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Abstract 

In 2015, more than 80% of energy consumption was based on fossil resources. Growing 

population especially in developing countries fuel the trend in global energy consumption. 

This constant increase however leads to climate change caused by anthropogenic greenhouse 

gas (GHG) emissions. GHG, especially CO2 mitigation is one of the top priority challenges 

in the EU. Amongst the solutions to mitigate future emissions, carbon capture and utilization 

(CCU) is gaining interest. CO2 is a valuable, abundant and renewable carbon source that can 

be converted into fuels and chemicals. Methanol (MeOH) is one of the chemicals that can 

be produced from CO2. It is considered a basic compound in chemical industry as it can be 

utilised in a versatility of processes. These arguments make methanol and its production 

from CO2 a current, intriguing topic in climate change mitigation. 

In this master’s thesis first the applications, production, global demand and market price of 

methanol were investigated. In the second part of the thesis, a methanol plant producing 

chemical grade methanol was simulated in Aspen Plus. The studied plants have three 

different annual capacities: 10 kt/a, 50 kt/a and 250 kt/a. They were compared with the option 

of buying the CO2 or capturing it directly from flue gases through a carbon capture (CC) unit

attached to the methanol plant. The kinetic model considering both CO and CO2 as sources 

of carbon for methanol formation was described thoroughly, and the main considerations 

and parameters were introduced for the simulation. The simulation successfully achieved 

chemical grade methanol production, with a high overall CO2 conversion rate and close to 

stoichiometric raw material utilization. Heat exchanger network was optimized in Aspen 

Energy Analyzer which achieved a total of 75% heat duty saving. 

The estimated levelised cost of methanol (LCOMeOH) ranges between 1130 and 630 €/t 
which is significantly higher than the current listed market price for fossil methanol at 419 

€/t. This high LCOMeOH is mostly due to the high production cost of hydrogen, which 
corresponds to 72% of LCOMeOH. It was revealed that selling the oxygen by-product from 

water electrolysis had the most significant effect, reducing the LCOMeOH to 475 €/t. Cost 
of electricity also has a significant influence on the LCOMeOH, and for a 10 €/MWh change 
the LCOMeOH changed by 110 €/t. Finally, the estimated LCOMeOH was least sensitive 

for the change in cost of CO2. When comparing owning a CC plant with purchasing CO2, it

was revealed that purchasing option is only beneficial for smaller plants. 

 

Keywords  methanol, CCU, CO2 hydrogenation, simulation, Aspen, economics, levelised 

cost 
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1 Introduction 

Ever since the industrial revolution human development has been greatly linked to the ever-

increasing consumption of fossil energy resources. These energy resources have paved the 

way to our current technological development. These resources not only provide heat, 

electricity, and transportation, but are also converted to pharmaceuticals, hygiene products, 

plastics, fertilizers. Life without these products and services would be impossible and 

unthinkable for many humans. [1] 

Since 1991, the total global energy consumption has increased by more than 50%. In 2015, 

more than 80% of energy consumption was based on fossil resources. [2] Growing 

population especially in developing countries which is coupled with growing consumption 

for products and services fuel the trend in global energy consumption. This constant increase 

however has adverse effects on the environment and therefore our lives. Climate change due 

to anthropogenic greenhouse gas (GHG) emissions and its mitigation has been on the agenda 

of world leaders since the Kyoto Protocol. [1] 

The European Union has pledged to reduce its GHG emissions by 80% below its 1990 level 

by 2050. This grandiose target is planned to be reached by a series of policies and directives 

extending to all industries and sectors. Some of the most important methods to achieve these 

targets are increasing the share of renewables in the energy sector, and utilization of biofuels 

not only in road transport, but also in aviation. The introduction of obligatory carbon capture 

and storage (CCS) applications in industries where CO2 emissions are inevitable. This could 

lead to a European Union by 2050 that is less dependent on gas and oil imports, and is a 

leading power in clean technologies. [3] 

Amongst the solutions to mitigate future emissions, carbon capture and utilization (CCU) is 

gaining interest, as compared to CCS it is less controversial [4]. CO2 is a valuable, abundant 

and renewable carbon source that can be converted into fuels and chemicals. Currently the 

industrial use of CO2 is very limited corresponding to only 0.6% of global CO2 emissions 

[5]. CO2 is a highly stable compound having low reactivity. Activating CO2 is therefore an 

energy intensive process and its chemical utilization constitutes an important challenge. [6] 

CO2 conversion via hydrogenation coupled with renewable energy could fulfil the increasing 

demand for transportation fuels and carbon-containing products [7]. The overall goal of these 

processes would be to reduce anthropogenic CO2 emissions and overcome fossil fuel 

shortages by capturing CO2 from the atmosphere through recycling it using renewable 

energy [8]. 

Methanol (MeOH, CH3OH) is one of the chemicals that can be produced from CO2. It is 

considered a basic compound in chemical industry as it can be utilised in a versatility of 

processes. Due its high energy content it acts as energy carrier, while its compatibility with 

liquid transportation fuels makes it suitable for fuel blending. Recent developments in the 

petrochemical industry have made methanol a relevant feedstock for the production of 

ethylene and propylene, the base materials for plastic products. Therefore, the expected 

global demand for methanol is constantly increasing. These arguments make methanol and 

its production from CO2 a current, intriguing topic in climate change mitigation. [9] 
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1.1 Methodology and objective 

The thesis consists of two main parts. First, a literature and technology review is conducted 

about methanol, its applications, especially focusing on the chemical and petrochemical 

industry, and its potential demand in the future. Then the conventional synthesis of methanol 

is investigated, and compared to a novel synthesis process where carbon dioxide is 

catalytically hydrogenated. 

In the second part of the thesis, a methanol plant is simulated using Aspen Plus, where 

chemical grade methanol is synthesised from exhaust carbon dioxide and hydrogen produced 

by water electrolysis. First, a short literature review is collected of recent similar cases and 

simulations. It is followed by the detailed description of the process simulation of the 

methanol plant. Methanol plant with three different capacity is simulated in order to study 

the potential effects of scaling. In addition, the option of buying carbon dioxide or owning a 

carbon capture (CC) plant attached to the methanol plant are investigated.  

In the economic part of the simulation, capital expenses (CAPEX) and operating expenses 

(OPEX) are presented in order to compare the production cost for each size and option. 

Finally, the estimated levelised cost of methanol (LCOMeOH) is compared to the current 

fossil methanol price. A subsequent sensitivity analysis examines the impact of oxygen 

selling option, different electricity prices and carbon dioxide sources on LCOMeOH.  

The objective of the thesis is to investigate the techno-economic feasibility of a methanol 

synthesis plant where carbon dioxide and hydrogen are used as feedstock. The five main 

questions the thesis intends to answer are: 

1. What is the potential demand for methanol in the chemical and petrochemical 

industries? 

2. What are the current, commercially available technologies used for carbon dioxide 

hydrogenation to produce methanol? 

3. How does the setup of a CO2-based MeOH plant look like? 

4. What is the LCOMeOH produced via CO2 hydrogenation? 

5. How do the most important cost parameters influence the LCOMeOH? 
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2 Methanol 

Methanol (CH3OH) is a versatile chemical compound that can serve as a hydrogen and 

energy carrier, fuel, and as raw material for the chemical and petrochemical industries [9]. 

Methanol is a colourless, water-soluble liquid that has mild alcoholic odour, therefore its 

other names are methyl or wood alcohol [1]. 

Methanol has a heating value between 19.66 and 22.2 MJ/kg that makes it a valuable energy 

source. Compared to methanol gasoline and diesel have twice the energy content at around 

44 MJ/kg, while hydrogen stands at 143 MJ/kg. Boiling and melting point of methanol are 

at 65 °C and -96 °C respectively, which makes it easy to store, transport and distribute in 

liquid form in tank cars or pipelines. [1] 

Methanol is highly toxic for humans if inhaled or absorbed orally, and can lead to blindness 

and in worst case even to death. Therefore, methanol has to be handled and stored with care, 

especially as it can be mixed up with ethanol due to their similar characteristic. Compared 

to regular fuels it is less toxic, and it is not carcinogenic. At the same time methanol is not 

environmentally toxic, it is biodegradable and does not accumulate in the environment as 

opposed to diesel and other regular fuels. [9] 

This chapter describes the applications of methanol focusing on the chemical and 

petrochemical industries, its current and forecasted demand. It is followed by a comparison 

of current market price of fossil methanol with production cost from various feedstock. The 

chapter ends with a detailed summary of conventional methanol production and its 

comparison with CO2-based methanol production. 

2.1 Applications of methanol 

Methanol is used in a wide variety of products and it is considered a base chemical compound 

in the chemical industry (Figure 2.1). Due to its high energy content at 22.2 MJ/kg, it can 

serve as energy carrier as well as hydrogen carrier. It is used as transportation and industrial 

fuel for internal combustion engines (ICEs) and household appliances, it can replace 

gasoline, diesel and natural gas. It can be used in fuel cells as well. In addition, it stores 

energy more conveniently and safely than hydrogen or methane due to its liquid state. [1] 

The produced methanol can have different purity levels depending on the requirements 

determined by the type of application (Table 2.1). Crude or raw methanol can be used in 

some processes, which means that the methanol is used without distillation. After distillation 

the following three purities exist: fuel grade, “A” grade, and “AA” grade (purity exceeding 

99.85%). [10] 
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Figure 2.1: Value chain of methanol [9] 

Important industrial reactions of methanol include the following [11]: 

 Dehydrogenation and oxidative dehydrogenation 

 Carbonylation 

 Esterification with organic or inorganic acids and acid derivatives 

 Etherification 

 Addition to unsaturated bonds 

 Replacement of hydroxyl groups 

Table 2.1: Purity requirement of methanol for different applications 

Application Purity requirement 

of methanol 

Purity [wt%] Comments Reference 

MTO/MTP/MTG Crude methanol N/A Process through 

DME 

[9] 

DME Crude methanol N/A Can be produced 

from syngas 

directly as well 

[12] 

Chemicals including 

formaldehyde and 

acetic acid 

“AA” grade 99.85  [1, 10] 

Solvent “A” grade N/A  [10] 

Fuel (pure or blend) Fuel grade 99.7  [1] 
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estimated to be 405 and 434 €/t, while in the methanol price on the European market was 

408 €/t (currently, September 2018, it is 419 €/t [29]). 

Lurgi has until 2015 licensed four 470 000 t/a MTP plants, out of which three is located in 

China, while the fourth licensed by BASF would be located in the US Gulf Coast [23]. The 

BASF project is currently on hold due to low prices for crude oil [30]. 

2.1.3 Other applications 

Methanol is not only used in the chemical and petrochemical industries. Below a collection 

of other current applications can be found. 

Methanol is an ideal transportation fuel for both internal combustion engines (ICE). 

Methanol and ethanol have been used as transportation fuels since cars were invented. One 

of the advantages of using methanol instead of gasoline is that it has higher octane number 

than gasoline, which means that it has higher compression ratio. Therefore, even though 

having half the energy content as gasoline, less than double the amount is enough to produce 

the same power output. [12] 

Methanol can be used either as blend in regular fuels, or in pure form. The most important 

advantage of using blended gasoline or pure methanol in ICE or diesel engines is the 

reduction in CO2 [8], and other emissions such as PM, NOx, and HCs [12]. The drawback of 

using methanol blends is that vehicles have to be modified if the blend contains more than 

15 vol% methanol due to corrosion. The currently used distribution infrastructure for 

gasoline can be used for methanol as well with slight modifications. [12] 

Using methanol blends is common in China where not only M15 (15% methanol, 85% 

gasoline) are in effect but also M85 and M100 [10]. Methanol can be also converted to 

MTBE and TAME. MTBE is most widely used as blend for gasoline due to its high octane 

number. It can also be used as solvent, and be converted to high-purity polymer-grade 

isobutene. TAME is also a widely used octane booster [9]. Methanol also plays a significant 

role in biodiesel production as biodiesel is produced by transesterification of fats and oils 

with the help of methanol [9]. 

DME is made by methanol dehydration and has similar properties to LPG. DME can be 

mixed with a variety of fuels such as diesel and propane, and it provides low exhaust 

emissions of NOx, with no sulphur and particulate emissions. DME is also an intermediate 

chemical in several processes including MTO/MTP/MTG and acetic acid. [9] 

Methanol can also be used as fuel in fuel cells. There are two types of fuel cells running on 

methanol: direct methanol fuel cells (DMFCs), and fuel cells connected to methanol 

reformer, i.e. indirect methanol fuel cells (IMFCs). In the later, methanol is reformed over a 

Cu/Zn catalyst to reformate gas that contains hydrogen. This hydrogen is fed to the final fuel 

cell. A variety of fuel cells can be run directly on methanol such as alkaline fuel cells, PEM 

fuel cells and phosphoric acid fuel cells. Each type has its advantages and disadvantages, but 

this is not detailed further in this thesis. The main advantage of using fuel cells is that they 

have essentially zero emissions [8]. Compared to hydrogen-fuelled fuel cells the methanol-

fuelled ones have the advantage of the fuel being in liquid form, therefore the storage of fuel 

is easier. [9] 
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Figure 2.5: Methanex quarterly average European posted contract methanol price [29] 

According to analysis by Boulamanti et al. [36] the average production cost of natural gas 

based methanol in 2013 in the EU was 408 €/t, while the price on the European market varied 

between 370-450 €/t. All the other investigated countries had lower production costs in the 

following order, from lowest to highest: Saudi Arabia, Russia, USA, and Ukraine. Russia, 

being a major exporter of methanol to the EU countries enjoys high margins compared to its 

105 €/t production cost. The analysis discovered that the major contributor to the high 

production cost in the EU is the high cost of feedstock, which is almost four times higher 

compared to Russia’s natural gas. 

Production cost of petrochemicals in the EU ranges between 748 €/t and 816 €/t depending 

on whether the final product is only ethylene, or both ethylene and propylene, which is higher 

than the ones in USA or Saudi Arabia. However, transportation costs were not included in 

the analysis, which would make ethylene export from these countries less profitable. The 

global prices for ethylene and propylene in 2013 were 973 €/t and 1030 €/t respectively. [36] 

A research done by IRENA [37] (Figure 2.6) shows the influence of feedstock and size of 

production plant on the production cost. It is clear that natural gas is the cheapest feedstock 

available for methanol production. Coal and wood can be considered second cheapest 

feedstock. However, they largely depend on the location of the methanol plant, and whether 

the raw material is available at low prices. It is also clearly visible that higher yearly output 

leads to lower production costs. However, plants with yearly outputs over 400 kt operate 

based on more traditional feedstock (natural gas, coal and wood). There are only a few 

existing plants using CO2 as feedstock. Figure 2.6 also shows that such plants, the interest of 

this thesis, have one of the highest production costs, between 500 and 900 €/t. It can be 

observed that such plants positively benefit from scaling effect. 
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Figure 2.6: Production costs and production capacity of (bio)methanol for various 

feedstock [37] 

2.3 Production of methanol 

Methanol was discovered in the 17th century by Robert Boyle via wood distillation, which 

process continued to be the standard technology until the beginning of the 20th century when 

Sabatier introduced a synthetic method via reacting CO and H2. The process, patented by 

BASF, was based on synthetic gas, which is a mixture of CO, CO2 and H2, produced via coal 

gasification. The reaction took place over a ZnO/Cr2O3 catalyst at high temperature and 

pressure (300-400°C and 250-350 bar). This process was highly inefficient and the following 

years concentrated on developing the process conditions, the catalyst, and cleaner syngas 

production. These developments had led to improved reaction conditions, first by reducing 

operating temperature and pressure to 300°C and 100 bar by ICI, followed by improvements 

by Lurgi lowering process temperature and pressure levels to 230-250°C and 40-50 bar. 

Currently syngas can be produced from a variety of carbon-based materials, from coal to 

biomass, the most common way globally being natural gas. [10] 

Besides the conventional, syngas based methanol synthesis other state-of-the-art processes 

are emerging, however, these processes have not yet reached economic feasibility for scale-

up due to low yields, selectivity, reaction conditions or environmental concerns. These 

technologies are [9]: 

 Selective oxidation of methane via halogenation or via methyl bisulphate, 

 High-temperature pyrolysis of methane followed by CO2 hydrogenation, 

 Enzymatic production from methane by methane-monooxygenase, 

 Synthesis gas generated by hydropyrolysis of biomass feedstock, 

 Co-electrolysis of CO2 and water into syngas, 

 Steam reforming or direct hydrogenation of glycerol. 

In this sub-chapter, the conventional catalytic synthesis of methanol from syngas will be 

described, followed by a techno-economic description of and comparison to methanol 

production from CO2 hydrogenation via water electrolysis. 
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Table 2.3: Overview of some catalysts and reaction conditions used for methanol synthesis 

from synthesis gas 

Company Components (wt%) Reaction conditions Year Ref 

 Cu Zn Al Other Temperature 

[°C] 

Pressure 

[bar] 

Space 

velocity 

  

Shell 

International 

Research 

40 18 - Rare earth 

elements 4 

300 53 10 900 h-1 1971 [9] 

Mitsubishi 

Gas Chemical 

Company 

62 31.5 6.5 - 240 88 30 000 h-1 2010 [9] 

Mitsubishi 

Gas Chemical 

Company 

57.6 29.5 9.2 Zr 3.7 250 49 4 000 h-1 1973 [9] 

Ammonia 

Casale 

30 50 3 Cr 16 250 100 12 500 h-1 1982 [9] 

Lonza AG 40 20 - Zr 40 250 50 8 000 l/kg 

h-1 

1996 [9] 

AIST, RITE 45.2 27.1 4.5 Zr 22.6, Si 

0.6 

250 50 10 000 h-1 1998 [9] 

YKK Corp 76.3 11 12.7 - 250 50 1.7 g/h 

mol-1 

1998 [9] 

Süd Chemie 

AG 

65.2 23.8 11 - 300 100 4 000 h-1 1984 [9] 

Süd Chemie 

AG 

63 27 10 - 250 60 22 000 h-1 2001 [9] 

Süd Chemie 

AG 

65-

75 

18-

23 

8-12 - N/A N/A N/A 1987 [11] 

IFP 25-

80 

10-

50 

4-25 - N/A N/A N/A 1987 [11] 

Shell 71 24 - Rare earth 

oxide 5 

N/A N/A N/A 1973 [11] 

ICI 61 30 9 - N/A N/A N/A 1965 [11] 

BASF 65-

75 

20-

30 

5-10 - N/A N/A N/A 1978 [11] 

Du Pont 50 19 31  N/A N/A N/A 1986 [11] 

United 

Catalysts 

62 21 17 - N/A N/A N/A 1986 [11] 

Haldor 

Topsøe 

37 15 - Cr 48 N/A N/A N/A 1986 [11] 

 

The currently used low-pressure catalysts were first developed by ICI in 1966, which made 

methanol synthesis more economical. The copper part of the catalyst is considered the main 

active site of the catalyst; zinc oxide is the stabilizer, while alumina or chromia is used for 

stabilizing and preventing sintering. [11] 

The lifetime of the catalyst depends on the operating conditions, and the impurities in the 

syngas. Poisoning and sintering are the most common reasons of catalyst deactivation, which 

leads to increased operating costs. Poisoning is due to impurities in the syngas such as 

sulphur (above 5 ppm), chlorine, iron and nickel carbonyls, while sintering is caused by 

increasing temperatures, especially above 270°C. [10] The average lifetime of catalysts is 

between two to five years [11]. 
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2.8c). The design results in lower operating cost compared to quench converters due to 

decreased volume of catalyst needed, and lower investment costs. The design is easily 

scalable up to 10000 t/d or more.  [9, 10, 38] 

The quasi-isothermal process differs from the adiabatic one in the way of heat removal. In 

isothermal operation, the average reaction temperature of catalyst bed is lower than in 

adiabatic reactors, which results in lower amount of by-products and longer catalyst lifetime. 

Less catalyst is needed to produce the same amount of methanol than in adiabatic converters, 

which means that isothermal reactors have higher efficiency, expressed by space time yield 

(STY), than adiabatic ones. [9] 

Quasi-isothermal reactors are generally water-cooled, tubular reactors, where the reaction 

takes place in tubes filled with catalyst. Heat is removed by the boiling water outside the 

tubes. These kind of reactors operate at milder temperatures, between 240-260°C, however, 

recycle rates can still be substantial. This kind of reactors have several advantages even 

though the high investment cost. It carries all the advantages that a quasi-isothermal reactor 

has, such as good temperature control, catalyst overheating is not possible, start-up and 

catalyst load changes are easy, and the produced steam can be used for other purposes within 

the process. [9] 

 

Figure 2.9: Radial water-cooled tubular reactor, Johnson Matthey’s DAVY™ [39] 

Other quasi-isothermal reactor designs can have the catalyst on the shell side, and the heat 

can be removed by boiling water or reaction gas (Figure 2.9). Gas-cooled reactors have 

superior heat removal capacities and close to equilibrium temperatures control. Double-

tubular converters, where catalyst is loaded in the annular space between the inner and outer 

tubes are also cooled by water. [9, 11] 

fresh syngas 

product gas 
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These reactors can be used individually, in series, or in combination with other type of 

reactors. Such example for a mix of reactor types is Lurgi’s process design (Figure 2.10) 

where a water-cooled reactor is followed by a gas-cooled reactor. Other example is Haldor 

Topsoe’s design where an adiabatic top layer is installed in a boiling water reactor. These 

combinations lead to more optimal use of the expensive water-boiling unit. [9] 

 

Figure 2.10: Lurgi’s two-stage process design [23] 

Liquid phase technologies compared to the earlier described fixed-bed reactors employ 

reactors where the reaction takes place in a liquid from where methanol can be removed. 

This fluidized-bed also functions as an improved heat removal medium. LPMeOH 

technology by Air Products uses mineral oil as medium in which commercial methanol 

catalyst is suspended in powder form (Figure 2.11). The heat is transferred from the mineral 

oil to boiling water in an internal tubular heat exchanger. This design allows more efficient 

heat and mass transfer coupled with lower investment and operating cost compared to 

traditional tubular fixed-bed converters. However, liquid phase technologies are considered 

more prone to catalyst deactivation than gas phase converters. The design is especially 

suitable for syngas produced from coal. [10, 38] 
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Within the development of the CAMERE process (introduced in detail later), a highly stable 

and active catalyst was synthetized with composition of Cu/ZnO/ZrO2/Ga2O3 (5:3:1:1) due 

to the commercial catalysts having low methanol yield without the recycle loop and 

deactivating faster from the increased amount of water. The catalyst was very active at lower 

temperatures compared to commercial ones, and produced methanol yield with 15% per 

pass. [48] 

As collected by Jadhav et al.  [6] the Cu and ZnO in the catalyst crystalizes faster thanks to 

the increased water from RWGS resulting in earlier deactivation and sintering of the catalyst.  

At fixed pressures production rate reached equilibrium at temperature between 247-257°C 

and the maximum methanol production was around 247°C for the research done by Toyir et 

al. [41]. Figure 2.14 shows that above 250°C a Cu/Zn/Al catalyst even though has a higher 

CO2 conversion its selectivity towards methanol rapidly decreases [49]. Gallucci et al. [50] 

has showed that when CO2 conversion increases methanol selectivity decreases, and 

concluded that maximising conversion not necessarily results in an increased methanol yield. 

 

Figure 2.14: Effect of temperature on CO 2  conversion and methanol selectivity over 

Cu/Zn/Al (50:30:20) catalyst (CO2:H2 ratio 1:3, GHSV 2000 h−1and pressure 20 bar) 

[49] 

Gallucci et al. [50] has also investigated the effect of increasing the H2/CO2 feed ratio from 

3 to 7 in traditional reactors over commercial catalyst and realized that methanol selectivity 

was always higher for the higher feed ratio, at 210°C 48% vs 64%. However, this high 

selectivity comes with higher cost from hydrogen consumption. Ushikoshi et al. [46] noted 

that CO2 conversion to methanol decreased with increasing GHSV. 

Currently the challenge in CO2-based methanol synthesis is finding a suitable catalyst; 

accordingly, several studies and researches focus on these materials. Yet, there is not enough 

pilot-scale data available, especially ones that study the effects and outcomes of long-term 

operations. [40] A summary of the listed catalysts can be found in Table 2.4. 
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be produced, and similar case studies will be conducted. Moreover, the steel plant’s 
behaviour will be studied with the CC unit. [56-59] 

Within MefCO2 four different catalysts, Zn3O3/Cu, Cr3O3/Cu, Fe3O3/Cu and Mg3O3/Cu 

were developed and tested for CO2-based methanol synthesis [60]. The catalysts’ 
performance was measured by carbon conversion and selectivity towards methanol. The 

combination of zinc and copper showed the best overall performance for selectivity, stability 

and activity.  

2.3.2.4.4 CAMERE process 

Joo et al. [48] developed a two-step CO2-based methanol synthesis process (carbon dioxide 

hydrogenation to form methanol via a reverse-watergas-shift reaction, in short CAMERE) 

and compared it to the conventional fossil one. The two-step process consists of a reactor for 

RWGS reaction, where CO2 is reacted with hydrogen to form water and CO, while a second 

methanol reactor converts the CO, CO2 and H2 mix to methanol. Water was removed 

between the two reactors that led to a decreased recycle gas volume and thus decreased purge 

gas volume resulting in an increased yield of methanol from 37.01 to 47.87 t/h. Even with 

the CAMERE process, the limitation stays the same as with the one-step CO2 methanol 

synthesis, namely the availability of cheap and fossil free hydrogen. 
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3 Techno-economic study of a CO2 hydrogenation 
methanol plant 

In this part of the thesis a simulation of a methanol synthesis plant using hydrogen and CO2 

carried out in Aspen Plus is described. First, a literature review of similar studies will be 

introduced, followed by the process design and parameters of the current simulation. The 

simulation focuses on mass and energy balances as well as economic feasibility of the 

project, and compares two plant setups both having three different yearly methanol output. 

3.1 Literature review 

Compared to the limited amount of pilot- and lab-scale CO2-based methanol plants there are 

several reported models of the process. 

Kiss et al. [61] proposed an innovative process to convert CO2 and wet hydrogen to methanol 

via a catalytic reactor. The process proved to be highly efficient as a result of a stripping unit 

leading to the complete recycle of CO2 and removing the additional water from wet 

hydrogen. This resulted in minimised utility and raw material consumption. [61] 

Van-Dal et al. [62] simulated a methanol plant coupled with a CO2 capture unit, and 

investigated the impact of supplying the supplementary steam by combusting some of the 

CO2, CO, H2 and methanol removed from the system. 36% of the thermal energy 

consumption of the CC process was covered by this supplementary steam. 1.6 ton of CO2 

per ton of methanol was abated if the by-product oxygen from water electrolysis was sold, 

while it was 1.2 ton if selling of oxygen was not considered. [62] 

Abdelaziz et al. [63] constructed three processes for CO2 hydrogenation to methanol 

differing in how the flue gases are treated before entering the reactor. The three processes 

considered are direct use of flue gases without CC, water removal from flue gases, and CO2 

capture. The total cost and CO2 emission of each process was compared, and it was 

concluded that while capturing CO2 prior to introducing it into the reactor had the highest 

yield, and therefore the shortest payback period. However, this process also emitted most of 

the CO2 as CO2 capture is an energy intensive process, and fossil electricity was considered. 

The cost of the produced methanol ranged between 230 €/t and 320 €/kg. [63] 

Mignard et al. [64] compared four scenarios for methanol production altering in electricity 

supply when renewable electricity is not available. The steady supply case without oxygen 

sale was the only scenario that was profitable within the 15-year lifetime of the plant. While 

if oxygen was sold a second scenario using pressurised electrolysis became also viable. The 

production cost of methanol ranged between 490 €/t and 760 €/t. [64] 

Rivarolo et al. [65] presented two different plant configurations examining how having 

different source of CO2, biogas upgrading compared to direct purchase of CO2, affects the 

production cost. It was found that the option having on-site CO2 capture is more 

economically feasible due to co-selling of bio-methane, even though being more complex 

and has higher investment cost. When the impact of possible future methanol prices were 

investigated higher methanol selling prices led to the CO2 purchasing option become more 

viable. [65] 
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Bellotti et al. [66] calculated and compared the profitability of a methanol plant with carbon 

capture unit for three differing yearly outputs. It was revealed that oxygen sales from the 

electrolyser are highly beneficial even for larger plants (above 50 kt/a) at methanol market 

prices point of 600 €/t. Smaller plants (below 10 kt/a) are not economically feasible even 

with oxygen selling when methanol market price is as high as 500 €/t. As the electrolyser 
corresponds to around 80% of the investment costs its expected price reduction would 

significantly decreases the payback period. [66] 

Wiesberg et al. [67] explored whether a methanol plant using the process of direct 

hydrogenation of CO2 or using indirect conversion of CO2 via bi-reforming (CO2 coupling 

reaction with methane followed by water gas shift reaction) using natural gas is more 

economical. The direct hydrogenation process turned out to be more competitive, however 

still non-viable in the Brazilian market with 1120 €/t of hydrogen. Production cost for direct 

hydrogenation for integrated and non-integrated scenario was 322 €/t and 294 €/t 

respectively. The cost of hydrogen had a high impact on the feasibility of the process. If 

natural gas price is as low as on the US market the bi-reforming process could outperform 

the direct hydrogenation one even with hydrogen prices below 717 €/t. [67] 

Pérez-Fortes et al. [68] constructed the model of a methanol plant with carbon capture unit 

with 440 kt/a output. The most expensive equipment in the plant was the compression 

system, as hydrogen was sourced from outside of the plant. It was found that the plant under 

the current market conditions is not viable, only if either the market price of methanol 

increases to above 720 €/t, or the cost of hydrogen decreases to 1450 €/t, or the plant receives 

at least 220 € per ton of CO2 consumed. [68] 

These reports all modelled the production of fuel grade methanol. Regarding economic 

analysis, none of the reports considered the comparison of owning a CC plant with direct 

purchase of CO2. This thesis attempts to close this missing gap by providing a detailed 

description of how to achieve chemical grade methanol in process simulation. 

3.2 Methodology 

This thesis compares the economic feasibility of a methanol synthesis plant considering three 

different yearly methanol outputs and two options for CO2 source. The methanol produced 

in each case is chemical grade purity. Option I assumes that the methanol plant is operated 

together with a CC unit, while in Option II CO2 is considered a purchased raw material. The 

whole plant is supplied by fossil-free electricity, and CO2 is captured from flue gases of a 

biomass boiler. The overview of the process is shown in Figure 3.1. 
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plant and are preheated by the vented gases leaving the absorber column. Prior to entering 

the column, the flue gas is quenched and conditioned with cooling waterin a direct contact 

cooler (DCC). Flue gas enters at the bottom of the absorber column where lean and semi-

lean amine are injected. Rich amine leaves at the bottom of the column and preheated by the 

lean and semi-lean amine coming from the stripper. The stripper column consists of a 

reboiler and a condenser unit. Wet CO2 leaves on the top of the column and passes through 

a condenser to remove most of the water. The regenerated lean and semi-lean amine are sent 

back to the absorber column. 

Table 3.1: Performance, energy and utility use of CC unit from multi-fuel boiler by 

Onarheim et al. [69] 

Parameter Amount Unit 

CO2 capture 271.00 kt/a 

CO2 content of flue gas 18.98 wt% 

Capture efficiency 94.68 % 

MEA makeup 1.00 kg/ton CO2 captured 

Water makeup 416.67 kg/ton CO2 captured 

Electricity usage 0.14 MWh/ton CO2 captured 

LP steam usage 1.40 t/ton CO2 captured 

MP steam usage 6.20 kg/ton CO2 captured 

Cooling water usage 88.46 kg/ton CO2 captured 

 

3.2.3 Methanol synthesis and distillation plant 

The simulation of the methanol synthesis and distillation unit of the methanol plant were 

mostly based on the works of Kiss et al. [61]. The flowsheet of the process constructed for 

this thesis can be seen in Figure 3.4 and is explained below. 

Carbon dioxide is fed at 18 °C and 2 bar from the CC plant, and it is compressed to 50 bar 

by a series of compressors (COMPR1-4) with intercooling (HX1-3) to 38 °C. Hydrogen 

enters from the electrolyser at 50 °C and 50 bar. The gases are mixed with the recycled gas 

(MIXER1) and then heated to 250 °C (HX4). The make-up gas is fed to the isothermal 

reactor (REACTOR) at 50 bar and 250 °C. The gases leaving the reactor are cooled to 30 °C 

(HX5) and then separated in a flash separator (SEP1) to liquid raw methanol and non-reacted 

gases. The non-reacted gases are recycled to the reactor after purging 0.5% (SPLITTER) in 

order to prevent the accumulation of by-products and inert gases in the system. Raw 

methanol from the separator is expanded to 1 bar in a flash separator (SEP2) to further 

remove the non-reacted gases, especially CO2, and by-products in order to ease the 

distillation process. Raw methanol is heated to 86.6 °C (HX6) and injected to the first column 

of the distillation system (DIST). Here, water is separated from methanol, and leaves the 

column at the bottom. Methanol leaves on the top of the column and enters the second 

column (RECT). The bottom of the second column is recycled back to the first column as it 

contains significant amount of methanol beside water. The condensed methanol leaves at the 

top of the column at 60 °C and it is further cooled (HX7) to 30 °C for storage. Non-reacted 

gases with some methanol are combusted (BOILER) with the purge stream and vapour 

stream from flash separator (SEP2) to generate steam. The generated steam is cooled down 

(HX8) to 120 °C in order to be used within the process or to be sold. 







35 

 

 𝑟 = (𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟)(𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)(𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚)  (Eq. 3.4) 

The rate equation of each reaction (A-C) that happens in the reactor has to be added by giving 

the kinetic factor, the driving force expression and the adsorption term separately. The 

reacting phase is vapour, and the basis of reaction rate is catalyst weight for all of them. 

The kinetic factor, if T0 is not specified, can be written as a pre-exponential factor and an 

Arrhenius-term (Eq.3.5). 

 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑘𝑇𝑛𝑒−𝐸𝑎 𝑅𝑇⁄  (Eq. 3.5) 

In this paper T0 is not specified, therefore input data from Table 3.2 was used for the 

reactions. 

Table 3.2: Kinetic factor for reactions A, B, C [61] 

Reaction K n Ea 

A 4.0638 × 10-6 0 1.1695 × 107 J/kmol 

B 9.0421 ×108 0 1.1286 × 108 J/kmol 

C 1.5188 × 10-33 0 2.6601 × 108 J/kmol 

 

The driving force expression is the numerator of the corresponding rate equation. Therefore, 

it can be written as (Eq.3.6-3.8): 

 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐴: 𝐾𝐶𝑂𝑓𝐶𝑂𝑓𝐻23 2⁄ − 𝐾𝐶𝑂𝐾𝐴 𝑓𝐶𝐻3𝑂𝐻𝑓𝐻2−1 2⁄ [𝑃𝑎3 2⁄ ] (Eq. 3.6) 

 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐵: 𝐾𝐶𝑂2𝑓𝐶𝑂2𝑓𝐻2 − 𝐾𝐶𝑂2𝐾𝐵 𝑓𝐻2𝑂𝑓𝐶𝑂[𝑃𝑎] (Eq. 3.7) 

 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐶: 𝐾𝐶𝑂2𝑓𝐶𝑂2𝑓𝐻23 2⁄ − 𝐾𝐶𝑂2𝐾𝐶 𝑓𝐻2𝑂𝑓𝐶𝐻3𝑂𝐻[𝑃𝑎3 2⁄ ] (Eq. 3.8) 

As the reacting phase is vapour the difference between fugacity and partial pressure can be 

neglected, and partial pressure can be used as base of concentration. Aspen requires the 

driving force to be given in two terms; the first is the positive side of each expression 

describing the breakdown of reactants, while the second one is the negative side, 

representing the formation of products. Firstly, the concentration (f) exponent of the 

components has to be given, followed by the coefficients for the driving force constants (K) 

given in Table 3.3. K constants are expressed in a logarithmic form (Eq.3.9), hence the 

coefficients. 

 ln(𝐾) = 𝐴 + 𝐵𝑇 (Eq. 3.9) 

Aspen also offers C and D coefficients, which in this case can be written as zero. 
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CO2 costs occurred only when CO2 was bought. When a CC plant was directly attached and 

owned together with the methanol plant costs arising from the process were used for 

calculations. 

Table 3.11: Fixed and variable operation and maintenance costs 

FIXED O&M Cost Unit Comment 

Direct labour cost 60000 €/a/person [80] 

Admin and general overhead cost 18000 €/a/person 30% of direct labour cost [80] 

Annual O&M 1.5 % of FCI  [80] 

Insurance 0.5 % of FCI  [80] 

Local taxes and fees 0.5 % of FCI  [80] 

VARIABLE O&M    

CO2 50 €/t [15] 

H2 for 10 kt/a plant 3.12 €/kg at 30 €/MWh electricity price 

H2 for 50 kt/a plant 2.74 €/kg at 30 €/MWh electricity price 

H2 for 250 kt/a plant 2.65 €/kg at 30 €/MWh electricity price 

Electricity 30 €/MWh Provided by Vattenfall AB 

Cooling water 0.05 €/m3 Provided by Vattenfall AB 

Steam 0.015 €/kg [77] 

Process water 2.00 €/m3 Provided by Vattenfall AB 

Methanol synthesis catalyst 8.77 €/kg Changed every 3 years [67] 

MEA solvent 1.62 €/kg [76] 
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4 Results 

4.1 Technical performance 

Table 4.1 shows key performance indicators for easier understanding of the process results. 

All three plants operate identically, which was achieved changing only reactor size and 

catalyst loading according to the increase in the yearly output. The desired chemical grade 

purity was achieved after distillation for each plant size. Consumption of raw materials are 

close to the stoichiometric values, only exceeding it by 4 and 6 wt% for CO2 and H2 

respectively. 

Table 4.1: Key performance data and comparison of the methanol plants 

 10 kt/a 50 kt/a 250 kt/a Unit 

Methanol output 10000.29 50000.07 249999.57 ton/year 

CO2 usage 1.4 1.4 1.4 ton/ton MeOH 

H2 usage 0.2 0.2 0.2 ton/ton MeOH 

Recycle to feed ratio 4.8 4.8 4.8 mol/mol 

H2:CO2 at reactor inlet 5.8 5.8 5.8 mol/mol 

CO2 conversion per 

pass 

29.1 29.1 29.0 mol % 

Overall CO2 conversion 96.19 96.14 96.19 mol % 

Methanol purity 99.87 99.88 99.87 wt% 

Steam usage (after heat 

optimization) 

0 0 0 ton/MeOH 

Cooling water (after 

heat optimization) 

272.1 272.6 272.1 ton/ton MeOH 

Electricity usage 174 174 174 kWh/ton MeOH 

 

Detailed stream tables containing mass balance information are available for all methanol 

plant capacities in Appendix 1. 

Compared to other similar simulations the overall CO2 conversion rate is acceptable, 

however, it could be improved with the optimization of the process (Table 4.2). One main 

point in order to achieve higher overall CO2 conversion rate is to decrease the amount of 

purge from 0.5% to 0.1%. 

Table 4.2: Comparison of overall CO2 conversion of similar methanol plant simulations 

 This paper [61] [62] [63] [64] [67] [68] 

CO2 conversion (mol %) 96.19 99.78 92.56 99.74 99.38 97.67 94 

 

4.1.1 Results of heat optimization 

The extracted data from Aspen Plus can be found in Table 4.3, where the stream names are 

assigned by the heat exchanger that they pass through. Beside the material streams, the 

reactor heat was also extracted, as it requires cooling. Hot streams are process streams that 

require cooling, while cold streams require heating. Stream data for the other two plant sizes 

can be found in Appendix 2. 
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Table 4.3: Stream data of 50 kt/a plant extracted from Aspen Plus for heat integration 

Stream Stream 

type 

Supply temperature 

[°C] 

Target temperature 

[°C] 

Duty 

[MW] 

CP [kW/°C] 

HX1 Hot 93 38 0.1 2.3 

HX2 Hot 119.7 38 0.2 2.3 

HX3 Hot 118.2 38 0.2 2.5 

HX4 Cold 46.5 250 8.4 41.5 

HX5 Hot 250 30 13.3 342.2 

HX6 Cold 30.3 86.8 5.0 706.6 

HX7 Hot 60.4 30 0.2 6.6 

REBOILER at 

DISTL 

Cold 102.5 103 1.4 2831.5 

REBOILER at 

RECT 

Cold 65.7 66.3 1 5205.5 

CONDENSER at 

DISTL 

Hot 67.9 66.4 2.6 7062.2 

CONDENSER at 

RECT 

Hot 64.4 60.4 4.4 34983.6 

REACTOR HEAT Hot 250 249.5 3.3 6558.5 

HX8 Hot 1509.3 120 1.5 3.2 

 

The 50 kt/a methanol plant needs 24.3 MW cooling utility, and 15.9 MW hot utility. HX8 

stream was not included in this calculation, as it does not belong to the methanol plant; its 

sole purpose is to generate steam to be used within the plant, if possible. 

Once the streams have been extracted Aspen Energy Analyzer creates the so-called 

Composite Curves to identify the pinch temperature for the given minimum temperature 

difference. In this case, 10°C was chosen as the minimum temperature difference. All hot 

streams are represented by a single hot curve, and cold streams by a single cold curve, 

together they are called the Composite Curves as shown in Appendix 3 (Figure A1). Where 

the minimum temperature difference is found between the hot and cold curve that is where 

the pinch temperature is located. The system is then divided to below and above the pinch 

areas. Below the pinch is where heat input is required, while above the pinch is where cooling 

is needed. Where the two curves overlap heat recovery is possible. [75] 

As there are several utilities available to choose from constructing the Grand Composite 

Curve is a necessary tool. The Composite Curves are not suitable when multiple cooling and 

heating duty are offered, as the curves would have to be reconstructed every time a utility is 

added [75]. The Grand Composite Curve, see Appendix 3 (Figure A2), shows where is heat 

integration in the process, and whether and how much excess energy is available. 

The chosen optimized heat exchanger design for 50 kt/a methanol plant can be seen in 

Appendix 4 (Figure A4). The detailed characteristics of the new heat exchangers can be 

found in more detail in Appendix 4 and 5, including results for the other two plants as well. 

For the 50 kt/a plant compared to the original process using 24.32 MW cooling utility, and 

15.88 MW hot utility, the integrated process uses only 9.9 MW cooling duty in the form of 

1704 t/h cooling water and no heating duty. 
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Overall more than 75% utility saving was achieved for each plant (Table 4.4). Hot utility 

need was completely eliminated due to the steam generation within the methanol plant from 

the boiler.  

Table 4.4: Utility need of methanol plants before and after heat integration 

 10 kt/a 50 kt/a 250 kt/a 

Original hot utility 3.2 MW 15.9 MW 79.4 MW 

Original cold utility 4.9 MW 24.3 MW 121.5 MW 

Total original utility 8.0 MW 40.2 MW 200.9 MW 

Integrated hot utility 0 MW 0 MW 0 MW 

Integrated cold utility 2.0 MW 9.9 MW 49.4 MW 

Total integrated utility 2.0 MW 9.9 49.4 MW 

Cold utility saving 59.36 % 59.3 % 59.4 % 

Hot utility saving 100 % 100 % 100 % 

Total utility saving 75.4 % 75.4 % 75.4 % 

Cooling water usage 340.1 ton/h 1703.7 ton/h 8502.4 ton/h 

 

Table 4.5 shows annual mass flows, annual raw material, and utility use after heat integration 

for the different plant sizes. 

Table 4.5: Annual mass flows, raw material and utility usage after heat integration for the 

different plant sizes 

 10 kt/a 50 kt/a 250 kt/a 

Electrolyser H2 out [kt/a] 2 10 49 

 O2 out [kt/a] 16 78 390 

CC unit Flue gas in [kt/a] 95 477 2382 

 CO2 out [kt] 14 71 357 

 MEA [t] 14 71 357 

 Process water [m3] 5949 29762 148737 

 Steam [ton] 109 543 2713 

 Cooling water [m3] 1263 6319 31577 

 Electricity [MWh] 1999.03 10000.17 49975.52 

Methanol plant MeOH out [kt] 10 50 250 

 H2 [ton] 1962 9816 49053 

 Cooling water [m3] 2721133 13629400 68018800 

 Electricity [MWh] 1.74 8.69 43.41 

 

4.2 Economic results 

The final calculated PEC, and total TIC for the equipment of the methanol plant and the CC 

plant can be found in Table 4.6. 
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Table 4.6: Total capital investment (TCI) for the CC unit and methanol plant of different 

sizes with detailed equipment cost, in 2016 million €  

Equipment name 10 kt/a 50 kt/a 250 kt/a 

Reactor 0.65 1.70 4.47 

Distillation columns 0.28 0.43 1.03 

Heat exchanger network 0.24 0.56 2.01 

Flash separators 0.03 0.04 0.09 

Compressors 2.32 2.76 3.81 

Boiler 0.04 0.13 0.46 

TOTAL MeOH PLANT (PEC) 3.55 5.63 11.88 

TOTAL MeOH PLANT (TCI) 22.42 35.58 75.06 

CC unit 7.01 22.33 71.12 

CC unit TCI 9.79 31.19 99.35 

TOTAL MeOH+CC (TCI) 32.21 66.77 174.41 

 

The effect of economics of scale is clearly visible from Table 4.6 for both the methanol plant 

and the CC unit. The largest methanol plant with CC unit has a TCI less than 5.5 times of 

the smallest one while its capacity is 25 times more. 

Based on the estimated OPEX for the plants in Appendix 6 Figure 4.1 shows that out of the 

two option for the 50 kt/a plant size the plant with CC unit has lower yearly OPEX. This is 

explained by the negligible cost effect of electricity, process water and MEA compared to 

the direct cost of CO2 buying. From the figure it is also worth to notice that in case of 

methanol plant without CC around 80% of annual OPEX arises from hydrogen costs, while 

for methanol plant with CC this reaches close to 90%. 

 

Figure 4.1: Annual OPEX of 50 kt/a plant without and with CC plant  

The overwhelming share of hydrogen cost within OPEX can be seen better in Figure 4.2 

where all sizes of methanol plant are illustrated. 
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Figure 4.2: Annual OPEX of methanol plants without CC unit  

The levelised cost of methanol for the different plant sizes and setups is summarized in Table 

4.7. In Figure 4.3 the share of CAPEX and OPEX, influencing the LCOMeOH can be seen 

as well. 

Table 4.7: LCOMeOH for different methanol plant sizes with and without CC unit, €/ton 

 10 kt/a 50 kt/a 250 kt/a 10 kt/a with CC 50 kt/a with CC 250 kt/a with CC 

LCOMeOH 1035 724 645 1126 743 631 

 

 

Figure 4.3: Levelised cost of methanol and the effect of CAPEX and OPEX  
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LCOMeOH as expected decreases significantly with the increasing yearly output, and it 

ranges between 1130 and 630 €/t. In all cases the estimated LCOMeOH is above the current 
fossil methanol European market price posted by Methanex [29]. The estimated LCOMeOH 

is somewhat higher than the earlier estimates by IRENA [37] and Galindo Cifre et al. [42]. 

However, the findings in this thesis agree that hydrogen cost has the biggest influence on the 

final LCOMeOH. For the 250 kt/a plant without CC unit OPEX represents close to 90% 

share of the total LCOMeOH out of which 80% is hydrogen cost. Therefore, more than 70% 

of this fossil-free methanol production method is associated with H2 costs. 

4.2.1 Sensitivity analysis 

Three cost parameters were investigated to see how their behaviour influences the 

LCOMeOH. Table 4.8 lists the parameters with their original and changed values. Sale of 

oxygen is not considered when sensitivity of cost of electricity and CO2 are investigated. 

Table 4.8: Cost parameters and their values for sensitivity analysis 

Parameter 1 – Oxygen 

selling 

Parameter 2 – Cost of electricity Parameter 3 – Cost of CO2 

Option A Option B Option A Option B Option C Option A Option B Option C 

Oxygen is sold 

at 100 €/t 
Oxygen is 

not sold 

20 €/MWh 30 €/MWh 40 €/MWh 25 €/t 50 €/t 75 €/t 

 

When the cost of electricity was changed, also the cost of hydrogen was changed. The 

levelised cost of H2 for each plant size and electricity cost can be found in Table 4.9. As 

mentioned earlier levelised cost of H2 (LCOH2) is used as ideally the electrolyser unit would 

be owned together with the methanol plant, and capacity of the methanol palnt would 

influence the LCOH2. 

Table 4.9: LCOH2 depending on cost of electricity and size of methanol plant, €/kg H2 

LCOH2  10 kt/a 50 kt/a 250 kt/a 

20 €/MWh 2.55 2.19 2.10 

30 €/MWh 3.12 2.74 2.65 

40 €/MWh 3.70 3.29 3.18 

 

Figure 4.4 shows how LCOMeOH changes when oxygen, the by-product from H2 

production is sold. For the largest plant with CC unit the estimated LCOMeOH is less than 

60 €/t more than the current market price. In all cases significant reduction, around 156 €/t, 
can be noticed, therefore, considering selling by-product O2 is a viable option to achieve a 

better business case.  



48 

 

 

Figure 4.4: Influence of oxygen selling option on leveli sed cost of methanol 

In the second cost parameter change, cost of electricity and the resulting LCOH2, for a 10 

€/MWh change in electricity LCOMeOH changes with around 110 €/t (Figure 4.5). This 

means that a 10 €/MWh electricity price could make methanol production from CO2 and H2 

competitive with fossil methanol. 

 

Figure 4.5: Comparison of levelised cost of methanol for different ly sized plants with 

different electricity prices 
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Figure 4.6: Comparison of levelised cost of methanol for different ly sized plants with 

different CO2 prices and sources 

Owning a CC plant becomes beneficial from middle sized methanol plants when the 

expected market price of CO2 is higher than 70 €/t. For larger plants it is already a more 

beneficial investment to own a CC plant when the expected CO2 market price is as low as 

40 €/t. However, for smaller plants it is more profitable to purchase CO2 even when market 

prices are over 108 €/t.  
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5 Conclusion 

In this thesis, the production of fossil-free methanol from CO2 and H2 was investigated. 

Methanol is a versatile, globally traded chemical that can serve as energy and hydrogen 

carrier, and it is a base chemical for the chemical industry.  End-products ranging from 

plastics, textiles, solvents and paints all encounter methanol during their production chain. 

Emerging technologies in the petrochemical industry, such as MTO, MTG and MTP will be 

significantly contributing to its forecasted 90 million global demand by 2020. 

Currently methanol is almost solely produced from fossil feedstock, mostly natural gas. 

Analysis and comparison of conventional methanol synthesis and distillation to CO2 and H2 

based methanol production revealed that while conventional process is a technologically 

more mature and economical process the fossil-free method is an environmentally better 

option. CO2 emissions can be significantly decreased if CO2-based methanol utilizes 

renewable energy for both water electrolysis and CC plant operation. It is also a beneficial 

process in CO2 mitigation utilizing CO2 instead of controversial CCS. 

Research is still ongoing about the optimization of the CO2-based methanol synthesis with 

significant focus on developing suitable, specifically tailored catalysts. However, there is an 

unfortunate lack of long-term pilot-scale measurements. Based on the present research 

publications it can be concluded that methanol synthesis from CO2 and H2 can be effectively 

operated under the same conditions, equipment and catalyst as conventional methanol 

synthesis.  

A methanol plant producing chemical grade methanol was simulated in Aspen Plus. The 

studied plants have three different annual capacities: 10 kt/a, 50 kt/a and 250 kt/a. They were 

compared with the option of buying the CO2 or capturing it directly from flue gases through 

a carbon capture unit attached to the methanol plant. The kinetic model considering both CO 

and CO2 as sources of carbon for methanol formation was described thoroughly, and the 

main considerations and parameters were introduced for the simulation. The simulation 

successfully achieved chemical grade methanol production, with a high overall CO2 

conversion rate and close to stoichiometric raw material utilization. 

Heat exchanger network was optimized in Aspen Energy Analyzer which achieved a total 

of 75% heat duty saving. This was accomplished by completely eliminating heating need as 

steam generated within the methanol plant could cover this need, and decreasing the cold 

utility to less than half. 

The estimated LCOMeOH ranges between 1130 and 630 €/t which is significantly higher 
than the current listed market price for fossil methanol at 419 €/t. This high LCOMeOH is 

mostly due to the high production cost of hydrogen, which corresponds to 72% of 

LCOMeOH. Economies of scale play a substantial effect in decreasing LCOMeOH, as 

methanol from the 250 kt/a plant has almost half the production cost of the 10 kt/a plant. 

When considering the source of CO2, direct buying compared to CC plant, for the smaller 

plant direct buying is cheaper, while for the largest plant having an own CC plant results in 

lower LCOMeOH. The influence of cost parameters was investigated in a series of 

sensitivity analyses. It was revealed that selling the oxygen by-product from water 

electrolysis had the most significant effect, reducing the LCOMeOH to 475 €/t. However, 
this option might not be available due to the location of the methanol plant. Cost of electricity 

also has a significant influence on the LCOMeOH, and for a 10 €/MWh change the 
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LCOMeOH changed by 110 €/t. Finally, the estimated LCOMeOH was least sensitive for 

the change in cost of CO2. When comparing owning a CC plant with purchasing CO2 from 

outside sources, it was revealed that purchasing option is only beneficial for smaller plants. 

Fossil-free methanol production from CO2 and H2 could become competitive with fossil 

methanol if cost of hydrogen production, which is dominated by electricity cost, would 

decrease significantly. For electricity cost at 10 €/MWh production of fossil-free methanol 

could become cheaper in larger plants than fossil methanol. 
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Appendix 1 

Detailed stream tables for methanol plants 

Table A1: Stream table of methanol plant with 10 kt/a output 

 BOTTOM CO2FEED CO2RICH FEED H2FEED METHANOL MIX PRODUCT 

Temperature °C 102.54 18.00 30.28 250.00 50.00 30.00 46.52 250.00 

Pressure bar 1.00 2.00 1.00 50.00 50.00 1.00 50.00 49.99 

Vapour frac 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 
Mole flow kmol/h 39.47 40.56 0.59 944.44 121.67 39.05 944.44 865.63 

   H2O 39.47 0.00 0.01 0.41 0.00 0.00 0.41 39.90 

   CH3OH  0.00 0.00 0.07 2.25 0.00 39.01 2.25 41.65 
   H2 0.00 0.00 0.02 788.53 121.67 0.00 788.53 670.23 

   CO2 0.00 40.56 0.49 135.95 0.00 0.03 135.95 96.46 

   CO 0.00 0.00 0.00 17.29 0.00 0.00 17.29 17.38 

Mole frac H2O 1.0000 0.0000 0.0214 0.0004 0.0000 0.0001 0.0004 0.0461 

Mole frac CH3OH 0.0000 0.0000 0.1138 0.0024 0.0000 0.9990 0.0024 0.0481 
Mole frac H2 0.0000 0.0000 0.0335 0.8349 1.0000 0.0000 0.8349 0.7743 

Mole frac CO2 0.0000 1.0000 0.8297 0.1440 0.0000 0.0009 0.1440 0.1114 

Mole frac CO 0.0000 0.0000 0.0016 0.0183 0.0000 0.0000 0.0183 0.0201 
Mass flow kg/h 711.13 1784.85 24.01 8136.77 245.27 1251.63 8136.77 8136.77 

   H2O 711.13 0.00 0.23 7.44 0.00 0.06 7.44 718.90 

   CH3OH  0.00 0.00 2.15 72.09 0.00 1250.04 72.09 1334.68 
   H2 0.00 0.00 0.04 1589.58 245.27 0.00 1589.58 1351.10 

   CO2 0.00 1784.85 21.57 5983.31 0.00 1.53 5983.31 4245.28 

   CO 0.00 0.00 0.03 484.34 0.00 0.00 484.34 486.81 
Mass frac H2O 1.0000 0.0000 0.0095 0.0009 0.0000 0.0000 0.0009 0.0884 

Mass frac CH3OH 0.0000 0.0000 0.0897 0.0089 0.0000 0.9987 0.0089 0.1640 

Mass frac H2 0.0000 0.0000 0.0017 0.1954 1.0000 0.0000 0.1954 0.1660 
Mass frac CO2 0.0000 1.0000 0.8981 0.7353 0.0000 0.0012 0.7353 0.5217 

Mass frac CO 0.0000 0.0000 0.0011 0.0595 0.0000 0.0000 0.0595 0.0598 

 PURGE RAWMEOH RECYCLE S1 S2 S3 S4 S5 

Temperature °C 29.73 29.73 29.73 93.01 38.00 119.66 38.00 118.20 
Pressure bar 45.00 45.00 45.00 4.40 4.40 10.00 10.00 22.30 

Vapour frac 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Mole flow kmol/h 3.93 79.49 786.14 40.56 40.56 40.56 40.56 40.56 
   H2O 0.00 39.49 0.42 0.00 0.00 0.00 0.00 0.00 

   CH3OH  0.01 39.39 2.26 0.00 0.00 0.00 0.00 0.00 
   H2 3.35 0.02 670.21 0.00 0.00 0.00 0.00 0.00 

   CO2 0.48 0.58 95.88 40.56 40.56 40.56 40.56 40.56 

   CO 0.09 0.00 17.38 0.00 0.00 0.00 0.00 0.00 
Mole frac H2O 0.0005 0.4968 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 

Mole frac CH3OH 0.0029 0.4956 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 

Mole frac H2 0.8525 0.0002 0.8525 0.0000 0.0000 0.0000 0.0000 0.0000 
Mole frac CO2 0.1220 0.0073 0.1220 1.0000 1.0000 1.0000 1.0000 1.0000 

Mole frac CO 0.0221 0.0000 0.0221 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass flow kg/h 30.69 1999.42 6137.35 1784.85 1784.85 1784.85 1784.85 1784.85 
   H2O 0.04 711.42 7.48 0.00 0.00 0.00 0.00 0.00 

   CH3OH  0.36 1262.23 72.46 0.00 0.00 0.00 0.00 0.00 

   H2 6.76 0.04 1351.06 0.00 0.00 0.00 0.00 0.00 
   CO2 21.10 25.71 4219.57 1784.85 1784.85 1784.85 1784.85 1784.85 

   CO 2.43 0.03 486.78 0.00 0.00 0.00 0.00 0.00 

Mass frac H2O 0.0012 0.3558 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 
Mass frac CH3OH 0.0118 0.6313 0.0118 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass frac H2 0.2201 0.0000 0.2201 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass frac CO2 0.6875 0.0129 0.6875 1.0000 1.0000 1.0000 1.0000 1.0000 
Mass frac CO 0.0793 0.0000 0.0793 0.0000 0.0000 0.0000 0.0000 0.0000 

 S6 S7 S8 S9 S10 S11 S12 S13 

Temperature °C 38.00 119.56 30.00 29.73 42.21 30.28 86.80 66.31 

Pressure bar 22.30 50.00 49.99 45.00 50.00 1.00 1.00 1.00 
Vapour frac 1.00 1.00 0.91 1.00 1.00 0.00 1.00 1.00 

Mole flow kmol/h 40.56 40.56 865.63 782.21 782.21 78.90 78.90 63.55 

   H2O 0.00 0.00 39.90 0.41 0.41 39.48 39.48 2.60 
   CH3OH  0.00 0.00 41.65 2.25 2.25 39.33 39.33 60.85 

   H2 0.00 0.00 670.23 666.86 666.86 0.00 0.00 0.00 
   CO2 40.56 40.56 96.46 95.40 95.40 0.09 0.09 0.09 

   CO 0.00 0.00 17.38 17.29 17.29 0.00 0.00 0.00 

Mole frac H2O 0.0000 0.0000 0.0461 0.0005 0.0005 0.5004 0.5004 0.0409 
Mole frac CH3OH 0.0000 0.0000 0.0481 0.0029 0.0029 0.4984 0.4984 0.9576 
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Mole frac H2 0.0000 0.0000 0.7743 0.8525 0.8525 0.0000 0.0000 0.0000 

Mole frac CO2 1.0000 1.0000 0.1114 0.1220 0.1220 0.0012 0.0012 0.0015 
Mole frac CO 0.0000 0.0000 0.0201 0.0221 0.0221 0.0000 0.0000 0.0000 

Mass flow kg/h 1784.85 1784.85 8136.77 6106.66 6106.66 1975.41 1975.41 2000.83 

   H2O 0.00 0.00 718.90 7.44 7.44 711.19 711.19 46.84 
   CH3OH  0.00 0.00 1334.68 72.09 72.09 1260.07 1260.07 1949.85 

   H2 0.00 0.00 1351.10 1344.31 1344.31 0.00 0.00 0.00 

   CO2 1784.85 1784.85 4245.28 4198.48 4198.47 4.14 4.14 4.14 
   CO 0.00 0.00 486.81 484.35 484.34 0.00 0.00 0.00 

Mass frac H2O 0.0000 0.0000 0.0884 0.0012 0.0012 0.3600 0.3600 0.0234 

Mass frac CH3OH 0.0000 0.0000 0.1640 0.0118 0.0118 0.6379 0.6379 0.9745 
Mass frac H2 0.0000 0.0000 0.1660 0.2201 0.2201 0.0000 0.0000 0.0000 

Mass frac CO2 1.0000 1.0000 0.5217 0.6875 0.6875 0.0021 0.0021 0.0021 

Mass frac CO 0.0000 0.0000 0.0598 0.0793 0.0793 0.0000 0.0000 0.0000 

 S14 S15 S16 VAPOUR  AIR STEAM S17 

Temperature °C 66.23 60.25 32.06 60.25  15.00 1495.42 120.00 

Pressure bar 1.00 1.00 1.00 1.00  1.00 1.00 1.00 
Vapour frac 0.00 0.00 1.00 1.00  1.00 1.00 1.00 

Mole flow kmol/h 24.12 39.05 4.89 0.37  17.47 20.83 20.83 

   H2O 2.60 0.00 0.01 0.00  - - - 
   CH3OH  21.53 39.01 0.39 0.31  - - - 

   H2 0.00 0.00 3.37 0.00  - - - 

   CO2 0.00 0.03 1.03 0.06  - - - 
   CO 0.00 0.00 0.09 0.00  - - - 

Mole frac H2O 0.1076 0.0001 0.0030 0.0000  - - - 

Mole frac CH3OH 0.8924 0.9990 0.0800 0.8409  - - - 
Mole frac H2 0.0000 0.0000 0.6888 0.0000  - - - 

Mole frac CO2 0.0000 0.0009 0.2102 0.1590  - - - 

Mole frac CO 0.0000 0.0000 0.0179 0.0000  - - - 
Mass flow kg/h 736.55 1251.63 67.34 12.64  504.00 571.34 571.34 

   H2O 46.77 0.06 0.27 0.00  - - - 

   CH3OH  689.78 1250.04 12.55 10.04  - - - 
   H2 0.00 0.00 6.80 0.00  - - - 

   CO2 0.00 1.53 45.27 2.61  - - - 

   CO 0.00 0.00 2.46 0.00  - - - 

Mass frac H2O 0.0635 0.0000 0.0039 0.0000  - - - 

Mass frac CH3OH 0.9365 0.9987 0.1864 0.7938  - - - 

Mass frac H2 0.0000 0.0000 0.1009 0.0000  - - - 
Mass frac CO2 0.0000 0.0012 0.6722 0.2062  - - - 

Mass frac CO 0.0000 0.0000 0.0365 0.0000  - - - 

 

Table A2: Stream table of methanol plant with 50 kt/a output 

 BOTTOM CO2FEED CO2RICH FEED H2FEED METHANOL MIX PRODUCT 

Temperature °C 102.54 18.00 30.28 250.00 50.00 30.00 46.51 250.00 

Pressure bar 1.00 2.00 1.00 50.00 50.00 1.00 50.00 49.99 

Vapour frac 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 
Mole flow kmol/h 197.48 202.88 2.95 4724.65 608.64 195.22 4724.65 4330.42 

   H2O 197.48 0.00 0.06 2.07 0.00 0.00 2.07 199.62 

   CH3OH  0.00 0.00 0.34 11.26 0.00 195.06 11.26 208.37 

   H2 0.00 0.00 0.10 3944.68 608.64 0.00 3944.68 3352.89 

   CO2 0.00 202.88 2.45 680.15 0.00 0.17 680.15 482.59 

   CO 0.00 0.00 0.00 86.50 0.00 0.00 86.50 86.94 
Mole frac H2O 1.0000 0.0000 0.0214 0.0004 0.0000 0.0000 0.0004 0.0461 

Mole frac CH3OH 0.0000 0.0000 0.1138 0.0024 0.0000 0.9991 0.0024 0.0481 

Mole frac H2 0.0000 0.0000 0.0335 0.8349 1.0000 0.0000 0.8349 0.7743 
Mole frac CO2 0.0000 1.0000 0.8297 0.1440 0.0000 0.0009 0.1440 0.1114 

Mole frac CO 0.0000 0.0000 0.0016 0.0183 0.0000 0.0000 0.0183 0.0201 

Mass flow kg/h 3557.72 8928.73 120.14 40705.93 1226.95 6257.41 40705.93 40705.93 
   H2O 3557.72 0.00 1.14 37.22 0.00 0.00 37.22 3596.27 

   CH3OH  0.00 0.00 10.77 360.66 0.00 6250.01 360.66 6676.73 

   H2 0.00 0.00 0.20 7952.00 1226.95 0.00 7952.00 6759.02 
   CO2 0.00 8928.73 107.89 29933.10 0.00 7.40 29933.10 21238.64 

   CO 0.00 0.00 0.13 2422.95 0.00 0.00 2422.95 2435.26 

Mass frac H2O 1.0000 0.0000 0.0095 0.0009 0.0000 0.0000 0.0009 0.0883 
Mass frac CH3OH 0.0000 0.0000 0.0897 0.0089 0.0000 0.9988 0.0089 0.1640 

Mass frac H2 0.0000 0.0000 0.0017 0.1954 1.0000 0.0000 0.1954 0.1660 

Mass frac CO2 0.0000 1.0000 0.8981 0.7353 0.0000 0.0012 0.7353 0.5218 

Mass frac CO 0.0000 0.0000 0.0011 0.0595 0.0000 0.0000 0.0595 0.0598 

 PURGE RAWMEOH RECYCLE S1 S2 S3 S4 S5 

Temperature °C 29.73 29.73 29.73 93.01 38.00 119.66 38.00 118.20 
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Pressure bar 45.00 45.00 45.00 4.40 4.40 10.00 10.00 22.30 

Vapour frac 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 
Mole flow kmol/h 19.66 397.63 3932.78 202.88 202.88 202.88 202.88 202.88 

   H2O 0.01 197.55 2.08 0.00 0.00 0.00 0.00 0.00 

   CH3OH  0.06 197.06 11.31 0.00 0.00 0.00 0.00 0.00 
   H2 16.76 0.10 3352.79 0.00 0.00 0.00 0.00 0.00 

   CO2 2.40 2.92 479.67 202.88 202.88 202.88 202.88 202.88 

   CO 0.43 0.00 86.94 0.00 0.00 0.00 0.00 0.00 
Mole frac H2O 0.0005 0.4968 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 

Mole frac CH3OH 0.0029 0.4956 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 

Mole frac H2 0.8525 0.0002 0.8525 0.0000 0.0000 0.0000 0.0000 0.0000 
Mole frac CO2 0.1220 0.0073 0.1220 1.0000 1.0000 1.0000 1.0000 1.0000 

Mole frac CO 0.0221 0.0000 0.0221 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass flow kg/h 153.52 10002.07 30703.86 8928.73 8928.73 8928.73 8928.73 8928.73 
   H2O 0.19 3558.86 37.41 0.00 0.00 0.00 0.00 0.00 

   CH3OH  1.81 6314.27 362.47 0.00 0.00 0.00 0.00 0.00 

   H2 33.79 0.20 6758.82 0.00 0.00 0.00 0.00 0.00 
   CO2 105.55 128.61 21110.03 8928.73 8928.73 8928.73 8928.73 8928.73 

   CO 12.18 0.13 2435.13 0.00 0.00 0.00 0.00 0.00 

Mass frac H2O 0.0012 0.3558 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 
Mass frac CH3OH 0.0118 0.6313 0.0118 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass frac H2 0.2201 0.0000 0.2201 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass frac CO2 0.6875 0.0129 0.6875 1.0000 1.0000 1.0000 1.0000 1.0000 
Mass frac CO 0.0793 0.0000 0.0793 0.0000 0.0000 0.0000 0.0000 0.0000 

 S6 S7 S8 S9 S10 S11 S12 S13 

Temperature °C 118.20 38.00 119.56 30.00 42.21 30.28 86.80 66.37 
Pressure bar 22.30 22.30 50.00 49.99 50.00 1.00 1.00 1.00 

Vapour frac 1.00 1.00 1.00 0.91 1.00 0.00 1.00 1.00 

Mole flow kmol/h 202.88 202.88 202.88 4330.42 3913.13 394.68 394.68 317.75 
   H2O 0.00 0.00 199.62 2.07 2.07 197.48 197.48 13.43 

   CH3OH  0.00 0.00 208.37 11.26 11.26 196.73 196.73 303.84 

   H2 0.00 0.00 3352.89 3336.03 3336.04 0.00 0.00 0.00 
   CO2 202.88 202.88 482.59 477.27 477.27 0.47 0.47 0.47 

   CO 0.00 0.00 86.94 86.50 86.50 0.00 0.00 0.00 

Mole frac H2O 0.0000 0.0000 0.0461 0.0005 0.0005 0.5004 0.5004 0.0423 

Mole frac CH3OH 0.0000 0.0000 0.0481 0.0029 0.0029 0.4984 0.4984 0.9562 

Mole frac H2 0.0000 0.0000 0.7743 0.8525 0.8525 0.0000 0.0000 0.0000 

Mole frac CO2 1.0000 1.0000 0.1114 0.1220 0.1220 0.0012 0.0012 0.0015 
Mole frac CO 0.0000 0.0000 0.0201 0.0221 0.0221 0.0000 0.0000 0.0000 

Mass flow kg/h 8928.73 8928.73 8928.73 40705.93 30550.26 9881.93 9881.93 9998.52 

   H2O 0.00 0.00 3596.27 37.22 37.22 3557.72 3557.72 241.99 
   CH3OH  0.00 0.00 6676.73 360.66 360.66 6303.50 6303.50 9735.82 

   H2 0.00 0.00 6759.02 6725.03 6725.06 0.00 0.00 0.00 

   CO2 8928.73 8928.73 21238.64 21004.48 21004.37 20.72 20.72 20.72 
   CO 0.00 0.00 2435.26 2422.96 2422.95 0.00 0.00 0.00 

Mass frac H2O 0.0000 0.0000 0.0000 0.0883 0.0012 0.0012 0.3600 0.3600 

Mass frac CH3OH 0.0000 0.0000 0.0000 0.1640 0.0118 0.0118 0.6379 0.6379 
Mass frac H2 0.0000 0.0000 0.0000 0.1660 0.2201 0.2201 0.0000 0.0000 

Mass frac CO2 1.0000 1.0000 1.0000 0.5218 0.6875 0.6875 0.0021 0.0021 

Mass frac CO 0.0000 0.0000 0.0000 0.0598 0.0793 0.0793 0.0000 0.0000 

 S14 S15 S16 VAPOUR  AIR STEAM S17 

Temperature °C 66.29 60.41 32.25 60.41  15.00 1509.32 120.00 

Pressure bar 1.00 1.00 1.00 1.00  1.00 1.00 1.00 

Vapour frac 0.00 0.00 1.00 1.00  1.00 1.00 1.00 

Mole flow kmol/h 120.55 195.22 24.59 1.97  87.35 104.32 104.32 

   H2O 13.43 0.00 0.07 0.00  - - - 
   CH3OH  107.12 195.06 2.06 1.67  - - - 

   H2 0.00 0.00 16.86 0.00  - - - 

   CO2 0.00 0.17 5.15 0.30  - - - 
   CO 0.00 0.00 0.44 0.00  - - - 

Mole frac H2O 0.1114 0.0000 0.0030 0.0000  - - - 

Mole frac CH3OH 0.8886 0.9991 0.0839 0.8465  - - - 
Mole frac H2 0.0000 0.0000 0.6858 0.0000  - - - 

Mole frac CO2 0.0000 0.0009 0.2095 0.1535  - - - 

Mole frac CO 0.0000 0.0000 0.0179 0.0000  - - - 
Mass flow kg/h 3674.31 6257.41 340.46 66.81  2520.0 2860.46 2860.46 

   H2O 241.99 0.00 1.33 0.00  - - - 

   CH3OH  3432.32 6250.01 66.07 53.49  - - - 
   H2 0.00 0.00 33.99 0.00  - - - 

   CO2 0.00 7.40 226.76 13.32  - - - 

   CO 0.00 0.00 12.31 0.00  - - - 
Mass frac H2O 0.0659 0.0000 0.0039 0.0000  - - - 

Mass frac CH3OH 0.9341 0.9988 0.1941 0.8006  - - - 



4/5 

 

 

 

Mass frac H2 0.0000 0.0000 0.0998 0.0000  - - - 

Mass frac CO2 0.0000 0.0012 0.6660 0.1994  - - - 
Mass frac CO 0.0000 0.0000 0.0362 0.0000  - - - 

 

Table A3: Stream table of methanol plant with 250 kt/a output 

 BOTTOM CO2FEED CO2RICH FEED H2FEED METHANOL MIX PRODUCT 

Temperature °C 102.54 18.00 30.28 250.00 50.00 30.00 46.52 250.00 

Pressure bar 1.00 2.00 1.00 50.00 50.00 1.00 50.00 49.99 
Vapour frac 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 

Mole flow kmol/h 986.81 1013.89 14.79 23600.12 3041.66 976.23 23600.12 21629.97 

   H2O 986.81 0.00 0.32 10.32 0.00 0.08 10.32 997.59 
   CH3OH  0.00 0.00 1.68 56.23 0.00 975.28 56.23 1041.30 

   H2 0.00 0.00 0.49 19699.70 3041.66 0.00 19699.70 16742.29 
   CO2 0.00 1013.89 12.27 3401.34 0.00 0.87 3401.34 2414.07 

   CO 0.00 0.00 0.02 432.53 0.00 0.00 432.53 434.73 

Mole frac H2O 1.0000 0.0000 0.0214 0.0004 0.0000 0.0001 0.0004 0.0461 
Mole frac CH3OH 0.0000 0.0000 0.1138 0.0024 0.0000 0.9990 0.0024 0.0481 

Mole frac H2 0.0000 0.0000 0.0335 0.8347 1.0000 0.0000 0.8347 0.7740 

Mole frac CO2 0.0000 1.0000 0.8298 0.1441 0.0000 0.0009 0.1441 0.1116 
Mole frac CO 0.0000 0.0000 0.0016 0.0183 0.0000 0.0000 0.0183 0.0201 

Mass flow kg/h 17777.73 44621.00 601.44 203507.0 6131.63 31289.84 203507.0 203507.00 

   H2O 17777.73 0.00 5.71 185.94 0.00 1.52 185.94 17971.84 
   CH3OH  0.00 0.00 53.92 1801.57 0.00 31249.95 1801.57 33365.40 

   H2 0.00 0.00 1.00 39712.23 6131.63 0.00 39712.23 33750.45 

   CO2 0.00 44621.00 540.15 149692.0 0.00 38.37 149692.0 106243.00 
   CO 0.00 0.00 0.67 12115.40 0.00 0.00 12115.40 12176.90 

Mass frac H2O 1.0000 0.0000 0.0095 0.0009 0.0000 0.0000 0.0009 0.0883 

Mass frac CH3OH 0.0000 0.0000 0.0896 0.0089 0.0000 0.9987 0.0089 0.1640 
Mass frac H2 0.0000 0.0000 0.0017 0.1951 1.0000 0.0000 0.1951 0.1658 

Mass frac CO2 0.0000 1.0000 0.8981 0.7356 0.0000 0.0012 0.7356 0.5221 

Mass frac CO 0.0000 0.0000 0.0011 0.0595 0.0000 0.0000 0.0595 0.0598 

 PURGE RAWMEOH RECYCLE S1 S2 S3 S4 S5 

Temperature °C 29.73 29.73 29.73 93.01 38.00 119.66 38.00 118.20 

Pressure bar 45.00 45.00 45.00 4.40 4.40 10.00 10.00 22.30 

Vapour frac 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 
Mole flow kmol/h 98.21 1987.15 19642.82 1013.89 1013.89 1013.89 1013.89 1013.89 

   H2O 0.05 987.22 10.37 0.00 0.00 0.00 0.00 0.00 
   CH3OH  0.28 984.79 56.51 0.00 0.00 0.00 0.00 0.00 

   H2 83.71 0.50 16741.79 0.00 0.00 0.00 0.00 0.00 

   CO2 12.00 14.63 2399.44 1013.89 1013.89 1013.89 1013.89 1013.89 
   CO 2.17 0.02 434.70 0.00 0.00 0.00 0.00 0.00 

Mole frac H2O 0.0005 0.4968 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 

Mole frac CH3OH 0.0029 0.4956 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 
Mole frac H2 0.8523 0.0002 0.8523 0.0000 0.0000 0.0000 0.0000 0.0000 

Mole frac CO2 0.1222 0.0074 0.1222 1.0000 1.0000 1.0000 1.0000 1.0000 

Mole frac CO 0.0221 0.0000 0.0221 0.0000 0.0000 0.0000 0.0000 0.0000 
Mass flow kg/h 767.61 49985.08 153522.00 44621.00 44621.00 44621.00 44621.00 44621.00 

   H2O 0.93 17784.96 186.87 0.00 0.00 0.00 0.00 0.00 

   CH3OH  9.05 31554.77 1810.63 0.00 0.00 0.00 0.00 0.00 

   H2 168.75 1.00 33749.45 0.00 0.00 0.00 0.00 0.00 

   CO2 528.00 643.68 105599.00 44621.00 44621.00 44621.00 44621.00 44621.00 

   CO 60.88 0.67 12176.24 0.00 0.00 0.00 0.00 0.00 
Mass frac H2O 0.0012 0.3558 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass frac CH3OH 0.0118 0.6313 0.0118 0.0000 0.0000 0.0000 0.0000 0.0000 

Mass frac H2 0.2198 0.0000 0.2198 0.0000 0.0000 0.0000 0.0000 0.0000 
Mass frac CO2 0.6878 0.0129 0.6878 1.0000 1.0000 1.0000 1.0000 1.0000 

Mass frac CO 0.0793 0.0000 0.0793 0.0000 0.0000 0.0000 0.0000 0.0000 

 S6 S7 S8 S9 S10 S11 S12 S13 

Temperature °C 38.00 119.56 30.00 29.73 42.21 30.28 86.80 66.31 
Pressure bar 22.30 50.00 49.99 45.00 50.00 1.00 1.00 1.00 

Vapour frac 1.00 1.00 0.91 1.00 1.00 0.00 1.00 1.00 

Mole flow kmol/h 1013.89 1013.89 21629.97 19544.61 19544.57 1972.36 1972.36 1588.62 
   H2O 0.00 0.00 997.59 10.32 10.32 986.90 986.90 64.99 

   CH3OH  0.00 0.00 1041.30 56.23 56.23 983.11 983.11 1521.28 
   H2 0.00 0.00 16742.29 16658.09 16658.04 0.00 0.00 0.00 

   CO2 1013.89 1013.89 2414.07 2387.45 2387.45 2.35 2.35 2.35 

   CO 0.00 0.00 434.73 432.53 432.53 0.00 0.00 0.00 

Mole frac H2O 0.0000 0.0000 0.0461 0.0005 0.0005 0.5004 0.5004 0.0409 

Mole frac CH3OH 0.0000 0.0000 0.0481 0.0029 0.0029 0.4984 0.4984 0.9576 

Mole frac H2 0.0000 0.0000 0.7740 0.8523 0.8523 0.0000 0.0000 0.0000 
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Mole frac CO2 1.0000 1.0000 0.1116 0.1222 0.1222 0.0012 0.0012 0.0015 

Mole frac CO 0.0000 0.0000 0.0201 0.0221 0.0221 0.0000 0.0000 0.0000 
Mass flow kg/h 44621.00 44621.00 203507.00 152755.0 152755.0 49383.65 49383.65 50019.33 

   H2O 0.00 0.00 17971.84 185.94 185.94 17779.25 17779.25 1170.77 

   CH3OH  0.00 0.00 33365.40 1801.57 1801.57 31500.86 31500.86 48745.02 
   H2 0.00 0.00 33750.45 33580.70 33580.60 0.00 0.00 0.00 

   CO2 44621.00 44621.00 106243.00 105071.0 105071.0 103.53 103.53 103.53 

   CO 0.00 0.00 12176.90 12115.35 12115.40 0.00 0.00 0.00 
Mass frac H2O 0.0000 0.0000 0.0883 0.0012 0.0012 0.3600 0.3600 0.0234 

Mass frac CH3OH 0.0000 0.0000 0.1640 0.0118 0.0118 0.6379 0.6379 0.9745 

Mass frac H2 0.0000 0.0000 0.1658 0.2198 0.2198 0.0000 0.0000 0.0000 
Mass frac CO2 1.0000 1.0000 0.5221 0.6878 0.6878 0.0021 0.0021 0.0021 

Mass frac CO 0.0000 0.0000 0.0598 0.0793 0.0793 0.0000 0.0000 0.0000 

 S14 S15 S16 VAPOUR  AIR STEAM S17 
Temperature °C 66.23 60.25 32.06 60.25  15.00 1494.70 120.00 

Pressure bar 1.00 1.00 1.00 1.00  1.00 1.00 1.00 

Vapour frac 0.00 0.00 1.00 1.00  1.00 1.00 1.00 
Mole flow kmol/h 603.07 976.23 122.32 9.31  436.74 520.75 520.75 

   H2O 64.90 0.08 0.37 0.00  - - - 

   CH3OH  538.17 975.28 9.80 7.83  - - - 
   H2 0.00 0.00 84.20 0.00  - - - 

   CO2 0.00 0.87 25.75 1.48  - - - 

   CO 0.00 0.00 2.20 0.00  - - - 
Mole frac H2O 0.1076 0.0001 0.0030 0.0000  - - - 

Mole frac CH3OH 0.8924 0.9990 0.0801 0.8409  - - - 

Mole frac H2 0.0000 0.0000 0.6884 0.0000  - - - 
Mole frac CO2 0.0000 0.0009 0.2105 0.1590  - - - 

Mole frac CO 0.0000 0.0000 0.0180 0.0000  - - - 

Mass flow kg/h 18413.41 31289.84 1685.11 316.06  12600.00 14285.11 14285.11 
   H2O 1169.25 1.52 6.65 0.00  - - - 

   CH3OH  17244.16 31249.95 313.86 250.89  - - - 

   H2 0.00 0.00 169.75 0.00  - - - 
   CO2 0.00 38.37 1133.31 65.16  - - - 

   CO 0.00 0.00 61.55 0.00  - - - 

Mass frac H2O 0.0635 0.0000 0.0039 0.0000  - - - 

Mass frac CH3OH 0.9365 0.9987 0.1863 0.7938  - - - 

Mass frac H2 0.0000 0.0000 0.1007 0.0000  - - - 

Mass frac CO2 0.0000 0.0012 0.6725 0.2062  - - - 
Mass frac CO 0.0000 0.0000 0.0365 0.0000  - - - 
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Appendix 2 

Heat streams for methanol plants with 10 kt/a and 250 kt/a output 

Table A4: Heat stream for methanol plant with 10 kt/a output 

Stream Stream type Supply temperature [°C] Target temperature [°C] Duty [kW] CP [kW/°C] 

HX1 Hot 93.01 38.00 24.76 0.45 

HX2 Hot 119.66 38.00 38.11 0.47 

HX3 Hot 118.20 38.00 39.70 0.50 
HX4 Cold 46.52 250.00 1687.87 8.29 

HX5 Hot 250.00 30.00 2657.51 68.40 

HX6 Cold 30.28 86.80 997.89 141.26 
HX7 Hot 60.25 30.00 39.67 1.31 

REBOILER at DISTL Cold 102.54 103.04 282.98 565.97 

REBOILER at RECT Cold 65.71 66.23 206.53 1206.02 

CONDENSER at DISTL Hot 67.81 66.31 519.06 1455.49 

CONDENSER at RECT Hot 64.40 60.25 888.22 6772.72 
REACTOR HEAT Hot 250.00 249.50 655.53 1311.05 

HX8 Hot 1495.42 120.00 288.85 0.63 

 

Table A5: Heat streams for methanol plant with 250 kt/a output 

Stream Stream type Supply temperature [°C] Target temperature [°C] Duty [MW] CP [kW/°C] 

HX1 Hot 93.01 38.00 0.62 11.25 
HX2 Hot 119.66 38.00 0.95 11.67 

HX3 Hot 118.20 38.00 0.99 12.38 

HX4 Cold 46.52 250.00 42.18 207.30 
HX5 Hot 250.00 30.00 66.42 1709.49 

HX6 Cold 30.28 86.80 24.95 3531.31 

HX7 Hot 60.25 30.00 0.99 32.78 
REBOILER at DISTL Cold 102.54 103.04 7.07 14148.71 

REBOILER at RECT Cold 65.71 66.23 5.16 30152.00 

CONDENSER at DISTL Hot 67.81 66.31 12.98 36388.67 
CONDENSER at RECT Hot 64.40 60.25 22.20 169296.11 

REACTOR HEAT Hot 250.00 249.50 16.39 32776.04 

HX8 Hot 1494.70 120.00 7.22 15.75 
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Appendix 5 

List of heat exchangers from HEN designs after heat integration 

Table A6: Heat exchangers for methanol plant with 10 kt/a output after heat integration 

HX Duty [kW] 
Area 
[m2] 

Shells Hot stream 
Hot in 
[ºC] 

Hot out 
[ºC] 

Cold  stream 
Cold in 
[ºC] 

Cold 

out 

[ºC] 

E-104 56.41 0.91 1 HX5 250.00 242.95 
REBOILER at 
RECT 

66.05 66.23 

E-105 266.35 49.49 3 HX8 1495.42 237.88 HX4 217.89 250.00 

E-106 888.22 7.85 1 
CONDENSER at 
RECT 

64.40 60.25 Cooling Water 19.80 23.00 

E-107 378.35 8.22 1 
CONDENSER at 

DISTL 
67.81 66.58 Cooling Water 19.80 23.00 

E-108 655.53 86.78 1 
REACTOR 

HEAT 
250.00 249.50 HX4 138.86 217.89 

E-109 282.98 18.12 1 HX5 242.95 207.58 
REBOILER at 

DISTL 
102.54 103.04 

E-110 743.50 81.45 2 HX5 207.58 123.07 HX4 49.23 138.86 

E-111 140.72 1.47 1 
CONDENSER at 

DISTL 
66.58 66.31 Cooling Water 19.44 19.80 

E-112 150.12 2.80 1 HX5 123.07 116.58 
REBOILER at 
RECT 

65.71 66.05 

E-113 997.89 107.56 2 HX5 116.58 64.89 HX6 30.28 86.80 

E-114 38.11 11.75 1 HX2 119.66 38.00 Cooling Water 19.08 19.44 
E-115 24.76 14.88 1 HX1 93.01 38.00 Cooling Water 19.08 19.44 

E-116 39.67 1.33 1 HX7 60.25 30.00 Cooling Water 19.08 19.44 

E-117 39.70 7.72 1 HX3 118.20 38.00 Cooling Water 19.08 19.44 
E-118 22.49 10.38 1 HX8 237.88 120.00 HX4 46.52 49.23 

E-119 426.61 18.22 1 HX5 64.89 30.00 Cooling Water 18.00 19.08 

 

Table A7: Heat exchangers for methanol plant with 50 kt/a output 

HX Duty [kW] 
Area 

[m2] 
Shells Hot stream 

Hot in 

[ºC] 

Hot out 

[ºC] 
Cold  stream 

Cold in 

[ºC] 

Cold 
out 

[ºC] 

E-104 413.42 6.73 1 HX5 250.00 239.67 
REBOILER at 
RECT 

66.03 66.29 

E-105 1021.01 86.14 1 HX8 1509.32 583.11 HX4 225.40 250.00 

E-106 3991.78 33.59 1 
CONDENSER at 
RECT 

64.40 64.05 Cooling Water 20.03 23.00 

E-107 1889.52 41.34 1 
CONDENSER at 

DISTL 
67.92 66.65 Cooling Water 20.03 23.00 

E-108 3279.27 503.26 2 
REACTOR 

HEAT 
250.00 249.50 HX4 146.37 225.40 

E-109 1415.74 93.18 1 HX5 239.67 204.29 
REBOILER at 

DISTL 
102.54 103.04 

E-110 3700.54 476.01 2 HX5 204.29 122.10 HX4 57.19 146.37 

E-111 4255.88 283.47 2 HX5 122.10 81.67 HX6 65.11 86.80 

E-112 702.59 7.39 1 
CONDENSER at 

DISTL 
66.65 66.37 Cooling Water 19.67 20.03 

E-113 619.04 43.14 1 HX5 81.67 74.44 
REBOILER at 
RECT 

65.72 66.03 

E-114 443.10 110.00 2 HX8 583.11 120.00 HX4 46.51 57.19 

E-115 447.83 5.40 1 
CONDENSER at 
RECT 

64.05 60.41 Cooling Water 19.45 19.67 

E-116 736.04 49.30 2 HX5 74.44 65.21 HX6 30.28 65.11 

E-117 190.64 58.77 1 HX2 119.66 38.00 Cooling Water 19.09 19.45 
E-118 123.85 74.45 1 HX1 93.01 38.00 Cooling Water 19.09 19.45 

E-119 199.33 6.69 1 HX7 60.41 30.00 Cooling Water 19.09 19.45 

E-120 198.61 38.64 1 HX3 118.20 38.00 Cooling Water 19.09 19.45 
E-121 2153.74 91.63 1 HX5 65.21 30.00 Cooling Water 18.00 19.09 
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Table A8: Heat exchangers for methanol plant with 250 kt/a output 

HX 
Duty 

[MW] 
Area [m2] Shells Hot stream 

Hot in 

[ºC] 

Hot out 

[ºC] 
Cold  stream 

Cold in 

[ºC] 

Cold 

out 
[ºC] 

E-104 1.41 22.80 1 HX5 250.00 242.95 
REBOILER at 

RECT 
66.05 66.23 

E-105 5.03 430.21 1 HX8 1494.70 578.23 HX4 225.73 250.00 

E-106 19.96 168.34 1 
CONDENSER at 

RECT 
64.40 64.04 Cooling Water 20.02 23.00 

E-107 9.46 205.76 1 
CONDENSER at 
DISTL 

67.81 66.58 Cooling Water 20.02 23.00 

E-108 9.31 1828.51 4 
REACTOR 
HEAT 

250.00 249.72 HX4 180.80 225.73 

E-109 24.87 3131.65 8 HX5 242.95 124.43 HX4 60.82 180.80 

E-110 3.52 36.84 1 
CONDENSER at 
DISTL 

66.58 66.31 Cooling Water 19.67 20.02 

E-111 7.07 481.84 1 
REACTOR 

HEAT 
249.72 249.50 

REBOILER at 

DISTL 
102.54 103.04 

E-112 3.75 68.19 1 HX5 124.43 117.93 
REBOILER at 

RECT 
65.71 66.05 

E-113 2.25 27.30 1 
CONDENSER at 
RECT 

64.04 60.25 Cooling Water 19.44 19.67 

E-114 24.95 2248.31 6 HX5 117.93 67.44 HX6 30.28 86.80 

E-115 2.19 559.13 2 HX8 578.23 120.00 HX4 50.28 60.82 
E-116 0.78 184.86 1 HX5 67.44 64.89 HX4 46.52 50.28 

E-117 0.95 293.65 1 HX2 119.66 38.00 Cooling Water 19.08 19.44 

E-118 0.62 371.96 1 HX1 93.01 38.00 Cooling Water 19.08 19.44 
E-119 0.99 33.36 1 HX7 60.25 30.00 Cooling Water 19.08 19.44 

E-120 0.99 193.03 1 HX3 118.20 38.00 Cooling Water 19.08 19.44 

E-121 10.66 455.58 1 HX5 64.89 30.00 Cooling Water 18.00 19.08 
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Appendix 6 

Annual fixed and variable OPEX 

Table A9: Annual fixed and variable O&M costs of the methanol plants, million euros 

FIXED O&M 10 kt/a 50 kt/a 250 kt/a 10 kt/a with 

CC unit 

50 kt/a with 

CC unit 

250 kt/a 

with CC 

unit 

Direct labour cost 0.60 0.72 1.08 0.90 1.02 1.38 

Admin and general 

overhead cost 0.18 0.216 0.324 0.27 0.306 0.414 

Annual O&M 0.23 0.36 0.77 0.33 0.68 1.78 

Insurance 0.08 0.12 0.26 0.11 0.23 0.59 

Local taxes and 

fees 0.08 0.12 0.26 

0.11 0.23 0.59 

Total fixed O&M 1.16 1.54 2.68 1.72 2.46 4.76 

VARIABLE O&M       

CO2 0.71 3.57 17.85 0 0 0 

H2 6.12 26.89 129.99 6.12 26.89 129.99 

Electricity 0.0001 0.0003 0.0013 0.06 0.30 1.50 

Cooling water 0.14 0.68 3.40 0.14 0.68 3.40 

Steam 0 0 0 0.002 0.008 0.041 

Process water 0 0 0 0.012 0.060 0.297 

Methanol synthesis 

catalyst 0.00025 0.00126 0.00633 0.00025 0.00126 0.00633 

Total variable 

O&M 

8.13 32.69 153.93 8.07 30.52 140.58 

 


