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Abstract

In recent years machine learning has gained a lot of attention not only in the scientific
community but also in user-facing applications. Today, many applications utilise machine
learning to take advantage of its capabilities. With such applications, users actively
or passively input data that is used by state-of-the-art algorithms to generate accurate
predictions. Due to the extensive work necessary to fine-tune these algorithms for a
specific task, they are predominantly executed in the cloud where they can be protected
from competitors or malicious users. As a result, users’ privacy might be at risk as their
data is sent to and processed by remote cloud services. Depending on the application,
users might expose highly sensitive data, meaning a malicious provider could harvest
extensive amounts of personal data from its users.
In order to protect user privacy without compromising the confidentiality guarantees
of traditional solutions, we propose using trusted hardware for privacy preserving deep
neural network predictions. Our solution consists of a hardware-backed prediction service
and a client device that connects to said service. All machine learning computations
executed by the prediction service that depend on input data are protected by a trusted
hardware component, called a Trusted Execution Environment. This can be verified by
users via remote attestation to ensure their data remains protected. In addition, we
have built a proof-of-concept implementation of our solution using Intel Software Guard
Extensions (SGX). Compared to existing solutions relying on homomorphic encryption, our
proof-of-concept implementation vastly increases the set of supported machine learning
algorithms. Moreover, our implementation is tightly integrated into the existing pipeline
of machine learning tools by supporting the Open Neural Network Exchange (ONNX)
Format. Furthermore, we focus on minimising our Trusted Computing Base (TCB), thus
our proof-of-concept implementation only consists of 4, 500 lines of code. Additionally,
we achieve a 7× increase in throughput whilst decreasing the latency 40× compared to
prior work. In our tests, SGX reduced throughput by 11% and increased latency by 21%

compared to our baseline implementation without SGX.

Keywords Machine Learning, Platform Security, Privacy, Trusted Hardware
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1. Introduction

In recent years data has become increasingly important to the point where data

can be seen as an asset just like stocks or patents. This has lead companies to

collect more data than ever, especially with the rise of machine learning that

enables companies to use their aggregated data sets. Machine learning provides

a powerful toolset that allows one to make predictions for given data based on

previous observations. Due to major advances in the scientific community, we

can successfully utilise machine learning techniques to efficiently solve complex

problems that seemed impossible to tackle just years before. Consequently, in-

creasingly more developers leverage the capabilities of machine learning to build

sophisticated, intelligent applications that work on their users’ data. The data

that is being operated on ranges from financial data to music or images depending

on the application. When talking about data in the context of machine learning,

however, one must differentiate between model data and input data as well as

output data:

Model data describes the machine learning algorithms and their parameters

that are used to compute a prediction for a given input. Together, the used

algorithms and their parameters form a machine learning model.

Input data represents the inputs that a user sends to a model.

Output data defines the predictions a model generates based on the received

input.

There are two prevailing approaches to offer machine learning services: cloud-

assisted and on-device machine learning. Cloud-assisted machine learning de-

scribes deploying a machine learning model online so that it accepts requests

through a well defined, public interface. This model serves as an oracle which

accepts queries and responds with predictions. On-device machine learning, on the

contrary, stores the model on the user device itself, meaning no online connectivity

is needed to receive predictions. This only has become a possibility in recent years
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Introduction

as user devices have become sufficiently powerful for this type of task.

1.1 Problem Overview

Whenever one talks about data, the question of ownership and protection arises

which is also the case in these circumstances. Two parties are involved in a typical

machine learning scenario:

Service providers own a machine learning model that they want to use for a

prediction service.

Users wish to use said prediction service by providing their own, potentially

sensitive, data.

Each of these parties wants to protect their data whilst still playing their re-

spective role in this scenario. As mentioned before, a popular way of providing

User Service Provider

output data: "dog"

input data:

Figure 1.1. Sending user input to a service provider to receive a prediction

a machine learning service is to make the service publicly available through an

interface so that it is able to answer queries that are sent to it, as figure 1.1

illustrates. The reason for this approach is that well trained models are very

valuable to service providers and therefore they want to protect their intellectual

property. As an example, the video streaming service Netflix estimates that its

personalisation and recommendation engines save it more than one billion dollars

per year [14].

Sending private data to remote servers is troublesome to users, as the data is out

of their control where they can no longer protect it. The alternative way of storing

models on user devices is worrisome to service providers, however, as they are not

willing to hand their valuable model data into the hands of potentially malicious

users or competitors.

A proposed approach to address theses issues is to use homomorphic encryption.

Homomorphic encryption schemes allow one to perform certain operations on

encrypted data without ever decrypting it [12]. This enables service providers

to compute predictions on encrypted data. Thus, the content of any input data

is never revealed. Previous work using different versions of homomorphic en-

cryption, however, has shown that encryption schemes add a large performance

2



Introduction

overhead. Moreover, depending on the encryption scheme, only a limited set of

algorithms may be used in the deployed model or certain calculations can only

be approximated rather than precisely calculated [13][35]. As machine learning

models become more sophisticated and are deployed in scenarios where latency is

crucial, we must find solutions that address these drawbacks.

1.2 Proposed Approach

One way to address performance and design limitations is to use trusted hardware.

By performing computations inside a Trusted Execution Environment (TEE), one

can operate on cleartext data without revealing the contents to the outside. This

could be utilised to deploy a machine learning model on a TEE-enabled server

and compute predictions for given inputs inside the TEE. As a result, a service

provider could not learn the contents of input and output data while still being

in control of his model data. Since the actual computations would be performed

on clear text data, neither would the design of our model be limited, nor would

our performance be impacted as it would be by using homomorphic encryption. In

addition, one could utilise the TEE on the server to attest to a user device that

all computations will be performed inside a TEE, meaning that all input data is

protected. This way a user device could verify that the server is using a TEE for

computing predictions before sending any actual input data.

1.3 Research Scope and Goals

The main goal of this thesis is to investigate the use of trusted hardware for privacy

preserving machine learning services and to compare it to existing solutions that

rely entirely on encryption. For this comparison, we focus on functionality, security,

and performance. Thus, we want to answer the following questions that our

approach raises:

1. What functional limitations does trusted hardware impose on cloud-assisted

machine learning?

2. How does the performance of our approach compare to existing privacy preserv-

ing solutions and to state-of-the-art frameworks which do not preserve privacy?

3. How does our approach compare to existing privacy preserving solutions in

terms of security and privacy?
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In addition, we consider the following aspects to be beyond the scope of this thesis:

• Security of user devices

• Adversarial server that is trying to steal the model it is hosting

1.4 Research Approach

In order to answer the research questions we defined in section 1.3, we first

propose a general system design for cloud-assisted machine learning that relies

on trusted hardware. Afterwards, we present a proof-of-concept implementation

that uses Intel Software Guard Extensions (SGX) as TEE. Finally, we use our

implementation to evaluate our approach and compare it with existing solutions as

well as state-of-the-art frameworks. To reiterate, this thesis makes the following

contributions:

1. Novel system design for privacy preserving machine learning

2. SGX-compatible C++ library that can interpret arbitrary ONNX models

3. Evaluation comparing our implementation to state-of-the-art frameworks, as

well as other privacy preserving solutions

4



2. Background

2.1 Machine Learning

Machine Learning describes the concept of an algorithm being able to learn from

raw data. A common definition of machine learning provided by Tom Mitchell in

1977 reads [15]:

"A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured by P ,

improves with experience E."

The majority of machine learning algorithms can be categorised into supervised

and unsupervised machine learning. For this thesis, we only focus on the former.

Supervised machine learning generally defines a function F that maps values of

an input space X to an output space Y [15]. Usually, we want the size of Y to

be significantly smaller than the size of X, meaning that F is able to abstract

elements x ∈ X to simpler elements y ∈ Y :

F(x) = y (2.1)

2.1.1 Deep Neural Networks

In general, a neural network is one way to define the function F described in

equation 2.1. Using neural networks, F can take various forms and usually

involves certain parameters that are learned during a training phase. For instance,

F(x) = Θ1 ∗ x+Θ0 (2.2)
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forms a simple neural network. Here, Θ denotes the parameters of F , with Θ1

being commonly being referred to as weight and Θ0 as bias. Complex neural

networks usually describe a composite function, meaning F is comprised of many

different functions f1, f2,..., fn that are chained together:

F(x) = fn(fn−1(fn−2(...f1(x)...))) (2.3)

Moreover, each function fj defines its own set of parameters Θ(j) and has the same

form as shown in equation 2.2. Figure 2.1 further illustrates how a network F

is comprised. In this example, f1 describes the first layer of F , f2 describes the

second layer, and fn describes the nth layer. Therefore, we can say F has n layers,

or F has depth n. Thus, F depicts a deep neural network (DNN) [15].

...f1 f2x

Θ(1) Θ(2)

fn1 fn

Θ(n1) Θ(n)

y

Figure 2.1. Conceptual illustration of a network F with n layers

2.1.2 Model Representation

Generally, a DNN machine learning model has the following form:

⎡⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎦ →
[ ]

→ hθ(x) (2.4)

Here, we input a 3-dimensional vector into our first layer, called input layer.

Afterwards, we forward our input through 0 to n intermediate layers, called

hidden layers. Finally, our processed input reaches the last layer, or output layer,

of our model which outputs the final prediction of our hypothesis function, called

hθ [15]. As our input is multidimensional, each layer defines multiple nodes, that

each accept a single value as input. We call the nodes activation units and label

them as a
(j)
i , where i denotes the index of a node of layer j. Moreover, our model

defines a parameter set θ, where Θ(j) ∈ θ describes the parameter matrix used for

layer j. With one hidden layer, our model could look as follows:

⎡⎢⎢⎣
x1

x2

x3

⎤⎥⎥⎦ →

⎡⎢⎢⎣
a
(2)
1

a
(2)
2

a
(2)
3

⎤⎥⎥⎦ → hθ(x) (2.5)
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In addition, each layer also defines a function g that is applied to all its nodes.

We call this function activation function. Typically, these functions involve some

simple mathematical operations. We will cover activation functions in more detail

in section 2.1.3.

Calculating the output of our example model could look like the following:

a
(2)
1 = g

(
Θ

(1)
10 x1 +Θ

(1)
11 x2 +Θ

(1)
12 x3

)
a
(2)
2 = g

(
Θ

(1)
20 x1 +Θ

(1)
21 x2 +Θ

(1)
22 x3

)
a
(2)
3 = g

(
Θ

(1)
30 x1 +Θ

(1)
31 x2 +Θ

(1)
32 x3

)
hθ(x) = a

(3)
1 = g

(
Θ

(2)
10 a

(2)
1 +Θ

(2)
11 a

(2)
2 +Θ

(2)
12 a

(2)
3

)
(2.6)

In this example θ contains two parameter matrices Θ(1) (3× 3) and Θ(2) (1× 3) for

its two layers. Furthermore, we can see how the output for our second layer is fed

to our third layer as input, which ultimately computes the overall output.

2.1.3 Neural Network Operations

In the previous section, each layer of our sample DNN used the same operation

to calculate its output. This is usually not the case, as different operations are

combined to achieve the desired output. Although there are many different types

of layers that each compute a particular operation, for this thesis it suffices

to understand the following layers which are among the most common layer

types [15]:

Fully Connected Layer

A Fully Connected Layer describes the layer we saw above in equation 2.2 where

we have full connections to all activation functions of the previous layer. Hence,

this layer consists of a matrix multiplication with added bias values, followed by

element-wise applying our activation function.

Convolutional Layer

The Convolutional Layer, as proposed by LeCun et al. [33], is often used in net-

works that accept images as input. As a result, inputs are usually 3-dimensional.

The parameters of a convolutional layer consist of many small, usually squared,

filters that are applied to the input. During computation, each filter is moved

across the input to compute the dot product between the values of the filter and

the values of the input at the current position. For example, if our input has

dimensions 3× 30× 30 and our filters are of size 3× 5× 5, each filter produces a

2-dimensional output, or activation map. Assuming we have 10 filters, we compute

10 different activation maps, which, when stacked, produce the output of the

7
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Convolutional Layer. Figure 2.2 illustrates how a filter is used to compute an

activation map.

3-D input 2-D activation map

3-D filter

Figure 2.2. Illustration of moving a single filter across the input to compute an activation map

MaxPool Layer

The MaxPool Layer is often used in combination with a Convolutional Layer.

Similar to a Convolutional Layer, the MaxPool Layer moves a, usually squared,

filter across its input. However, instead of computing a dot product, the filter is

used to find the maximum value of the input at the current position. Only the

maximum value at each position is kept and all other values are discarded. An

example of how the MaxPool Layer computes its output is depicted by figure 2.3.

The MaxPool operation is done independently for each depth slice. As a result,

the MaxPool Layer reduces the height and width of its input but leaves the depth

unchanged.

6 7

6 0

4 1

3 0

5 2

4 9

8 2

7 5

7 4

9 8

Input Ouput
Figure 2.3. Example of reducing the spatial height and width of an input using MaxPool with each

colour denoting the input and output of a filter

Activation Functions

Just like there are different types of layers, there are also different types of

activation functions. Three common activation functions that we use for this

thesis are [15]:

ReLU. The activation function Rectified Linear Unit (ReLU) is used to discard

8
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negative values. Its mathematical definition is:

ReLU(x) = max(0, x) (2.7)

Sigmoid. The Sigmoid activation function allows mapping values to the interval

(0, 1) and is defined as follows:

Sigmoid(x) =
1

1 + e−x
(2.8)

TanH. Similar to the Sigmoid activation function, TanH allows mapping input

values to a certain range. For TanH, this range is (−1, 1). The mathematical

definition of TanH is:

TanH(x) =
ex − e−x

ex + e−x
(2.9)

2.1.4 Open Neural Network Exchange

The Open Neural Network Exchange1 (ONNX) format is an open source project

developed by Facebook and Microsoft. The goal of ONNX is to create an interop-

erable format for representing neural networks that is compatible with different

machine learning tools, such as frameworks and runtimes. As of writing this

thesis (October 2018), all major machine learning frameworks, including Caffe2,

PyTorch, TensorFlow2, and SciKit-Learn3, support exporting a model to ONNX

format.

For representing a model, ONNX defines a top-level Model component. The pur-

pose of this component is to store metadata associative to the machine learning

model it describes, e.g. the model producer, as well as a Graph component. ONNX

drops the notion of layers and represents all atomic operations of a model, includ-

ing activation functions, as individual nodes of this graph component [42]. For

the scope of this thesis, it suffices to discuss only the most general components.

For the rest of this section we explain said components, starting from the ground

up [42]:

Tensor

The Tensor component describes values passing through the graph from one

operation to another. Generally, a Tensor component defines a name, a data type,

a shape, and a data field. The name of a Tensor uniquely identifies it across

1https://onnx.ai/
2https://www.tensorflow.org/
3http://scikit-learn.org/stable/

9

https://onnx.ai/
https://www.tensorflow.org/
http://scikit-learn.org/stable/


Background

the Graph component it belongs to. The data type specifies what data is held by

the Tensor. ONNX defines multiple data types that are supported by Tensors,

ranging from basic types such as int or float to advanced type such as complex

numbers. The data field contains the data held by the Tensor. Multiple data fields

are defined to allow storing different data types, but only one is ever used. Which

field is used, is defined by the data type of a Tensor. Lastly, the shape property

describes how the held data is organised, i.e. if the Tensor stores a scalar, a vector,

a matrix, or something of higher dimensionality.

ValueInfo

The ValueInfo component defines basic information about a value, which usually

refers to a Tensor. Therefore, a ValueInfo defines all properties that describe a

Tensor, i.e. its name, data type, and shape. As a result, a ValueInfo component

can be used to describe what kind of Tensor is expected, for instance as an input.

Attribute

The Attribute component represents a container for a runtime constant, which

can have various data types. In order to be able to support storing different data

types, the Attribute component defines, similar to the Tensor component, multiple

data fields ranging from a single float or int over a list of float or int values to

a string. However, only one of these fields actually holds data. Which field that

is, is determined by the data type property. Moreover, an Attribute also defines

a name that describes the purpose of the Attribute. For instance, if we want to

multiply two matrices A and B, we can use two Attribute components, one for A

and one for B, to tell us whether the matrices should be transposed before they

are multiplied with each other. As opposed to other components, the name of an

Attribute is not unique.

Node

The Node component describes a single node inside the Graph and is comprised

of a list of inputs as well as outputs, a list of attributes, and its operator type.

Input and outputs are stored in two separate lists of strings. These strings refer to

names of Tensor components, meaning a node defines what Tensors it is expecting

as inputs and what Tensors it outputs. It is sufficient, to only store the name

of each Tensor, as their names must be unique across the Graph. Each Node

component represents a machine learning operation. The kind of operation a Node

portrays is defined by its operator type field. Finally, the list of Attributes stored

by a Node describe the runtime constants needed to execute the operation a Node

defines.
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Graph

As mentioned before, the Graph component contains all operations defined by a

machine learning model and stores them in Node components. Besides a list of

Nodes, the Graph component also contains a list of initialisers and the expected

input as well as output. Input and output of a Graph are stored as ValueInfo

components, meaning everything but the actual data is pre-defined. Finally, the

list of initialisers describes a list of constant Tensor components that are needed

by different Nodes. This list of Tensors represents θ, meaning the parameter set

of the model, as described in section 2.1.2.

All components highlighted above and their relationships between each other

are illustrated by figure 2.4.

2.2 Trusted Execution Environment

The concept of a Trusted Execution Environment (TEE) in general describes an

isolated execution environment that runs alongside a Rich Execution Environ-

ment (REE). Whilst the operating system and ordinary, untrusted applications

are executed in the REE, the TEE provides a safe execution environment for

authorised, trusted applications. In addition, the TEE ensures data integrity

and confidentiality as well as enforces access control to resources belonging to

trusted applications. As a result, all trusted applications are independent from

one another and cannot access each others’ resources or data. Moreover, the

TEE might enable access to internal resources, such as specialised hardware for

cryptographic operations, to trusted applications. Figure 2.5 illustrates a possible

architecture for a generic, hardware-based TEE, as described by Asokan et al. [3].

A TEE provides a well-defined interface for untrusted and trusted applications

to communicate. Therefore, trusted applications can offer services to untrusted

applications. Consequently, developers may choose to split their application into

a trusted and an untrusted component which are tightly interconnected. This

allows applications to outsource sensitive operations, e.g. to securely compute

cryptographic functions, to their trusted component which is executed inside the

TEE. For our solution, we rely on the following properties of a TEE:

Isolated Execution: code is executed in an isolated environment that is inacces-

sible to any unauthorised application, trusted or untrusted

Remote Attestation: a trusted application is able to attest to a remote party

that it is executed inside a TEE

11
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Graph

Tensor 
(Initialisor)

Name

Data
Type

Shape

Data

Attribute

Name

Data
Type

Data

Node

Input

Output

Operator
Type

ValueInfo
(Input/
Output) 

Name

Data
Type

Shape

Figure 2.4. Overview of highlighted ONNX components

Due to code being executed in an isolated environment, the code and its data are

protected against tampering as well as unauthorised access. Remote attestation,

on the other hand, enables a trusted application to establish trust with another

application that runs on a different device.
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TEE entry
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Figure 2.5. Architecture of a generic TEE [3]

2.2.1 Remote Attestation

As mentioned before, remote attestation allows one party, i.e. the prover to attest

to another, remote party, i.e. the verifier, that it has sufficient integrity to be

trusted. In order to achieve this, remote attestation has to provide the following

mechanisms [47]:

Measurement Mechanism: allow a prover to determine what components of the

execution environment need to be measured, when they need to be measured,

and how to securely store measurements

Integrity Challenge Mechanism: enable a verifier to obtain a list of measure-

ments of an attesting system and verify its completeness and freshness

Integrity Validation Mechanism: enable a verifier to validate a list of mea-

surements of an attesting system by verifying the list is complete, non-

tampered, fresh, and that all individual measurements describe a trustwor-

thy execution environment

To attest its trustworthiness, the TEE hardware of a prover computes a quote,

which contains the measurement of the prover. In addition, a quote might also

include a challenge, e.g. a random number, supplied by the verifier to ensure

freshness of the quote. Moreover, the quote must be authenticated, i.e. signed, by

the TEE hardware to ensure the quote was generated by a valid TEE. Afterwards,

the prover sends the quote to the verifier who checks the following:
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1. the signature of the quote to ensure its authenticity

2. whether the quote contains the correct challenge to ensure its freshness

3. the measurement of the prover to ensure the correct software is executed

As remote attestation requires a full round trip, it can also be used to establish a

shared key between verifier and prover, e.g. by using Diffie-Hellman key exchange.

Thus, once remote attestation was completed successfully, both parties have

established a secure communication channel.

2.2.2 Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) describes a set of new CPU instruc-

tions as well as memory access changes introduced with Intel’s Skylake architec-

ture [18][36]. As an implementation of a TEE, SGX enables untrusted applications

to instantiate a protected container, called enclave. The code that is executed by

an enclave is known in advance, meaning it can be analysed by any party who has

access to it. Moreover, as an enclave is starting up, the SGX hardware measures

the enclave’s code and data. This measurement can later be used for remote

attestation. After an enclave has been created and all its content has been loaded

as well as measured, SGX enforces strict access control. Hence, all resources and

data of any enclave are protected against any external access, including access

attempts by privileged processes [36].

SGX Hardware Components

Intel SGX includes different hardware components that are needed to protect

enclave resources. Memory used by enclaves are stored on enclave pages which

are, among other SGX structures, maintained inside the enclave page cache (EPC).

With current (October 2018) SGX hardware, the EPC can allocate about 90 MB

for all enclaves combined. If more memory is needed, SGX introduces paging to

oversubscribe EPC memory [27]. Whenever software tries to access an enclave

page, SGX utilises the enclave page cache map (EPCM) to determine to which

enclave the requested page belongs and whether to grant access [36]. To crypto-

graphically protect data stored in the EPC, SGX employs a memory encryption

engine (MEE). Due to the MEE, enclave pages are encrypted when stored in main

memory and decrypted as they are loaded into the CPU, making contents available

in plaintext [18].

Enclave Life Cycle

As mentioned above, SGX enables applications to launch an enclave and commu-

nicate with it. In addition, an application is responsible to destroy each enclave
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it creates. Figure 2.6 depicts the typical life cycle of an enclave. Each enclave

Figure 2.6. Life cycle of an SGX enclave [23]

and corresponding untrusted application define an interface over which they can

communicate with each other. An untrusted application can call functions made

available by the enclave via an enclave call (ECALL). Enclaves, on the other side,

can call functions made available by untrusted applications via an outside call

(OCALL) [25]. This allows both trusted and untrusted components of an applica-

tion to delegate certain operations to one another, depending its requirements.

Remote Attestation in SGX

Intel SGX supports remote attestation, allowing a user-created enclave to attest to

remote parties that it has been correctly initialised and that all data is protected

by SGX. As mentioned before, the enclave measures the contents of its enclave

pages as it is built. This measurement is stored in MRENCLAVE, a SHA-256

digest that represents the identity of an enclave. This measurement is only taken

once when the enclave starts, after which the enclave is locked an cannot load any

more code. Therefore, any data, such as potential inputs that are provided to the

enclave via ECALLs, is not reflected by the value of MRENCLAVE [2].

SGX implements remote attestation by involving a local enclave called Quoting

Enclave. The Quoting Enclave is provided by Intel and will attest to any remote

verifier the integrity of any user enclave on behalf of that enclave. For the Quoting

enclave to attest this, a user enclave must perform local attestation to prove its

integrity to the Quoting Enclave. Local attestation between a user enclave and the

Quoting Enclave works by the user enclave generating a REPORT. This REPORT

structure contains attributes of the enclave, the trustworthiness of the hardware,

optional user data, and a MAC tag. The MAC is produced by the CPU using
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AES128-CMAC over the remaining REPORT data with the Report Key. Given

a REPORT, the Quoting Enclave, can verify the integrity of the corresponding

enclave. If the REPORT is valid, the Quoting Enclave replaces the MAC tag of

the REPORT with a signature using a device specific Intel Enhanced Privacy

ID (EPID) key. This new structure is called a QUOTE. Finally, when a verifier

receives a QUOTE, he can check whether it stems from a valid Quoting Enclave

and therefore from a trustworthy user enclave by consulting Intel Attestation

Services (IAS). As Quoting Enclaves are provided by Intel, only Intel can verify if

a QUOTE is valid [2].

2.3 Previous Work

As mentioned in section 1.1, previous work has addressed privacy preserving

machine learning before using homomorphic encryption. For this thesis, we

compare our work to the following encryption-based solutions:

CryptoNets

Dowlin et al. [13] describe CryptoNets, i.e. privacy preserving neural networks

that operate on encrypted data. CryptoNets relies on levelled homomorphic encryp-

tion, a weaker variant of fully homomorphic encryption. Therefore, CryptoNets

does not support arbitrary operations on encrypted data which has to be taken

into account when designing a model or planning on reusing an existing model.

For their empirical tests, Dowlin et al. trained a model on the MNIST4 data set.

After the training phase, they had to simplify the resulting model slightly due to

the limitations of the encryption scheme of CryptoNets. Nonetheless, the changes

made did not affect the achieved accuracy of 99%. CryptoNets is optimised for

throughput, meaning it can process thousands of images in parallel. As a result,

CryptoNets, achieves 58, 982 predictions per hour during the tests. Thus, Cryp-

toNets scales reasonable well, if a single user submits batches of thousands of

images at a time. However, CryptoNets has poor latency, meaning that processing

a single image takes an extensive period of time. This is due to its design and

encryption scheme that always compute on the entire possible input space, regard-

less of how much is actually used. Hence, processing 1 image or a batch of 4096

images requires the computation time of 297.5 seconds. Moreover, the messages

sizes required to send inputs to CryptoNets are considerable. For instance, sending

4096 encrypted greyscale images with 28 × 28 pixels as input results in a total

message size of 367.5 MB or 91.875 KB per image.

4http://yann.lecun.com/exdb/mnist/
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MiniONN

MiniONN was developed by Liu et al. [35] and describes a transformation tech-

nique that enables converting common neural network models to oblivious neural

networks (ONN). MiniONN introduces oblivious protocols for operations frequently

used in neural networks. As a result, whenever a client sends an input to the

server, both parties exchange messages for every layer of the ONN deployed on

the server. In addition to oblivious protocols, MiniONN also relies on additively

homomorphic encryption to further ensure model parameters and input values

remain private to the appropriate party. To increase performance, MiniONN

only uses lightweight cryptographic operations during the online prediction phase

and allows precomputing input-independent values in an offline phase. In their

evaluation, Liu et al. report that they vastly outperform CryptoNets in terms

of message sizes and latency. Utilising the same, simplified network trained on

the MNIST data set as CryptoNets, MiniONN reduces latency to 0.4 seconds and

message sizes to 44 MB, whilst maintaining the accuracy reported by CryptoNets.

In addition, Liu et al. note that MiniONN enables model designers to trade off

prediction accuracy to reduce the overhead of the resulting ONN. Moreover, Min-

iONN supports all common machine learning operations and therefore offers a

significantly more extensive operator set to model designers than CryptoNets.

However, due to its encryption scheme, smooth activation functions, such as TanH

and Sigmoid, can only be approximated. Furthermore, MiniONN only protects

the values of model parameters and inputs. In fact, due to its design, MiniONN

reveals the sizes of inputs, sizes of parameters matrices, and the structure of the

model to client.

2.4 Gap Analysis

Even though CryptoNets achieves privacy preserving machine learning, it intro-

duces large drawbacks, such as poor latency and a large overhead for message

sizes. Furthermore, CryptoNets can only support a limited set of machine learning

operations. MiniONN improves on the drawbacks of CryptoNets, but introduces

other disadvantages, such as revealing the model structure to the client. In ad-

dition, although better than CryptoNets, MiniONN’s performance is still worse

than what non privacy preserving frameworks offer. Lastly, neither CryptoNets

nor MiniONN are able to analyse inputs for possible filtering or metering on the

server side as inputs are encrypted.
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3. Adversary Model and Requirements

In this chapter we define and motivate our adversary model. In addition, we also

outline what requirements our system has to meet as well as what goals we set

for ourselves.

3.1 Problem Statement

Personal data, i.e. users’ input and output data of a machine learning model, is a

valuable asset. It can be turned into financial profit in a multitude of ways, such

as by improving an already existing machine learning model to gain a business

advantage over competitors or by simply selling the data to a third party.

Knowledge about model data, on the other hand, can be exploited in different

ways. For instance, this information can be used to improve competing models, for

example by adapting the same architecture. Tramèr et al. [52] have shown that

extensive knowledge about a remote model can even be exploited to rebuild a copy

of the model, allowing a malicious user to compute predictions without querying

the service provider. Alternatively, Papernot et al. [44] have demonstrated that

acquired insight of a deployed model can be used to generate adversarial samples.

These samples are specifically crafted to be mispredicted by a model, potentially

endangering the security guarantees of a deployed model or causing financial

harm.

3.2 Adversary Model

For this thesis, we consider three different types of adversaries: malicious service

provider, malicious user, and malicious outsider. Each type of adversary has

different objectives and capabilities, which we will cover in the following sections.
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3.2.1 Malicious Service Provider

A malicious service provider has full authority over both software and hardware

of his server. However, we assume that the used hardware is not compromised

and works as intended by the manufacturer. More precisely, we assume the TEE

hardware of the server is not compromised, thus providing an isolated execution

environment and remote attestation capabilities for any code that is executed

inside. Consequently, all input-dependent machine learning computations can be

performed inside the TEE without leaking secrets to the outside. As a result, a

malicious service provider can monitor, inspect, and edit any data arriving at the

server, including user queries and their metadata. Moreover, he can decide what

model architecture and parameter values are being used to compute predictions

for incoming queries.

The main drive of a malicious service provider is to collect as much data about his

users as possible. The data that is of interest in our scenario is input data sent to

the model, which can range from sensor data to images, and its computed output

data, i.e. the prediction. In addition, metadata such as location and timestamps

might also be valuable. A malicious service provider is malicious from the point

of view of a user, i.e. a malicious service provider does not aim to steal models of

other service providers.

3.2.2 Malicious User

We consider a malicious user to be a legitimate user with malicious intent. More-

over, we assume that a malicious user is not able to compromise the server of

a service provider. Therefore, a malicious user has full control over what input

data she provides. This enables her to craft inputs, also based on previously seen

output data.

Similar to a malicious service provider, the major objective of a malicious user is

to collect data about the service provider and its service. Primarily, a malicious

user wants to gather model data.

3.2.3 Malicious Outsider

A malicious outsider has neither access to user devices or the server of a service

provider, but the network in-between. Consequently, a malicious outsider can

inspect, edit, delay, and drop any network packets sent between user and service

provider. Furthermore, he is able to act as a user, allowing him to craft his own

input data and receive the computed predictions.
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As a third party, a malicious outsider combines the goals of malicious service

provider and malicious user with the ambition to obtain both model data and

input as well as output data.

3.3 Solution Requirements

We divide our requirements into security and functional requirements. Each

group covers different aspects of the system and allows us to easily compare our

approach with other existing solutions.

3.3.1 Security Requirements

The security requirements form the foundation of our approach and therefore have

the highest priority. We define our security requirements as follows:

S-1 Model confidentiality: Model data must stay secret and no information

regarding the model must leak outside the server.

S-2 User privacy: Input and output data must remain private to their respective

user.

3.3.2 Functional Requirements

Even a perfectly secure and privacy-preserving approach is of no use if it is not

applicable for any real world system. Thus, our functional requirements are of the

second highest priority. The exact requirements are listed below:

F-1 Accuracy: The accuracy of a model must not decrease when using our ap-

proach. Hence, for any given model M that achieves accuracy A using a

state-of-the-art machine learning framework and accuracy A′ when using an

ideal implementation of our approach, A = A′ must hold.

F-2 Coverage: Our approach must not affect the process of designing a new

model. Thus, let O denote the set of popular operators, i.e. machine learning

algorithms, when using a state-of-the-art framework and let O′ denote the

set of operators supported by our approach. Then O′ = O must hold. Fur-

thermore, as O grows in size over time as more algorithms are developed in

the future, our approach must allow to easily extend O′ to ensure O′ = O

still holds. In addition, our approach must not limit the size S, measured in

bytes, of any model M.

F-3 Non-invasiveness: Given an existing model M, our approach must support
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M without modifications with the same guarantees as when designing a new

model.

3.4 Solution Goals

In addition to our requirements, which our solution must meet, we also define a

set of goals we pursue for our approach.

3.4.1 Performance Goals

In order to compete with existing state-of-the-art machine learning frameworks,

our solution should provide comparable performance. Our goal is that the overhead

introduced by our approach is a constant factor for both overall throughput and

latency. The detailed goals are the following:

P-1 Throughput: Assume a state-of-the-art framework achieves a throughput of

T , measured in queries per second, for a given model M. Then an ideal im-

plementation of our approach, given model M, should achieve a throughput

T ′ such that T ′ ≤ c · T holds with c being a constant.

P-2 Latency: Let L denote the latency for computing the prediction for a given

input I and model M when using a state-of-the-art framework. Then an

ideal implementation of our approach, given I and M, should achieve latency

L′ such that L′ ≤ c · L holds with c being a constant.

3.4.2 Deployability Goals

To incentivise a maximum adoption rate of new systems, they should aim to meet

certain deployability goals. In our case, the goals are as follows:

D-1 Commodity server hardware: Our approach should not rely on any spe-

cialised hardware that is not found in off-the-shelf systems, allowing service

providers to use commodity hardware for their servers.

D-2 Commodity user hardware: Users should not have to upgrade their device

in order to use a prediction service that uses an ideal implementation of our

approach.
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3.5 Assumptions

For our approach we make the following assumption that cannot be taken for

granted:

1. The source code, that computes a prediction given an input and a model, as well

as its configuration is publicly available through trusted thrid party. This allows

users to create a reproducible build. Thus, users can measure the code them-

selves, enabling them to compare their own measurement with the measurement

received from the service provider.

2. We assume that a model used by the service provider is adequate for its purpose.

Therefore, we do not cover the scenario in which a malicious model provider

tricks his users by using an inferior model, or no working model at all.

Having made these assumptions, we argue, however, that we can do so without loss

of generality. Current state-of-the-art frameworks, such as PyTorch1 and Caffe22,

are developed as open source projects where everybody can study the source

code or even contribute to future releases. These projects also include detailed

instructions to build their binaries from source as well as offer pre-built binaries.

Moreover, due to their open source nature, independent parties are able to audit

the source code of these frameworks and present their findings to the public as

well as the developers. In addition, we consider the threat of service providers

using inferior models as neglectable, as users can usually choose between multiple

competing service providers. Therefore, providing bad or inaccurate predictions

would be a bad business decision for service providers.

1https://pytorch.org/
2https://caffe2.ai/
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4. Design

In this chapter we first give a general overview of our proposed solution. After-

wards, we focus on the different components of our design and cover them in

detail.

4.1 Design Overview

Figure 4.1 depicts a broad overview of the system, showing how different elements

of our design interact with each other. The client communicates directly with

Server

Output
data

Input
data

TEE

Access
parameters

DNN Framework

ML ModelClient

User Service Provider

Figure 4.1. Overview of the complete system

the TEE running on the server of the prediction service. The REE, or untrusted

environment, describes the environment outside of the TEE, or trusted environ-

ment. The REE runs the untrusted application which only acts as a gateway to

forward encrypted queries and their respective encrypted predictions. Once the

trusted application running inside the TEE receives a new query, it computes the

appropriate prediction using a DNN framework. Although all computation is done
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inside the TEE, the used machine learning model is stored outside the trusted

environment to keep the trusted computing base as small as possible.

Even though figure 4.1 depicts the client as a mobile phone, it is representative

for any kind of end-user device with enough computational power. In order to save

bandwidth, the client pre-processes the query before sending it off. In the example

of an image, this means reducing the pixel dimensions and possibly the number of

colour channels. In addition, this pre-processing step helps reducing the workload

of the trusted application, as inputs are already downscaled by client devices. In

order to not leak any information regarding the model, this pre-processing step

must be independent from the deployed model.

4.2 Prediction Service

The server-side prediction service consists of two main components, trusted and

untrusted application.

The untrusted application launches first when starting the server. Its purpose

is to launch as well as initialise the trusted application and to perform necessary

pre-processing steps. First, it parses the model into a form the trusted application

can interpret. Afterwards, the untrusted application extracts the model parame-

ters to save them in the untrusted environment and make them available for the

trusted application. The reason for this is the potentially large amount of memory

necessary to store all parameters. For instance, VGG-19, a model for large scale

image recognition designed by Simonyan et al. [50], consists of 144 million weights,

resulting in a total model size of 575 MB. As TEEs are designed to reduce the

trusted computing base to a minimum, we only want to store necessary data in

the trusted environment. Furthermore, we consider the model as public in the

context of the server, meaning there is no need to protect its contents. Besides

launching and initialising the trusted application, the untrusted application is

also responsible to act as a gateway, allowing users to interact with the trusted

application.

The trusted application, which forms the second component of the prediction

service, is in charge of computing predictions for given queries. Given the user’s

input, the trusted application decrypts the query using a shared key and possibly

pre-processes the input data to match the requirements of the model. Afterwards,

it traverses the deployed model layer by layer. The trusted application also per-

forms necessary checks to avoid buffer overflows. For instance, it verifies whether

two matrices have compatible dimensions for a given operation. In case of an error,

the trusted application stops execution and reports the encountered error to the
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untrusted application without specifying its details. Whilst the model parameters

are stored in untrusted environment, all intermediary and final results are stored

inside the TEE to ensure no user data leaks to the service provider. Keep in mind

that a neural network is a sequence of matrix operations, meaning outputs of all

layers are stored in the form of matrices, as described in section 2.1. Ultimately,

the final model output is encrypted, using the same symmetric key that was

used for decrypting the query, and sent back to the untrusted application which

forwards it to the client.

4.3 Client Application

The design of our client application is fairly simple. First, the client application

produces input data that will later be passed to the prediction service in form of a

query. The kind of data and how it is produced depends on the use case and the type

of prediction service. For instance, in the use case of an image recognition service,

the user could take a picture with a smart device. Alternatively, the user might

select her favourite films, generating a text based input of film characteristics.

Once the input is generated, it is encrypted using a shared symmetric key, which

is only known by the client and the trusted application. Afterwards, the encrypted

input is wrapped by a query that might contain additional data. The amount and

type of data that a query adds to the encrypted input data depends of the use case

and the implementation itself. For instance, the query might, in addition to the

actual payload, contain parameters needed for authentication so a user can be

billed appropriately.

After the prediction service has responded with the encrypted output data, the

same symmetric key that was used for encrypting the input data is used to decrypt

the prediction.

4.4 Client-Server Communication

Defining the communication between client application and prediction service is

crucial for our design in order to provide secrecy, integrity, and performance. A

complete overview of the communication design is depicted by figure 4.2. In order

to create an authenticated channel and avoid communication overhead, we use

the 0-round-trip attestation designed by Krawiecka et al. [31]:

Whenever the trusted application is launched, the TEE first measures its contents,

i.e. the code that it is executing. The source code as well as the configuration

producing this code is publicly available through a trusted third party, as explained
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Figure 4.2. Communication between client and server

in section 3.5. After it has been measured, the trusted application generates a

new Diffie-Hellman (DH) key pair consisting of public key ga and private key a.

The initialisation process is completed by the TEE generating a quote over the

measurement of the trusted application as well as ga and returning the quote to

the untrusted application. This quote represents an unforgeable representation of

the code running inside the trusted application, enabling the trusted application

to remotely attest its legitimacy. In addition, the quote is bound to a public key

ga. As a result, any input data that was encrypted using ga, or any key that was

derived from ga, can only be decrypted by the trusted application for which the

quote was generated. Any changes to the code, for instance to export a to the

untrusted application, will be reflected in the measurement.

The client, on the other hand, generates her own DH key pair, public key gb

and private key b. At this point the client can request the quote of the trusted

application. The client can then verify the validity of the measurement and decide

whether it wants to trust it. Moreover, ga allows us to derive a shared key sk = gab

that is used to communicate with the trusted application over an authenticated

channel.

The steps explained so far conclude the bootstrapping process, meaning it only

has to be done once and possibly well ahead of any user interactions. From this
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point onwards, whenever the client sends new input data to the service provider,

it encrypts the data using the shared key sk. In addition to the encrypted input

data, the client also sends its public key gb, enabling the trusted application to

derive sk and decrypt the sent input data. The public key gb is sent with every

query, allowing the trusted application to remain stateless and clients to generate

a new key pair whenever they see fit. Alternatively, the trusted application could

cache sk to improve performance. Similar to input data, output data is encrypted

by the trusted application using sk and sent to the client where it is decrypted

using the same key.
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5. Implementation

In this chapter we discuss our proof-of-concept implementation of the server-side

prediction service. The client-server communication, as described in section 4.4,

is modelled after the communication scheme proposed by Krawiecka et al. which

they implemented for SafeKeeper [31]. We decided to use Intel Software Guard

Extensions (SGX) for our implementation due to its ease of use and the wide

availability of supported chip sets [18]. In addition, SGX provides remote attesta-

tion capabilities which is necessary for our communication design. Nonetheless,

any TEE that supports remote attestation could be used to implement the design

proposed in section 4.2. Our proof-of-concept implementation conforms to the C++11

standard, as this is the latest standard supported by SGX [25]. Furthermore, we

decided to only accept machine learning models in ONNX format. This gives our

implementation more flexibility since we do not restrict model designers in what

tools or frameworks to use.

5.1 Untrusted Application

As described in section 4.2, the untrusted application functions as a gateway for

encrypted input as well as output data. In addition, the untrusted application also

initialises the enclave, i.e. the trusted application, and performs necessary pre-

processing steps. We use the 0-round-trip library1 of SafeKeeper [31] to request

the quote from our enclave. This quote is used for key derivation and remote

attestation as discussed in section 4.4. Once the untrusted application receives

the quote, it is then stored by the untrusted application from where it can be sent

to clients.

Model Parsing

If the quote was successfully created, the untrusted application will load and parse

the ONNX model file it was instructed to use. This file is stored in plaintext in

1https://github.com/SSGAalto/sgx-utils
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untrusted memory. The ONNX format uses Protocol Buffers2 (protobuf) as its

underlying file structure. Due to dependency issues of the protobuf library, we

cannot use it inside our enclave. Therefore, we developed our own SGX-compatible

ONNX model representation which can be used by our enclave. We will cover

these issues as well as our own ONNX library in section 5.3 in greater detail. In

general, we use the protobuf library to convert the ONNX model into our own

model representation using C++ objects. Before passing the ONNX model to our

enclave we have to extract its parameters into a separate float buffer that stays in

untrusted memory, as explained in section 4.2. We limit our implementation to only

supporting float parameters for simplicity reasons, the overall design of our proof-

of-concept implementation can support arbitrary data types. Whilst extracting

model parameters, we create a std::unordered_map to keep track of parameter

offsets. We use parameter names as keys to store the offset in the float buffer

of the corresponding parameter. We chose an unordered map over other data

structures, such as an ordinary std::map or a std::vector, as it internally uses a

hash map to store elements. Thus, std::unordered_map provides the best average

element lookup performance of O(1).

Passing Data to the Enclave

After all parameters have been extracted, we can pass our model to the enclave.

However, SGX only provides a C interface for passing data to enclaves [25]. Thus,

we cannot directly pass our C++ objects. A possible solution for this would be to

rely on C structs. But as flexible arrays are not supported by Enclave Definition

Language (EDL) syntax, passed structs have to be of fixed size [25]. Hence, we

would either have to define very large structs that can fit even extensive amounts

of data or define the same structs in multiple sizes to support flexible model sizes.

Whilst using large, fixed-size structs potentially wastes resources for small models,

defining structs multiple times in different sizes adds unnecessary complexity. In

order to avoid these drawbacks, we chose to use serialisation to pass model data

to the enclave. We serialise a given model to a single, large uint8_t buffer, which

allows us to only use exactly the amount of data we need. The details of how

we serialise our C++ objects are described in section 5.3.3. Besides the serialised

model, we also pass a pointer to the parameter buffer as well as the corresponding

serialised offset map to the enclave. When passing our parameters to the enclave,

we have to instruct SGX which parameters should be copied over into trusted

memory and which should remain in untrusted memory. We can achieve this

by leveraging EDL syntax. We label the pointer to the buffer containing all

exported model parameters as user_check parameter to indicate it should remain

2https://developers.google.com/protocol-buffers/
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in untrusted memory. All other parameters, i.e. pointers to buffers containing

the serialised model and the serialised offset map, are labeled as in parameters,

meaning they will be copied into trusted enclave memory [25].

Receiving Output Data

After the enclave initialisation process is completed, the untrusted application

simply sends encrypted input data as uint8_t buffer labeled as in parameter to the

enclave via ECALL. In addition, the untrusted application also has to provide a

buffer for encrypted output data, labeled as out parameter. This tells SGX that

this buffer will be filled by the enclave. However, the buffer size must be known in

advance, when making the ECALL. We can easily calculate the necessary buffer

size as each model in ONNX format must define the shape of its output. Moreover,

for a given model, we only have to do this calculation once as the output shape

and therefore the buffer size will not change for different input data.

5.2 Enclave

Although the enclave forms the core of our approach, its implementation is rather

simple. Once the enclave has been started and initialised, as described above, it is

ready to receive the model it is meant to use for its calculations.

All necessary model data is passed to the enclave via a single ECALL. This reduces

further interactions between untrusted application and enclave, i.e. ECALLs and

OCALLs, to exchanging encrypted input and output data. Consequently, after the

enclave is passed input data, the CPU does not have to switch between enclave and

non-enclave mode. The reason why we want to avoid switching CPU mode is due to

the performance overhead this introduces. Enclave exit and entry instructions both

cause the CPU to perform multiple operations, including flushing certain cache

entries, saving return pointers, and updating internal control structures [36].

After de-serialising the passed model data, the resulting model is stored by the

enclave, enabling it to receive input data. Note that the model parameters, which

require most of the memory of a given model, remain in untrusted memory. The

model that is stored in enclave memory only consists of the model graph with all

its nodes and attributes. Parameter values necessary for execution are referenced

through pointer variables. We cover our model representation in greater detail

in section 5.3.1. For every given blob of encrypted input data, we decrypt the

serialised input data, using the shared key as described in section 4.4, de-serialise

the input data, and run the model with said input data. After the computation

finishes, we first check whether the computation was successful. In case any

errors occurred, we report the error back to the untrusted application without
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providing any output data. Otherwise, we serialise the output data, encrypt it,

copy it into the provided output buffer, and indicate to the untrusted application

that all operations where successful.

5.3 DNN Framework

We briefly mentioned in section 5.1 that we implemented our own ONNX library

due to dependency issues with protobuf and SGX. This issue also arises when

attempting to use existing machine learning frameworks such as Caffe2, PyTorch,

and TensorFlow. These frameworks have numerous dependencies, many of which

cannot be used by enclaves, such as system calls or dynamic libraries in gen-

eral [25]. Thus, it would require extensive work to port any existing framework in

order to make it compatible with SGX. Moreover, existing frameworks were not

designed for using as little memory as possible but for performance. In fact, Caffe2,

PyTorch, and TensorFlow all offer pre-compiled Anaconda3 packages. When down-

loaded and decompressed, these Anaconda packages for Linux4 have the following

sizes:

• Caffe2: 72.8 MB

• PyTorch: 187.4 MB

• TensorFlow: 261.5 MB

If we recall that with current (October 2018) SGX hardware the Enclave Page

Cache (EPC) of SGX can only allocate about 90 MB for all enclaves before paging

is introduced [27], it becomes obvious that existing machine learning libraries

should not be used by an enclave.

As a result, we created an SGX compatible machine learning framework for

deep neural network predictions from scratch. The framework consists of two

libraries, a trusted and an untrusted library. The untrusted library is meant for

the untrusted application, allowing it to parse given ONNX files and translate

it to our model representation. In addition, the untrusted library has logging

functionalities for models. The trusted library only consists of the core code

that handles model representation and implements different machine learning

operators. After compilation, our libraries have the following sizes:

• trusted library: 2.4 MB

3https://anaconda.org/
4Package sizes for other operating sizes might differ
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• untrusted library: 2.6 MB

Note, however, that at the moment of writing this thesis (October 2018) we have

only implemented a small subset of the total operator set that existing frameworks

offer. We cover which operators we implemented in section 5.3.4. Moreover, we

only support forward passes, meaning our framework is meant for model execution

but not model training. Nonetheless, we expect our framework to be significantly

smaller in terms of raw byte size than other existing frameworks. During the

process of writing this thesis, Eigen5, a popular C++ library for linear algebra, was

ported by Tramèr et al. [51] to be used inside an SGX enclave. The Eigen library is

extensively used by multiple state-of-the-art machine learning frameworks, such

as Caffe2 and TensorFlow. For our library, we do not use the SGX compatible port

of Eigen, as it was released after we finished our proof-of-concept implementation.

5.3.1 Model Components

We chose to design our model representation after ONNX and therefore we also

represent a model as an acyclic graph where each node represents a single, atomic

operation. In addition, we used many design principles found in Caffe2 and

Darknet [45]. For the rest of this section, we will cover the different components

of our framework. We start from the most low-level components and move to more

general components.

Tensor

The Tensor component stores the data that other components use for their compu-

tations. Input as well as output data, model parameters, and intermediary results

are all represented as Tensor objects. Similar to the Tensor component of ONNX, a

Tensor object has three important properties: name, values, and shape. The name

of each Tensor object must be unique, as defined by the ONNX specification [42].

This allows us to easily find existing Tensor objects during runtime. Values are

stored in a typed, one-dimensional std::vector object, meaning each Tensor object

is also typed. Finally, the shape is stored in a one-dimensional std::vector<int>

object. We purposely decouple the values and their shape, i.e. their dimensionality,

to increase simplicity and flexibility.

In addition to maintaining its own values, the Tensor component also supports

wrapping around existing values, making said values available through the Tensor

object. We implement this functionality by using the std::reference_wrapper tem-

plate provided by C++. This is used for model parameters, as they are stored

5http://eigen.tuxfamily.org/
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in untrusted memory, whilst all computation takes place in trusted memory.

Whether or not a Tensor maintains its own values is hidden behind the func-

tion get_mutable_data(), which returns a pointer to an object’s value array. Which

pointer is returned is handled internally by the Tensor object and not visible to the

calling code. Moreover, we designed all machine learning operations to be pure,

i.e. free of side effects. As a result, existing Tensor objects are treated as read-only,

making sure we do not leak data by writing to untrusted memory.

TensorInfo

The TensorInfo component is the blueprint of a Tensor, describing its name, data

type and shape. Generally, the TensorInfo component is based on the ValueInfo

component of ONNX described in section 2.1.4. Therefore, TensorInfo objects, just

like ValueInfos, are used in places where we need a placeholder for a Tensor that is

not available yet.

TensorContainer

The Tensor component is implemented as a templated class, meaning a Tensor object

is always typed, e.g. Tensor<float> or Tensor<int>. In order to store tensor data with-

out strict typing, we define a TensorContainer component. A TensorContainer object

stores exactly the same data as a Tensor object would, i.e. its name, shape, type

and values. However, instead of storing values in a typed std::vector object, the

TensorContainer component stores the raw bytes of all values in a single std::string

object. Whenever we need access to the Tensor that a TensorContainer represents,

we export the Tensor object with a single function call. The TensorContainer com-

ponent allows us to store Tensor objects of different types together in the same

container object, such as a std::vector. In addition, by using the TensorContainer

component, we can define container objects that can store typed tensor data

without having to know the data type in advance. For example, we can define a

std::vector<TensorContainer> variable without having to know what data types the

underlying Tensor objects might have.

NodeAttribute

As the name suggests, the NodeAttribute component defines an attribute of a

given node, i.e. a given operation. This component is closely modelled after the

Attribute component of ONNX described in section 2.1.4. In order to be able to

support storing different data types, the NodeAttribute component defines multiple

member variables ranging from a single float or int over std::vector<float> and

std::vector<int64_t> to std::string. As opposed to Attribute component defined

by ONNX, our NodeAttribute component defines an AttributeType member variable.

This variable describes the purpose of a given NodeAttribute object. We chose
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AttributeType over std::string to save memory.

Node

The Node component is based on the Node component found in ONNX, meaning

it stores the same data we described in section 2.1.4. We store attributes in

a std::map<AttributeType, NodeAttribute> object which allows us to quickly find a

certain NodeAttribute object when it is needed. The type of a Node is stored in a

OperatorType variable. The most important function the Node component defines is

the forward function. It accepts a list of input Tensor objects as well as a list where

the Node can store its output Tensor objects. The forward function is implemented as

a pure virtual function, making the Node component an abstract class. Therefore,

each operation, such as Convolution, ReLU, or MaxPool, is implemented as a sepa-

rate, derived class that inherits from Node. These derived classes each implement

their own forward function that performs the actual operation.

The Node component stores its inputs as a std::vector<std::string>. Moreover, if

we recall that all Tensor names must be unique, it becomes clear why storing

the name of a Tensor is sufficient to locate it at runtime. As a result, the calling

code can retrieve all inputs a Node defines and provide it with the corresponding

Tensor objects. Although the computation differs greatly between the different

implementations of operations, they all share a common execution flow:

1. Verify that the amount of passed input Tensor objects matches the expected

amount.

2. Ensure that the passed inputs are compatible with each other, e.g. have com-

patible shapes, and that all necessary NodeAttribute objects are present. Due to

how SGX handles errors, we cannot simply fail when constructing a derived Node

object by throwing an exception. As a result, we perform these check during

execution and abort if needed.

3. Acquire pointers of the underlying raw data of input Tensor objects using

get_mutable_data() and perform operation-specific computations using said point-

ers.

4. Store calculated output Tensor objects in the provided list, so that that they

become available to the calling code.

Graph

The top-level component of our framework is the Graph component. This component

is closely modelled after the Graph component of ONNX described in section 2.1.4,

meaning it stores the same data but represented by our own components. The

initialisers, i.e. a list of constant Tensor objects, are stored in an std::unordered_map
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that uses std::string objects, i.e. the names of the stored Tensor objects, as keys.

Initially, when a Graph object is constructed, the std::unordered_map only accom-

modates trained model parameters. As we traverse we Graph object, however,

this std::unordered_map object is filled up with intermediary results which serve as

inputs of future Node objects.

5.3.2 Model Execution

Due to the memory limitations in current SGX hardware [27], we want to be as

memory efficient as possible. As Tensor objects consume the most memory, we

want to ensure each Tensor objects is only created once and only accessed through

pointers or references afterwards. We achieve this by wrapping all Tensor objects

in std::shared_ptr objects, after which we access Tensor objects only through their

respective shared pointer. A C++ shared pointer keeps a reference counter. This

counter is increased whenever a shared pointer is passed as a parameter and

decreased when the pointer runs out of scope. Once the reference counter of a

shared pointer reaches zero, the pointer deletes itself, including the data it points

to. This design of shared pointers makes memory management during model

execution straightforward.

During execution, we store all shared pointers that contain Tensor objects in a

std::unordered_map object that uses std::string objects as keys, as explained in

section 5.3.1. Moreover, we mentioned in section 5.3.1 that the name of a Tensor

object must be unique. Thus we use the name of each Tensor object as a unique

key, allowing us to efficiently locate Tensor objects at runtime. We populate this

std::unordered_map by inserting all outputs returned by the forward function of each

Node object in our Graph.

The ONNX specification states that the list of nodes of a graph must be topologi-

cally ordered [42]:

Given a graph G with a topologically ordered list of nodes L = {X1, X2, ..., Xn}

and two nodes Xi, Xj ∈ L with i < j ≤ n. Then no inputs defined by Xi must refer

to outputs defined by Xj .

We exploit this property and retain the topological order whenever we translate

a given ONNX model to our model representation. As a result, we can safely

assume that during model execution every input that a current node defines

must exist in our std::unordered_map object. If a requested input does not exist, we

have encountered an unresolvable problem and abort execution. After we have

successfully traversed the list of Node objects of a Graph, we retrieve the output

Tensor object the Graph defines from the map and return to the calling code.
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5.3.3 Serialisation

We heavily rely on serialisation when passing data between untrusted application

and enclave. Consequently, each component described in section 5.3.1 defines

its own serialisation function as well as a constructor for de-serialisation. The

intuition behind our serialisation scheme is straightforward: store the size of a

serialised data blob, followed by the data blob itself. In addition, data blobs might

follow a hierarchy. Our scheme is illustrated by figure 5.1. For example, a Graph
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Figure 5.1. Serialisation scheme for passing data to the enclave

component contains a list of Node components. Each Node defines a list of inputs

and NodeAttribute components it requires in order to compute its defined outputs.

As a result, when serialising a Graph we have to recursively traverse its hierarchy

until we reach trivial types, such as int or float, or arrays and vectors consisting

of trivial types. Once we have reached this point, we convert the data to uint8_t

buffers. After all trivial types have been converted, we backtrack one level at a

time and always merge uint8_t buffers from previous levels as we move up. We

continue this until all data has been converted and we are left with one large

uint8_t buffer.

We follow a similar approach when we de-serialise data. Continuing with the Graph

component example, we can easily determine where specific data sections, like

the list of Node components and even individual Node components within that list,

start as well as end. Therefore, when arriving at a new data section, we simply

read its length and pass the specified data range to the appropriate component

constructor. We know which constructor to call because we de-serialise objects in

the same order as we serialise them.

5.3.4 Implemented Operators

For our proof-of-concept implementation, we implemented the following operators

as defined by version 6 of the default ONNX operator set [43]:

Add

The Add operator performs an element-wise addition of two input tensors A and B.
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Add supports two attributes axis and broadcast, which allow B to be broadcasted

to match the shape of A. Setting broadcast = 1, indicates B should be broadcasted

and axis can be used to decide along which axis. If axis is not set, suffix matching

is assumed, meaning the shapes of A and B are compared starting with their last

value. For example:

• Consider A has shape 2× 3× 4× 5 and B has shape 3× 4. Then A and B can be

added with attributes broadcast = 1 and axis = 1, meaning B is broadcasted to

shape 2× 3× 4× 5.

• Consider A has shape 3 × 4 × 5 × 6 and B has shape 5 × 6. Then A and B can

be added with attributes broadcast = 1, meaning B is broadcasted to shape

3× 4× 5× 6.

Constant

The Constant operator simply outputs the tensor it was supplied via its value

attribute. Whenever we encounter a Constant operator while parsing an ONNX

model, we drop the operator itself and add the tensor specified by its value attribute

to the list of initialisers of our Graph component we mentioned in section 5.3.1.

Conv

The Conv operator computes the same operation as the Convolutional Layer de-

scribed in section 2.1.3. Thus, this operator takes an input tensor X, a weight

tensor W filled with filters, and an optional bias tensor B as inputs. In addi-

tion, Conv defines the attributes dilations, kernel shape, pads, and strides. The

kernel shape attribute defines the height and width of the filters, or kernels, stored

in W . If omitted, the value of kernel shape is derived from W . Both dilations and

strides define how each filter is moved over the input X. If not specified, both

attributes default to 1. Lastly, the padding attribute defines with how many rows

of zeros X should be padded along its height and width axes. This is needed if

the filters would otherwise "overflow" at the edges of X. The padding attribute is

optional and its default value is 0, meaning no padding is added.

Gemm

The Gemm operator computes a General Matrix Multiplication (GEMM). Thus the

Gemm operator takes three input tensors A, B, as well as C and computes output

Y as follows:

Y = α ∗A ∗B + β ∗ C (5.1)

37



Implementation

Furthermore, Gemm defines the attributes α, β, broadcast, transA, and transB.

Both alpha and beta describe the scalar values of the equation above and default

to 1. The attributes transA and transB indicate whether A and B should be

transposed before calculating output Y . The broadcast attribute defines whether

C should be broadcasted. Considering input A is of shape M ×K and input B has

shape K×N , both input C and output Y must have shape M ×N . Thus, broadcast

can be used to broadcast C to shape M × N . The Gemm operator represents a

fully connected layer, as described in section 2.1.3, with the sole difference that no

activation function is applied. To model a fully connected layer, we have to append

the operator of the desired activation function to the Gemm operator.

MatMul

The MatMul operator calculates the matrix product of two input tensors A and B.

Depending on the shapes of A and B, the operator behaves as follows:

• If A and B are 2-dimensional, the operator computes an ordinary matrix multi-

plication.

• If either input A or B is n-dimensional with n > 2, said input is treated as a

stack of 2-dimensional matrices. The other input is broadcasted accordingly to

match the shape of the n-dimensional input.

• If A is 1-dimensional, said input is promoted to matrix by prepending a 1 to its

shape. After the matrix multiplication is completed, the prepended 1 is removed

from the shape of A.

• If B is 1-dimensional, said input is promoted to matrix by appending a 1 to its

shape. After the matrix multiplication is completed, the appended 1 is removed

from the shape of B.

MaxPool

The MaxPool operator computes the same operation as the MaxPool Layer de-

scribed in section 2.1.3. It accepts one input tensor X and defines the attributes

kernel shape, pads, and strides. All attributes have the same purpose as with the

Conv operator. Therefore, kernel shape defines the size of the filter that is moved

across X, strides defines how the filter is moved, and pads denotes with how many

rows of zeros X should be padded along its height and width axes.

ReLU

The ReLU operator element-wise computes the ReLU activation function on its

input tensor as defined in section 2.1.3.
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Reshape

The Reshape operator reshapes its input tensor to the shape specified by its shape

attribute. The shape attribute must not change the overall size of the input. Each

value of shape that is equal to zero, remains unchanged. Furthermore, at most one

value of shape may be −1, meaning the actual value is inferred by the remaining

values of shape. For example, given an input tensor with shape 2× 3× 4:

• a shape of 0× 2× 2× 3 would output a tensor of shape 2× 2× 2× 3

• a shape of 3×−1 would output a tensor of shape 3× 8

Sigmoid

The Sigmoid operator element-wise computes the Sigmoid activation function on

its input tensor as defined in section 2.1.3.

TanH

The TanH operator element-wise computes the TanH activation function on its

input tensor as defined in section 2.1.3.

5.3.5 Avoiding Memory Side-Channel Attacks

For all operator implementations of our proof-of-concept implementation, we

designed our code such that memory access patterns for both writing and reading

operations remain input-independent. This is necessary, as SGX is prone to

side-channel attacks. For instance, attacks have been found that reveal enclave

secrets by monitoring cache accesses of read and write operations made by enclave

code [39][5][53]. Fortunately, most operations discussed in this thesis have an

input-independent control-flow which results in input-independent cache access

patterns. However, in the case of the ReLU and MaxPool operators, control-flow

depends on the input that we are trying to protect.

In the case of ReLU, we have to traverse the complete input tensor and determine

for each individual value whether it is larger than zero. Thus, read operations are

already input-independent as we always have to read the complete input tensor.

New tensor objects are initialised with zeros as default values, thus we could only

write a value to the output tensor if it is larger than zero. However, this would

leak information about the input, as an attacker monitoring our write operations

could see when we write a value to our output tensor and when not. To mitigate

this we always write a value to our output tensor, even if that value is zero. This

way, we hide if an input value is smaller or larger than zero as write operations

are identical for all inputs.
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The MaxPool operator slides a filter of pre-defined size across its input tensor and

copies the maximum value of each filter to its output tensor. Similar to ReLU,

read operations are already input-independent, as we always have to read the

entire input tensor regardless of its values. For our implementation, we use a

straightforward algorithm for finding the maximum value of every filter: we use a

helper variable local_max that stores the current maximum which, once we have

seen every value within a filter, holds the overall local maximum value that is

copied to the output tensor. Thus, if we would only update local_max if we find

a larger value, an attacker monitoring our write operations could infer which

values in our input tensor are larger than others. Therefore, we update local_max

for every value with either a new, larger value or the current value of local_max.

Thus, write operations are identical for all inputs, regardless of their values.
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6. Evaluation

We base our evaluation on the requirements and goals defined in chapter 3.

Consequently, we evaluate security, functionality, performance, and deployability

of our proof-of-concept implementation individually. For our empirical tests, we

consider the following settings:

Plaintext, untrusted memory: Input and output data remains unencrypted

at all times and our proof-of-concept implementation is executed by an

untrusted application.

Plaintext, SGX enclave: Input and output data is unencrypted and our proof-

of-concept implementation is executed inside an SGX enclave.

Encrypted, SGX enclave: Input data is provided in encrypted form and output

data is also encrypted. Consequently, input data is decrypted before compu-

tation begins and output data is encrypted before it is returned. In addition,

our proof-of-concept implementation is executed inside an SGX enclave.

6.1 Security

The security requirements we defined in section 3.3.1 have the highest priority,

together they form the main drive behind this thesis. For our evaluation we use

a combination of empirical and theoretical analysis. In addition, we consider

existing attacks and how they might affect our system.

Model Confidentiality (S-1)

In our proposed design and its proof-of-concept implementation, the machine learn-

ing model of the service provider is stored on the server. Thus, users, malicious or

not, never have direct access to the model and its data. However, users have oracle

access to the model, meaning for any given input data the model will produce

output data that is sent back to the appropriate user. A malicious user can exploit

this, as she controls what data is sent to the model. Furthermore, she can time
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the response time.

Assuming a malicious user is able to predict the latency of the network over which

she is communicating with the enclave, she can infer the overall complexity of

the used model. Figure 6.1 depicts the average times needed for executing the

graphs of two different models inside an SGX enclave. The two models used

here serve no other purpose than to highlight how model complexity affects the

overall computation time. Whilst Model A only consists of 3 nodes that all compute

operations on a small input of dimension 1 × 1 × 28 × 28, Model B comprises 10

nodes with significantly more parameters and expects an input with dimensions

1× 3× 224× 224. The executed model graphs are presented in appendix A. We can

Figure 6.1. Execution times of different models inside an SGX enclave

easily see that more complex graphs need more time to compute a prediction for

a given input. Note, however, that "complex" in this setting does not necessarily

refer to the structure of the graph, i.e. how many nodes it is comprised of, but can

also refer to single operations. For instance, a graph that only consists of a single

node which computes the product of two large matrices will take longer to execute

than a graph comprised of tens of nodes that all compute simple operations, such

as additions, or operate on smaller inputs. Apart from a malicious user, the model

execution time can also be observed by a malicious outsider, who can timestamp

packets sent between user and service provider. To mitigate this attack, we could

add a, potentially randomised, delay for providing output data. This way a mali-

cious user or malicious outsider cannot infer the used model from measuring the

response time.
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Besides timing the response time, a malicious user might also mount a model

extraction attack. Tramèr et al. [52] developed an attack where they exploit the

received output of a deployed model to build a local copy of said model. For their

attack, they only rely on the publicly available interfaces granted by the service

provider. Tramèr et al. apply their technique to different models trained on four

different data sets. They report to be able to extract a deployed model using

between 300 to 1500 queries. Juuti et al. [28] further improved on this attack,

achieving a much higher agreement rate of up to 88.8% between deployed model

and local copy. Our design and its proof-of-concept implementation do not address

this attack and are therefore prone to model extraction attacks by a malicious

user. However, Juuti et al. and Tramèr et al. both describe countermeasures to

mitigate their attacks. As a malicious outsider cannot see the input and output

data sent between user and service provider, he cannot mount a model extraction

attack on its own or benefit from an attack carried out by a malicious user.

We conclude that our design combined with the defences mentioned above is able

to protect a deployed model. In fact, Hanzlik et al. [19] implemented precisely

these defences, among others, to further protect a model used by an SGX enclave

for on-device machine learning. As a result, we note that executing the model

inside a TEE does not negatively affect model confidentiality.

User Privacy (S-2)

Due to the design of our system, all input and output data is encrypted using a

shared key only known to the user and the enclave. As a result, the untrusted

application, which the service provider controls and whose code is not visible to the

user, can only see the unencrypted meta data of a user query. The plaintext data

that a query contains, as described in section 4.3, is application specific. It might

contain information about the user needed for authentication, as well as general

data such as timestamps. The untrusted application can, however, monitor the

enclave as it is running and even mount a side-channel attack.

Applications running inside an SGX enclave are potentially prone to different

side-channel attacks:

Cache Attacks. Moghimi et al. [39] as well as Brasser et al. [5] have shown

Prime+Probe attacks that can successfully recover AES and RSA keys, respec-

tively, that were used by an SGX enclave. For their attacks, they monitored

hundreds of decryptions in order to reveal the used key. Brasser et al. also show

that an SGX enclave can leak non-cryptographic data. They were able to reveal

the provided input of a genomic processing enclave using their attack. The general

intuition of a Prime+Probe attack is to first prime the cache, wait for the victim

application to execute and then probe the cache to identify which cache lines were
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operator input-independent reads input-independent writes

ReLU yes no

MaxPool yes no

Table 6.1. Operators vulnerable to cache attacks

used by the victim application. As a result, the attacker, knowing the source

code of the victim application, can infer what data was processed based on the

control flow and observed cache accesses. The control flow of the enclave of our

proof-of-concept application is mostly based on the provided model, i.e. its nodes

and their attributes. The exceptions to this are shown in table 6.1. Both operators

rely on either comparing input values with one another or a fixed value. Thus, read

operations result in identical cache accesses for all inputs as all input values must

always be read. However, both operators could leak information about input values

due to their write operations. We mitigate this issue by adding "dummy" writes,

i.e. for each input value we perform a write operation even if it is unnecessary.

We describe the mitigations for these operators in greater detail in section 5.3.5.

Consequently, the memory access pattern will be identical for all input data for

every operation. Therefore, a malicious service provider cannot use cache attacks

to reveal input or output data. In addition, we use AES-CTR encryption and

decryption operations provided by the SGX cryptography library. These functions

use special hardware instructions and other software based techniques to mitigate

cache attacks [4].

Page Table-Based Attacks. SGX enclaves can leak sensitive information based

on their page accesses. Xu et al. [53] have shown that they can reveal text as

well as image data by tracking data page accesses of trusted applications. As

we explained above, our proof-of-concept implementation does not exhibit input-

dependent memory access patterns at cache-line granularity, i.e. 64 B. Therfore, it

does not exhibit such patterns at coarser granularities, such as page granularity

which is 4 KB. However, as different parts of the trusted application’s code are

stored on different pages during execution, monitoring page accesses can reveal

the control flow of the application and therefore also sensitive data. Van Bulck

et al. [6] have demonstrated that they are able to extract EdDSA session keys

of an unmodified cryptographic library running inside an SGX enclave. Their

attack is executed by continuously monitoring Page Table Entries while the victim

application is running. There are, as explained before, certain operations that

introduce control flow that depends on their input. The possible branches of these

operations, however, are limited to a single operation and therefore very short.

Hence, although possible, it is highly unlikely that these branches are stored on
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different code pages, meaning page table-based attacks will most likely not reveal

any information about input data.

Branch Shadowing Attacks. The control flow leaked through code page ac-

cesses is rather coarse. Branch shadowing, however, allows an attacker, to infer

fine-grained control flow information of an enclave. As Lee et al. [34] show, an

attacker can exploit the branch prediction of modern processors to reveal sensitive

data held by an enclave. Using their attack, Lee et al. are able to recover 66%

of a private RSA key after having observed a single decryption. The attack is

executed as follows. After analysing the victim source code, the attacker writes

shadow code that aligns with the section of the victim code she wishes to attack.

Finally, after the victim code has run, the attacker can use the branch history

of the victim code to infer fine-grained control flow information by monitoring

the branch predictions while executing her shadow code. Due to this, even short

branch executions, e.g. only consisting of single operations, become visible. As a

result, an attacker can use branch shadowing attacks to attack certain operations

of our proof-of-concept implementation. Note, however, that this attack surface is

very limited as it only reveals if a certain value is larger than another. Moreover,

as the affected branches are so simple, we can adapt our implementation to hide

branch accesses, as proposed by Lee et al. [34], in future versions.

Spectre Attacks. In 2018 Kocher et al. [30] developed a new attack, called Spec-

tre, which exploits speculative execution capabilities of modern CPUs to extract

secrets. This attack also translates to SGX, as reported by Chen et al. [9]. Using

their attack, Chen et al. were able to extract different keys, such as sealing key

and attestation key, used by SGX. By stealing the attestation key, one can forge

the quotes used for remote attestation. Intel has since updated its SGX SDK to

mitigate Spectre attacks against SGX [26]. Nonetheless, application developers

have to analyse and potentially update their own source code to fully mitigate

Spectre attacks. As we are using features of SGX that might expose Spectre vul-

nerabilities for our proof-of-concept implementation, more analysis and possible

source code updates are necessary before we can confidentially claim to not be

prone to Spectre attacks.

Timing Attacks. A naive attack against our proof-of-concept implementation

is to time the execution times of different input data in order to infer properties

about input and output data. For our test, we used the MNIST data set, which

contains images of handwritten digits and therefore defines 10 different labels.

We randomly selected one representative of each label, i.e. digit, and timed their

execution times over 10, 000 repetitions. Figure 6.2 illustrates the distribution of

execution times of each of these randomly selected representatives. As we can see,
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Figure 6.2. Execution times of different input images of the MNIST data set

the distributions of all tested images are close to one another. Moreover, mean µ

as well as standard variation σ are very similar across all distributions. This is

further illustrated by figure 6.3, which compare the "best fit" lines of the different

distributions shown in figure 6.2. The lines depicted by figure 6.3 are plotted

using the µ and σ of each individual distribution. Therefore, we conclude that

in our test, timing execution times for different input data was not sufficient to

leak information about input or output data. Although we only tested this for

one model using the MNIST data set, we expect this to translate to other data

sets and models as well. The reason for this is that, given a trained model M, all

calculations defined by M are identical for all given inputs.

Trusted Computing Base. The trusted computing base (TCB) of a system com-

prises the hardware and software components of said system that have to be

completely trusted [3]. Therefore, we want to reduce the size of the TCB to min-

imise its attack surface. In the case of SGX, we can only influence the size of our
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Figure 6.3. "Best fit" lines of execution distributions of different input images of the MNIST data
set

TCB with the design of our enclave. As a result, the code of our enclave should be

small and thoroughly evaluated to reduce the risk of software bugs which might

exhibit security vulnerabilities. As mentioned in section 5.3, we created our own

DNN library instead of porting an existing state-of-the-art framework or utilising

an existing port of the Eigen library for SGX. Apart from the technical difficulties

involved in porting a complex framework such as PyTorch or Caffe2, the decision

to create a new DNN framework was also influenced by the goal of minimising

the TCB of our solution. Measuring the size of existing non privacy preserving

frameworks and libraries in lines of source code (LoC), yields the following results1:

• PyTorch: ∼ 1, 700, 000 LoC

• Caffe2: ∼ 270, 000 LoC

• TensorFlow: ∼ 1, 300, 000 LoC

• Eigen SGX port: ∼ 116, 000 LoC

• Slalom (explained in section 8.3): ∼ 130, 000 LoC

• MLCapsule (explained in section 8.3): ∼ 130, 000 LoC

In comparison, the DNN library and enclave code of our proof-of-concept imple-

mentation consists of ∼ 4, 500 LoC. The vastly smaller code base of our solution

allows us to find and fix software bugs easier and faster. Moreover, a small TCB

1LoC numbers were acquired by measuring the source code hosted on GitHub. Bench-
marks, tests, documentation, and other utility files were excluded from the measurements.
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makes it easier for users and other third parties to audit as well as evaluate the

source code, allowing them to determine whether it is trustworthy or not.

6.2 Functionality

The second set of requirements we defined are functional requirements which we

described in section 3.3.2.

Accuracy (F-1)

Given an existing model, we wanted to assess whether its accuracy decreases if

used with our proof-of-concept implementation. For our test, we trained a model in

PyTorch using 60, 000 training images of the MNIST data set. The trained PyTorch

model achieves a 99.14% accuracy when tested with the 10, 000 test pictures of

the MNIST data set, meaning it mispredicts 86 test images. Afterwards, we

exported said model to ONNX format in order to use it with our proof-of-concept

implementation. Both the PyTorch code and the ONNX graph for our used model

can be found in appendix B.

Using the exported model, our proof-of-concept implementation achieves the same

accuracy of 99.14% with 86 mispredctions when operating on the same test set

as PyTorch. In addition, consecutive runs on the same input data will always

produce identical output data. Although our proof-of-concept implementation did

not affect the accuracy of the tested model, this might not be the case with any

model. During our tests, we measured rounding errors for certain operators, such

as Gemm or Tanh, which might affect the overall model accuracy. Nonetheless, the

measured rounding errors of individual values never exceeded 0.2% and therefore

we do not expect a significant change in model accuracy caused by our proof-of-

concept implementation.

In addition, due to the design of our system, model execution inside and outside

SGX are identical. Thus, when using our proof-of-concept implementation, there

will be no loss in accuracy when executing a model inside SGX compared to

executing it outside SGX. We expect this to translate to other applications as

well. As a result, assuming a state-of-the-art machine learning framework such as

PyTorch is ported to SGX in the future, its accuracy will not by affected by SGX in

any way.

Coverage (F-2)

As mentioned in chapter 5, we rely on the ONNX standard for our proof-of-concept

implementation. Consequently, we aim to fully support all operators defined in

the standard. As of writing this thesis (October 2018), the ONNX standard defines
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115 operators with 15 of these operators being in an experimental stage [43]. For

comparison, Caffe2 defines 557 operators in its catalogue [7]. This shows that the

ONNX standard is still missing many operators. In fact, one experimental operator

defined by ONNX is named after the tensor library ATen2. The purpose of this

operator is to directly expose operations of the ATen library when ONNX is missing

its own version of an operation [43]. For our proof-of-concept implementation we

implemented a subset of the total operator set defined by the ONNX standard.

Implementing the majority of the remaining operators is straightforward, yet time

consuming. Some operators defined by ONNX, like the ATen operator mentioned

before, might be more complicated to implement, however, as they have their own

dependencies.

Our proof-of-concept implementation is based on SGX. Due to the design of SGX,

one must define stack and heap size in advance so that SGX can reserve enough

memory for enclave execution [25]. Whenever the defined values are exceeded,

execution is aborted due to memory shortage. Choosing large values for stack

and heap sizes, can affect performance due to paging. SGX introduces paging if

the memory allocated by the EPC exceeds 90 MB [27]. In addition, large heap

and stack sizes will affect the time required to initialise and destroy an enclave

as SGX has to reserve and clear more memory [32]. As a result, when executing

complex machine learning models, the memory usage of our proof-of-concept

implementation might exceed the EPC limit resulting in decreased performance.

To mitigate this, we export model parameters and store them in untrusted memory

before passing a model to the enclave. The enclave only stores the graph of a model

consisting of the different operators and their attributes. During computation,

the enclave reads the model parameters from untrusted memory without copying

them to trusted memory, allowing us to reduce memory usage. This, however, does

not address the issues of intermediary results requiring too much memory. As we

discussed in section 4.2, all intermediary results must be stored in trusted memory

to ensure no input or output data leaks outside the enclave. Whilst this does not

pose a limitation as such on model design, it should be taken into account when

designing a new model. For instance, if performance is crucial, one could trade

performance for accuracy by simplifying the model so that the required memory

falls below the EPC limit.

Non-Invasiveness (F-3)

The goal of ONNX is to become a new industry standard that is used to translate

machine learning models from one format to another. As we already mentioned

in section 2.1.4, many popular machine learning frameworks already support

2https://github.com/zdevito/ATen/tree/master/aten

49

https://github.com/zdevito/ATen/tree/master/aten


Evaluation

exporting models to ONNX format. As a result, there is a high probability that

an existing model can easily be converted to ONNX format. Nonetheless, the

limitations above still apply. Therefore, some operators might not yet be defined by

ONNX and executing complex models might require too much memory, resulting

in decreased performance due to paging introduced by SGX.

6.3 Performance

To assess the performance of our proof-of-concept implementation, as we described

in section 3.4.1, we compare it to the state-of-the-art machine learning framework

PyTorch. For our comparison, we used the MNIST data set to train a model in

PyTorch and export it to ONNX format. Afterwards, we used the 10, 000 test images

to analyse performance differences between our proof-of-concept implementation

and PyTorch. For our analysis, we executed PyTorch in single-threaded CPU

mode. Although PyTorch allows multithreading and even provides GPU support,

we decided to limit it to a single thread in CPU mode as it allows for a better

comparison. This is due to the fact that our proof-of-concept implementation

is also executed on the CPU in a single thread. In addition, we only measure

pure execution time, meaning no pre-processing or post-processing steps, such as

initialising SGX or loading data, are included in the measurement. We exclude

pre- and post-processing steps because they are usually only necessary once and

therefore do not reflect the performance of either system. Finally, we compare our

results to the existing privacy preserving solutions MiniONN and CryptoNets.

Throughput (P-1)

To compare the throughput of our proof-of-concept implementation with PyTorch,

we measured the average time needed to classify 10, 000 test images over 10

repetitions. The average execution times are depicted by figure 6.4. As we can

see, using encrypted inputs and outputs inside an SGX enclave adds no overhead

compared to plaintext input and output data. In addition, SGX increased average

execution time by roughly 10 seconds in our test. Whilst our proof-of-concept

implementation required, regardless of setting, always more than 70 seconds,

PyTorch is able to finish the task in 3.74 seconds on average. Therefore, our

proof-of-concept implementation, when operating on encrypted inputs, is ∼ 23.3

slower than PyTorch. Using the averages shown in figure 6.4, we can calculate

the following throughputs:

Plaintext, untrusted memory: ∼ 129 images per second

Plaintext, SGX enclave: ∼ 115 images per second
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Figure 6.4. Average time required to classify all 10, 000 MNIST test images

Encrypted, SGX enclave: ∼ 115 images per second

Plaintext, PyTorch: ∼ 2675 images per second

Interestingly, as shown in figure 6.5, there is an initial spike in execution time

when executing in untrusted memory, including PyTorch. This spike does not exist

when calculating predictions inside an SGX enclave. This is probably due to the

fact that SGX already copies data to CPU registers, whereas CPU caching is only

introduced in subsequent runs when executing in untrusted memory.

Moreover, our proof-of-concept implementation outperforms both CryptoNets and

MiniONN. CryptoNets, which is optimised for throughput, achieves 58, 982 pre-

dictions per hour, whilst MiniONN reports a throughput of 9, 000 predictions per

hour [13][35]. Using the throughput shown above, our proof-of-concept implemen-

tation can calculate 414, 000 predictions per hour when operating in the encrypted

setting inside an SGX enclave.

Latency (P-2)

For our latency comparison we measured the average time necessary to classify

a single test image over 100 repetitions. To ensure that caching does not affect

our measurement, we choose a random picture out of the MNIST test set for each

iteration. The average latencies for classifying a single input image are illustrated

by figure 6.6. Oddly, operating on encrypted inputs inside an SGX enclave is

slightly faster than operating on plaintext inputs. Although, the difference is not

significant with ∼ 0.5 milliseconds, it remains unclear why this is the case. Other
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Figure 6.5. Execution times of continuously classifying all 10, 000 MNIST test images

than the additional decryption and encryption steps, the two tests are identical.

In general, SGX seems to add a slight overhead of ∼ 2 milliseconds to the latency.

PyTorch manages to achieve a latency of ∼ 0.43 milliseconds on average. Hence,

when operating on encrypted inputs, our proof-of-concept implementation has a

23 time higher latency than PyTorch.

Similar to throughput, we also noticed an initial spike in latency for both non-SGX

settings, as shown in figure 6.7. The reason for this temporary spike has most

likely the same cause as the one seen during our throughput test.
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Figure 6.6. Average time required to classify a single MNIST test image

In addition, our proof-of-concept implementation also achieves lower latency than

CryptoNets and MiniONN. Due to the throughput optimisation of CryptoNets,

calculating between 1 and 4096 predictions at a time will always take 250 sec-

onds [13]. MiniONN, however, manages to accomplish a much lower latency of 0.4

seconds [35]. To compute a single prediction in the encrypted setting in side an

SGX enclave, our proof-of-concept implementation requires 9.9 milliseconds, i.e.

0.0099 seconds.

Figure 6.7. Execution times of continuously classifying a single MNIST test image
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Together, figures 6.4 and 6.6 show that our proof-of-concept implementation cur-

rently is ∼ 20 times slower in the same setting as PyTorch, i.e. plaintext inputs

and outputs in untrusted memory, in terms of throughput and latency. Conse-

quently, we deduce that our proof-of-concept implementation has much room for

performance improvements. We assume that the overhead introduced by SGX

and encryption will remain similar to what we measured in our tests, i.e. 12%

overhead for throughput and 21% for latency, even after improving performance.

As a result, we expect to greatly reduce the performance difference between our

proof-of-concept implementation, running in SGX with encrypted inputs as well

as outputs, and non privacy preserving state-of-the-art frameworks. Moreover, we

anticipate ports of state-of-the-art frameworks, such as PyTorch, to have similar

overheads when executed in SGX.

6.4 Deployability

We restrict our deployability evaluation to a theoretical analysis, as we only

examined our proof-of-concept implementation in our own test environment. We

defined our deployability goals in section 3.4.2.

Commodity Server Hardware (D-1)

Although our design does not depend on any specific TEE, we chose SGX for our

proof-of-concept implementation, as explained in chapter 5. Intel SGX was first

introduced in 2015 with Intel’s Skylake CPUs [37]. As a result, SGX is included in

all Intel CPUs since Skylake. However, software support is, at the time of writing

this thesis (October 2018), limited to Windows and Ubuntu [24]. In addition, Intel

also offers SGX-enabled server blocks which are intended for server applications,

e.g. data centres. In fact, many large cloud providers already use server CPUs

which support SGX [1][16]. Nonetheless, as of October 2018 only Microsoft Azure

actively advertises its SGX capabilities, named Azure confidential computing [46].

Furthermore, Azure Machine Learning allows users to deploy trained machine

learning models as web services [38]. Therefore, Azure could already use our

proof-of-concept implementation to provide privacy preserving machine learning.

Generally, a service provider is limited to using 6th generation Intel CPUs or

newer when hosting his own server in order to deploy our proof-of-concept im-

plementation. Alternatively, a service provider could also rely on existing cloud

providers, such as Azure, to deploy our proof-of-concept implementation. However,

if a service provider decides to use existing cloud services, he must trust his cloud

provider as our proof-of-concept implementation does not protect the used model

from the server.
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Commodity User Hardware (D-2)

Our proof-of-concept implementation is limited to the prediction service we defined

in section 4.2. In order to interact with the prediction service, the client must

be able to produce the application-specific input data and possibly pre-process

it. In general, most modern devices, e.g. smartphones and tablets, will be able

to produce a wide array of input data, such as pictures, videos, sound and text.

Additionally, pre-processing input data is generally not a very resource intensive

task, hence no powerful hardware is needed. Moreover, our design only requires a

TEE-enabled prediction service, meaning no specific hardware is required on the

client side. Therefore, many user devices are most likely able to interact with the

prediction service without the need of hardware upgrades.
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7. Extensions

In this chapter we discuss possible extensions as well as improvements to our work.

These concepts extend to both our design and our proof-of-concept implementation.

7.1 Security

Store Deployed Model inside the TEE

For this thesis, we assume that a service provider hosts his own model. This is not

always the case, however, as large cloud providers allow third party model owners

to deploy a model. Therefore, for this section we assume that model owner and

service provider are two separate entities, where a model owner posses a trained

model and a service provider deploys models as prediction services.

Our design does not protect the used model from a potentially adversarial server.

Thus, a model owner is either expected to host his own server or has to trust his

service provider. To address this issue, we have to protect the complete model

by storing it inside the TEE. As we discussed in chapter 4 and 5, we decided

to store model parameters in untrusted memory due to their potentially large

memory consumption. This is necessary as most TEE implementations suffer

from memory limitations. In the case of SGX, all enclaves combined can only

allocate about 90 MB at any given time, after which paging is introduced which

impacts performance [27]. However, this limitation is caused by the first version

of the implementation of SGX. The general design of SGX can support arbitrarily

large amount of memory [18]. Moreover, others, e.g. Chakrabarti et al. [8], have

proposed strategies to improve oversubscription for secure memory. Therefore,

we expect to fully protect the deployed model in future versions of our design and

proof-of-concept implementation as the improvements mentioned above become

more available. Re-defining the model as secret with respect to the server, however,

requires substantial changes to our proof-of-concept implementation, as we have

to hide memory access patterns and branch executions from the server. We expect
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this to reduce performance, as hiding access patterns and branch executions

introduces additional overhead [41].

Mitigate Model Extraction Attacks

In addition to protecting the model from the server, we also want to better protect

it from malicious users by mitigating model extraction attacks. The existing

extraction attacks discussed in section 6.1 all propose countermeasures to miti-

gate their appropriate attack. A promising approach proposed by Juuti et al. is

PRADA [28]. The intuition behind PRADA is that queries submitted by a mali-

cious user follow a characteristic distribution that differs from the distribution of

benign queries. Consequently, PRADA analyses inputs over time and calculates

the distance between them. If the minimum distance between inputs falls below a

certain threshold, PRADA reports an attack. Therefore, PRADA can autonomously

observe input data and report attacks without revealing the actual input data. As

a result, we can preserve user privacy whilst monitoring user inputs to prevent

model extraction attacks. As mentioned before in section 6.1, Hanzlik et al. [19]

use PRADA for their on-device machine learning solution, allowing them to protect

their deployed model from being extracted. We describe their work in detail in sec-

tion 8.3. Note, that this type of input analysis is only possible because input data

is available in plaintext inside the enclave. Hence, privacy preserving solutions

based on encryption, such as MiniONN and CryptoNets, cannot implement this

kind of input analysis to prevent model extraction attacks.

In addition, a model owner, as defined above, can utilise remote attestation to

verify that a service provider implements input analysis. This gives leverage to

model owners to only deploy their models after a service provider has proven that

deployed models are protected from model extraction attacks by PRADA-like input

analysis.

7.2 Functionality

Delete Obsolete Intermediary Results

In our evaluation, we highlighted that the memory limitations introduced by SGX

pose an issue for large and complex operations which can require a significant

amount of memory. Moreover, all intermediary results that are calculated as we

traverse the graph are kept in memory. The reason for this is that outputs of

earlier nodes in the graph will be used as inputs for later nodes. This further adds

to the issue of limited memory.

To ensure memory is used more efficiently, we can delete intermediary results once
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they have become obsolete. However, this is not as straightforward as deleting an

intermediary result after it has been used. Depending on the graph, intermediary

results might be used multiple times if the graph splits into branches. An example

of a branching graph that uses intermediary results more than once is depicted

by figure A.2 in appendix A. The intuition behind this is to process an input or

intermediary result with different parameters. For instance, we could process an

intermediary result twice using two Conv operators with filters of two different

shapes. Afterwards, we can combine the outputs of both operators. In the ONNX

Model Zoo1, i.e. a collection of pre-trained, popular machine learning models in

ONNX format, more than 50% for the models use branches, meaning intermediary

results are processed multiple times. One possible solution to this is to add a dry

run to the initialisation phase described in section 4.2. The purpose of this dry

run is to traverse the graph once and count how many times each intermediary

result is used as input. Using this information, we can introduce a counter to

each intermediary result that is, similar to reference counters [48], decreased

every time it is used. Once the counter reaches zero, the intermediary result is

considered obsolete and deleted to free up memory.

Merge Operators

Moreover, we can further decrease the amount of memory allocated by interme-

diary results by combining certain simple operations with complex ones. For

instance, instead of storing the output of a reshape operator as an extra intermedi-

ary result, we can combine it with the subsequent complex operator. This is due to

how we handle Tensor objects internally, as discussed in section 5.3.1.

7.3 Performance

Parallel Execution

The performance results we discussed during our evaluation in section 6.3 were

all achieved by single threaded execution. Although SGX supports multithreading,

threads cannot be spawned within the enclave, meaning threads have to be

spawned by the untrusted application and call inside the enclave [25]. As a

result, adding multithreading to our proof-of-concept implementation becomes

more complicated. One approach is to utilise a master-worker pattern. Using

this pattern, the untrusted application can spawn a master thread which makes

the ECALL that returns output data for given input data. However, this thread

will not do any actual computations but only coordinate worker threads. After

1https://github.com/onnx/models
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spawning the master thread, the untrusted application spawns a number of worker

threads which also call inside the enclave to make themselves available for the

master thread. When all worker threads are available, the master thread divides

the workload among all workers and instructs them to start their computation.

Once all worker threads finish their work task, the master thread combines all

partial results to obtain the final result. This master-worker pattern could either

be applied on the global level, meaning different workers execute different parts of

the graph, or on an operator level, meaning individual operations are parallelised.

Outsource CPU Intensive Operations

Another bottleneck of our proof-of-concept implementation is its CPU limitation.

Parallel processing units, such as GPUs, have been found to vastly improve perfor-

mance as well as efficiency of DNN applications [11]. Consequently, state-of-the-art

frameworks, such as PyTorch and Caffe2, provide GPU support to decrease execu-

tion times. As Intel SGX is limited to the CPU, our proof-of-concept limitations

does not leverage GPUs and is therefore at a performance disadvantage. Tramèr

et al. [51] have addressed this issue by outsourcing CPU intensive operations to an

untrusted GPU. We describe their work in detail in section 8.3. By implementing

this extension, we expect to further improve the performance results we reported

in section 6.3.
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8. Related Work

Privacy preserving data processing is no novel concept. Consequently, there are

other existing solutions that address the same or a similar problem as we do in

this thesis. For the remainder of this chapter, we discuss examples of related work

that aim to provide some form of privacy preserving data processing.

8.1 Data Analysis

Data analysis allows users to run certain algorithms on their data to extract useful

information. As the size of the data increases, this process is often outsourced to a

remote cloud service with more computational resources where the data has to

be uploaded. Therefore, we need privacy preserving data analysis solutions that

allow us to perform data analysis in the cloud without revealing the uploaded

data.

Opaque

Opaque, as described by Zheng et al. [55], is an oblivious distributed data analytics

platform on top of Apache Spark1 using SGX. Opaque is intended to be deployed

in data centres to allow users to submit jobs to the cluster while preserving

the users’ secrets. Using remote attestation, Opaque enables users to establish

a secure connections to enclaves and verify enclaves run the correct code. In

addition, Opaque supports three different modes: encryption mode, oblivious

mode, and oblivious pad mode. In its simplest mode, encryption mode, Opaque

guarantees that all data is encrypted and authenticated. Oblivious mode, adds

oblivious execution, protecting memory, disk, and network accesses of sensitive

SQL operators. Oblivious pad mode, also protects input and output sizes of

SQL operators as well as the chosen query plan. Zhen et al. report that whilst

encryption mode ranges from being 52% faster to 3.3× slower compared to out-

of-the-box Spark SQL, oblivious modes introduce an overhead ranging from 1.6×
1https://spark.apache.org/
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to 46×. However, they note that the performance of their system, similar to our

proof-of-concept implementation, suffers from the memory limitations of SGX. As

an analytics platform built on Spark, Opaque supports general data processing

procedures such as SQL, graph analysis, and machine learning. As a result,

Opaque is intended for users who posses data they wish to analyse as well as the

source code to perform the analysis. In comparison, our solution solely focuses on

machine learning and allows to deploy trained models to make them available to

users who then only provide input data.

SGX-BigMatrix

BigMatrix was developed by Shaon et al. [49] and describes an interactive frame-

work for performing secure data analysis in untrusted environments, such as the

cloud. The framework operates on encrypted data and hides low-level operations

to handle large matrices behind an abstraction layer. BigMatrix is built on SGX

and uses oblivious primitives to hide access patterns. In order to support arbi-

trary large data sets and matrices inside an enclave, BigMatrix implements a

serialisation scheme. Given an operation and data, this scheme calculates the

number of blocks that are needed in memory to compute the operation as well

the amount of elements than can be kept in memory. Based on this, BigMatrix

partitions data or matrices into smaller blocks and serialises them individually. In

general, BigMatrix comprises two components: a client application that takes in-

puts, such as data and tasks to perform, and a server application which interprets

received input and acts accordingly. The client application includes a compiler that

compiles BigMatrix’s proprietary programming language to code compatible with

the execution engine running on the server. In addition, BigMatrix uses remote

attestation to establish shared keys, allowing clients to encrypt all input data.

Similar to Chiron, BigMatrix is designed for data scientists that wish to analyse

different data sets using their own source code. This contrasts our solution that

solely focuses on privacy preserving predictions without the need of providing any

source code or data sets.

8.2 Machine Learning using Cryptography

For this thesis, we used CryptoNets and MiniONN, which we discussed in sec-

tion 2.3, as examples for existing privacy preserving machine learning solutions

based on cryptography. However, there are other solutions based on cryptography

that address the same problem.
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SecureML

In their paper, Mohassel et al. [40] describe SecureML, a set of privacy preserving

protocols to train neural network models, as well as other model types. Their

solution allows multiple clients to share their data between two non-colluding

servers, which can train different models on the joint data set of all clients with-

out learning any information beyond the trained models. To improve efficiency,

SecureML defines an offline and an online phase. All cryptographic operations are

concentrated in the offline phase which uses linearly homomorphic encryption,

among other cryptographic primitives, to generate shared multiplication triplets.

These triplets are needed during the online phase, which consequently is void of

cryptographic operations and consists entirely of integer multiplication as well as

bit shifting. Apart from training neural network models, SecureML also supports

privacy preserving predictions. However, this is only considered as a side product

and the main focus on SecureML lies on privacy preserving training. Moreover,

the latency for said privacy preserving predictions is worse than that of MiniONN,

which in turn is 40× slower than our solution.

GAZELLE

GAZELLE, as proposed by Juvekar et al. [29], describes a low latency system

for privacy preserving neural network prediction. The system further improves

on existing encryption-based solutions, such as MiniONN and CryptoNets, by

vastly increasing performance. GAZELLE uses additively homomorphic encryp-

tion and other two-party computation primitives to ensure input privacy. In

their evaluation, Juvekar et al. report a latency of 30 milliseconds for classifying

an image using a model trained on the MNIST data set. Thus, GAZELLE is

∼ 3× slower than our solution when computing predictions for MNIST. Juvekar

et al. achieve this performance by optimising their computations using SIMD

(single data multiple data) instructions for additions, multiplications, and cipher-

text permutations. Nonetheless, GAZELLE suffers from similar drawbacks as

other encryption-based solutions such as the inability to perform input analysis.

Moreover, as explained in section 6.3, we expect our solution to have much room

for performance improvements, as our proof-of-concept implementation is not

optimised.

8.3 Machine Learning using TEEs

As we have shown in chapter 6, TEEs provide certain advantages over cryptogra-

phy, such as allowing plaintext computations, in the setting of privacy preserving

machine learning. As a result, other solutions exist that leverage TEEs to tackle
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different problems related to privacy preserving machine learning.

Oblivious Multi-Party Machine Learning

Ohrimenko et al. [41] developed a privacy preserving system for multi-party

machine learning. Using their design, different parties can collaboratively train a

model on an SGX-enabled data centre without disclosing their training data to

any other party. Although all parties distrust one another, they can each review

the source code responsible for training the model and verify that said source code

is executed inside an SGX enclave. After the training code has been uploaded

by one party, each party uploads their encrypted training data, followed by the

encryption key once the remote attestation was successful. Using the aggregated

data set, the previously uploaded code can execute and train a shared model. After

the training phase is finished, each party can download the encrypted shared

model. As opposed to our design, Ohrimenko et al. consider the SGX-enabled

data centre as potentially adversarial from the point of view of the enclave. As

a result, they redesigned multiple machine learning algorithms to be oblivious

in order to mitigate SGX side channel attacks. Although their proposed data

oblivious algorithms prevent the trained model to leak outside the SGX enclave,

they potentially introduce large overheads. Whilst oblivious convolutional neural

networks only add a 3% overhead, other oblivious algorithms, such as matrix

factorisation, are up to 115× slower than their non-oblivious counterpart. In their

work, Ohrimenko et al. focus on secure multi-party machine learning using an

aggregated data set, whereas our solution targets cloud-assisted machine learning

where a user interacts with a remote model.

Chiron

Hunt et al. [20] proposed Chiron, a system that allows data holders to train a

machine learning model on a cloud service without revealing their training data.

Once training is completed, the resulting model remains in the cloud service,

only allowing the original data holder to query the model via a simple interface.

Moreover, Chiron protects information about the resulting model architecture and

training procedures from data holders. In order to establish trust, the training

source code runs inside a Ryoan [21] sandbox. Ryoan provides a distributed

sandbox that is built on top of Intel SGX. As a result, Chiron can attest that

training code is executed inside a Ryoan sandbox, whose code is public and which

prevents the training data from being leaked, without disclosing the training

code itself. To increase performance, Chiron supports launching multiple enclaves

that each operate on a shard of the training data. Although all enclaves operate

on different shards of training data, Chiron keeps enclaves synchronised via a

parameter server to ensure all enclaves collaboratively converge to the same model.
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In contrast to our solution, Chiron only allows the original data owner to query

a trained model. As a result, Chiron does not allow a data owner to serve as a

service provider, enabling him to charge other users to use his trained model.

Myelin

With Myelin, Hynes et al. [22] proposed a privacy preserving deep learning frame-

work. Myelin is built on top of SGX and supports training models as well as

computing predictions using said models. To train a model privately, a data

consumer uses Myelin to compile a given model architecture into an efficient,

minimised library that only includes operations needed for this particular model.

Myelin does this by utilising the TVM [10] compiler. Afterwards, the data con-

sumer deploys an SGX enclave that includes the compiled library. This enclave

attests its trustworthiness to all data providers who are involved in the training

process. Once the attestation phase is complete, Myelin fetches fixed-sized chunks

of data from each data provider as training data. During the actual training,

Myelin ensures data privacy by utilising both oblivious algorithms proposed by

Ohrimenko et al. [41] as well as differential privacy. After the training is complete,

the trained model remains private to the data consumer. To improve performance,

Myelin supports multithreading inside the enclave. As a result, Myelin, using a

single enclave, is able to train a model marginally faster than Chiron [20] using

four enclaves on the same data set. In addition, the resulting model of Myelin has

slightly better accuracy than that of Chiron, which is caused by the asynchrony be-

tween enclaves in Chiron. As for privacy preserving predictions, Myelin achieved

four orders of magnitude higher performance compared to GAZELLE [29] and

slightly worse performance compared to Slalom [51], which leverages the GPU.

In addition, due the minimal library that is compiled for each model individually,

Myelin reduces its TCB to ∼ 1, 500 LoC. It is not clear if and how Myelin would

work in the setting we consider for this thesis, i.e. a service provider owns a

trained model and wishes to make it available without disclosing the model or

sacrificing user privacy.

DeepEnclave

Gu et al. propose DeepEnclave [17], a system for privacy preserving predictions

for DNNs using SGX. The intuition of DeepEnclave is to partition a given DNN

into two components: a FrontNet and a BackNet. Whilst the BackNet is located

in untrusted memory and is not constrained by SGX, the FrontNet is located

in trusted memory and therefore protected by SGX. DeepEnclave enables users

to divide their DNN into FrontNet and BackNet. Afterwards, the BackNet is

uploaded to an untrusted cloud provider where it is stored in plaintext. Next,

when computing a prediction, the user uploads her encrypted input and the
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FrontNet, in either plaintext or encrypted format, to DeepEnclave which stores

them in trusted memory. After having completed a remote attestation phase, the

user then uploads keys to decrypt the data. This enables DeepEnclave to compute

the intermediate output of the FrontNet inside the enclave. Once this computation

is finished, said intermediate output is copied to untrusted memory where the

final output is computed using the BackNet. Lastly, the final output is returned

to the user in plaintext. DeepEnclave’s intuition to only protect part of the DNN

computations is based on research by Zeiler et al. [54] which indicates that low

layers of DNNs respond to low-level information, such as edges, whereas deep

layers find more abstract information. Therefore, low layers are more tightly

interconnected with the actual input data and deep layers correspond to output

classes. Consequently, it should suffice to only protect FrontNet computations

with SGX, as the intermediate output of the FrontNet has already been abstracted

too much to reveal detailed information about the input. As a result DeepEnclave

is not constrained by SGX’s limited memory and can leverage more computational

resources when computing the final output. This shows in the evaluation of

DeepEnclave, as FrontNet computations only add a 1.6× to 2.5 overhead to the

baseline of computing everything in untrusted memory. In comparison to our

solution, DeepEnclave expects a user to own a model and only enables offloading

prediction to the cloud. Moreover, as final outputs are computed and returned in

plaintext, DeepEnclave has less privacy guarantees than our system.

Slalom

Slalom was developed by Tramèr et al. [51] and describes a system that partially

outsources DNN execution from a trusted to an untrusted but much faster pro-

cessor. Slalom achieves this without compromising user privacy or data integrity.

As matrix multiplications generally pose the largest bottleneck of DNN execution,

Slalom delegates this operation to a fast, untrusted co-processor, e.g. a GPU.

Whereas integrity of outsourced computations is achieved by utilising Freivald’s

algorithm, input privacy is guaranteed by adding a blinding factor to all data

before sending it to the untrusted processor. As Freivald’s algorithm and blinding

require working over a finite field, floating point arithmetic is not possible. Thus,

all inputs and model parameters have to be quantised to convert them to inte-

gers. After the computation is finished this step can easily be reversed. Moreover,

Slalom defines a precomputation phase that further speeds up Freivald’s algo-

rithm. During this step, Slalom precomputes the effect of the blinding factor on

the input, i.e. the "unblinding factor", as they are independent from each other. In

their evaluation, Tramèr et al. implemented a proof-of-concept system using SGX.

They found that Slalom is 6× to 20× faster when only providing integrity and
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3.5× to 10× faster when providing both privacy and integrity compared to their

baseline implementation that does all computations inside SGX. Moreover, they

note, that they expect even larger performance increases for TEEs that provide

more memory resources than SGX.

Although Tramèr et al. used different data sets and model architectures than us for

their performance evaluation, we expect Slalom to achieve higher performance due

to its GPU utilisation. Nonetheless, Slalom uses TensorFlow for preparing models

and data, meaning only models that use TensorFlow’s model representation are

supported, as opposed to our solution that relies on the framework-independent

ONNX standard. In addtion, Slalom’s main focus lies in outsourcing resource

intensive computations to an untrusted party. Consequently, Slalom expects users

to provide both input data and DNN when using the system. Lastly, Slalom

includes an SGX-compatible port of the Eigen library which vastly increases its

TCB. In total, Slalom’s TCB consists of ∼ 130, 000 LoC with the port of Eigen

accounting for ∼ 116, 000 LoC. The remaining source code comprises Slalom’s C++

library for DNN computations. In its current form (October 2018) this library

supports 7 different layer types and 3 activation functions. This is comparable to

our implementation, however, out TCB is only ∼ 4, 500.

MLCapsule

MLCapsule describes a client-side privacy preserving prediction system that was

published by Hanzlik et al. [19]. Due to its client-side deployment, MLCapsule

avoids input leakage and therefore solely focuses on protecting the deployed model.

MLCapsule achieves this by utilising a TEE to protect model parameters and the

overall computation during prediction, meaning the user device must provide a

TEE. To enable this level of protection, MLCapsule encapsulates ordinary machine

learning layers in MLCapsule layers which contain the layer as well as the weights

in encrypted form. This allows MLCapsule to execute large DNNs by loading

data layer by layer into the TEE. In addition, MLCapsule includes advanced

defence mechanisms to protect the deployed model from model extraction attacks.

Moreover, even if the user device is offline, MLCapsule supports the pay-per-query

business model and will stop computing predictions if the user runs out of funds.

MLCapsule defines a setup and an inference phase. The setup phase initialises

a trusted application on the user device that receives secret data, including en-

crypted model parameters, after having attest its trustworthiness. Afterwards

starts the inference phase which requires no online connectivity. During this

phase the user can query the model with her private data. When computing a

prediction, MLCapsule first analyses the input to determine if its malicious or

benign. If MLCapsule considers the input to be malicious, it refuses to perform
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any computation. Otherwise, it computes the output and possibly updates its

internal state to support the pay-per-query business model. For their proof-of-

concept implementation, Hanzlik et al. use the DNN library of Slalom that is

based on Eigen and utilise SGX as their TEE. In order to mitigate the limited

memory of SGX, MLCapsule encrypts large layers in small chunks of 2 MB to

avoid wasting too much memory to the encrypted data that is copied to trusted

memory during computation. In their evaluation, Hanzlik et al. used Slalom’s

DNN library with standard layers and plaintext weights in untrusted memory

as baseline. Compared to the baseline, MLCapsule introduced an overhead of

1.02× to 2.3× overhead for convolutional layers and a 11× to 25× overhead for

fully connected layers.

Hanzlik et al. use the same data sets and models as Slalom for their evalua-

tion. Therefore, no direct performance comparison is possible. In contrast to our

solution, MLCapsule is designed for on-device machine learning. Moreover, ML-

Capsule does not protect the model architecture but only its parameters. However,

it implements advanced mechanisms, such as PRADA, to mitigate model extrac-

tion attacks and other DNN attacks. As MLCapsule uses the same DNN library as

Slalom, we can expect that its TCB is at least ∼ 130, 000 LoC and therefore much

larger than our TCB of ∼ 4, 500.
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9. Conclusion

In this thesis we propose a novel system design for privacy preserving cloud-

assisted machine learning by using trusted hardware. In addition, we provide a

proof-of-concept implementation for our design based on Intel SGX. Moreover, we

thoroughly evaluate our proof-of-concept implementation according to the goals

and requirements defined in chapter 3. Our evaluation in chapter 6 shows that

our proof-of-concept implementation and the TEE-based approach in general not

only outperforms existing privacy preserving solutions based on cryptography,

but also increases applicability by extending the functionality of said solutions.

Compared to related work using TEEs for privacy preserving machine learning,

we also show that our proof-of-concept implementation usses a vastly smaller TCB.

Furthermore, we present possible extensions to our work. These extensions range

from further improving performance as well as functionality of our proof-of-concept

implementation, to extending our scope by protecting the deployed model from a

potentially adversarial server. Additionally, we describe how trusted hardware

enables us to leverage existing work to extend our system, for instance for input

analysis, with minimum effort without compromising our security requirements.

Ultimately, we further reduce the gap between privacy preserving solutions and

state-of-the-art machine learning frameworks, making privacy preserving machine

learning more viable for real-world applications.

Nonetheless, we also show that even by using trusted hardware, we still can-

not guarantee absolute confidentiality of input, output, as well as model data

without carefully adjusting our implementation. Moreover, we demonstrate that

whilst trusted hardware does not impose any strict functional limitations on

cloud-assisted machine learning, the limited memory provided by trusted hard-

ware might affect the performance of machine learning algorithms. However, as

these constraints are introduced by the implementation rather than the design of

trusted execution environments, we expect future versions to address these issues,

allowing our system and other related solutions to benefit from the improvements.
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A. Graphs of Executed Models

Figures A.1 and A.2 depict the graphs of two different models we used for our

evaluation. As we can see, Model A, as depicted by figure A.1, only consists of

a 3 operations, whereas Model B, illustrated by figure A.2, comprises 10 nodes.

Moreover, Model A accepts an input with shape 1× 1× 28× 28. Therefore, Model

A performs far fewer operations than Model B which defines an input shape of

1× 3× 224× 224. This is why Model B requires significantly more time to predict

an output, as shown in figure 6.1 in our security evaluation.

In the graphs depicted here, the top line of each node describes the operation

a node performs, as well as what inputs it expects. The only exceptions to this

are the very first and the very last node of each graph which simply represent

the input and output tensors, respectively. All operations and their attributes

are explained in more detail in section 5.3.4. Lastly, the annotations next to the

arrows connecting the nodes of a graph explain how the output of the previous

node is used by the next one. For instance, Y → A means that the output of the

previous node, Y , is used as input A by the next node.
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Graphs of Executed Models
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Figure A.1. Graph of Model A
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Graphs of Executed Models
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Figure A.2. Graph of Model B
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B. MNIST Model

We used the code shown in listing B.1 for our PyTorch model which we trained on

the MNIST data set. The resulting ONNX graph that we used for our proof-of-

concept implementation is depicted by figure B.1.

from torch import nn

class Net3 (nn . Module ) :

def __ in i t__ ( s e l f ) :

super ( Net3 , s e l f ) . __ in i t__ ( )

s e l f . block = nn . Sequential (

nn . Conv2d (1 , 20 , 5 ) ,

nn . MaxPool2d ( 2 ) ,

nn .ReLU( ) ,

nn . Conv2d(20 , 50 , 5 ) ,

nn . MaxPool2d ( 2 ) ,

nn .ReLU ( ) )

s e l f . f c1 = nn . Linear (4∗4∗50 , 500)

s e l f . f c2 = nn . Linear (500 , 100)

s e l f . f c3 = nn . Linear (100 , 10)

s e l f . relu = nn .ReLU( )

def forward ( se l f , x ) :

out = s e l f . block ( x )

out = out . view(−1 , 4∗4∗50)

out = s e l f . relu ( s e l f . f c1 ( out ) )

out = s e l f . relu ( s e l f . f c2 ( out ) )

out = s e l f . f c3 ( out )

return out

Listing B.1. PyTorch code for our MNIST model
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MNIST Model
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Figure B.1. ONNX graph exported from PyTorch
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