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Dynamic infrared imaging (DIRI) is an emerging technology for the early detection
of breast cancer. In this method time-series of thermal breast images are obtained.
The patient motion in the time-series can distort the DIRI analysis in such a way
that the detection of breast cancer becomes impossible. Image registration can be
used to eliminate the patient motion from the time-series data. In this thesis, two
different registration algorithms were tested: Thirion’s demons algorithm and an
algorithm based on an affine transformation. Furthermore, a combined method
where the affine method is used as a pre-registration step for the demons method
was tested. The algorithms were implemented with Matlab and their performance
in the task of registering a time-series of thermal breast images was evaluated using
four different performance metrics. The registration algorithms were implemented
for time-series data of 20 healthy (no malignant lesions) subjects. The demons
method outperformed the affine method and is recommended as a suitable tool for
time-series registration of thermal breast images. The combined method achieved
slightly improved results compared to the demons method but with significantly
increased computation time.
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Dynaaminen lämpökuvantaminen on lupaava menetelmä rintasyövän aikaiseen
havaitsemiseen. Menetelmässä rinnoista otetaan lämpökuvien aikasarja. Kuvan-
tamisen aikana tapahtuva potilaan liike voi vaikeuttaa aikasarjan analysointia niin,
että rintasyövän tunnistaminen ei ole mahdollista. Liike voidaan poistaa aikasar-
jasta kuvastabiloinnin avulla. Tässä työssä tutkittiin kahta kuvastabilointiin ke-
hitettyä algoritmia: Thirionin demons-algoritmia ja algoritmia, joka perustuu
affiiniin muunnokseen. Lisäksi tutkittiin yhdistettyä menetelmää, jossa affiinia
menetelmää käytetään esiaskeleena demons-menetelmälle. Algoritmien laskenta
toteutettiin Matlabilla. Algoritmien tuottaman tuloksen laatua arvioitiin neljällä
erillisellä laatumittarilla. Testidatana käytettiin aikasarjoja, jotka oli kuvattu
20:stä terveestä (ei pahanlaatuisia kasvaimia) potilaasta. Demons-menetelmä
osoittautui affiinia menetelmää paremmaksi. Demons-menetelmää voidaan su-
ositella rintojen lämpökuvien aikasarjojen stabilointiin. Yhdistetty menetelmä
tuotti hiukan parempia tuloksia kuin demons-menetelmä, mutta vaati huomat-
tavasti enemmän laskenta-aikaa.
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1 Introduction

Breast cancer is the most common type of malignancy in women as about 10% of
women will be diagnosed with breast cancer before the age of 75 [1]. In 2012 some 1.7
million women were diagnosed with the disease [2]. Survival rates for breast cancer
have improved vastly over the decades. In the 1960s only 35% of women diagnosed
with breast cancer in the United States were alive after 10 years. In the mid 1990s
the 10-year survival rate in the US had already improved to 77%. Despite the major
improvement in survival rates, nearly half-a-million women still die of breast cancer
each year [3].

Early detection of breast cancer has been proven to be crucial for the survival of
the patient [4]. For this reason many countries have established national screening
programs for breast cancer. The screening for breast cancer is done by mammogra-
phy. A mammogram is a special series of X-rays taken from the breasts. According
to studies, women who have routine mammograms have a 10-25% lower chance of
dying of breast cancer compared to those women who do not have mammograms [4].

Despite the obvious benefits of mammography, it is not a flawless screening
method. A major downside of mammography is overdiagnosis. Overdiagnosis refers
to the detection of cancers that would have not become apparent during the patients
lifetime without the screening [5]. Overdiagnosis causes anxiety to patients and leads
to unnecessary medical operations like surgery. It is clear that overdiagnosis occurs
but the extent of overdiagnosis is difficult to determine.

Other downsides are also associated with mammography. As mammography uses
X-rays, the screening subjects receive a dose of ionizing radiation. Even though the
doses are low for a single patient, screenings may cause harm on the population
level [5]. Patients experience pain during mammography as the breast is compressed
and flattened during the procedure. This even deters some women from attending
further screenings [5]. Sometimes a cancer is not found with mammography. This
is especially an issue with younger women who have more dense breast tissue as
mammography has reduced sensitivity to dense breast tissue [6].

Due to these shortcomings of mammography as a breast cancer screening tech-
nique, there is a clear need for an improved screening method. A promising method
for breast cancer screening is dynamic infrared imaging (DIRI) [7–9]. In this tech-
nique a sequence of thermal images of the subjects breasts are acquired. The spa-
tiotemporal temperature data is then analyzed to detect possible cancerous lesions.
The method is painless, does not require the use of ionizing radiation and has better
sensitivity than mammography for dense breast tissue.

A major challenge for DIRI is patient motion during imaging [7]. The motion
is mainly caused by breathing, but other types of motion are also possible. The
patient motion distorts the temporal temperature data making the analysis of the
data difficult. The distortions of data can be so severe that detecting cancerous
lesions becomes impossible.

One way to prevent patient motion would be to tell patients to hold their breath.
This is however not the optimal solution as it can be difficult for the patients to
hold their breath for a sufficient time. The preferred solution is a form of digital
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image processing known as image registration. Image registration is the alignment
of two or more images and it can be used to compensate for the patient motion [10].

Image registration is a common procedure in medical image analysis [10]. Often
it is a preprocessing step before further analysis of the images. Besides motion
reduction the applications in medical imaging include, for example, the alignment
of images acquired using different imaging modalities, registration of images from
different subjects and registration of images taken with a long time difference [10].

There is an extremely wide variety of registration algorithms that have been
developed for the purpose of medical imaging. Different algorithms have been de-
veloped for basically every organ in the human body [10]. A registration algorithm
tries to find a geometric transformation that best aligns the images under regis-
tration. The algorithm seeks a transformation that optimizes a similarity criterion
between the images. In consequence, the basic building blocks of a registration al-
gorithm are a geometric transformation, a similarity measure and an optimization
strategy. The algorithms are often classified based on the type of transformation
they seek or on the type of similarity measure used. [10]

In this thesis an overview of the algorithms used in medical image registration
is presented. The thesis will mainly discuss the different types of algorithms on a
general level without going into details of specific algorithms. However, algorithms
that are promising for the purpose of registration of thermal breast images will be
covered in more detail.

The main algorithm to be tested in this thesis was Thirions demons algorithm
[11]. As a comparison method an algorithm based on an affine transformation
was used. The affine method was also used as a pre-registration step before the
implementation of the demons algorithm to see if the results of the demons method
could be improved. All of the registrations were performed with Matlab.

The performance of the algorithms in the task of registering thermal breast
images was evaluated using 4 different metrics. Two of these were based on the
overall image intensity values: sum of squared differences (SSD) and normalized
mutual information (NMI). Two other metrics were based on image features: one
was based on the edges detected in the images and the other on corner points
detected in the images.

Time-series of thermal breast images from 20 different subjects were used. All
of the time-series were registered with each of the three methods and values for all
of the evaluation metrics were calculated. The results are presented graphically in
chapter 4 of this thesis. Statistical testing was also performed to confirm that the
observed differences in the performances of the methods were statistically significant.

This thesis is organized as follows. In section 2, we survey the background of
different image registration algorithms. In section 3, the different similarity measures
are presented. Furthermore, the numerical experiments carried out in this thesis are
described in this section. Section 4 focuses on the results. Finally, in section 5,
we will discuss about the significance of the obtained results and about the most
important issues for future research.
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In this thesis the point of interest is the registration of images acquired at dif-
ferent times with the same imaging modality. The time points can be close to each
other or far apart depending on the application. Time-series of images can for ex-
ample provide information about organ movement or disease progression. In the
context of DIRI we are interested in the temporal behaviour of temperature. Dur-
ing a time sequence of images there is bound to be some unwanted patient motion
that can make further analysis of the image sequence more difficult [14]. Image
registration can be used to reduce this kind of unwanted motion.

The methods used for image registration can be classified in terms of nine dis-
tinctive characteristics [15,16]. These are (1) dimensionality: the registration can be
performed between 2D images, between 3D images or 2D images can be registered
to 3D images. (2) Nature of the registration basis: it can be extrinsic, intrinsic
or non-image based. (3) Nature of the transformation: the transformation can be
rigid or non-rigid. In the rigid case, the transformation only consists of translation
and rotation. Non-rigid transformations contain more degrees of freedom, possibly
millions of them. (4) Domain of transformation: the transformation might be global
or local. In a global transformation the image is transformed as a whole. This is the
case with rigid transformations. In local transformations different parts of the image
can be transformed differently. (5) Degree of interaction: the registration algorithm
might require varying levels of user interaction. Some algorithms are completely
automatic, some require little interaction, like placing markers on the images, and
some require user-guidance during the whole process. (6) Optimization procedure:
there exist a variety of different optimization strategies and one has to choose one
suitable for the registration problem at hand. (7) Modalities involved: registra-
tion can be performed between images acquired with the same imaging modality
(mono-modal registration) or with different modalities (multi-modal registration).
(8) Subjects involved: registration can be performed on images acquired from the
same subject/patient (intra-subject registration) or on images acquired from dif-
ferent subjects/patients (inter-subject registration). Registration can also be per-
formed to a statistical atlas. (9) Objects involved: the images can be of different
organs or parts of the human body, like for example breasts, abdomen or brain.

In the context of this thesis many of these characterizations are predetermined.
The case we are interested in is mono-modality imaging of breasts. The dimension-
ality is spatiotemporal 2D/2D and the desired level of interaction is automatic. The
main division between the methods considered in this thesis is based on the nature
of the transformation. Several rigid and non-rigid methods for image registration
will be covered.

Another important classification in image registration is the division between
feature based and intensity based methods [17]. This division is based on the cho-
sen similarity measure. In the registration process one tries to find the geometric
transformation that optimizes the similarity measure. For example a registration
algorithm might try to find a rigid geometric transformation that optimizes a feature
based similarity measure [10].

Intensity based methods can use the intensity of the raw voxels, the intensity
gradient or statistical information related to the voxel intensities for registration.
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2.1.1 Rigid image registration methods

The geometric transformations used in image registration can be divided into rigid
and non-rigid transformations [10]. Rigid transformations are typically simpler.
They can be defined by five parameters or degrees-of-freedom in a 3D space: three
translational and two rotational.

In medical image registration rigid transformations are mainly applied in two
specific situations. First one is the registration of rigid structures such as bones or
organs enclosed in bone; consider e.g, the brain. The other is pre-registration before
a more complex geometric transformation [10].

An elegant method to obtain translation and rotation for a pair of images is to use
phase correlation together with a log-polar transform (LPT) [18]. The method can
also reproduce scale but only to a limited extent. Phase correlation only recovers
translation, so LPT is used to recover rotation. The details of this approach are
presented in what follows.

The Fourier transform has many beneficial properties for image registration.
Translation, rotation, reflection and scaling all have their counterpart in the fre-
quency domain. The frequency domain also provides excellent robustness against
correlated and frequency dependent noise [18]. Phase correlation is based on the
translation property of the Fourier transform known as the Fourier Shift Theo-
rem [18]. If two images f1 and f2 have a displacement (dx, dy), that is,

f2(x, y) = f1(x− dx, y − dy), (1)

their Fourier transforms F1 and F2 are related by

F2(ωx, ωy) = e−i(ωxdx+ωydy)F1(ωx, ωy). (2)

In other words, the images have a phase difference that is directly related to their
displacement. It follows from the Fourier Shift Theorem that this phase difference
is equivalent to the phase of the cross power spectrum

e−i(ωxdx+ωydy) =
F1(ωx, ωy)F

∗

2 (ωx, ωy)

|F1(ωx, ωy)F ∗

2 (ωx, ωy)|
, (3)

where * denotes the complex conjugate. The inverse Fourier transform of the phase
difference is a delta function centered at the displacement [18]. This peak is the
point of registration.

The log-polar transform is useful in image registration due to its rotation and
scale invariant properties [18]. This is due to the fact that rotation and scaling
in the Cartesian coordinate system correspond to pure translation in the log-polar
domain (Fig. 3). The polar coordinates are the radial distance from the center ρ and
angle with respect to the center θ. Log-polar coordinates are obtained by taking the
logarithm of ρ.

LPT is an effective tool for recovering the scaling and rotation. However, it is
not suitable for faithful extraction of translation parameters as a slight translation
produces a modification of the log-polar image [18]. In order to recover translation
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transformation and its inverse are differentiable. [20]
Deformation models can be classified into four categories. In the first category

are models that are inspired by some physical model. The second one includes the
models based on interpolation and approximation theory. Third category consists
of models that use some specific prior information about the deformation to find the
solution. These are called knowledge-based models. Finally, there are models that
seek to satisfy some task specific constraint. [20]

The deformation models derived from physical models can be further divided
into five classes: elastic body models, viscous fluid flow models, diffusion models,
curvature registration and flows of diffeomorphisms [21].

Elastic body models assume that the image under deformation is an elastic body.
The body is deformed by a force field and the deformation is described by the Navier-
Cauchy Partial Differential Equation (PDE) [20]

µ∇2u + (µ+ λ)∇(∇ · u) + F = 0 (4)

where F(x) is the force field that drives the registration based on a matching crite-
rion, u is the displacement field, µ quantifies the stiffness of the material and λ is
Lamé’s first coefficient.

The basic idea of an elastic body model is that an external force tries to deform
the moving image to match it with the fixed image. An internal force enforces
the elastic properties of the material. These forces compete until equilibrium is
reached [22]. Elastic body models can be linear or nonlinear. Linear models are
simpler but they lack the ability to cope with large deformations [20].

The idea behind viscous fluid flow models is similar as for elastic body models.
The difference is that the image under deformation is modelled as a viscous fluid
rather than as an elastic body. The Navier-Stokes equation, simplified by assuming
a very low Reynold’s number, describes the deformation [20]

µf∇
2v + (µf + λf )∇(∇ · v) + F = 0. (5)

Viscous fluid models do not assume small perturbations so even large deforma-
tions can be recovered. The first term in the Navier-Stokes equation (5) guarantees
that neighbouring points deform similarly [20]. The velocity field v is related to
the displacement field. The displacement field can be estimated by integrating over
the velocity field. The second term allows structures to change in mass and µf and
λf are the viscosity coefficients. Viscous fluid flow models can be computationally
inefficient, but several solutions have been proposed to overcome this problem [20].

Instead of a physical model, the deformation model can also be inspired by inter-
polation or approximation theory. Interpolation theoretic approaches assume that at
some locations in the image displacements are known. These known displacements
are then interpolated to the whole image domain [20]. In approximation theory, an
error is assumed to be present in the estimation of displacements. Hence, the trans-
formation smoothly approximates the known displacements instead of just taking
exactly the same values at the control locations [20].
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Such models are rich enough for the deformations present in image registration
problems and they also have a low number of degrees of freedom. Models based
on interpolation theory can be further classified into five categories based on the
employed approximation or interpolation method: radial basis functions, elastic
body splines, free-form deformations, basis functions from signal processing and
piecewise affine models [20].

The free-form deformation models (FFDs) are among the most common types
of deformation models used in medical image registration [20]. A rectangular grid
G = Kx × Ky × Kz is superimposed on the image that gets deformed under the
influence of control points. The size of the actual image is Nx×Ny×Nz pixels, with
Kx � Nx, Ky � Ny and Kz � Nz. The displacement field is then presented as

u(x) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(µx)Bm(µy)Bn(µz)di+l,j+m,k+n (6)

where i = bx/Nxc − 1, j = by/Nyc − 1, k = bz/Nzc − 1, µx = x/Nx − bx/Nxc, µy =
y/Ny − by/Nyc and µz = z/Nz − bz/Nzc. Bl represents the lth basis function of the
B-spline and d denotes the displacement [20].

This deformation model is simple and is able to efficiently provide smooth defor-
mations [20]. Another advantage is that it only requires a few degrees of freedom to
describe local deformations. FFDs gained acceptance in the field of medical image
analysis when coupled with cubic-B splines [23]. Many extensions of cubic B-spline
FFDs have been developed for several registration problems.

Knowledge-based models can be very useful in the medical field as the regis-
tration task is usually well-described. Registration can be performed for images
acquired from specific organs or different images are matched to the same target
image [20]. For example, while registering breast images, it is possible to introduce
prior knowledge about the deformations one tries to recover.

There are two methods for introducing information regarding the deformation
in the registration process. If the target image is fixed, a statistical model can be
learned by performing pairwise registrations between the target image and some
other images that are available. In the actual registration task, deformations that
differ from the statistical model can be penalized. The other method is to consider
the material properties like tissue elasticity to build a biomechanical model that
mimics the properties of the organ/tissue that is imaged [20].

The motivation behind using prior information about the deformation is to in-
crease the robustness and stability of the model [20]. A model is robust if outliers
do not drastically affect it. This can be important for example when one tries to
search for a tumor in a medical image. The image with the tumor naturally differs
from the image of a healthy subject, but the registration should not be affected by
such a difference. Stability of the registration method means that small changes in
the input data cause only small changes in the result [20]. This is important when
subjects are observed over some time and a change in the image in time is associated
with an anatomical change, like a lesion or a disease.

Introducing prior knowledge to the registration process can be challenging. In
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For the registration of medical images, the following method is especially suit-
able [11]. 1) All pixels or voxels are chosen as demons as described earlier. 2) The
transformation is completely of a free form, meaning that for every demon (pixel)
we get the current elementary displacement d(P ). This displacement field is regu-
larized by applying a Gaussian filter with a given σ at every iteration step. 3) The
moving image M is transformed according to the displacement field using trilinear
interpolation in M . 4) The demon force is given by the optical flow (8). More
precisely, the actual force is not calculated but only the result of an application of
the force, i.e., a displacement d = −v. [11]

A pyramid (or multigrid) approach is used to make the aforementioned algorithm
computationally more efficient [11]. On the finest pyramid level all pixels are used
and only few iterations are run. On the next level only 1

8
of the pixels are used

but the number of iterations is multiplied by 4, and so on. The coarsest level is
executed first and the finest level last. The user of the algorithm can determine the
appropriate number of pyramid levels to be used.

The original demons algorithm had some limitations. For example, it was not
diffeomorphic and it lacked a sound theoretical background. In [27] the original
demons algorithm was extended to obtain an efficient non-parametric diffeomorphic
registration algorithm. Also theoretical justification for the demons algorithm was
presented.

The diffeomorphic demons algorithm was used in [26] for the registration of time-
series of breast thermal images. The algorithm outperformed two other registration
algorithms in terms of several performance measures. The measures used were the
normalized mutual information (NMI), the breast boundary overlap (BBO) and the
percentage of negative values of the Jacobian determinant of the deformation field.

In conclusion, there is an extremely wide variety of approaches for deformable im-
age registration; one has to carefully decide the model that is best suited for solving
the problem at hand. The demons algorithm seems well-suited for the registration
of thermal breast images.

2.2 Detection of breast cancer with dynamic infrared imaging
(DIRI)

In dynamic infrared imaging one obtains a sequence of thermal images of the subject.
This allows for the observation of the spatio-temporal temperature profile. In the
context of medical imaging, one can observe the time behaviour of temperature on
the skin surface.

It has been demonstrated that DIRI can be used to detect breast cancer [7]. DIRI
is an appealing technology for breast cancer detection as it is non-invasive, easy to
perform and does not involve any use of ionizing radiation. It is also relatively cheap
compared to other imaging modalities.

The idea that the temporal temperature behaviour of cancerous lesions differs
from the behaviour of healthy tissue was presented already in 1994 [28]. The abnor-
malities in the thermal behaviour of cancerous breasts are caused by the nitric oxide
(NO) produced by the tumour. Many studies have shown that tumours generate NO
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by inducible nitric oxide synthase (iNOS) [29, 30]. This is not only true for breast
cancer but for practically every type of cancer. NO has many functions in cancer
biology. Each type of cancer may have its own characteristics regarding NO, but
the overall biochemical process is not present in the respective benign tissue. NO
production seems to be an essential property of cancer [7].

The production of NO by tumours causes regional vasodilation [7]. This vasodi-
lation serves to provide the tumour with increased supply of nutrients and oxygen.
NO also enhances angiogenesis: the formation of new blood vessels from pre-existing
ones [31]. It is essential for the tumour to grow its own collection of blood vessels
via angiogenesis. Besides these mechanisms NO also supports the growth and pro-
liferaration of the tumour in other ways. All of these mechanisms are vital for the
survival of the cancer and therefore iNOS can be thought of as a necessary condition
for a cancerous disease [7].

The detection and localization of cancerous lesions with DIRI is based on the
effect of extravascular NO on the vasculature [7]. Normally vascular tone is mod-
ulated by neurohumoral control, which produces small concentrations (significantly
smaller than the extravascular concentration in the presence of a tumour) of NO
inside blood vessels. Blood flow is also modulated by hydrodynamic cardiogenic
pulses. The combination of neurohumoral and cardiogenic modulation results in a
highly complex modulation frequency spectrum of blood perfusion. This frequency
spectrum ranges from few mHz to more than 10 Hz, so the range spans over several
orders of magnitude [7].

The large concentration of extravascular NO in the presence of a tumour causes
blood vessels in that region to dilate. They stop responding to neurohumolar mod-
ulation and stay constantly dilated [7]. If the affected blood vessels are close to the
skin surface, this results in attenuation of the modulation of skin perfusion. If the
affected vessels are located deeper, the result is an accentuation of modulation of
skin perfusion by cardiogenic pulses. These effects can be observed quantitatively
with DIRI [32].

In one of the first studies [7] where DIRI was used to detect breast cancer a
series of thermal images of the subjects breast was acquired with a frame rate of
100 Hz. This sampling rate optimally covers the frequency range of measurable
perfusion modulations. The duration of the measurement was 11 seconds and 1024
consecutive thermal images were analyzed.

The first step in the data analysis was a fast Fourier transform (FFT) of a time-
series of the average temperatures in subareas of interest on the breast surface [7].
As a result of FFT, the power spectra were obtained for each of the 1500-2000
subareas over the studied breasts.

The data analysis yields information on two aspects of cutaneous perfusion:
modulation of temperature and modulation of the homogeneity of the cutaneous
capillary bed [33]. The temperature modulation that follows changes in the level
of perfusion is in the order of tens of millidegrees. From the spatial variance of
temperature measured at different pixels in a given small (< 1 cm2) subarea of
the skin, a value called spatial thermal homogeneity (STH) can be derived. The
modulation of the homogeneity of the cutaneous capillary bed is observed as the
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modulation of STH. STH is of the order of a few millidegrees [34].
In order to separate cancerous breasts from healthy ones several statistical pa-

rameters are obtained from the FFT spectra of temperature and the STH FFT
spectra. In [7] four significant separators of cancerous and noncancerous breasts
were found. Statistical analysis was then performed for these parameters in order
to create a single diagnostic parameter with a useful diagnostic sensitivity.

In [8] a wavelet-based multi-scale analysis of temperature fluctuations was used
to separate healthy breasts from cancerous breasts. It was shown that besides the
differences in the cardiogenic and the neurohumoral rhythms between cancerous and
healthy breasts, the complexity of temperature fluctuations about these physiological
perfusion oscillations is qualitatively different. The wavelet-based method can be
used to observe these differences and thus to separate healthy breasts from cancerous
ones.

Thermal stress can be applied to the breasts before the dynamic infrared imaging
sequence in order to improve the contrast between cancerous and healthy breasts [9].
The most common type of thermal stress is cooling of the breasts. The reasoning
for the increased contrast is that the vessels of the tumor lack the ability to contract
in response to neurohumolar modulation. For this reason, the temperature in the
tumor region stays almost constant, while the temperature in the other regions is
significantly affected by the applied thermal stress. In [9] supervised and unsuper-
vised machine learning methods were applied to time-series temperature data, with
thermal stress, to classify breasts as healthy or cancerous. For a sample of 80 sub-
jects, out of which 40 were healthy and 40 had pathologically proven cancer, two
classification algorithms showed 100 % classification accuracy.
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3 Methods

3.1 Similarity measures for image registration

3.1.1 Intensity based similarity measures

A simple intensity based similarity measure is the sum of squared differences (SSD).
The SSD simply calculates the squared differences of pixel intensity values and sums
them over the image volume

SSD =
N∑

n=1

(If,n − Im,n)
2. (9)

In equation (9), N is the number of pixels and If,n and Im,n are the intensities of
the nth pixel in the fixed and moving images, respectively. A global minimum of
the SSD is searched to find the optimal registration [10]. In order for the SSD to be
a suitable similarity measure for an image registration problem, the same objects
should have the same intensity values in the moving and fixed images. A simple
example of this kind of a setting is the registration of images with a white disc on
a black background. In the moving image the disc is in a slightly different place
than in the fixed image. The intensity value is 1 for the disc (white) and 0 for the
background (black). Now, in every point where the disc is misaligned the squared
difference will be 1, contributing to the total SSD value. It is easy to see, that in
this simple example optimal registration is achieved when SSD = 0. If, however,
some intensity values inside the disc in the moving image were not exactly 1, but
say 0.98, this would not be the case anymore.

Hence, the use of the SSD is only appropriate when it can be assumed that
the intensity values of objects stay constant between the fixed and moving images.
For this reason, the SSD is mainly suitable for inter-subject and monomodality
registration [24]. However, SSD is not suitable for the registration of thermal breast
images even though the problem is inter-subject and monomodal. This is due to
the fact that in thermal images pixel intensities are directly related to temperature
[26]. The same object will have different intensity values as the temperature of
the object varies. Trying to minimize the SSD value could lead to the loss of the
time-temperature signal.

Mutual information is a widely used similarity measure in medical image regis-
tration [10]. Unlike the SSD it is suitable for the registration of multimodal images.
In [26] its normalized variant was used to evaluate the performance of several algo-
rithms in the task of registering time series of thermal breast images.

Mutual information is an information theoretic measure. More precisely it is
based on Shannon’s entropy [35]. In communication theory entropy is a measure of
information. It is used to measure how much information is conveyed to a receiver of
a message via said message. In the simplest cases the message may be for example
Morse code or words, but the message can also be an image [35].

In 1928 Hartley formulated a measure for the information included in a message
with n symbols s, where s is the number of possibilities for one symbol. For example
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in the case of a binary code s would be 2 (possible symbols are 0 and 1). This
Hartley’s entropy is the basis of many present-day measures [35]. The number of
possible messages is sn. This is, however, not a suitable measure for the amount of
information in the message as the amount of information would grow exponentially
with increasing message length. This is not realistic, so Hartley wanted a measure
that increases linearly with n [35]. Another restriction was that given two messages
with lengths n1 and n2 and numbers of symbols s1 and s2, if the number of possible
messages is equal (sn1

1 = sn2

2 ), then the amount of information should also be equal.
These restrictions lead to Hartley’s entropy

H = n log s = log sn, (10)

where log is the base 2 logarithm.
Hartley’s entropy depends on the number of possible outcomes. The more possi-

ble outcomes there are, the greater is the amount of entropy [35]. If there is only one
possible message then entropy is 0, as log 1 = 0. In this sense entropy is also a mea-
sure of uncertainty. If the number of possible messages is large, you are uncertain
which message you will receive. If there were only one possible message, you would
already in advance know the sent message, and therefore no information would be
gained.

A major drawback in Hartley’s entropy is that it assumes that all symbols are
equally likely to occur in a message [35]. This is obviously not true, as for example
in written text some letters occur more frequently than others. Shannon’s entropy
solves this problem by weighting the information per outcome by the probability of
that outcome occurring

H =
∑

i

pi log
1

pi
= −

∑

i

pi log pi. (11)

Here pi is the probability that an event ei occurs.
The second definition in (11) is more commonly used, but the first one better

explains the idea behind Shannon’s entropy [35]. The information gained from a
message/event is inversely related to the probability of that event occurring. A rare
event gives more information than a common one, so more weight is assigned to rare
events. On the other hand rare events don’t happen very often so the low probability
is taken into account.

Shannon’s entropy can be explained with an analogy to collecting cards. Let us
say that you are collecting some trading cards. The set has 4 different cards and
you buy a pack containing 4 cards. The probabilities for obtaining the specific cards
might be for example 0.2, 0.3, 0.4 and 0.1. Now according to (11), the Shannon’s
entropy will be −0.2 log 0.2 − 0.3 log 0.3 − 0.4 log 0.4 − 0.1 log 0.1 = 3.14. For most
collectable cards, however, the differences in probabilities will be larger. In some
other pack, cards might be classified as ’common’, ’rare’, ’epic’ and ’legendary’ with
probabilities of occurrence 0.75, 0.20, 0.045 and 0.005, respectively. Now the entropy
is only 1.02; the amount of entropy is lower as there is less uncertainty about the
card you are going to receive. Most of the time you will receive ’common’ cards.
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values in an image. Low entropy values correspond to clear clusters in images.
Therefore minimizing the entropy of a joint histogram leads to optimal registration.
To calculate this joint entropy, a joint probability distribution has to be estimated
from the joint histogram. This is achieved by dividing each entry in the histogram
by the total number of entries. Shannon’s entropy for a joint probability distribution
is [35]

H(A,B) = −
∑

i

p(i, j) log p(i, j). (12)

Joint entropy has some drawbacks as a similarity measure. Low entropy values
can sometimes be obtained for completely misregistered images [35]. This is the case
when the images are misaligned so much that only their backgrounds overlap. The
overlap in background results in a peak in the histogram and thus a low entropy
value.

To avoid these kinds of situations mutual information was developed by two sep-
arate research teams at the same time [36, 37]. Mutual information combines the
joint entropy with the individual entropies of the images. Shortly after its introduc-
tion, mutual information became the most widely researched similarity measure for
medical image registration [35].

Mutual information has several definitions. All of these definitions are inter-
changeable: one obtains the same value for the mutual information with all of them.
However, the different definitions give different views on how mutual information is
connected to image registration. [35]

The following definition best explains the term mutual information [35]

I(A,B) = H(B)−H(B|A). (13)

H(B) is the Shannon’s entropy of image B and H(A|B) is the the Shannon’s entropy
based on the conditional probability p(b|a): the probability of a gray value b in
image B given that image A has the gray value a in the corresponding location.
If entropy is interpreted as a measure of uncertainty, according to equation (13),
mutual information is the amount by which uncertainty about B decreases when A
is given. It is the amount of information A contains about B. It is important to
note that A and B can be interchanged: I(A,B) is also the information B contains
about A, hence it is called mutual information. [35]

The second definition is related to joint entropy H(A,B) [35]

I(A,B) = H(A) +H(B)−H(A,B). (14)

The mutual information increases when the joint entropy decreases, but the advan-
tage of mutual information over joint entropy is that the marginal entropies H(A)
and H(B) are also taken into account. They balance the measure by penalizing
transformations that decrease the amount of information in the separate images [35].

The third definition is related to the Kullback-Leibler distance. It is a measure
of distance between two distributions p and q and is defined as

∑

i

p(i) log(p(i)/q(i))
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[35]. To be precise, mutual information can be given as

I(A,B) =
∑

a,b

p(a, b) log
p(a, b)

p(a)p(b)
. (15)

Equation (15) can be interpreted as the distance between the joint distribution of
the images’ gray values p(a, b) and the joint distribution in case of independence of
images p(a)p(b) [35]. As such, it is a measure of dependence between the images. The
assumption is that there is maximal dependence between the images when they are
correctly registered. A summary of the different entropies and mutual information
is presented in figure 9.

Figure 9: Venn diagrams illustrating the different entropies of two images A and B.
The size of the circles represents the amount of information in one image. Figure
drawn according to [38].

Mutual information is sensitive to the size of the overlapping part of the images
[35]. A decrease in the overlap reduces the statistical power of the probability
distribution estimation. In some situations mutual information can increase with
increasing misregistration. This is the case when the relative areas of the object
and background even out and the sum of marginal entropies increases faster than
the joint entropy (see equation (14)). These shortcomings inspired the development
of an overlap invariant measure called normalized mutual information (NMI) [38].
NMI is simply the ratio of joint and marginal entropies

NMI(A,B) =
H(A) +H(B)

H(A,B)
. (16)

Maximization of NMI means the minimization of the joint entropy with respect to
the marginal entropies [38].

3.1.2 Feature based similarity measures

Feature based similarity measures are an alternative to those based on intensity.
Commonly a feature based similarity measure surveys the distance between some
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anatomical structures, other regions of interest or marker points between the fixed
and warped images. The warped images are the images that are deformed according
to the transformation corresponding to the registration algorithm. Naturally one has
to first decide which regions or points should be used as a similarity measure. For
rigid registration algorithms this is relatively easy: the registration error at any
given point is completely determined by errors at three noncollinear landmarks [39].

The selection of features is far more complicated for nonrigid registration algo-
rithms. This is due to the fact that the image is deformed differently at different
locations. Therefore, even though some marker points or regions might be well
aligned between the fixed and warped images, some other points or regions might
be completely misaligned. The chance for this kind of error increases as the distance
from the selected points or regions increases [39]. A dense set of control points is re-
quired to assure global accuracy of the registration. However, such a set is generally
not available. A further problem can arise in inter-subject registration: a subject
may lack some landmarks identifiable in another subject [39].

A specific measure for the registration of thermal breast images is the breast
boundary overlap (BBO) [26]. BBO measures how well the boundaries of the breasts
are aligned. This is one of the most fundamental expectations for the registration
of thermal breast images [26].

The first step in calculating BBO is to segment the breast boundaries in all
frames. This can be done e.g. using Canny Edge Detection. Furthermore, a strong
gradient in every direction is obtained as a scalar value [26]. The SSD of gradient
values is calculated between the fixed frame and every warped frame. This value is
divided by the number of voxels to obtain the breast boundary difference

Boundarydifference =
1

n

m∑

i=1

(Ifb − Iwb)
2
i , (17)

where Ifb and Iwb are the gradient values of breast boundary for the fixed and the
warped images, respectively, m is the total number of frames and n is the number
of voxels in one image [26].

The centre of mass (COM) is determined for the whole image and for the left
and right breasts separately [26]. Euclidean distances from the breast COMs to the
whole image COM are calculated for the fixed and every warped frame (Fig. 10).
The distances of the left and right breast from the center are summed. Then SSD
of the COM distances is calculated as

COMdistance =
1

n

m∑

i=1

[(IfR + IfL)− (IwR + IwL)]
2
i . (18)

Here IfR and IfL are distances of the right and left breasts, respectively from the
COM of the image in the fixed frame. Hence, these values are not gradient values
as in equation (17).

The BBO is determined as the absolute difference between the two aforemen-
tioned parameters and its value should be close to zero

BBO = |COMdistance − Boundarydifference|. (19)
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level of the pyramid the numbers of iterations were 1, 5, 20 and 50. To get the
number of iterations at the next level this number was multiplied by four. So the
iteration numbers were [16 4 1], [80 20 5], [320 80 20] and [800 200 50], where the
first elements correspond to the coarsest level.

Increasing the number of iterations significantly increased the time it took for
the algorithm to register the images, while only having a minor impact on the
quality of the registration in terms of the average SSD (Fig. 12). Based on these
results, [80 20 5] was chosen as the optimal numbers of iterations. Using these
numbers improves the registration result compared to the use of lower numbers of
iterations in terms of the average SSD, with only minor extra computational cost.
Increasing the numbers further results in long computation times with only a minor
improvement in the average SSD value.

Figure 12: Increasing the number of iterations in the demons algorithm significantly
increases the computation time. Increasing the number of iterations at the finest
level from 1 to 5 improves the quality of the registration in terms of average SSD,
with minor computational costs. Increasing the number of iterations further has
little effect on the average SSD, but a major effect on the computation time.

The amount of smoothing is controlled by a value called ’AccumulatedField-
Smoothing’. Its value is typically in the range between 1.0 and 3.0 [40]. It controls
the amount of diffusion-like regularization applied to the displacement field. The
standard deviation of the Gaussian smoothing is employed to regularize the field at
each iteration. Large values result in smoother displacement fields and small values
in displacement fields with more localized deformations [40].

Different values of this smoothing parameter were tested in a similar manner as
with the numbers of iterations. Changing the amount of smoothing between 1.0 and
3.0 did not have a significant effect on the registration time or quality. At the end, a
smoothing value of 3.0 was chosen as higher amount of smoothing prevents foldings
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and other physically impossible phenomena in the registration result. The effect of
changing the amount of smoothing is illustrated in Figure 13.

Figure 13: The displacement field calculated by the imregdemons function while
registering two thermal breast images, with smoothing of 1.0 (left) and 3.0 (right).
The displacement field obtained with smoothing of 3.0 is visibly smoother than the
one obtained with the value 1.0.

A similarity metric and an optimization method have to be given as parameters
to the imregister function. The function imregconfig [43] is used to obtain these
parameters. The default parameters given with the ’Monomodality’ option are used.

3.2.3 Evaluating the performance of the registration algorithms

Evaluating the performance of a registration algorithm is an important task as its
output would have little value if its accuracy could not be reliably measured [10].
In this thesis, four separate metrics are used to determine which of the chosen
methods performs best in the task of registering thermal breast images. Besides
these numerical metrics, visual inspection is also used to assure that the algorithms
work as intended.

The first two metrics are the intensity based SSD and NMI. Even though it was
previously stated that SSD is not a suitable similarity measure for the registration of
thermal breast images, it can be used to evaluate how different algorithms perform
compared to each other. The problem with the SSD is that the intensities in the
thermal images correspond to temperature. For this reason optimal registration does
not occur when SSD is 0: the temperature signal always causes some values that
are larger than zero. However, it can be argued that the differences in intensities
caused by the temperature fluctuations are much smaller than those caused by
misregistration. For example, the nipple is always visible in the images as an area
colder than the surrounding tissue. If the nipple would be misaligned between
images, it would result in a high SSD value.

There is a practical issue related to the use of intensity based metrics to evaluate
the performance of the demons algorithm: the imwarp function [19] that warps
the fixed image according to the displacement field calculated by the imregdemons
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Figure 15: On the left: an example of a misregistered frame. On the right: the SSD
value calculated for every frame in a time-series with two clear mistakes. The faulty
frames are visible as clear peaks in the SSD plot. These frames are removed before
the calculation of the metrics as they would significantly affect the average SSD or
NMI value.

the strength of the edges to be detected. All edges that do not meet the threshold
will be ignored. The threshold was set in such a way that only one strong edge
would be detected in each data set. This was done to ensure that the detected edge
is the same in all of the frames. An appropriate threshold was determined to be
0.7. Canny Edge Detection uses two thresholds. The edge function sets the lower
threshold automatically to be 40 % of the upper threshold [45].

As an output the edge function gives an intensity image where the pixel value is
1 in every point where an edge is detected and 0 elsewhere [45] (Fig. 16). Now the
average SSD can be calculated for the sets of these edge images in order to determine
how much the detected edge has moved on average. More precisely, the metric tells
us the average number of pixels where the edge is misaligned compared to the first
frame. Low values of this edge SSD indicate good quality of registration.

While detecting the edges, the edge was not completely detected in all of the
frames. In some frames the edge was cut off as only a part of it was detected. This
cutting off happened at the edges of the frame. This kind of an error has a significant
impact on the SSD value. To avoid this, the edge images were reduced to a smaller
size to ensure that the areas where the cut-offs happen were not included.

This metric has a few drawbacks. First problem is that the detected edges might
be very different between different subjects (Fig. 16). Hence, the results between
different subjects are not entirely comparable. For one subject the metric might give
more meaningful information about the quality of the registration than for another.
Another problem is that even a slight movement of the edge can result in high SSD
values. For this reason, the use of this metric as an absolute measure of the quality
of the registration is not appropriate.

Another feature based metric used in this thesis is based on the detection of
corner points. The Harris-Stephens algorithm [46] is used to detect the points. The
detection is performed with Matlabs detectHarrisFeatures function [47]. The
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Figure 16: The edge images from two different subjects. The value of the edge
pixels is 1 and all of the other pixels have the value 0. The detected edges are
clearly different between the two subjects.

algorithm does not always detect the same or even the same number of points
between the different frames of the data set. In the first frame there might be
5 points detected and in the 10th frame there might be 11. In consequence, the
detected points are matched in a way depicted in [48]. The points detected from
each of the frames are matched to the points that are detected from the first frame.
As an output Matlab gives cornerPoints objects that include, for example, the
location of the points.

Once we have in hand the locations of the points that were detected from the first
frame of the data set as well as the locations of these same points in all of the other
frames of the data set, the metric is obtained by first calculating the Euclidean
distance between the matching points of the first frame and the nth frame. The
average of these distances is then calculated to obtain the average distance of all of
the matched points in the nth frame to those of the first frame. This is done for all of
the frames. Finally, the mean value of these average distances is calculated. Hence,
the final metric is the average distance of certain points to their initial position in
the first frame. The metric is calculated in the unit of pixels.

Compared to the other metrics, this average point distance metric has a signifi-
cant advantage as it is the only one whose result actually has physical significance.
The results given by this metric can, at least to some extent, be used to determine
if the registration quality is sufficient. A reasonable assumption is that registration
quality is good if the average point distance is under 1 pixel.

However, this metric is not by any means perfect. For one, the process of detect-
ing the points is quite random. For some data set the number of matched points
might be 5 and for another it might be 2. The points can also be at very different
locations. For one subject, they might lie only close to the borders between the
subject and the background and for some other subjects, they might be located in
central areas. For example, in the data used in this thesis some subjects had markers
on their skin. These were often detected by the algorithm. As the locations of the
detected points vary, the information given by the metric is not entirely comparable
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between different subjects as the importance of the registration quality varies spa-
tially: it is not as important to have good registration in the neck area as it is in
the breast area.

Another problem is that the points are not always correctly matched. While
calculating the value of this metric for the purpose of this thesis, there were 2 cases
out of the 20 total, where a clear mistake in the matching of points occurred (Fig. 17).
This kind of an error naturally greatly impacts the value of the metric. The two
cases where this error occurred were removed from the data as outliers because in
those cases the value of the metric does not give any relevant information about the
quality of the registration. The removed subjects were numbers 1 and 19.

Figure 17: While calculating the value of the average point distance metric, there
were two clear outlier cases. On the left is the average distance value for each frame
for one of these cases. An example of a point mismatch is depicted on the right. A
yellow line is drawn between matched points. The point data is from the subject
number 19, but it is overlaid on an example image.
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4 Results

4.1 Comparison of the registration methods

In terms of average SSD there is no clear difference between the different registration
methods (Fig. 18). For most of the subjects the demons and the combined method
give slightly lower values of average SSD than the affine method (low value indicates
good quality of registration). However, there are some exceptions, most notably the
subject number 8. The 8th subject is a clear outlier for the demons method: its
average SSD value is over 120, while the values for other subjects are around 20.
Without this outlier the demons method would outperform the affine method, at
least slightly. The registration result for the 8th subject was checked visually to
spot any clear mistakes, but no such were found.

A boxplot of the SSD results was also drawn in order to better illustrate the
differences between the methods (Fig. 19). In this and the following boxplots the
black line in the center of the coloured box is the median of the data, the limits
of the coloured box are the upper and lower quartiles, the extreme lines show the
highest and lowest value excluding outliers, and outliers are marked with circles.
The median values of the demons and the combined method are lower than that of
the affine method. Even the lower quartile of the affine method has a higher value
than the median of the other methods. The combined method has more variability
than the other methods. Based on this boxplot, the demons and the combined
method slightly outperform the affine method. No clear distinction between the
demons and the combined method can be made.

Figure 18: Average SSD values calculated for every subject using each of the three
registration methods. Low values indicate good quality of registration. No clear
difference between the results is visible in this raw data.



32

Figure 19: A boxplot of the average SSD results. The combined method has the
lowest median and most variability. The affine method has the highest median, and
even the lower quartile of the affine method has a higher value than the medians of
the other methods.

In terms of the average NMI, the demons and the combined method clearly
outperform the affine method (Fig. 20). The average NMI values of the affine method
are lower than those for the other methods for every subject (high values indicate
good quality of registration). The combined method gives higher values than the
demons method for most of the subjects. The difference, however, is not significant.

The boxplot of the NMI results supports these observations (Fig. 21). The upper
quartile of the affine method is lower than the lowest values (excluding outliers) of
the other methods. The combined method has the highest median but the boxes of
the demons and the combined method have a lot of overlap.
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Figure 20: Average NMI values calculated for every subject using each of the three
registration methods. High values indicate good quality of registration. The demons
method and the combined method consistently outperform the affine method. No
evident difference between the demons method and the combined method can be
observed.

Figure 21: A boxplot of the average NMI values. The values of the affine method
are clearly below those of the other methods. The combined method has the highest
median, but the box overlaps with the box of the demons method.
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In terms of the edge SSD it is not possible to rank the methods (Fig. 22). For one
subject the lowest (best) value might be given by the demons method, for another
subject it might be given by the combined method and for yet another by the affine
method. As with the average SSD, the value given by the demons method for the
8th subject is significantly higher than the values for the other subjects.

The boxplot of the average SSD values further highlights the difficulty of ranking
the methods (Fig. 23). There is a lot of overlap between all three boxes. The median
of the affine method is slightly higher than those of the other methods. The combined
method has a lot of variability as was the case with the average SSD.

Figure 22: Average edge SSD values calculated for every subject using each of the
three registration methods. Low values indicate good quality of registration.
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Figure 23: A boxplot of the average edge SSD values. The affine method has the
highest median. There is a lot of overlap between all of the boxes.

In terms of the average point distance the demons and the combined method
outperform the affine method (Fig. 24). Apart from a few exceptions, the affine
method gives higher values than the other two methods (low values are preferred).
There is little difference between the results given by the demons and the combined
method. As discussed earlier, the results of the subjects 1 and 19 are removed as
they were clear outliers resulting from a mistake in the matching of the points.

A boxplot supports these observations (Fig. 25). The values given by the affine
method are significantly higher than those given by the other two methods. The
lower quartile of the affine method is higher than the median of the other methods.
The combined method has the lowest median, but the difference to the demons
method is small.
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Figure 24: Average point distance values calculated for every subject using each of
the three registration methods. Low values indicate good quality of registration.
The results from the subjects 1 and 19 are not included in this data. The demons
and combined method outperform the affine method apart from a few exceptions.

Figure 25: A boxplot of the average point distance values. The results from the
subjects 1 and 19 are not included in this data. The values given by the affine method
are significantly higher than those given by the other methods. The combined
method has the lowest median.

The Wilcoxon signed rank test was used to determine whether these observed
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differences between the results are statistically significant. The Wilcoxon signed
rank test does not assume normally distributed data and is thus an appropriate
statistical test to be used for this data set. The test is performed as a pairwise test.
The null hypothesis is that the median difference between the pairs of observations
is 0. The alternative hypothesis is that the median difference between the pairs of
observations is not 0. Significance level of 0.05 is used: a p-value lower than 0.05
leads to the rejection of the null hypothesis. The p-values are presented in Table
1. For the average SSD the null hypothesis is rejected only for the demons vs affine
case. For the average NMI the null hypothesis is rejected in all of the cases. For
the edge SSD the null hypothesis is not rejected in any of the cases. For the point
distance metric the null hypothesis is rejected in the demons vs affine and the affine
vs combined case.

These observations are in line with the ones made based on the graphical rep-
resentations of the results. Table 2 summarizes the results. A comparison is called
a "tie" if the null hypothesis is not rejected. If the null hypothesis is rejected, the
method that performs better based on the graphical representation is mentioned as
the winner. Both the demons and the affine method get 3 wins, while the affine
method does not get any. Out of the used metrics, the average NMI and the average
point distance best separate the methods.

Demons vs Affine Demons vs Combined Affine vs Combined
SSD 0.019 0.756 0.202
NMI 1.9 · 10−6 0.001 1.9 · 10−6

Edge SSD 0.312 0.841 0.985
Point Distance 0.0002 0.580 0.0007

Table 1: p-values obtained using the Wilcoxon signed rank test to compare the
different methods. If the p-value is below 0.05 the null hypothesis is rejected.

Demons vs Affine Demons vs Combined Affine vs Combined
SSD Demons Tie Tie
NMI Demons Combined Combined

Edge SSD Tie Tie Tie
Point Distance Demons Tie Combined

Table 2: A summary of the results. According to three of the metrics, the demons
method outperformed the affine method. The combined method outperformed the
affine method according to two metrics. The combined method outperformed the
demons method in terms of the average NMI.

Based on these results, the demons method is recommended to be used to register
thermal breast images. The results given by the demons method are significantly
better than those given by the affine method. The combined method improves the
results of the demons method, but only slightly. Another advantage of the demons
method is that it is faster compared to the other methods. Registering one data set
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with the demons method took approximately 20 minutes as for the affine method the
registration time was around 50 minutes. However, the run times naturally depend
on the particular implementations of the algorithms and also on the hardware. The
combined method does not improve the results of the demons method in a manner
that would justify the resulting increase in the computation time.

4.2 Preservation of the temporal temperature signal

It is crucial for the further analysis of the thermal breast images that the registration
preserves the temporal temperature signal as well as possible. To investigate how
well the signal is preserved while using demons registration, cosine signals were
added to one of the data sets. Signals with frequencies of 0.1, 1 and 2 Hz were used,
with amplitudes 0.008, 0.006 and 0.004, respectively. The cosine signal was added
to every pixel in the data. Demons registration was then performed on these data
sets.

To see how well the signal was preserved, Fast Fourier transform (FFT) was
used to calculate the frequency profile for every pixel in the data. This frequency
profile was calculated before and after the registration and the results were plotted
in the same figure for comparison. The frequency profile was plotted from a single
pixel located in the breast area. The added signals with different frequencies were
preserved really well (Fig. 26). A clear peak is found at the frequency of the added
signal both before and after the registration. Outside of the frequencies of the
added signal there are some artefacts. This is an expected outcome as the removal
of the motion artifacts due to the registration should somewhat affect the frequency
profile. To be precise, the registration reduces the power of lower frequencies as
some fraction of the lower frequencies is caused by the motion. It thus seems that a
clear frequency trend in the temporal temperature signal is not lost due to demons
registration. Especially the higher frequencies (1 and 2 Hz) are preserved well.
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Figure 26: The frequency profiles plotted before and after registration for data sets
with an added cosine signal with the frequency of 0.1 Hz (top), 1 Hz (middle) and
2 Hz (bottom).
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5 Discussion

An extremely wide variety of image registration algorithms have been developed for
the purpose of medical image registration. In this thesis only two of those and their
combination was tested. Hence, a question can be raised if the results presented in
this thesis actually offer significant proof about the best method for the time-series
registration of thermal breast images.

The demons method was chosen as a main algorithm to be tested mainly for two
reasons: it had been proven to be an effective method for the registration of thermal
breast images in earlier scientific work and it had a built-in Matlab implementation.
The fact that there is a Matlab implementation specifically for this algorithm can
also be seen as a proof of the usefulness of the method. Furthermore, these first
tests with the method were promising, at least based on visual inspection.

The method based on an affine transformation was chosen as a comparison
method as it could also be easily implemented with Matlab. A reasonable hypothe-
sis could also be made prior to the numerical experiments that the demons method
would outperform the affine method. This is due to the fact that the breathing mo-
tion in the time-series data is elastic in its nature, while the affine transformation
is not elastic. It would be impossible for the affine method to account for all of the
motion.

The combined method was used in order to see if the results of the demons
method could be improved this way. The assumption before the experiments was
that the results would improve. The reasoning was that the demons method would
perform better after all of the non-elastic motion had been removed beforehand: the
demons method could only tackle the elastic motion.

The obtained results were quite well in line with the prior assumptions. In
particular, this was the case for the comparison between the demons and the affine
method. The demons method clearly outperformed the affine method. However,
the marginal was not huge. One metric showed a tie between the methods and in
terms of the other metrics the demons method was only slightly better.

The comparison between the demons and the combined method was even tighter.
Only one out of the four metrics showed a clear improvement in the registration result
of the combined method compared to that of the demons method. When deciding
whether to use the affine method as a pre-registration step for the demons method,
one really has to consider if the slight improvement is worth the significant increase
in computation time.

While working on this thesis, the implementation of the registration algorithms
was fairly straightforward. Visual inspection also showed that especially the demons
algorithm seemed to achieve really good results. The most demanding challenge was
to find a numeric metric that would be suitable for verifying (or disproving) the result
of visual inspection.

All of the metrics used in this thesis to evaluate the performance of the regis-
tration algorithms have their flaws. Based on the scientific work reviewed for this
thesis, this seems to be a more general challenge of the entire image registration
field. Often the registration algorithms presented in scientific papers are designed
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for the purpose of a specific application. After the introduction of the new algorithm
the authors proceed to offer proof that their new algorithm outperforms the older
solutions. Often they end up calculating a few values that support their algorithms
superiority. No ’gold standard’ exists for the evaluation of the registration quality.

In this thesis two intensity based measures were used. The core problem of the
intensity based metrics is that the optimal value of those metrics is not known in
many cases. They do not have any physical meaning. For this reason they can only
be used to say if method A is (or seems to be) better than method B. They do not
tell by how much a method is better than another. Furthermore, it has been showed
that these metrics can be fooled by ’dummy’ registration algorithms. The use of the
SSD in this thesis was also problematic as the temporal temperature signal affects its
value. This might be the reason why the SSD was not really efficient in separating
the different methods. The NMI does not suffer from such a problem but has the
other drawbacks of intensity based metrics.

The edge SSD metric is basically a combination of an intensity based and a
feature based metric. The value calculated is the intensity based SSD but it is
based on a physical feature: the edges detected in the image. The value of this
metric also has a physical meaning: it is equal to the number of pixels where the
edge of the moving image is misaligned compared to the edge of the fixed image.
The main problem with the edge SSD is that even a really slight movement of the
edge results in a high edge SSD value. This might be the main reason for the fact
that the edge SSD was not able to separate any of the registration methods.

The average point distance metric also has a clear physical meaning and it is the
only one of the metrics used in this thesis that actually measures the movement of
the image in units of pixels. This is really important as such a result can be used
to determine if the registration result is sufficient for a specific application: in the
context of this thesis for enabling the frequency analysis of the time-series data in
such a way that the detection of malignant lesions is possible. The main problem
with this metric is that it is prone to clear mistakes. The upside is that these
mistakes can be easily detected. Another problem is that the number of matched
points between frames can be quite low. If one frame has 640 x 480 = 307 200 pixels
and we track 5 of them, we have not really considered the whole story about the
movement in the image.

Let us return to the question at the beginning of this chapter: can the demons
method really be recommended for the registration of thermal breast images based on
the results presented in this thesis? Definitely, not enough proof has been offered to
decisively conclude that the demons method is the best option available. However,
sufficient proof is presented to conclude that the demons method is a relatively
reliable tool for the task. It performs well against the simple affine method and
most importantly the average point distance values are consistently smaller than 1
pixel (excluding the clear mistakes). This small movement should not distort the
results of DIRI analysis in a way that would make the detection of malignant lesions
impossible. Another method might improve the results of the demons method but
that improvement probably would not considerably improve the further analysis.
The demons method is also fast and easy to implement with Matlab.
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