Nadgowda [24, 33]. Litzkow
has stated that supporting all resources has not been an attainable goal for the
Condor system and effort has been on supporting only the most important kinds
[30]. However, Condor is a library-level solution so its capabilities are necessarily
more limited than those of system-level solutions.

Other research shares the same focus and sentiment. For the BLCR system Duell
states that supporting all kinds of program behaviour is not feasible for the project
since its focus is on scientific applications [14]. Roman points out the difficulty of
implementing system-level checkpointing and discusses checkpointing of a number of
system resources [38]. For the Linux-CR system Laadan mentions the possibility of
comprehensive resource support, but does not delve further into the issue [27].

We found little research on CRIU’s usability with verification tools. A single
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report by Klode discusses checkpointing the Android Emulator [26]. Klode had
successfully checkpointed the emulator and our findings are contrary. However, since
the userfaultfd support has been added to the Android Emulator only recently the
previous results do not hold anymore for the new versions of the emulator explaining
the different outcomes.

Another significant observation we made is that successful checkpointing requires
the verification tools to be isolated from other processes in the system. This is
because the tools cannot be checkpointed if they use resources that are global in
the system or shared with processes outside the checkpoint. For the tools we tested
these resources included System V IPC, sockets, terminals and also importantly the
file system. These resources can be isolated using kernel namespaces.

Using namespaces enables isolating processes from each other but requires the
namespaces of the right kind to be created when the verification tool is launched.
In practice, implementing this isolation of the processes is very similar to what
container runtimes such as Docker46 and LXC47 provide. Therefore it is probably
most convenient to execute the verification tools in containers and use the container
runtime’s commands to execute CRIU.

The use of containers will not change the checkpointing procedure much. The
container runtimes will internally use CRIU to checkpoint the processes in the
container. The container runtime creates namespaces to isolate the resources of the
processes which we did manually. The file system bundling (or layering) provided
by the container runtime will make it easier to contain the files accessed by the
tools. Checkpointing of containers with CRIU has been evaluated recently by Huang,
Nadgowda and Qiu [24, 33, 36]. At this time, experimental support for container
checkpointing is supported by both Docker48 and LXC49.

Generic preemption of verification tasks by checkpointing does not seem feasible
at this time but an intermediate solution could enable preemption in CD-platforms.
Checkpointing can be used for tasks that support it and tasks that don’t can be
terminated. This would enable some of the benefits of preemption, such as shorter
response times and flexibility to execute work when the system is idle. For tasks
that support checkpointing the preemption would be work saving and efficient.

To integrate preemption using CRIU into a CD-platform would require changing
the scheduling model of the platform to support job preemption. The underlying
cluster scheduler also needs to support preemption and the cluster management
system needs to be able to migrate and resume the preempted tasks. Since CRIU
checkpoint creation and restoration require high privileges the cluster management
system needs these privileges to be able to preempt tasks.

In this thesis we tested CRIU on a single host only. However, in an actual
computation cluster the preempted processes would likely be migrated to another

46Docker. https://www.docker.com/
47Linux Containers. https://linuxcontainers.org/
48Docker checkpoint. https://docs.docker.com/engine/reference/commandline/

checkpoint/
49lxc-checkpoint(1). https://linuxcontainers.org/lxc/manpages/man1/lxc-checkpoint.1.

html
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https://linuxcontainers.org/
https://docs.docker.com/engine/reference/commandline/checkpoint/
https://docs.docker.com/engine/reference/commandline/checkpoint/
https://linuxcontainers.org/lxc/manpages/man1/lxc-checkpoint.1.html
https://linuxcontainers.org/lxc/manpages/man1/lxc-checkpoint.1.html
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host to be resumed. This means that there can be differences between the host where
the checkpoint was created and where it is restored. For a practical implementation
in a cluster CRIU needs to be able to account for these differences reliably.

A limitation in our tests regarding the reliability of the checkpoint restoration is
that we did not test restoring the tasks in different systems. If the checkpoints are
dependent on the underlying platform they may not be restorable in heterogeneous
hosts. In computation clusters the hosts are likely to be similar, but differences may
still exist due to eg. different hardware versions and resource availability. In previous
research CRIU has been tested for migration purposes but we did not find results of
its support of heterogeneous platforms.

6.2 Performance of CRIU
The performance of CRIU we observed seems to indicate it is suitable for integration
to interactive CD-platforms. Creating a checkpoint of the AFL task was in the range
of 75 ms to 175 ms and 750 ms to 1440 ms for the Valgrind task. These are short
compared to the optimal verification task execution time of 2 minutes proposed
by Laukkanen [28]. Therefore based on these figures the execution time overhead
of preemption should not constitute a significant latency for the verification task
execution.

In interpreting the results of the performance measurement we need to take into
account what we measured is only the time it takes to create the checkpoint image.
In a real cluster the actual delay caused by task preemption would include also the
time spent transferring the checkpoint image and the time to restore the checkpoint.
The memory size of the verification tool and the size of the tool’s data files have the
greatest effect on the transfer time. We assume the restoration time to be similar to
the checkpoint creation time.

In integration to a CD-platform the transferring of the checkpoint image and the
tool’s data files is likely going to cause the greatest latency since this is performed
over a network. The size of the verification tool’s memory can be a problem since
some tools use it in significant amounts. On the other hand, the size of the tool’s
data files are probably not often a problem since test tools and the tested executables
are usually small to enable fast execution. However, in some cases, such as with the
Android Emulator and the system image it requires, there can be a large amount of
data to be carried with the checkpoint.

By making a few assumptions and using the maximum latency figures we saw we
can try to estimate the performance of real-world use of preemption by checkpointing.
Assuming the checkpoint resumption time is equal to the creation time we can
estimate the creation and resumption to take approximately 3 seconds for a 1400 MB
image. The size of the data files of the verification tools we assume to be negligible.
What is left is the transferring time of the checkpoint image that we, in a 1 Gbit/s
local-area network, approximate to be 11–22 seconds depending on whether the
image is transferred directly to the destination host or first to intermediate storage.
This estimate also does not account for speed of the disks.

With the assumptions we made we can estimate the total delay of preempting a
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process with 1400 MB of memory to be in the range of 20–50 seconds. The transferring
of the checkpoint image is the largest contributor to this estimate. Compared to
Laukkanen’s optimal 2 minute response time this is significant [28]. What can be
concluded from this is that the checkpoint image transfer times have the greatest
effect on the delay the user experiences due to task preemption.

A task-switching latency of nearly a minute would be harmful for the user-
experience of a CD-system. However, many verification tools probably have much
smaller memory usage than what we used for this estimate. Also, the estimate is
for the total time the task preemption would require, but in reality a new task can
begin execution right after the previous task has been evicted. By using the process
migration feature of CRIU, transferring the image directly to the destination host
and compressing the data in transit the task switching time could be in many cases
reduced further.

To compare our results to those of others we can look at the results of Li,
Nadgowda and Huang that seem to be measured in environments not too different
from ours. Li has measured preemption with CRIU and Nadgowda and Huang
process migration with CRIU likewise.

Li has measured the checkpointing of a process with 3 GB of memory to take
approximately 50 seconds. Li’s measurement was performed to a local SSD-disk
and did not include transferring the image [29]. Li’s results seem to be significantly
different to ours, but this is likely explained by a different measurement technique.

If we calculate the data rate of saving the checkpoint image we get 120 MB/s
for Li’s result and 1000 MB/s for ours. In our measurement CRIU benefits of the
operating system’s I/O-caching and therefore the checkpoint image will be written
into the cache in memory. As the checkpoint image is deleted between measurements
this data may not be written to disk at all. Li does not mention the exact way
their result is obtained, but since their results explicitly mention the type of storage
medium used the measurement most likely includes writing of the data to the storage.
This agrees with the 120 MB/s data rate, which is realistic for an SSD-disk of the
time.

Nadgowda has measured process migration with CRIU. Nadgowda’s results for
a process with 250 MB memory footprint showed an approximately 0.7–0.8 second
response time for checkpoint restoration [33]. If we make similar assumptions than
with our earlier estimate, include the image transfer time and extrapolate Nadgowda’s
results for a 1400 MB image we can get a total time of approximately 20 seconds.
This is in the same scale with our results.

In research by Huang the average checkpoint creation time was measured to be
approximately 2200 ms. However, the measurement was made with Docker containers
and the storage medium used was NFS network file system. The size of the checkpoint
image in Huang’s checkpoint creation time measurement is not evident [24]. The
times observed by Huang are likely affected by the use of Docker and the overhead
of network attached storage, so our results are not directly comparable. However,
the scale of the results is similar to ours.

As Mårtensson describes, time consumption of the software delivery process is one
of the most important factors in how developers use continuous integration [31] that
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means it is very important that the CD system provides feedback without additional
delay. However, the results of Laukkanen that we use as a benchmark are based on
preliminary literature review of scarce material and other than that work there is
little research on the interactive usage of CD systems.

To conclude, our measurements indicate that the performance of CRIU is suitable
for interactive use in CD-platforms but the real-world responsiveness of preemption
depends greatly on the size of the verification tool’s memory and data files. Earlier
we found that CRIU is usable with some verification tools but it’s not yet capable
of preempting arbitrary tools. In the next section we discuss the feasibility of
preemption by checkpointing in general.

6.3 Preemption by Checkpointing
Preemption by checkpointing was recommended by Arora for enabling long running
tasks to be executed in shared supercomputing clusters. The issue checkpointing
solves, as Arora describes, is that in these clusters execution time is limited to
time slots that are not long enough to execute tasks to completion. Arora suggests
checkpointing can be used for saving the state of the tasks in order to resume them
when another time slot is available [5].

Arora’s work supports our view of using preemption by checkpointing as a tool
to make it possible to execute long running verification tasks in an interactive CD-
system. The task execution model Arora describes is not too dissimilar from the
batch-execution model in current CD-systems. With the help of preemption by
checkpointing long verification tasks can be executed in parts without reserving the
system’s resources for the entire duration of the task. This enables us to limit the
run time of tasks to maintain the interactivity of the CD-system. Long running tasks
can be preempted when their allotted execution time is up to allow the tasks of other
users to execute which enables fair- and interactive service.

Other work we found supporting the use of checkpointing as a preemption mecha-
nism was by Roman. One of the ways we can implement task switching is to suspend-
and resume running tasks. However, this leaves the suspended tasks in memory that
means that the number of parallel active tasks would be limited by the amount of
memory in the system. Roman recommends preemption by checkpointing as a way
to free up memory for runnable processes [38]. Preemption by checkpointing frees
up all resources of the preempted tasks so that the runnable processes have the full
resources of the system available.

Our research was initiated because of the problem that in a shared CD-system we
cannot execute long-running verification tasks without either reserving the system
for the entire duration or having to terminate the task to free up the system for
other work. The disadvantage of terminating the task is the inefficiency and waste
of resources because of losing all progress every time.

Because checkpointing saves the progress of the preempted tasks we assumed it
will increase the efficiency of task execution compared to if the tasks were simply
terminated. Efficient preemption would enable more flexible scheduling techniques
to be used, including priority preemption and rescheduling. We discovered several
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articles that provide evidence supporting this view. Hargrove, Vavilapalli and Li have
stated multiple reasons why preemption by checkpointing can make task execution
in clusters more efficient and reduce waiting time.

In a paper describing the BLCR checkpointing system Hargrove points out that
preemption by checkpointing can be used for rescheduling tasks to different nodes if
a more efficient allocation of tasks to nodes can be reached [21]. In this thesis we
did not research the migration of tasks, but this kind of task rescheduling would still
be a desirable feature because of the increased efficiency it achieves. Hargrove also
states that preemption enables shorter task queuing times by allowing long running
tasks to be executed during times the cluster is otherwise not used. This is similar
to the argument of interactivity we made based on the article by Arora [5, 21].

In an article describing the YARN50 cluster resource management framework
Vavilapalli has described a case for checkpointing similar to the rescheduling presented
by Hargrove. Vavilapalli states that checkpointing is one way task preemption can be
performed in the case the cluster scheduler needs to change the resource allocation
of active tasks. Vavilapalli states that by using checkpointing it is possible for the
cluster scheduler to preempt tasks to maintain scheduling guarantees such as a task
queue’s maximum share of cluster capacity under contention. Because checkpointing
saves the state of the preempted tasks this rescheduling is efficient and gives the
possibility to overcommit resources [45].

The work by Li further motivates the demand for work-preserving preemption by
checkpointing in shared clusters. Li has presented that the use of work-preserving
preemption with the YARN framework can lead to 30% shorter task execution
response time and reduce resource waste by 67% [29]. This kind of figures imply
that if we would utilize shared cluster platforms, such as YARN, as the platform for
large-scale CD-systems there would be significant efficiency gain achievable if the
tasks support checkpointing. As we believe that CD-systems are evolving towards
execution on shared cluster platforms it becomes more relevant to have a preemption
mechanism for verification tools.

In our evaluation we chose to focus on system-level checkpointing. Since our use
case is checkpointing of verification tools that don’t natively support checkpointing it
is important that checkpointing doesn’t require modification of the target applications.
Several articles we found, including those from Li, Hargrove, Roman and Silva, stress
the transparency of SLC and that it should be the easiest checkpointing technique
to take into use for existing applications [21, 29, 38, 43]. This supports our choice to
focus on SLC as the checkpointing method.

The literature we studied indicates that checkpointing is a feasible and even
recommended way to implement preemption. It can be used for enabling interactive
scheduling of tasks of different execution times in a shared system. It enables the
active tasks to exceed the amount of memory on the host by freeing the resources
of preempted tasks. Because it is work-saving, checkpointing can greatly increase
the efficiency of scheduling in a cluster by enabling task rescheduling and meeting
scheduling guarantees. In addition, we learned that the SLC method is the easiest

50What Is Apache Hadoop? https://hadoop.apache.org/

https://hadoop.apache.org/
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to take into use for the verification tasks.

6.4 Scheduling Practices in CD-platforms
Work scheduling in CD-platforms seems to be an issue that has not been extensively
studied. In our exploration of CD-platforms we noted that all of the publicly available
ones rely on some variation of simple batch scheduling. The scheduling models we
saw were more or less similar to the traditional cluster scheduling model that is
known to be inefficient and not interactive. Only the proprietary state-of-the-art
platforms of Google and Microsoft showed innovation in this field by combining
continuous delivery with data-parallel computation and execution in a shared cluster.
Preemption was not supported by any of the platforms we studied.

We believe the main reason for the deficiencies in task scheduling in CD-platforms
is that most of the recent platforms have been designed primarily for the easy
modeling of continuous delivery with pipelines. The interactivity and efficiency of
task scheduling have not received the same level of attention. We suspect these
systems have been used mostly in small projects and therefore their limitations in
scalability, largely caused by their inflexible scheduling models, have not been noticed.
However, with growing adoption of continuous delivery in large projects we believe
these limitations need to be addressed.

The fact that modern CD-platforms commonly support executing jobs using an
external cluster management system means there is an opportunity to improve the job
scheduling efficiency and interactivity. However, in the platforms we explored these
benefits have not been realized yet. Most of the platforms use the Kubernetes cluster
management system which unfortunately supports preemption only by termination.
Kubernetes seems to place more emphasis on service jobs for which termination is a
suitable preemption method because service processes are treated as disposable.

Based on our literature review and what we found about the current scheduling
practices in CD-platforms we believe there is much room for improvement. One key
for enabling more advanced scheduling techniques, such as rescheduling and priority
preemption is the ability to save the state of running tasks. This reinforced our view
that preemption by checkpointing would be a valuable tool.

6.5 Future Research
This thesis provides only a cursory analysis of the feasibility of checkpointing in
CD-systems and only for a limited set of verification tools. We uncovered several areas
where more research could be conducted. These include improving the compatibility
and reliability of CRIU, implementing better scheduling practices in CD-platforms
and improving the integration of checkpointing in CD-platforms and container
management systems.

To improve CRIU’s compatibility with verification tools its support for different
kinds of resources and their semantics needs to be improved. We found resources
that were unsupported and ways to utilize them that make them not checkpointable.
Better compatibility will require effort not only in developing CRIU but it may be
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necessary to introduce changes to the Linux kernel to enable certain resources, such
as userfaultfd, to be checkpointable. Making CRIU support all these resources is not
an easy task because of the large number of them and their configurations. Because
of the complex semantics of some resources, dedicated research may be needed for
each of them making wide application compatibility an arduous task.

Improving the compatibility of CRIU also requires testing of a wider range of
applications. CRIU has been successfully tested with many ordinary applications but
these applications are probably heterogeneous in the kind of system resources they
use. Verification tools utilize system resources in uncommon ways and seem to be
very efficient in revealing gaps and edge cases in CRIU’s resource support. It would
be therefore useful to test CRIU with more verification tools. Edge cases discovered
from these real applications can then be integrated to the comprehensive test suite
of CRIU51.

For ensuring reliable operation CRIU checkpointing and restoration needs to be
tested in many environments and configurations. In this thesis we tested CRIU in a
single host only and to evaluate its reliability it should be tested in a real cluster
environment. We noted that in existing research the effects of heterogeneous hosts
had not been tested extensively and as stated in the literature SLC-checkpoints may
not be portable between systems. Therefore, to evaluate and improve the reliability
of CRIU it should be tested in heterogeneous hosts. Differences in kernel version,
CRIU version, hardware (eg. CPU model) and resource availability are properties
that in a real cluster could differ between the host where the checkpoint is created
and where it is restored. Therefore research on the effects these differences have on
the reliability of CRIU would is relevant.

One of the issues we noted during our research is that the scheduling practices in
continuous delivery systems are not very efficient or flexible. Remedying this requires
CD-platforms to be thought of as interactive task execution systems. This could mean,
for example, that running tasks are grouped by their owner to enable fair resource
allocation among the users of the system. The underlying cluster management
systems need to support this by offering flexible scheduling of tasks, preemption and
resource quotas. Research is needed in how to implement these in practice and how
these could be used to improve the user experience of the CD-platform.

We have discussed the implications of our results and how they relate to previous
research in the field. We also presented opportunities for future research. In the next
section we conclude this thesis.

51ZDTM test suite. https://criu.org/ZDTM_test_suite

https://criu.org/ZDTM_test_suite
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7 Conclusion
To improve the flexibility and efficiency of scheduling in continuous delivery (CD)
platforms we set out to investigate whether system-level checkpointing (SLC) can be
used to enable preemption of verification tools. Our initial motivation was to enable
more kinds of verification tools to be integrated to CD-systems, to get more out of
available resources and to improve developers’ productivity. We found the current
open-source CD-platforms to be lacking in their practices in task scheduling leading
to inflexibility, poor efficiency and lack of interactivity.

We approached the problem by looking for a method for preempting verification
tools. By studying literature we found process checkpointing to be a feasible technique
for this purpose. Our aim was then to select a checkpointing technique that is capable
of capturing the wide range of resources verification tools utilize and that is suitable
for integration to an interactive CD-platform. We also had practical criteria, such
that a tool for the checkpointing is available for our Linux platform.

Based on literature we evaluated the suitability of the different checkpointing
methods. The outcome was that SLC is the most suitable for this purpose because
it does not require modification of the verification tools – a very complex task for
some of the commonly used tools. This means SLC can be used with proprietary
verification tools as well. In addition, a SLC-utility Checkpoint/Restore in Userspace
(CRIU) was available for our platform. We therefore selected CRIU for detailed
evaluation.

We tested CRIU for checkpointing American Fuzzy Lop (AFL), Valgrind, Address-
Sanitizer and Android Emulator. Out of these AFL and Valgrind were successfully
checkpointed. The others were not checkpointable due to limitations in the resource
support of CRIU. The large surface area of processes means supporting all resources
and their edge-cases is a difficult task and more work is required to make CRIU to
reliably support most verification tools.

For AFL and Valgrind we measured the performance of checkpointing them with
CRIU. We measured the time to create a checkpoint and the size of the checkpoint
image at regular intervals covering an approximately 30 hour period. The outcome
was that CRIU performed without any noticeable performance issues. Consistent
with previous research we noted the checkpoint creation time and the image size are
linearly dependent and primarily determined by the memory size of the checkpointed
applications.

We can conclude from our results that checkpointing is a feasible way to implement
preemption of verification tools. SLC-checkpointing is in theory able to capture all
resources utilized by processes but in practice there are still limitations in CRIU
affecting verification tools especially. This means arbitrary verification tools are not
yet reliably checkpointable but with coordination between the CD-platform and its
users selected tools could be enabled for preemption.

The performance of task preemption with CRIU depends largely on the size of
the verification tool’s memory and its data files. A tool that has a large amount
of data files or that uses lots of memory will be slow to checkpoint and transfer to
storage. To make the preemption overhead less visible to users it is possible to utilize
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the kernel’s I/O-caching to enable a new task start execution before the previous one
has been saved to storage. The conclusion is that preemption can be used to build
an interactive CD-system but large verification tools can cause noticeable delays.

We believe that support for preemption at the cluster level will be one of the
next steps in the development of more sophisticated cluster computing platforms.
Similarly to how it enables interactivity of processes in a single host preemption can
at the cluster level make the cluster computing system an interactive distributed
computer. Unfortunately it seems to us that the continuous delivery platforms are
lagging behind in their practices of cluster computing and scheduling.

Why the practices in CD are lacking may be because it is only a supporting
activity in software development. It likely does not enjoy the same amount of
resources and interest in businesses as development that is directly responsible for
creating marketable value. This leads to less research in the area. We believe CD
needs to be seen as an essential core practice in all software development. Continuous
delivery itself needs to shed its image as just batch task execution and become an
application of data-parallel cluster computing. The CD-platforms of the future need
to reflect this change.
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A Test Environment Specification

CPU Intel Core i7-4860EQ, 1.80GHz
Memory DDR3, 8GB, 1.6GHz
Disk 60GB INTEL SSDSC2CW06
Operating System Debian Buster
Kernel Linux 4.17.0-3-amd64

B Software Versions Used in Evaluation

CRIU 3.8.1
AddressSanitizer (GCC) Debian 7.3.0-15
Valgrind 3.13.0-2
Stress-ng 0.09.23
Android Emulator 27.3.8.0 (build_id 4848055)
Android System Image Android 24 Default, ARM EABI v7a, Version 7
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