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Neutron skin thickness in the droplet model with surface width dependence: Indications of
softness of the nuclear symmetry energy
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We analyze the neutron skin thickness in finite nuclei with the droplet model and effective nuclear interactions.
The ratio of the bulk symmetry energy J to the so-called surface stiffness coefficient Q has in the droplet model
a prominent role in driving the size of neutron skins. We present a correlation between the density derivative of
the nuclear symmetry energy at saturation and the J/Q ratio. We emphasize the role of the surface widths of
the neutron and proton density profiles in the calculation of the neutron skin thickness when one uses realistic
mean-field effective interactions. Next, taking as experimental baseline the neutron skin sizes measured in 26
antiprotonic atoms along the mass table, we explore constraints arising from neutron skins on the value of the J/Q

ratio. The results favor a relatively soft symmetry energy at subsaturation densities. Our predictions are compared
with the recent constraints derived from other experimental observables. Though the various extractions predict
different ranges of values, one finds a narrow window L ∼ 45–75 MeV for the coefficient L that characterizes
the density derivative of the symmetry energy that is compatible with all the different empirical indications.
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I. INTRODUCTION

Neutron skin thickness is the name in common usage to
refer to the difference between the root-mean-square (rms)
radii of the neutron and proton density distributions of atomic
nuclei:

�Rnp = 〈r2〉1/2
n − 〈r2〉1/2

p . (1)

Experimentally, the value of the proton rms radius 〈r2〉1/2
p is

obtained from the charge radius. The latter has been measured
by electron-nucleus elastic scattering with high accuracy (often
the accuracy in charge radii is better than 1% [1]). In contrast,
our knowledge of the neutron distribution in nuclei and of its
rms radius 〈r2〉1/2

n , as well as our knowledge of �Rnp, is to date
less precise. This situation looks inadequate in anticipation of
the next generation of rare ion accelerator facilities that are
planned for the synthesis and study of exotic nuclei, as in
RIKEN centers (Japan), in FAIR at GSI (Germany), in the
CSR at HIRFL (China), or in FRIB at MSU (U.S.A.). Without
securing sufficient knowledge of the neutron distribution in
stable nuclei, the prospects of nuclear structure theory in
this thriving domain may be compromised. It is expected
that parity-violating electron scattering will provide in the
nearby future a leap forward in the quest for high-precision
determinations of the neutron radius in heavy nuclei [2].

The calibration of the neutron skin thickness of nuclei also is
one of the problems at the forefront of nuclear structure by rea-
son of being intimately correlated with the nuclear symmetry
energy. Indeed, the symmetry energy is a fundamental quantity
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in nuclear physics and astrophysics, because it governs at
the same time important properties of very small entities like
atomic nuclei and of very large objects like neutron stars [3].
One of the crucial properties of the symmetry energy, which
still is not sufficiently well constrained, is its dependence on
the nuclear density. It is relevant in the astrophysical context to
understand a wealth of phenomena [3–5], including supernova
explosions, neutrino emission, and the cooling mechanism
of protoneutron stars, as well as mass-radius relations in
neutron stars. Moreover, the density content of the symmetry
energy eventually relates to basic issues in physics. This is the
case of precision tests of the standard model through atomic
parity nonconservation observables [6], and even of studies
on constraining a possible time variation of the gravitational
constant [7]. In terrestrial laboratories, the available tools to
delineate the density dependence of the symmetry energy at
saturation and subsaturation densities include the interaction
potential between neutron-rich nuclei [8], observables like
isospin diffusion and isoscaling in heavy-ion reactions at
intermediate energies [9–21], different modes of collective
excitations of nuclei [22–26], and, of course, data on the
binding and structure of neutron-rich nuclei and on their
neutron skin thickness.

In the literature there exist several theoretical formulations
to investigate the neutron skin thickness of neutron-rich
nuclei and its connections with the symmetry energy. This
is the case, for instance, of methods based on the droplet
model [27,28], on the concept of surface symmetry energy
[5,29,30], thermodynamical arguments [31], nucleonic density
form factors [32], mean-field analyses [33–35], or studies
in the spirit of the Landau-Migdal approximation [36]. It
has been shown that the neutron skin thickness in heavy
nuclei, like 208Pb, calculated in mean-field models with either
nonrelativistic or relativistic effective nuclear interactions,
displays a linear correlation with the slope of the neutron
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equation of state (EOS) obtained with the same interactions at a
neutron density ρ ≈ 0.10 fm−3 [37–39]. A similar correlation
exists between �Rnp and the density derivative of the bulk
symmetry energy [13–16,33,40,41], as the latter is a measure
of the pressure difference between neutrons and protons.
These correlations have been exploited in recent years to
gain a deeper understanding of the isospin properties of the
effective nuclear interaction and to relate them with nuclear
and astrophysical observations.

The rms radius of neutron densities in nuclei has been
measured with hadronic probes such as proton-nucleus elastic
scattering [42–45] or inelastic scattering excitation of the giant
dipole and spin-dipole resonances [46,47]. Antiprotonic atoms
are helpful to probe the size of the neutron skin of nuclei
from the fact that the nuclear periphery is very sensitive to
antiprotons in the normally electronic shell. Experimentalists
combine two different techniques in this case [48–50], namely
the measurement of the antiprotonic x rays that determine the
atomic level shifts and widths due to the strong interaction and
the radiochemical analysis of the yields after the antiproton
annihilation. The values of the neutron skin thickness of 26
stable nuclei from 40Ca to 238U deduced from antiprotonic
atoms data by Trzcińska et al. [48,49] follow a roughly
linear trend with the overall relative neutron excess I =
(N − Z)/A of these nuclei. This trend can be fitted by the
relationship �Rnp = (0.90 ± 0.15)I + (−0.03 ± 0.02) fm as
discussed in Refs. [48,49]. As mentioned, all neutron skin
thickness measurements have relatively large uncertainties in
comparison with charge radii, and sometimes the results from
different experimental techniques are not totally consistent
among them [47,49]. The neutron skin sizes determined in
Refs. [48,49] from the analysis of antiprotonic atoms are to
date the largest set of uniformly measured values of �Rnp all
over the periodic table (40 � A � 238). Due to this reason, we
shall use hereinafter these data as the experimental benchmark
for our calculations.

The droplet model (DM) describes in a physically trans-
parent way nuclear radii and relates them directly with basic
properties of the nuclear interactions. In the present article
we study the neutron skin thickness of atomic nuclei with
the DM using various effective nuclear interactions of the
Skyrme, Gogny, and relativistic mean-field (RMF) type. The
present work extends with a new analysis and perspective
a first presentation of our study made in Ref. [51]. Here,
we will show that the ratio of the DM parameters J and
Q, which drives the value of the neutron skin thickness in
heavy nuclei, is correlated with the slopes in density of the
nuclear symmetry energy and of the EOS of neutron matter.
We compare the DM values for the neutron skin thickness with
the results obtained in self-consistent extended Thomas-Fermi
(ETF) calculations of finite nuclei [52–55], because both
methods are free of shell effects. A non-negligible role of
the contribution of the difference in the surface widths of the
neutron and proton density profiles is noticed. Next, we use the
experimental neutron skin thickness measured in antiprotonic
atoms to explore the range of possible values of the ratio
J/Q that are favored by neutron skins. With these values
we can predict some properties of the density dependence of
the nuclear symmetry energy. Our results are compared with

the constraints recently obtained in the literature using other
observables and methods.

The present article is arranged as follows. In the second
section we study the neutron skin thickness of heavy nuclei
on the basis of the DM [27,56,57] and show a correlation that
links the value of the ratio J/Q, which governs the neutron
skin thickness of nuclei, with the slope of the symmetry
energy in bulk matter at saturation. In the third section, the
contribution of the surface widths of the neutron and proton
density distributions to the neutron skin thickness is analyzed
with the DM using nonrelativistic and covariant mean-field
nuclear interactions. In the fourth section we estimate possible
constraints on the density dependence of the nuclear symmetry
energy on the basis of the DM and the experimental data on
neutron skin sizes derived from antiprotonic atoms. We discuss
the present results in comparison with the recent constraints
obtained from various observables and methods. Finally, the
summary and our conclusions are laid in the fifth section. We
outline the procedure for the calculation of the Q coefficient
in the Appendix.

II. THE FRAMEWORK

A. Neutron skin thickness in the droplet model

In the DM of average nuclear properties [52,56,57] the
neutron skin thickness of a finite nucleus is computed from
the expression [27,56]

�Rnp =
√

3

5

[
t − e2Z

70J
+ 5

2R

(
b2

n − b2
p

)]
, (2)

where e2Z/70J is a correction due to the Coulomb interaction,
R = r0A

1/3 is the nuclear radius, and bn and bp are the
surface widths of the neutron and proton density profiles.
In the “standard” version of the DM it is assumed that
bn = bp = 1 fm [27,28,56], which implies a vanishing surface
width correction to the neutron skin thickness.

The quantity t in Eq. (2) represents the distance between
the neutron and proton mean surface locations. This distance
is computed as [27,56]

t = 3

2
r0

J

Q

I − c1Z
12J

A−1/3

1 + 9
4

J
Q

A−1/3
, (3)

where I = (N − Z)/A, J is the symmetry energy coefficient
at saturation, Q is the surface stiffness coefficient, and
c1 = 3e2/5r0. The coefficient J represents with a very good
accuracy the energy cost per nucleon to convert all protons
into neutrons in symmetric infinite nuclear matter at saturation
density ρ0. The surface stiffness coefficient Q measures the
resistance of the system against separation of neutrons from
protons to form a neutron skin. To extract Q from an effective
nuclear interaction requires performing calculations of asym-
metric semi-infinite nuclear matter (ASINM). Therefore, the
calculated value of Q may depend somewhat on the type of
approach, such as the Hartree-Fock or Thomas-Fermi methods,
employed to describe the nuclear surface [30,52,53,58–60].

From Eq. (3), one sees that the leading contribution to t in
large nuclei is the term 3

2 r0(J/Q)I . Thus, the DM suggests
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TABLE I. Saturation density ρ0 and J, L, Ksym, and Q parameters
of the Skyrme and Gogny forces as well as RMF parameter sets used
in this work.

Force ρ0 J L Ksym Q J/Q

fm−3 MeV MeV MeV MeV

SGII 0.158 26.83 37.7 −146 41.7 0.64
SVI 0.144 26.88 −7.3 −471 78.4 0.34
SIII 0.145 28.16 9.9 −394 63.6 0.44
T6 0.161 29.97 30.9 −211 47.8 0.63
SkP 0.163 30.00 19.7 −267 52.1 0.58
SkM∗ 0.160 30.03 45.8 −156 39.0 0.77
SkX 0.155 31.10 33.2 −252 56.2 0.55
NL3 �v = 0.03 0.148 31.68 55.3 −8 45.2 0.70
D1S 0.163 31.93 22.4 −252 53a 0.60
SLy4 0.160 32.00 46.0 −120 46.1 0.69
FSUGold 0.148 32.59 60.5 −52 43.7 0.75
NL3 �v = 0.02 0.148 33.15 68.2 −54 39.6 0.84
NL3 �v = 0.01 0.148 34.96 87.7 −46 35.2 0.99
NL-SH 0.146 36.12 113.7 80 34.5 1.05
TM1 0.145 36.89 110.8 34 34.3 1.08
NL3 0.148 37.40 118.5 101 31.7 1.18
NL1 0.152 43.46 140.2 143 29.4 1.48
NL2 0.146 45.12 133.4 20 41.7 1.08

aEstimated value.

that one can expect a correlation between �Rnp and J/Q in
heavy nuclei. We illustrate this fact in the left panel of Fig. 1.
We depict there the neutron skin thickness of 208Pb obtained
from self-consistent quantal calculations with the Skyrme and
Gogny Hartree-Fock methods as well as with the RMF Hartree
approach. The results are shown as a function of the value of
the J/Q ratio for various mean-field effective interactions. The
J values of the selected interactions (about 27–32 MeV in the
nonrelativistic forces and about 32–45 MeV in the covariant
forces, see Table I) cover widely the plausible physical range
of the bulk symmetry energy. The values of Q used in this work
have been extracted from ASINM calculations performed in
the extended Thomas-Fermi (ETF) approach as described in
the Appendix (see also Ref. [53]). Even if the shell effects,
present in the mean-field calculations of �Rnp, are not built
in the DM [27], one observes a considerably linear correlation

between the values of �Rnp and J/Q. It should be pointed out
that while all the effective interactions have been accurately
calibrated to data on binding energies and charge radii, and
describe these properties very successfully, they predict widely
different values of �Rnp, as we see in the present case of 208Pb.
This underlines the fact that the isospin sector of the effective
interactions is little constrained.

B. Properties of the nuclear symmetry energy

Let us consider the energy per particle e(ρ, δ) in asymmetric
infinite nuclear matter of total density ρ = ρn + ρp and
relative neutron excess δ = (ρn − ρp)/ρ, where ρn and ρp

stand for the neutron and proton densities, respectively. The
general expression

e(ρ, δ) = e(ρ, δ = 0) + csym(ρ)δ2 + O(δ4) (4)

defines the symmetry energy coefficient csym(ρ) of a nuclear
EOS at the density ρ. This expression is particularly useful
because csym(ρ) dominates the corrections to the symmetric
limit for all values of δ, especially at the subsaturation densities
of relevance for finite nuclei [61]. Actually, csym(ρ) provides
with excellent accuracy the difference between the binding
energies of pure neutron matter (δ = 1) and symmetric matter
(δ = 0).

It is customary, and insightful, to characterize the behavior
of an EOS around the saturation density ρ0 by means of a few
bulk parameters calculated at the saturation point, as in the
formula [10,13–16,56,61–63]

e(ρ, δ) ≈ av + Kv

2
ε2 +

[
J − Lε + Ksym

2
ε2

]
δ2, (5)

where ε = (ρ0 − ρ)/3ρ0 expresses the relative density dis-
placement from ρ0. Here, the quantities av and Kv denote
the energy per particle and the incompressibility modulus of
symmetric nuclear matter. One has csym(ρ0) = J . The DM
coefficients L and Ksym are, respectively, proportional to the
slope and the curvature of the symmetry energy coefficient
csym(ρ) at saturation density:

L = 3ρ0
∂csym(ρ)

∂ρ

∣∣∣∣
ρ0

, Ksym = 9ρ2
0

∂2csym(ρ)

∂ρ2

∣∣∣∣
ρ0

. (6)
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FIG. 1. (Color online) For several nuclear
mean-field models, existing correlation between
the neutron skin thickness �Rnp in 208Pb and
the ratio J/Q (left panel) and between �Rnp

in 208Pb and the slope of the symmetry energy
L (middle panel). The correlation between the
coefficient L and the ratio J/Q is also shown
(right panel). In the present figure, �Rnp has
been computed with Eq. (1) from the rms radii
of quantal self-consistent calculations for the
indicated mean-field models.
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The quadratic expansion csym(ρ) ≈ J − Lε + 1
2Ksymε2 in

Eq. (5) is often a reliable representation of the actual
value of the csym(ρ) coefficient at densities roughly between
ρ0/2 and 2ρ0 [61]. For instance, in the case of a typical
subsaturation density value ρ = 0.10 fm−3, one finds that the
above quadratic expansion of csym(ρ) differs from the exact
csym(ρ) by less than 1% in many different nuclear mean field
forces [51]. These facts point to the usefulness of investigating
parameters such as L and Ksym for the characterization of the
density dependence of the symmetry energy.

The values of the DM coefficients J,L, and Ksym for the
nonrelativistic forces and the RMF parameter sets considered
in this work are given in Table I. In the Skyrme and
Gogny effective interactions the symmetry energy coefficient
at saturation J takes values around 30 MeV. The RMF
parametrizations have larger values of J , also with a larger
spread. The slope (L) and the curvature (Ksym) of the symmetry
energy at saturation take even more widely scattered values
among the different interactions. The consequence is that all
mentioned nuclear models predict a different behavior of the
symmetry energy at subsaturation densities, what can be seen,
e.g., in Fig. 1 of Ref. [13].

As is known, the density dependence of the symmetry
energy near saturation tends to be much softer in the nonrela-
tivistic forces than in the covariant meson-exchange models of
nuclear structure (see the values of L in Table I). In particular,
taking into account Eq. (5), the slope of the neutron EOS

de(ρ, δ = 1)

dρ
= L

3ρ0
− Kv + Ksym

3ρ0
ε , (7)

and of the symmetry energy

dcsym(ρ)

dρ
= L

3ρ0
− Ksym

3ρ0
ε , (8)

calculated at densities ρ close to the saturation value ρ0 differ
considerably between models. We also know that �Rnp in
208Pb shows a linear dependence with these slopes at some
subsaturation density ρ � 0.10 fm−3 [37–40]. Therefore it is
reasonable that the neutron skin thickness in 208Pb and the
leading term L/3ρ0 of Eqs. (7) and (8) are related. As far as
ρ0 does not change much in the different effective forces, a
correlation between �Rnp in 208Pb and the DM coefficient L

is thus expected [13–15,33,41] and we display it in the middle
panel of Fig. 1.

From the discussed results of �Rnp versus J/Q and of
�Rnp versus L in Fig. 1, a correlation between the DM
coefficient L and the J/Q ratio is to be expected too. Note
that L rules the density dependence of the symmetry energy
of the nuclear equation of state [Eq. (8)] and that Q governs
the thickness of the neutron skin of finite nuclei [Eqs. (2) and
(3)]. The correlation between L and J/Q can be seen in the
right panel of Fig. 1. This correlation shows that the value of
the slope L of the symmetry energy at the saturation density
increases with the value of the ratio between the bulk symmetry
energy coefficient J and the surface stiffness coefficient Q.
The trend is considerably linear among the various nuclear
effective interactions.

Previous literature [53,59] has shown that the systematics
of experimental binding energies relates increasing values of

J with decreasing values of Q in nuclear effective interactions
whose parameters have been adjusted to describe experimental
data. We note this same trend in Table I, where the RMF
sets that in general have larger J values also tend to have
smaller Q values than their nonrelativistic counterparts. A
smaller Q coefficient means that it is easier to develop a
neutron skin in finite nuclei. Consistently, the neutron skin
thickness in 208Pb (or any other heavy nucleus) is usually
larger when computed with a RMF parameter set than when
computed with a nonrelativistic force. These facts, and the
noticed correlation between L and J/Q, allow one to interpret
in a qualitative way within the DM, the correlation pointed out
in Refs. [37–40] between the slope of the symmetry energy
at some subsaturation density ρ � 0.10 fm−3 and the neutron
skin thickness in a heavy nucleus. In a recent work [51] we have
investigated further the relations of the neutron skin thickness
with the parameters L and Ksym that characterize the density
dependence of the symmetry energy around saturation.

III. SURFACE WIDTH CONTRIBUTION TO THE
NEUTRON SKIN THICKNESS

The neutron skin thickness values derived from measure-
ments performed in antiprotonic atoms have been obtained in
Refs. [48,49]. It is assumed that the neutron skin is due to an
enhancement of the neutron surface width with respect to the
proton surface width and that the mean location of the proton
and neutron surfaces in these nuclei are the same. This situation
corresponds to the so-called “neutron halo-type” distribution
[48]. It has been shown that the same set of experimental
values of neutron skin thickness can be explained with similar
quality as in Ref. [48] by means of the “standard” version of
the DM (where bn = bp) [28]. The latter case assumes that the
peripheral neutrons are concentrated at the neutron surface,
which is shifted with respect to the proton surface and that
both the neutron and proton density distributions have the
same surface width. This is rather the pattern of the so-called
“neutron skin-type” distribution according to Ref. [48].

The analysis of neutron and proton densities calculated
with nuclear mean-field interactions carried out in Ref. [32]
by means of the Helm model points out that self-consistent
mean-field densities show a mixed character between the
“neutron halo” and “neutron skin” patterns. This means that,
actually, the self-consistent neutron and proton density profiles
obtained with nuclear effective interactions differ not only in
the mean location of their surfaces but also in their surface
widths. In the following we shall see that similar conclusions
are found from the calculations of the neutron skin thickness
performed in the DM with formula (2). It will turn out
that the surface width contribution ∝ (b2

n − b2
p) in the DM

expression (2) for the neutron skin thickness, which arises from
bn �= bp, is necessary to reproduce the neutron skin thickness
values calculated from the definition (1) using self-consistent
densities of finite nuclei obtained with the ETF approach in
mean-field theory, for nonrelativistic forces as well as for
relativistic parametrizations.

In Fig. 2 we display by empty symbols, as a function of the
overall relative neutron excess I = (N − Z)/A, the neutron
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FIG. 2. (Color online) The neutron skin thickness predicted by
the “standard” version of the DM [Eq. (2) with bn = bp] is compared
with the result obtained from self-consistent ETF calculations of
finite nuclei, in four illustrative mean-field parameter sets. The nuclei
considered are those investigated experimentally with antiprotonic
atoms in Refs. [48,49] and have masses 40 � A�238.

skin thickness predicted by the “standard” version of the
DM [namely Eq. (2) with bn = bp] using some well-known
effective forces. The nuclei are those from 40Ca to 238U
measured in the experiments with antiprotonic atoms [48,49],
and that were studied with the DM in Ref. [28]. The values
shown in Fig. 2 have been computed using the SIII and SkM∗
Skyrme forces and the NL-SH and NL3 RMF parameter sets,
as suitable examples. We have chosen these four parameter
sets for display in Fig. 2 because they span the whole range of
values of the ratio J/Q of nuclear interactions that describe
reasonably well the ground-state properties of finite nuclei,
having a bulk symmetry energy coefficient J between 28 and
37 MeV (see Fig. 1 and Table I). The DM results for �Rnp

obtained with the other mean-field interactions considered in
this work that have a J coefficient between the values of SIII
and NL3, also lie within the window of results delimited by
the SIII and NL3 interactions in Fig. 2.

The values of �Rnp predicted by the DM are compared
in Fig. 2 with the values that we obtain from self-consistent
ETF calculations in finite nuclei (filled symbols). Both models
do not incorporate shell effects. In Fig. 2 we have used the
ETF approach in the non-relativistic [54] and relativistic [55]
frameworks to compute �Rnp. We have calculated these ETF
values of �Rnp by application of Eq. (1) with the rms radii
of the self-consistent neutron and proton densities obtained in
each isotope. From Fig. 2 two significant points stem. First,
the predictions of the DM in the “standard” form (bn = bp)
systematically undershoot the ETF neutron skin thickness
computed in finite nuclei with the selected effective nuclear
interactions. In particular, this trend is reinforced with growing
neutron excess I . Second, it can be observed that for a
given nucleus the difference between the ETF value of �Rnp

computed with (1) and the value provided by the “standard”
DM prescription is slightly larger in the RMF parameter sets
than in the Skyrme forces. Altogether, these facts suggest that
in the mean-field interactions the surface width contribution
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FIG. 3. (Color online) (Upper panel) The same as in Fig. (2) but
here the DM values include a nonvanishing surface width contribution
�Rsw

np [Eq. (10)] with bn and bp obtained from ASINM calculations
as described in the text. (Lower panel) The surface width contribution
�Rsw

np (the vertical scale proportionality is the same as in the upper
panel).

to the DM formula for �Rnp does not vanish and that this
contribution has some dependence on the ratio J/Q of the
force.

To apply the full Eq. (2) to compute the neutron skin
thickness including the surface width correction, one needs to
evaluate the neutron and proton surface widths in finite nuclei.
In practice, there is not conclusive experimental evidence on
the difference of the surface widths bn and bp of the nuclear
density distributions [27,28,32,50,52]. To estimate b2

n − b2
p we

will therefore rely on theoretical guidance as a surrogate.
Within the context related to the DM and the leptodermous
expansion of a finite nucleus [52,56,57], the surface properties
in finite nuclei can be extracted from ASINM calculations. The
semi-infinite geometry does not include shell, Coulomb, or
finite-size effects. We will use here the ETF method including
h̄2 corrections for describing ASINM, because the ETF method
is free of the Friedel oscillations of the quantal densities
[30,60]. We summarize in the Appendix the basic aspects of
the procedure. More details can be found in Ref. [53]. From
Eqs. (A1)–(A4) of the Appendix, we can obtain the values of
the surface widths bn and bp in ASINM with a given relative
neutron excess in the bulk δ0. In the DM, these surface widths
correspond to the values bn and bp in finite nuclei if δ0 is
calculated from the overall relative neutron excess I of the
nucleus through the following relation [52,53,56]:

δ0 =
I + 3

8
c1
Q

Z2

A5/3

1 + 9
4

J
Q

A−1/3
, (9)

which takes into account the Coulomb correction.
Once the neutron and proton surface widths in finite nuclei

are known, we can compute their contribution to the neutron
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skin thickness, which reads [cf. Eq. (2)]

�Rsw
np =

√
3

5

5

2R

(
b2

n − b2
p

)
. (10)

The corresponding values of �Rsw
np for the nuclei considered

in Fig. 2 are displayed in the bottom panel of Fig. 3. It is worth
pointing out that the calculated �Rsw

np values show, for each
nuclear interaction, a well-defined increasing linear trend as a
function of the overall relative neutron excess I of the nuclei.

The neutron skin thickness predictions of the DM when one
includes the surface width contribution (2) are displayed in the
top panel of Fig. 3 by empty symbols. Note that the results
correspond to adding the values �Rsw

np shown in the bottom
panel of this figure to the DM values that we have displayed in
Fig. 2. As done in Fig. 2, we compare in the top panel of
Fig. 3 the DM results with the self-consistent ETF calcu-
lations of �Rnp [54,55]. One now observes an improved
and remarkable agreement between the DM predictions and
the self-consistent ETF values computed with the same
interaction, stemming from the inclusion of the calculated
�Rsw

np contribution. It is interesting to note that the neutron
skin thickness obtained with Eq. (1) from the rms radii of the
self-consistent ETF calculations in finite nuclei shows a well
defined increasing linear tendency with the relative neutron
excess I , similarly to the case of the results of the DM and in
consonance with the trend of the experimental values derived
from antiprotonic atoms [48].

The lower panel of Fig. 3 also suggests that, for a given
nucleus, �Rsw

np grows when the J/Q ratio of the nuclear
interaction increases (see Table I). To analyze this behavior
in more detail, we fit �Rsw

np by means of a law σ swI , which
defines the slope σ sw of �Rsw

np with respect to the relative
neutron excess I . This slope is displayed in Fig. 4 as a function
of the J/Q ratio for different interactions. The slopes σ sw

lie inside a band limited by two straight lines, corresponding
to the equations σ sw = 0.3J/Q + 0.07 fm (left) and σ sw =
0.3J/Q − 0.05 fm (right). Note that all considered Skyrme
forces have slopes σ sw below 0.25 fm, whereas the analyzed
RMF models have slopes σ sw always above this value.

One relevant conclusion is that bulk and finite nuclei
properties described through successful theoretical mean-field
models constrain the possible values of the surface width
contribution to the neutron skin thickness between the limits
portrayed in Fig. 4. From this figure it can be deduced that
the surface width contribution to the neutron skin thickness
�Rsw

np has, on top of a global increasing trend with J/Q, a
more involved dependence on the parameters of the effective
nuclear interactions. For instance, on the one hand, the RMF
force FSUGold and the Skyrme force SkM∗ have almost the
same J/Q ratio (see Table I). However, the predicted values
of σ sw are clearly different for both interactions as can be
seen in Fig. 4. On the other hand, it is possible to find different
interactions that have almost the same slope σ sw, and therefore
the same �Rsw

np , but with different values of the J/Q ratio.
Some examples of this fact in Fig. 4 are the Skyrme forces
SIII and SGII (with slopes of 0.16 and 0.15 fm, respectively)
and the RMF parametrizations FSUGold and NL3 (with slopes
0.30 fm and 0.31 fm). These facts suggest that it is possible
to find the same total neutron skin thickness by combining a

SVI   SIII
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  NL3 Λν2

SGII

SkM*

NL-SH

NL3 

TM1

            T6
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       NL1

        SkP

  SLy4

NL3 Λν1          NL2

           SkX
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J / Q
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  (
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0.3
 J/

Q +
 0.
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 J/
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0.0

5

FIG. 4. (Color online) Average slope of �Rsw
np with respect to I for

various nuclear mean-field models as a function of J/Q. All the data
lie in the area limited by the marked lines σ sw = 0.3J/Q + 0.07 fm
and σ sw = 0.3J/Q − 0.05.

small value of the J/Q ratio in t [see Eq. (3)] with a large
�Rsw

np contribution or, vice versa, by combining a large J/Q

ratio in t with a small �Rsw
np contribution.

IV. ESTIMATES OF THE DENSITY CONTENT OF THE
SYMMETRY ENERGY

As we have pointed out, the nuclear symmetry energy and
the properties of the EOS of neutron-rich matter are of increas-
ing importance in both nuclear physics and astrophysics. There
is a significant recent effort in the community toward constrain-
ing the values of the parameters that characterize the density
dependence of the symmetry energy in the subsaturation
regime of the EOS. The new developments come in particular
from the investigation of isospin-sensitive observables in
intermediate-energy heavy-ion collisions [9–21] and in nuclear
resonances [22–25]. Obviously, the different studies do not
deal with exactly the same regimes of density and energy.
One also has to keep in mind that the connection of the
experiments with the EOS is not at all trivial; it often requires
extrapolations of the measured data, which imply a model
dependence. Therefore, it is important to further investigate
indications from those and other experimental probes of the
symmetry energy, with different methodologies, as well as to
study the interplay between the constraints derived from the
different analyses.

In the present section we want to apply the experience
gained in the DM study of the neutron skin thickness per-
formed in the previous sections to estimate possible constraints
on the density dependence of the nuclear symmetry energy as
suggested by neutron skin data. To this end, we shall first
obtain the range of values of the J/Q ratio that are compatible
with the neutron skin thickness derived from the experimental
data in antiprotonic atoms. We recall that this set of data for 26
stable nuclei is to date the largest set of uniformly measured
neutron skins spanning the mass table. Once the estimated
range of values for the ratio J/Q will be found, the constraints
derived from the neutron skin data on the DM parameter L,
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related to the density derivative of the symmetry energy, will
be determined from the existing linear correlation between the
values of L and J/Q. This correlation has been displayed in
Fig. 1 and is a general feature of mean-field interactions that
have been adjusted to reproduce with good accuracy binding
energies and charge radii (often among other properties) of
nuclei across the periodic table.

A. Constraints on the J/ Q ratio

From the previous section we know that the surface width
part in Eq. (2) gives a non-negligible contribution to neutron
skins in effective nuclear interactions. This contribution
is needed to reproduce the neutron skin thickness values
computed self-consistently in ETF calculations of finite nuclei.
We have also seen that to leading order, both the mean location
of the neutron and proton surfaces (3) and the surface width
correction (10) are basically driven by the value of the J/Q

ratio. The discussions in the previous sections suggest to fit
the experimental �R

exp
np data by means of the following DM

inspired ansatz:

�Rnp =
√

3

5

(
t − e2Z

70J

)
+

(
0.3

J

Q
+ c

)
I, (11)

where t is given by Eq. (3). The second term is the surface
width contribution. It is parameterized to reproduce the dashed
lines on Fig. 4, with c = −0.07 fm or c = −0.05 fm.

With the ansatz (11), we will use J/Q as an open parameter.
It will be constrained by a least-squares minimization from
the experimental values �R

exp
np derived from the analysis of

antiprotonic atoms [48,49]. We note that Eq. (11), as well as
t given by Eq. (3), depends on the particular values of the
symmetry energy at saturation J and of the nuclear matter
radius r0. We fix these quantities to the empirical values
J = 31.6 MeV and r0 = 1.143 fm (the latter corresponds
to a saturation density ρ0 = 0.16 fm−3). We consider the
values c = 0.07 fm and c = −0.05 fm in Eq. (11), discussed

in connection with Fig. 4, to simulate the upper and lower
bounds of the window of the theoretical predictions for σ sw

obtained according to mean-field models of nuclear structure.
In the χ2 minimization we have weighted each �R

exp
np − �Rnp

difference by the inverse of the associated experimental
uncertainties. That is, in practice we have minimized the
quantity

∑
i

[
�Rnp(i) − �R

exp
np (i)

ξi

]2

, (12)

where �Rnp is calculated with Eq. (11) and the ξi denote the
uncertainties of the experimental data.

The fits to experiment give J/Q = 0.667 ± 0.047 with
c = 0.07 fm and J/Q = 0.791 ± 0.049 with c = −0.05 fm
(i.e., a range 0.62 <∼ J/Q <∼ 0.84). The quoted uncertainties in
the J/Q predictions correspond to the value of one standard
deviation associated with the fit made through Eq. (12).
To check our method of minimization and error estimation,
we have applied the same procedure to make a linear fit
mI + n of the experimental data �R

exp
np . In this case we have

obtained �Rnp = (0.901 ± 0.147)I + (−0.034 ± 0.023) fm,
which fully agrees with the result quoted by the experimental-
ists [48,49].

The results for �Rnp from our fits compared with the expe-
rimental data �R

exp
np are displayed as a function of I in Fig. 5.

Both extractions of J/Q, for c = 0.07 and c = −0.05 fm,
predict basically the same total neutron skin thickness
with a similar quality and they are close to the average
�Rnp = (0.90 ± 0.15)I + (−0.03 ± 0.02) fm [48,49] of the
experimental data. However, the splitting of the neutron skin
thickness into a part coming from the distance t and another
part coming from the surface width �Rsw

np is different in both
cases, as we have discussed in the previous section. Therefore,
it becomes clear that the experimental neutron skin thickness
data, by themselves, may be able to constrain the total value but
not its partition into a bulk and a surface width contribution.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.05  0.1  0.15  0.2  0.25

∆R
np

 (
fm

)

I

c =  0.07
c = -0.05

EXP
0.9 I - 0.03

FIG. 5. (Color online) The values of �Rnp

obtained from Eq. (11) by fitting the J/Q ratio,
using c = 0.07 fm (circles) and c = −0.05 fm
(squares) to reproduce the �Rexp

np values mea-
sured in antiprotonic atoms (dots with error
bars). The average value of �Rexp

np is marked
by the dotted line.
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It is generally acknowledged that the value of the bulk
nuclear symmetry energy coefficient J is about 30–32 MeV,
but there is some uncertainty. To assess the dependence of the
extraction of J/Q on the assumed value for the J coefficient
(which in the above we have taken as 31.6 MeV), we have
repeated the fit of Eq. (11) to the neutron skin data for
J = 35 MeV and for J = 28 MeV. The results are, respec-
tively, J/Q = 0.642 ± 0.046 and J/Q = 0.701 ± 0.048 if
c = 0.07 fm and J/Q = 0.764 ± 0.048 and J/Q = 0.829 ±
0.051 if c = −0.05 fm. All in all, it seems safe to consider
that within the present model the J/Q values compatible with
the data from antiprotonic atoms span a window from about
J/Q = 0.59 to J/Q = 0.88 or 0.6 <∼ J/Q <∼ 0.9 in round
figures.

We recall that the DM of nuclei does not incorporate shell
effects and averages the corresponding quantal magnitudes.
With the method described we have fitted �R

exp
np that in

general contains shell effects and possible correlation and
deformation contributions. But, as mentioned, the neutron
skin data analyzed show a well-defined linear trend with the
relative neutron excess I (namely �Rnp = (0.90 ± 0.15)I +
(−0.03 ± 0.02) fm [48,49]). This trend, and the agreement
of the DM values for �Rnp with the self-consistent ETF
calculations in finite nuclei, which also are free of shell effects
and have a linear trend with I (Figs. 2 and 3), gives more
reliability to the predictions obtained with the DM formula
from the experimental data.

B. Constraints on the L parameter

As we have discussed previously, the parameter L has
a direct relation with the slope of the symmetry energy of
the nuclear EOS, see Eq. (8). Having determined the values
of the J/Q ratio compatible with the experimental neutron
skins measured in antiprotonic atoms, we can use the linear
correlation between L and J/Q found in mean-field effective
nuclear interactions to obtain an insight on the values of the
parameter L favored by neutron skins.

We have displayed the linear correlation L = mJ/Q + n in
the rightmost panel of Fig. 1 (the linear correlation coefficient
for the shown interactions is r = 0.978). The values of the m

and n coefficients have some dependence on the set of interac-
tions chosen to make the linear regression. We have checked
that this dependence is rather weak. Namely we have tested the
correlation of L with J/Q by taking into account successively
10, 14, 18, and 24 interactions and we have found the linear
regressions to be comprised between L = 139J/Q − 52 MeV
and L = 150J/Q − 57 MeV. Considering these two limiting
cases and the constraint 0.6 <∼ J/Q <∼ 0.9 found in the previous
section, leads to a variation of L between 31 and 78 MeV.
Thus, our estimate for the L coefficient, which takes into
account the surface width correction in �Rnp obtained in the
calculations with mean-field interactions, basically lies in the
range 30 <∼ L <∼ 80 MeV. Had we kept the value of J fixed at
31.6 MeV, the extracted range for L would be a little narrower:
35 <∼ L <∼ 70 MeV.

In a previous work [51] we have investigated the cor-
relations between the symmetry energy coefficient in finite
nuclei and in the EOS at subsaturation densities. These

correlations allow one to derive an aproximate formula for
the neutron skin thickness with explicit dependence on the
L coefficient. By comparison of that result for the neutron
skin thickness with the experimental data set of Refs. [48,49],
in Ref. [51] we found a range of values L = 55 ± 25 MeV
(displayed in Fig. 3 of Ref. [51]) when one includes the surface
width contribution �Rsw

np in the calculations. That prediction
is consistent with the values obtained here by the present
procedure. A somewhat higher range L = 75 ± 25 MeV was
obtained [51] when one neglects �Rsw

np . Although a vanishing
�Rsw

np value, corresponding to bn = bp in the nucleon density
distributions, is not favored by the mean-field interactions
(see Sec. III), it cannot be discarded without having more
experimental evidence on the value of bn as we have noted in
Sec. III (see also Refs. [28,48]).

In recent years, considerable advances in probing exper-
imentally the density dependence of the symmetry energy
at subsaturation have been achieved in heavy-ion collisions
(HIC) at intermediate energies. It has been found that the
symmetry energy can be modelized around the saturation
density with reasonable good approximation by [11–20]

csym(ρ) = J

(
ρ

ρ0

)γ

. (13)

From Eq. (13), one can estimate the parameter L defined
in Eq. (6) from the stiffness γ of the symmetry energy, as
L = 3γ J . The values for γ extracted in the literature from
different HIC observables fall in the range γ ∼ 0.55–1.05,
which implies L values roughly between 50 and 100 MeV. In
these studies, the value of J in Eq. (13) normally has been taken
equal to 31.6 or 32 MeV. The extraction of the equation of state
of cold nuclear matter from HIC data is a very complicated task
and requires model assumptions [9–21,64–66]; the indicated
estimates for γ and L may be somewhat modified as more
measurements and analyses be performed. The range 30 <∼
L <∼ 80 MeV of L values determined here from neutron skins,
assuming the dependence of Eq. (13), favors a constraint
0.32 <∼ γ <∼ 0.84 for the γ exponent. Thus, the result points
toward a soft symmetry energy.

Our estimates for the stiffness γ can be compared with
alternative predictions derived in the recent literature. For
instance, our range 0.32 <∼ γ <∼ 0.84 overlaps with the values
γ ∼ 0.55–0.77 that Danielewicz [29] obtains from the study
of binding energies, neutron skins, and isospin analog states
of selected nuclei. It also contains the value γ ∼ 0.55 that is
inferred from the analysis of neutron-proton emission ratios
in HIC carried out by Famiano et al. [20], as well as with the
value γ ∼ 0.69 obtained by Shetty et al. [17–19] from isotopic
scaling in intermediate-energy nuclear reactions.

The stiffness of the symmetry energy at subsaturation
densities also has been investigated from isospin diffusion
data in HIC, by means of simulations with an isospin-
and momentum-dependent transport model with in-medium
nucleon-nucleon cross sections [12–16]. In this case the
prediction is 0.69 <∼ γ <∼ 1.05. It corresponds to a behavior
of csym(ρ) that nearly ranges between the familiar ρ2/3

dependence of the purely kinetic symmetry energy of a free
Fermi gas, in the lower limit, and linearity in the density
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ρ, in the upper limit. The constraints on the stiffness of the
symmetry energy derived from isospin diffusion, combined
with an analysis of the properties of Skyrme interactions,
are found to lead to a constraint 63 <∼ L <∼ 113 MeV [12–16].
The predictions from isospin diffusion are thus a little stiffer,
though the lower limits of γ and L obtained using this method
are in agreement with the upper limits of γ and L obtained
from our study of neutron skins with inclusion of the surface
width contribution.

Another valuable reference comes from the celebrated
Thomas-Fermi model of Myers and Świątecki [67,68]. This
model was fitted very precisely to the binding energies of a
comprehensive set of 1654 nuclei. It predicts an EOS that
leads to a coefficient L = 49.9 MeV. Note that if we compare
csym(ρ) calculated from the EOS of the Thomas-Fermi model
with Eq. (13), an exponent γ = 0.51 is obtained. Additional
information on the density content of the symmetry energy
arises from the constraints on the symmetry pressure Psym =
ρ0L/3 extracted by Klimkiewicz et al. [24] from the properties
of pygmy dipole resonances in nuclei. These are indicative of a
value γ ∼ 0.35–0.65 if one assumes Psym = ρ0γ J following
from Eq. (13) given above. Trippa et al. [25] have obtained
the constraint 23.3 < csym(ρ =0.1 fm−3) < 24.9 MeV from
consideration of the giant dipole resonance in 208Pb, which
implies a range ∼0.5–0.65 for the γ exponent. We depict in
Fig. 6 the estimated ranges of values for the L parameter from
the discussed analyses.

In summary, in spite of the discrepancies in the details, the
various findings from experimental isospin-sensitive signals,
including ours, all agree on a rather soft nuclear symmetry
energy at subsaturation densities. Recent studies of pure
neutron matter at low densities based on universal properties
of dilute Fermi gases lead to a similar conclusion [69,70]. One
may mention that there exists recent circumstantial evidence
[71], derived from π−/π+ ratios in central HIC collisions at
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L  (MeV)
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n-p emission 
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GDR [25]

PDR [24]

FIG. 6. Comparison of the estimated values of the parameter L

from different observables and methods. Some of the estimates have
been analyzed through Eq. (13) for csym(ρ).

SIS/GSI energies, hinting at that the nuclear symmetry energy
is soft also in the region of suprasaturation densities (ρ � 2ρ0).
However, further experimental and theoretical confirmations
of this fact need to be done [71].

V. SUMMARY AND CONCLUSIONS

The droplet model predicts that the neutron skin thickness
of atomic nuclei is correlated with the ratio J/Q, where
J is the symmetry energy in bulk matter and Q is the
surface stiffness coefficient. We have shown that the J/Q

ratio displays a linear relationship with the DM parameter L in
nuclear mean-field models that are calibrated to experimental
ground-state properties such as binding energies, charge radii,
and single-particle data. In this way, the known correlation
between the neutron skin thickness in a heavy nucleus and the
density derivative of the symmetry energy (or of the neutron
equation of state) evaluated at a subsaturation density, can be
interpreted in the context of the DM.

According to the droplet model, the neutron skin thickness
is correlated with the overall relative neutron excess I =
(N − Z)/A of nuclei. This fact is in agreement with the
experimental findings using information from antiprotonic
atoms. The DM expression for the neutron skin thickness
contains “bulk” and “surface” parts. The bulk part corresponds
to the contribution proportional to the distance t between the
neutron and proton mean surface locations. This part is quite
dependent on the Skyrme force or RMF parametrization used
to compute it (see Fig. 2). In finite nuclei, this DM bulk
contribution systematically underestimates the neutron skin
thickness extracted directly as the difference of the neutron
and proton rms radii of the nucleus from self-consistent ETF
calculations with effective forces. This evidence indicates that
the surface part, due to the bn �= bp contribution, is necessary in
the DM formula to properly estimate the neutron skin thickness
in finite nuclei in mean-field models using effective nuclear
interactions.

The DM surface contribution �Rsw
np to the neutron skin

thickness is smaller than the bulk part and shows a well-defined
linear increasing tendency with the overall relative neutron
excess I . We have investigated the dependence of the slope
σ sw with respect to I of this surface contribution using various
Skyrme and RMF forces. We have found that the slopes σ sw lie
in a region of the σ sw–J/Q plane that can be roughly limited
by two straight lines as a function of the J/Q value. It implies
that nuclear properties, which are included in the calibration
of the free parameters of the Skyrme and RMF interactions,
constrain the possible values of the surface width contribution
to the neutron skin thickness in the DM. If the same nuclear
interaction is used, a good agreement between both the DM
formula and the self-consistent ETF calculations of �Rnp in
finite nuclei is found along the whole periodic table when the
contribution �Rsw

np is included in the DM.
To analyze possible bounds suggested by experimental

neutron skin data on the value of the J/Q ratio, we have
adjusted the DM neutron skin thickness formula to the
neutron skin sizes measured in antiprotonic atoms [48,49].
We have determined a window 0.6 <∼ J/Q <∼ 0.9 for the J/Q
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ratio by using the largest and smallest surface contributions
�Rsw

np obtained from successful Skyrme forces and RMF
parametrizations. These two fits reproduce the experimental
data with almost the same quality. In other words, the
experimental data of the neutron skin thickness in finite nuclei
constrain the total theoretical estimate but not its partition
into a bulk and a surface contribution. Once the window
of J/Q values is known, the compatible range of values of
the parameter L can be estimated from the linear correlation
between L and J/Q shown in Fig. 1. From our analysis we
find the constraints 30 <∼ L <∼ 80 MeV.

If a model symmetry energy csym(ρ) = J (ρ/ρ0)γ is as-
sumed, a prediction for the value of the stiffness γ of the
symmetry energy can be obtained, with use of the empirical
values of J and ρ0. In this way we find the estimate 0.32 <∼
γ <∼ 0.84. Thus, our analysis of the experimental neutron skins
deduced from antiprotonic atoms suggests a relatively soft
symmetry energy, in good accord with the recent indications
from pygmy [24] and giant [25] dipole resonances. Our
prediction for the stiffness γ of the symmetry energy also
is in reasonable agreement with the constraints derived by
Danielewicz [29], by Famiano et al. [20], and by Shetty
et al. [19] using different observables, as well as with the value
γ = 0.51 of the EOS of the Thomas-Fermi model of Myers and
Świątecki [67,68]. In the upper limit, our prediction overlaps
with the lower limit provided by the analysis of isospin
diffusion data in intermediate-energy heavy-ion collisions
[12–16].

In summary, different techniques of extracting the param-
eters that describe the density dependence of the symmetry
energy predict different values. However, taking the average
of the central values of the predictions displayed in Fig. 6,
with account of their uncertainties when available, there exist
narrow windows of the parameters L ∼ 45–75 MeV and γ ∼
0.5–0.8 which are, actually, compatible with all the different
methods mentioned to obtain them. These ranges of values
of the indicated parameters for describing the leading density
dependence of the symmetry energy in bulk matter seem to be
the “optimal” ones according to present experimental evidence
from nuclear data.

To conclude, we are aware that the neutron skin thickness
data derived from antiprotonic atoms are to some extent model
dependent and have for some nuclei large error bars. Also, our
theoretical method represents just an average approximation.
In spite of these limitations, we hope to have shown that
from neutron skin data it is possible to make a reasonable
estimate of the density dependence of the symmetry energy
with uncertainties that are not significantly much larger than
those currently obtained from other experimental observables.
One expects that future data from the planned parity-violating
electron scattering experiment for measuring the neutron
radius in 208Pb [2] will contribute to narrow down the
constraints derived here from the thickness of neutron skins of
nuclei.
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APPENDIX

To compute the surface stiffness coefficient Q and also the
neutron and proton surface widths bn and bp that appear in the
contribution �Rsw

np of Eq. (10) to the neutron skin thickness, we
obtain the self-consistent neutron and proton density profiles
in asymmetric semi-infinite nuclear matter (ASINM). To do
that we consider a semi-infinite slab with a plane interface
separating a mixture of protons and neutrons at the left, whose
densities decrease smoothly to zero at the right as empty
space is reached. The axis perpendicular to the interface is
taken to be the z axis. Thus, the relative neutron excess
δ = (ρn − ρp)/(ρn + ρp) depends locally on the z coordinate.
When z goes to minus infinity, the neutron and proton densities
approach the values of asymmetric uniform nuclear matter
in equilibrium, corresponding to an interior bulk neutron
excess δ0.

To obtain the proton and neutron densities in ASINM one
has to minimize the total energy per unit area with respect
to arbitrary variations of the densities, with the constraint of
conservation of the number of protons and neutrons. When
δ0 is not very large, so that occurrence of drip nucleons does
not take place (which is the situation in all cases considered
in the present work), the constrained energy per unit area
reads [53,59,72]

E

S
=

∫ ∞

−∞
[ε(z) − µnρn(z) − µpρp(z)]dz. (A1)

In this equation, ε(z) represents the energy density functional
of the nuclear effective interaction under investigation, and µn

and µp are the neutron and proton chemical potentials. The
explicit expressions of ε(z) in the extended Thomas-Fermi
(ETF) method for Skyrme forces and relativistic mean-field
interactions can be found in, e.g., Appendix A of Ref. [53].
The proton and neutron densities obey the coupled local Euler-
Lagrange equations

δε(z)

δρn

− µn = 0,
δε(z)

δρp

− µp = 0. (A2)

We solve them fully self-consistently by numerical iteration
[54]. We note in this respect that we have not used any
parameterized form of the densities such as, e.g., Fermi shapes.
In the relativistic model the variational equations (A2) are
supplemented with additional field equations for the meson
fields; the calculational details for the relativistic problem can
be found in Refs. [53–55].
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From the calculated density profiles, one obtains the mean
locations of the surfaces, z0q (q = n, p), as

zoq =
∫ ∞
−∞ zρ ′

q(z)dz∫ ∞
−∞ ρ ′

q(z)dz
, (A3)

where the primes indicate a derivative with respect to the z

coordinate. The proton and neutron surface widths in ASINM
are obtained as the second moment of ρ ′(z):

b2
q =

∫ ∞
−∞(z − z0q)2ρ ′

q(z)dz∫ ∞
−∞ ρ ′

q(z)dz
. (A4)

The distance t = z0n − z0p between the mean surface
locations of the neutron and proton density profiles allows
one to extract the surface stiffness coefficient Q from the
relation [56]

t = z0n − z0p = 3r0

2

J

Q
δ0, (A5)

which is valid in the limit of small asymmetries. For each
given nuclear interaction we solve the ASINM problem for
five different values of δ0, between 0.005 and 0.025, and we
then evaluate Q from the slope of t .

There exists a second way of computing Q. It is based on
the fact that in dividing the energy in bulk and surface parts,
as soon as δ0 �= 0, there are two possibilities to define the
bulk reference energy [53,72]. One definition is based on the
chemical potentials µn and µp of each nucleon species; this
definition is thermodynamically consistent and it is the one
that we have given in Eq. (A1). The second definition of the
reference energy is based on taking the value of the energy
per particle in bulk asymmetric nuclear matter. Accordingly,
on the bulk reference energy chosen, there exist two forms
of the surface energy in ASINM, which are called Esurf,µ

and Esurf,e [53,72]. In the small asymmetry limit, it can
be shown that the difference between these two quantities
behaves as

Esurf,e − Esurf,µ = 9J 2

2Q
δ2

0 . (A6)

Thus, the slope of Esurf,e − Esurf,µ with respect to δ2
0 provides

another means to extract the value of the surface stiffness
coefficient Q. We have computed Q from Eq. (A5) and
have used Eq. (A6) to confirm the validity of our calculated
values.
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Nuclear Many-Body Problem 2001, Vol. 53 of NATO Advanced
Studies Institute Series B: Physics, edited by W. Nazarewicz and
D. Vretenar (Kluwer, Dordrecht, 2002), p. 97.

[40] M. Baldo, C. Maieron, P. Schuck, and X. Viñas, Nucl. Phys.
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[68] W. D. Myers and W. J. Świątecki, Phys. Rev. C 57, 3020 (1998).
[69] A. Schwenk and C. J. Pethick, Phys. Rev. Lett. 95, 160401

(2005).
[70] J. Piekarewicz, Phys. Rev. C 76, 064310 (2007).
[71] Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Phys.

Rev. Lett. 102, 062502 (2009).
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