
Aalto University

School of Electrical Engineering

Department of Communications and Networking

Muhammad Hassaan Bin Mohsin

Security Policy Management for a Cooperative

Firewall

Master’s Thesis

Espoo, September 4, 2018

Supervisor: Prof. Raimo Kantola

Aalto University

Thesis advisor(s): M.Sc. Hammad Kabir

Aalto University

pg. 2

Author: Muhammad Hassaan Bin Mohsin

Name of the Thesis: Security Policy Management for a Cooperative Firewall

Date: 06.09.2018 Language: English Number of pages: 88

School: Aalto School of Electrical Engineering

Department: Department of Communications and Networking

Professorship: Networking Technology Code: ELEC3029

Supervisor: Prof. Raimo Kantola, Aalto University

Instructor: M.Sc Hammad Kabir, Aalto University

Increasing popularity of the Internet service and increased number of connected devices along with

the introduction of IoT are making the society ever more dependent on the Internet services

availability. Therefore, we need to ensure the minimum level of security and reliability of services.

Ultra-Reliable Communication (URC) refers to the availability of life and business critical services

nearly 100 percent of the time. These requirements are an integral part of upcoming 5th generation

(5G) mobile networks.

5G is the future mobile network, which at the same time is part of the future Internet. As an extension

to the conventional communication architecture, 5G needs to provide ultra-high reliability of services

where; it needs to perform better than the currently available solutions in terms of security,

confidentiality, integrity and reliability and it should mitigate the risks of Internet attack and

malicious activities. To achieve such requirements, Customer Edge Switching (CES) architecture is

presented. It proposes that the Internet user’s agent in the network provider needs to have prior

information about the expected traffic of users to mitigate maximum attacks and only allow expected

communication between hosts. CES executes communication security policies of each user or device

acting as the user’s agent. The policy describes with fine granularity what traffic is expected by the

device. The policies are sourced as automatically as possible but can also be modified by the user.

Stored policies will follow the mobile user and will be executed at the network edge node executing

Customer Edge Switch functions to stop all unexpected traffic from entering the mobile network.

State-of-the-art in mobile network architectures utilizes the Quality of Service (QoS) policies of

users. This thesis motivates the extension of current architecture to accommodate security and

communication policy of end-users. The thesis presents an experimental implementation of a policy

management system which is termed as Security Policy Management (SPM) to handle above-

mentioned policies of users. We describe the architecture, implementation and integration of SPM

with the Customer Edge Switching. Additionally, SPM has been evaluated in terms of performance,

scalability, reliability and security offered via 5G customer edge nodes. Finally, the system has been

analyzed for feasibility in the 5G architecture.

Keywords: IP, PRGW, CES, Security, Firewall, Policy, Database, Management, Security, PMS

pg. 3

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful.

All praises to the Almighty Allah, for strengthening me and his continuous blessing on me through my

hardships of life. A special praise to Prophet Muhammad (Peace be upon Him) who is forever a source

of inspiration, guidance and a role model of peace and kindness for the whole humanity. I would

dedicate this hard work to my grandfather and late grandmother whom I owe this success. Their prayers,

motivation and trust in me was a source of encouragement to excel in life.

It was an honor to be trusted and relied on by Professor Raimo Kantalo, who has put faith in me and

provided me with an opportunity to work under his professional and tactful guidance, and with his

competent research group. His broad knowledge and experience in the field of my research improved

my vision and approach towards technical designing and implementation.

I am also grateful to my supervisor Hammad Kabir who stood by me throughout my thesis with his

technical insight in the subject and professional attitude towards the implementation approach of the

system. His continuous feedback regarding my thesis implementation, testing and integration was a

vital source of incremental improvement of my technical skills and the thesis.

Finally, I would like to thank my parents and sister for relying on me and supporting me in building my

career and acknowledging my achievements. Their love, support, prayers and kindness have always

been a great source of strength. I would like to give a special thanks to Hussain Parsaiyan who became

a source of guidance throughout my thesis and smoothened my transition towards the field of

development. The continuous support of my friends Umar, Ahsan and Muneeb for motivating and

cheering me through my thesis and during the stay in Finland was helpful in maintaining my enthusiasm

for diverse efforts.

Muhammad Hassaan Bin Mohsin

Dated: 2nd September 2018

pg. 4

Table of contents

Acknowledgements………………………….….……………………………………….……….……………….……..………………….3

Table of contents….………………………….….……………………….……………………….……………….……..……………….…4

List of figures……………………………………….……………………….……………………….……………………..…..………….…..7

Acronyms.………………………………………………….……………………….……………………….……………………….…………..8

1. Introduction .. 11

1.1 Research problem ... 12

1.2 Objective ... 13

1.3 Scope ... 13

1.4 Structure ... 14

2. Background ... 15

2.1 4G/LTE architecture .. 15

2.1.1 HSS .. 17

2.1.2 Policy and Charging Control (PCC) architecture .. 18

2.1.3 PCC components ... 20

2.1.4 Interfaces and protocols ... 22

2.2 Firewalls .. 24

2.2.1 Introduction .. 24

2.2.2 Working methodologies and limitations ... 26

2.2.3 Firewall types .. 28

2.2.4 SPM for firewall ... 31

2.3 Policy Management System (PMS) ... 31

2.3.1 Terminologies: .. 32

2.3.2 Variants ... 34

2.3.3 Variant’s limitations .. 36

2.3.4 Research on policy management .. 37

3. Customer Edge Switching (CES) .. 39

3.1 Motivation ... 39

3.2 Architecture .. 41

3.3 Communication and protocols .. 42

3.3.1 Inter-CES communication ... 42

3.3.2 Intra-CES communication: .. 43

3.3.3 PRGW and legacy host .. 44

3.4 Policy information ... 45

pg. 5

3.4.1 Types of policies .. 45

3.4.2 Management Scope .. 47

3.5 Conclusion (and SPM requirements) .. 48

4. Proposed architecture .. 49

4.1 Design .. 49

4.2 Policy-Database schema ... 50

4.2.1 Bootstrap policies ... 51

4.2.2 Session policies ... 52

4.2.3 Host Policies .. 53

4.2.4 CES Policies .. 54

4.3 Summary ... 54

5. Implementation .. 55

5.1 Tools and specifications .. 55

5.2 System architecture .. 56

5.2.1 Policy-API .. 57

5.2.2 Django-webserver ... 61

5.2.3 Policy Management Tool (PMT) .. 62

5.2.4 Policy-Database ... 63

5.3 Additional features ... 64

5.3.1 Reputation service .. 64

5.3.2 User registration and ID service .. 64

5.4 Optimizations .. 65

6. API manual .. 66

6.1 Code Structure .. 66

6.1.1 SPM ... 66

6.1.2 Django_webserver .. 68

6.2 SPM Setup ... 68

6.3 API end points ... 69

6.3.1 Retrieval API for CES ... 69

6.3.2 Policy Management API .. 70

7. Results and evaluation .. 72

7.1 Tools benchmark ... 72

7.2 Security and integrity .. 73

7.3 Performance ... 74

pg. 6

7.3.1 Test environment .. 74

7.3.2 Policy management performance ... 75

7.3.3 Policy retrieval performance ... 79

7.4 Scalability .. 81

7.5 Integration testing with CES .. 82

8. Discussion .. 84

9. Conclusion ... 85

10. Future works ... 86

pg. 7

List of figures:

Figure 1- Scope of Thesis .. 13

Figure 2- 4G Network building blocks and architecture 1 ... 16

Figure 3- Components of Policy & Charging Control 2 .. 18

Figure 4- Firewall Placement for separation of LAN and WAN 5... 25

Figure 5- Types of firewalls ... 28

Figure 6- Cisco Security Manager Features 7 .. 35

Figure 7- NAT Architecture 13 .. 40

Figure 8- Architecture of CES [26] ... 41

Figure 9- CES to CES connection establishment [24] .. 43

Figure 10- Inbound Communication between Legacy IP and CES host .. 44

Figure 11- CES-CES sample policy ... 46

Figure 12- Host-Host sample policy .. 46

Figure 13 - Sample firewall policy ... 47

Figure 14- Basic SPM structure ... 49

Figure 15- LTE Architecture with SPM .. 50

Figure 16- Bootstrap_Policies database schema .. 51

Figure 17- Session_Policies database schema .. 52

Figure 18 - SPM nodes in CES Network Architecture .. 56

Figure 19 - Implementation hierarchy of SPM .. 58

Figure 20 – Flow diagram for Request handling at API ... 60

Figure 21 - Architecture of Django Framework 14 ... 62

Figure 22 - Latency per packet for HTTP GET request by CES node ... 80

Figure 23 - Impact of SPM integration on CETP-Policy negotiation at CES-CP 83

pg. 8

Acronyms

3GPP 3rd Generation Partnership Project
4G 4th Generation
5G 5th Generation
AAA Authentication, Authorization & Accounting
ACL Access Control List
AF Application Function
API Application Programming Interface
ARP Allocation and Retention Priority
AuC Authentication Center
AVP Attribute Value Pair
BBERF Bearer Binding and Event Reporting Function
BTS Base Transceiver Station
C2C CES to CES
CCR Credit Check Request
CDR Charging Data Records
CES Customer Edge Switching
CETP Customer Edge Traversal Protocol
CN Customer Network
CP Control Plane
CSM Cisco Security Manager
CSRF Cross Site Request Forgery
CSS Cascading Style Sheets
DCCA Diameter Credit Control Application
DDNS Dynamic Domain Name System
DHCP Dynamic Host Configuration Protocol
DNAT Destination Network Address Translation
DNS Domain Name System
DP Data Plane
DPI Deep Packet Inspection
E-UTRAN Evolved UMTS Terrestrial Radio Access Network
EDGE Enhanced Data for GSM Evolution
EPC Evolved Packet Core
FCFS First Come First Served
FQDN Fully Qualified Domain Name
FTP File Transfer Protocol
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
GTP GPRS Tunneling Protocol
GUI Graphical User Interface
H2H Host to Host
HLR Home Location Register
HSDPA High-Speed Downlink Packet Access
HSS Home Subscribe Server
HTML Hypertext Markup Language
HTTP Hyper Text Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

pg. 9

ICMP Internet Control Message Protocol
IMSI International Mobile Subscriber Identity
IoT Internet of Things
IP-CAN Internet Protocol Connectivity Access Network
IP Internet Protocol
IPSec Internet Protocol Security
ISMI International Mobile Subscriber Identity
ISP Internet Service Provider
JSON JavaScript Object Notation
KB Kilo Bytes
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
LTE Long-Term Evolution
MME Mobility Management Entity
ms Millisecond
MSISDN Mobile Subscriber Integrated Services Digital Network
MTU Maximum Transmission Unit
MVC Model View Controller
NAT Network Address Translation
OCS Online Charging System
OFCS Offline Charging System
OSI Open Systems Interconnection
P-GW Packet Gateway
PCC Policy and Charging Control
PCEF Policy and Charging Enforcement Function
PCRF Policy and Charging Rules Function
PDE Policy Decision Engine
PDF Policy Decision Function
PDN Packet Data Network
PDP Policy Decision Point
PEP Policy Enforcement Point
PMIP Proxy Mobile Internet Protocol
PMS Policy Management System
PMT Policy Management Tool
PRGW Private Realm Gateway
QCI Quality Control Information
QoE Quality of Experience
QoS Quality of Service
RAA Re-Auth Answer
RAM Random Access Memory
RAR Re-Auth Request
REST Representational State Transfer
RLOC Routing Locator
S-GW Serving Gateway
SATA Serial Advanced Technology Attachment
SDF Service Data Flow
SDN Software Defined Networking

pg. 10

SIM Subscriber Identity Module
SLF Subscriber Location Function
SMS Short Message Service
SNAT Source Network Address Translation
SPM Security Policy Management
SPN Service Provider Network
SPR Subscriber Profile Repository
SSH Secure Shell
SSL Secure Socket Layer
STUN Session Traversal Utilities for NAT
TB Tera Bytes
TCP Transmission Control Protocol
TURN Traversal Using Relays around NAT
UE User Equipment
UDP User Datagram Protocol
UI User Interface
URC Ultra-Reliable Communication
URI: Universal Resource Identifier
URLLC: Ultra-reliable Low Latency Communication
URS Ultra-Reliable Service
UUID Unique User Identifier
VPN Virtual Private Network
WAN Wide Area Network
WCDMA Wideband Code Division Multiple Access

pg. 11

1. Introduction

Mobile technology is revolutionizing constantly, thus transforming a voice network to a

data network. 2G Global System for Mobile (GSM) provided an initial mobile-data service with

low-rate data communication using signaling channels, known as Short Message Service

(SMS). With upgrades of General Packet Radio Service (GPRS) and Enhanced Data for GSM

Evolution (EDGE) for Internet connectivity, the existing GSM architecture achieved the data

rates of up to 384 Kbps. The first version of 3G, Wideband Code Division Multiple Access

(WCDMA), was only able to offer 384 Kbps [1]. High-Speed Downlink Packet Access (HSDPA)

was used to improve and extend data rates of 3G to 14.4 Mbit/s [1]. It was then called the

wireless broadband because of the considerably higher data rate. With such modifications,

3G was the hybrid of data and voice network deployed on existing GSM architecture along

with software upgrades in Base Transceiver Stations (BTS). The targets accomplished were

short-lived and soon there was a need to achieve even higher data rates, lower latency and

increased scalability.

The technology evolved with continuous upgrades in data transfer rates, latency and

scalability. This, in turn, helped to confine one’s world in his pocket. 4G, the last deployed

upgrade, has achieved even faster data rates and now a user is able to access nearly all

services on his phone such as online banking, email, multimedia, social media and TV on-

demand and in nearly real-time. Data rates in 4G are capable of providing throughput of up

to 100Mbps during high mobility which satisfies the need for bandwidth-demanding

applications such as YouTube. Retaining the confidentiality and integrity of data at last mile is

important which requires encryption of data. However, LTE core network is an all Internet

Protocol (IP) based network, which requires security measures in place to ensure

uninterrupted sessions and secure delivery of services [2][3].

4G is designed for consumer markets targeting humans as users. Researchers and

developers have mostly focused on providing end users with high data rates, lower latencies,

and better software support, but major documents regarding newer and upcoming standards

of mobile communication technology lack details about safety, adaptability and elasticity of

the network.

Simultaneously, the next generation namely 5G is expected to serve the needs of

upcoming applications such as IoT, automated driving, Industrial Internet etc. This, in turn,

gives rise to the introduction of Ultra Reliable Communication (URC) in 5G [4] which demands

the availability of resources for almost 100 percent of the time. While 5G is developed for

consumer and corporate markets to support digitalization of economics, industry and society,

at the same time, 5G extensively relies on Internet technologies, and we have learned to know

pg. 12

the Internet as an inherently unreliable and insecure network. Therefore, 5G should make

significant progress in the field of security as compared to the current state-of-the-art on the

Internet. Reliability and security are interlinked because malicious acts by hackers on the

Internet can take down legitimate services, and such acts on the current Internet are

inherently unpredictable. Recalling that reliability is the probability of the lack of failures for

any reason implies that reaching ultra-high-reliability of services in 5G means that it should

be either very hard or impossible to take down reliable services by malicious activities (at least

based on cheap and almost trivial attacks).

We have proposed the Customer Edge Switching (CES) as a new architecture for the 5G

and the internet, as a component of Ultra-reliable Low Latency Communication (URLLC) for

connecting the 5G core network to the Internet and other legacy IP networks. Developed at

Aalto University, it helps to reach ultra-high reliability of services through policy-based

communication. In this approach, when two devices or services (in the cloud) are

communicating, a chain of trust on a suitable level of assurance is formed between the

communicating parties. Each device has an agent (i.e., CES) in the cloud that knows expected

traffic towards the served device and discards all the other traffic as anomalous or malicious.

In the system, all flows to and from users are admitted based on the defined policy. CES nodes

are cooperative firewalls, and they cooperatively arrive at the final admit/drop decision by

exchanging user specific communication policies.

1.1 Research problem

A policy is a set of conditions that need to be fulfilled before an action can take place. In

traditional networks, policies are used to control aspects of communication such as Quality

of Service (QoS), security or access to data. In this thesis, we introduce and focus on

communications security policies. A communication security policy is a set of conditions

applied in the network firewall to device admission of a flow or a packet to or from an end

device. In this thesis, we use the term policy in the context of Security Policy Management

(SPM) to refer to a communication security policy. These policies need to be defined on

different levels of abstraction for end-users. An executable policy is bound to IP-addresses,

port, protocol numbers and possibly to other fields of an IP or higher layer protocol that form

the matching criteria. The policy is applied when the conditions in the policy match the fields

in the packet. There is a need to store these policies in the database usually on a more abstract

level – instead of being bound to binary fields of a packet. An abstract policy may be bound

to textual names. We intend to design and verify a Security Policy Management that stores

and manages the user policies executable at Customer Edge Switching (CES) nodes.

pg. 13

Thus, there is a need to have a policy database that handles frequent read and write

operations and populate changes on runtime in the network. Moreover, the database should

maintain a record of subscribers belonging to different groups and shall ensure precedence

of network policies over user policies.

1.2 Objective

The aim of this thesis is to develop a Security Policy Management (SPM) system for

storage, retrieval, deletion and editing of policies at runtime and populate changes all the way

to CES firewalls for execution on demand. The database design would be capable of providing

services to multiple CES nodes thus allowing sharing of resources. A Graphical User Interface

(GUI) would be developed for the management of policies by users, company administrators

or network managers. In this thesis, we seek to define the principles for demarcation of

responsibilities over the policy definition between user and domain administrators.

The objective of this thesis is to:

a) design, implement and test the SPM design

b) test the security, integrity and reliability of the system against malicious policies

c) evaluate the performance and scalability of the system

d) split the responsibilities between the domain administrators and the end-users for

defining the content of policies.

1.3 Scope

Figure 1 shows the graphical representation of the scope.

This thesis focuses on developing the back-end and front-end of a Security Policy

Management (SPM) system. The thesis scope excludes the policy sourcing to the SPM.

Moreover, the charging and other rules defined in Policy and Charging Rules Function (PCRF)

are not in the scope of this thesis.

Figure 1- Scope of Thesis

pg. 14

This thesis focuses on the use case of Mobile Broadband in the design of the SPM and

Policy-Database itself. This use case is chosen because for it all technology components exist

facilitating testing. Our working hypothesis is that by modifying some of the components and

possibly redefining the policy hierarchies, we will be able to adjust the SPM and the policy

control (and hence cooperative firewalling) to other use cases such as the ultra-reliable

machine-to-machine communications.

1.4 Structure

The thesis is divided as follows.

Chapter 2 provides a brief review about the data repository in classical mobile

telecommunication technologies and technical overview of firewalls. The chapter also

includes the test cases used to focus the need for a separate database and management

system. Chapter 3 discusses the architecture of Customer Edge Switching and its functional

nodes to analyze the requirements for the Policy-Database schema. Chapter 4 proposes the

architecture of SPM and schema for Policy-Database required to store security and network

management policies. The chapter also discusses the possible available technologies and

finalizes the technical specifications of implementation through a comparison between

technologies. Chapter 5 explains the implementation of the system, hierarchy of network, the

interconnection between nodes, and optimizations performed to achieve better performance

and scalability results.

Chapter 6 presents a user manual of Application Programming Interface (API) of SPM for

its usage, expansion and compatibility with different nodes and systems. Chapter 7 discusses

the performance, scalability and security test results of API and database. Chapter 8 evaluates

the SPM and its comparison to the database and management functions of LTE. Chapter 9

concludes the thesis and chapter 10 suggests possible future works in the SPM.

pg. 15

2. Background

This chapter highlights the architecture of 4G LTE, its Policy Management and firewall

operations. We study the already implemented infrastructure and its operation. We also

describe the current firewalls, their different types and implementation approaches. Finally,

we review the existing Policy Management Systems (PMS) used for handling of firewalls and

their expansion possibilities to accommodate the CES requirements.

2.1 4G/LTE architecture

4G LTE is the currently deployed mobile network architecture, which drastically improved

the data rates to the end users as well as the Quality of Experience. This required a

considerable network change and a heavy investment from mobile operators as the core and

access networks both required hardware modifications. The change involves the

transformation of a circuit-switched voice network to a packet-based core, treating user

traffic as data packets. The packet-based core improved the utilization of network

components by sharing resources among the services. The data-rates provided by 4G allow

devices to smoothly run the general office and academic applications, and even to stream HD

videos. The core network in LTE stores the policies for maintaining end-user Quality of

Experience and establishing (or maintaining) sessions.

The entire 4G network can be decomposed into 4 big blocks which are interconnected to

give the final shape of the architecture. The blocks include UE, E-UTRAN, EPC and server

Packet Data Networks (PDNs). The fourth element (PDNs) is considered as outside network.

1. User Equipment (UE)

2. Evolved UMTS Terrestrial Radio Access Network (E-UTRAN)

3. The Evolved Packet Core (EPC)

Figure 2 shows the constitutional components of the 4G network. UE communicates with

E-UTRAN which is responsible for access level management that includes mobility

management of UE, authentication of devices and wireless communication. User sessions are

created and maintained in the EPC with the help of policies and information provided by

databases. EPC plays its role in network management and handling the exchange of packets

with external networks. EPC controls the complete network as it has all the necessary

information for running the architecture smoothly. It also communicates with the outside

network when the data needs to be exchanged with remote Packet Data Networks (PDN).

Furthermore, it is responsible for maintaining the Quality of Service of user sessions along

with administering internal switching within the network.

pg. 16

Figure 2- 4G Network building blocks and architecture 1

Figure 2 gives an insight of the main building blocks of LTE architecture. In a

telecommunication network, the technology deployed at last mile network differs depending

on the geographical location. A city is usually equipped with LTE enabled stations, whereas a

scarcely populated area can work using a 2G technology. Therefore, E-UTRAN depends on the

technology being used by the telecom vendor at last mile network. ENodeB communicates

with the Mobility Management Entity (MME) for UE authentication and mobility management

purpose. MME, in turn, interacts with Home Subscriber Server (HSS) to retrieve necessary

information about the user.

The EPC in 4G comprises of 5 major components. MME, Serving Gateway (S-GW) and

Packet Gateway (P-GW) are functional elements which are involved in enforcement of rules

and management of sessions, whereas HSS and PCRF provide rules and policies governing the

actions performed by the functional elements. HSS and PCRF are concerned with policy rule

creation because of which, the storage entities reside with these nodes to store policy

parameters. HSS is not directly involved with the session management and user-specific

policies regarding data plane, instead, it is responsible for keeping the location information

and authentication parameters of user devices. Serving Gateway (S-GW) or Packet Gateway

(P-GW) are provided with user data policies and session parameters from Policy and Charging

Rules Function (PCRF) to maintain session quality. The intermediate nodes between UE and

P-GW depend on the technology used, whereas P-GW is joint for all users, therefore, data

policies are implemented in P-GW.

PCC is the combination of components that are responsible for management of databases,

retrieving policies, record user’s session data and keep statistics of usage for charging

purposes. The information in 4G architecture, which is relevant to this thesis, is entirely stored

1 [online]. Available https://www.tutorialspoint.com/lte/images/lte_architecture.jpg [Accessed: Nov. 25, 2017]

https://www.tutorialspoint.com/lte/images/lte_architecture.jpg

pg. 17

in components of Policy and Charging Control (PCC) because of which it will be discussed

further in section 2.1.2. Once a user has successfully attached with the network, the core

network does not need much information from HSS regarding user session and exchange of

information. In contrary, PCRF comes into play after the user is successfully authenticated.

PCRF provides underlying rules for a user or service which needs to be applied in S-GW and

P-GW in order to provide satisfactory services to the user. PCRF also stores session

information and charging rules which would monitor the traffic for record and logs. Two

additional components, Online Charging System (OCS) and Offline Charging System (OFCS),

are also part of PCC. Both of these entities are responsible for charging of user services based

on the subscribed package such as prepaid and post-paid. In this chapter, we further

elaborate the databases and PCC components in detail.

2.1.1 HSS

Home Subscriber Server is a database unit of the network. It contains the subscriber’s

mobility, authentication and subscription information. HSS is the combination of two well-

known units of previous mobile network generations: that are Home Location Register (HLR)

and Authentication Center (AuC), because of which, it is also called as Super HLR. HSS stores

the user’s subscription information and provides support functions for the session and call

setup along with authorization policies. As a combined alternative to HLR and AuC, HSS has

the following information: [6]

 User identification and addressing: this field contains user-specific values that are

unique. It includes International Mobile Subscriber Identity (IMSI) and Mobile

Subscriber Integrated Services Digital Network (MSISDN) number.

 User Profile Information: This field contains some policies or profiles assigned to a

user.

 Users Mobility Function: It contains the information of user’s location and his mobility

along with roaming parameters.

 Subscriber Location Function (SLF): Information regarding HSS associated with a user

profile to redirect clients.

The purposes of AuC are security support and authentication. By using the User’s unique

values or codes, it generates the security parameters that are used to make the user data

secure against confidentiality and integrity breaches. Correspondingly, it generates the keys

for cyphering user packets. HSS is the central database for any domain but big operators might

have more than one HSS. The demand for adding more HSS to system originates when the

number of users in a network exceeds the handling capacity of single HSS, which in turn

originates the need of having Subscription Location Function (SLF). SLF directs the client to

the relevant HSS which is currently serving the user.

pg. 18

HSS manages the subscription information whereas S-GW and P-GW apply the session and

service policies. HSS is mainly concerned with control plane and has little or no information

about the data plane of user’s session.

2.1.2 Policy and Charging Control (PCC) architecture

PCC is a combination of different modules and nodes residing at different logical or

physical locations in an LTE core network. It includes Policy and Charging Rules Function

(PCRF), Policy and Charging Enforcement Function (PCEF), Application Function (AF),

Subscriber Profile Repository (SPR), Bearer Binding and Event Reporting Function (BBERF),

Online charging system (OCS) and Offline charging system (OFCS). These components are

responsible for the tasks that are most evident by their name where PCRF is the controlling

component.

Figure 3- Components of Policy & Charging Control 2

In the current architecture, P-GW behaves as the default network gateway because of

which, policy application and charging rules are implemented in P-GW. QoE is maintained by

EPC through policies retrieved from the Subscriber Profile Repository (SPR) and Application

Function (AF) through PCRF. PCRF is not connected with any of the access end entities

including eNodeB, HSS and MME to achieve the modularity of nodes performing diverse

functions. Figure 3 illustrates the components that together make the PCC architecture.

The figure shows different nodes in the PCC architecture of the LTE network and their

interconnectivity. The rules provided by PCRF are for each Service Data Flow (SDF). SDF

consists of fixed parameters which makes an SDF unique and a policy rule provided by PCRF

2 [online]. Available https://sites.google.com/site/amitsciscozone/_/rsrc/1468881655405/home/lte-notes/pcc-

architecture/PCC%20Architecture%20non-roaming.png [Accessed: Nov. 25, 2017]

https://sites.google.com/site/amitsciscozone/_/rsrc/1468881655405/home/lte-notes/pcc-architecture/PCC%20Architecture%20non-roaming.png
https://sites.google.com/site/amitsciscozone/_/rsrc/1468881655405/home/lte-notes/pcc-architecture/PCC%20Architecture%20non-roaming.png

pg. 19

for an SDF is applied to all passing packets that match the criteria of that SDF. To define a new

SDF, a template needs to be filled defining all necessary parameters to identify the flow. Each

SDF has a unique identifier to be called from other nodes. There are two different types of

rules that are enforced by PCC 3.

 Dynamic Rules are dynamically provisioned to PCEF for enforcement by PCRF through

the Gx interface

 Pre-Defined Rules are pre-configured rules in PCEF. These rules can be activated on

the instructions from PCRF provided through Gx interface.

A rule provided by PCRF composes of data retrieved from the databases. SPR and AF are

the main databases of PCC which are responsible for storing user-specific policies and group

rules. A rule contains several fields, such as [8]:

1. Rule Name – An identification of the rule used to reference from PCEF and PCRF.

2. Service Identifier – The identification of the service or part of a service that SDF
(Service Data Flow) relates to.

3. SDF filters – The application of rule depending on the type of traffic or data.

4. Precedence – Priority of the applied filter which is the screening of unwanted traffic.
If the precedence or priority is the same then the dynamic rule is applicable over pre-
defined rule.

5. Gate Status – Indicates the action of blocked or allowed for the detected traffic or
SDF.

6. QoS parameters – The parameters like downlink and uplink bitrates, Quality Control
Information (QCI) and the Allocation and Retention Priority (ARP) form the QoS
parameters.

7. Charging Key and Charging Parameters - Online or offline charging parameters.

8. Monitoring Key helps to recognize a monitoring control instance that shall be used for
usage monitoring control of the Service Data Flows (SDFs).

PCC is responsible for all session-related information along with charging. It ensures that

each service gets enough bandwidth and resources achieve the minimum QoS target along

with charging info on per service basis. The functions of all the components of PCC can be

summed up to achieve the following objectives; 1) Check the correct SDF for a packet by

detecting and comparing the provided fields. 2) Charge the packet according to the rule-set

for specific service. 3) Provide rules for authorization control and management of service. 4)

Identify the service and provide all necessary policies for session establishment and

administration

OCS is a credit management system which is mainly responsible for the charging of

Prepaid subscriptions. The information from OCS is inquired by PCEF to check for the recent

3 [online]. Available https://sites.google.com/site/amitsciscozone/home/lte-notes/pcc-architecture [Accessed:

Nov. 25, 2017]

https://sites.google.com/site/amitsciscozone/home/lte-notes/pcc-architecture

pg. 20

credit status. Service Data Flow Based Credit Control Function performs online credit control

and resides inside OCS. OFCS, as the name suggests, is used for offline charging of user’s

subscription. PCEF provides details to OFCS to formulate Charging Data Records (CDRs). These

records are then interpreted to generate bills in the billing system. BBERF is usually located

in S-GW in the 3rd Generation Partnership Project (3GPP) implementation, but its location is

technology dependent and can reside in any other node. The name is formed from the two

different functionalities; Bearer Binding and Event Reporting. In order to ensure the QoS for

any service, there must be a mapping between the rule provided by PCC and the Internet

Protocol – Connectivity Access Network (IP-CAN) bearer. “Bearer Binding Function” is

responsible for achieving this binding between PCC rule and IP-CAN bearer. Event Reporting

triggers an event when a match is found on an event occurrence. This reporting is performed

by Event Reporting Function, which resides either with BBERF or in PCRF. The signal for the

event trigger occurs when any of the defined conditions are satisfied such as:

 A user is no more part of an operator network

 QoS values have been changed

 Mobility of User: UE has changed its location and is now in a different range

 PCRF has instructed PCEF to change a PCC rule

 User Device has received a new IP address

The remaining elements of PCC will be discussed in detail in section 2.1.3.

2.1.3 PCC components

The major elements of our concern are PCEF, PCRF, SPR and AF. AF and SPR are the

databases for storing policy elements and other parameters, whereas PCRF and PCEF are the

functional nodes. These nodes are responsible for the creation and implementation of rules.

We present a study of these components and the information they contain as a reference for

designing our SPM, proposed in this thesis, and its integration in the mobile network

architecture.

SPR contains the subscriber’s subscription information. The information in SPR is PDN

specific and it has the capability to store different information for a single user depending on

the serving PDN. It contains user’s information with following categories [9]:

 Allowed services to the subscriber

 Assuring minimum QoS for the subscriber

 Guaranteed Bandwidth for the subscriber

 Quality of service class identifiers, maximum bit rate limit and guaranteed bit
rate limit

 Charging related information of the user

 The category of the user

pg. 21

 Subscriber’s usage monitoring related information

 Quota Information of the subscriber

AF is a database element of PCC architecture which is responsible for providing session

related information to PCRF. AF is the actual server at the backend that is responsible for

service session management and providing details of that service to PCRF. The Application

Function contains information about the port numbers, bitrates, IP-addresses and delay

sensitivity of any service to PCRF so that formation of rules can cater for these parameters.

AF Contains the following fields 4:

 Subscriber Identifier - typically the MSISDN of the user, if known by the AF

 IP address of the User Equipment (UE)

 Media Type or Format, Bandwidth, Flow description (For example: source and
destination IP address, port numbers and the protocol)

 AF Application Identifier, Event Identifier, AF Record Information

 Flow status (for gating decision)

 Emergency indicator

 Application service provider (i.e., the Diameter realm or business name)

 Quality control for the Apps that reside inside the network

PCEF is the enforcement agent of EPC, which applies the rules provided by PCRF. It

includes a Deep Packet Inspection (DPI) module that inspects the packet for the execution of

rules either provided by the PCRF or statically configured in the PCEF. It is a governing body

inside PCC which guarantees the application of parameters provided in the rules thus ensuring

the quality of user’s sessions. PCEF is also responsible for the charging-related controls and

interactions with other nodes such as OCS and OFCS. PCEF can contain pre-configured rules,

but PCRF provides the activation/deactivation signals.

PCRF is the core element of PCC and a rule providing engine for P-GW and S-GW residing

in EPC of LTE. It is also sometimes referred to as Policy Server and has a former name of Policy

Decision Function (PDF). PCRF is the controlling agent of the system and provides the QoS to

user sessions through SDF detection, SDF filtering, filtering packets, QoS control and charging

of user via PCEF. Through the information gathered from SPF and AF, PCRF creates a rule

which is in accordance with the network policies, subscription and package of the user. For a

complete rule creation in PCRF, along with SPF and AF, BBERF and PCEF also provide

information to PCRF regarding charging and current session parameters. The information is

provided through different interfaces marked in Figure 3. The information provided includes

IP address of the UE, PLMN identifier, subscriber identifier, type of IP-CAN (GPRS, etc),

location of subscriber, request type (Initial, Modification, etc), PDN identifier, IP-CAN bearer

attributes and IP-CAN bearer establishment mode [8].

4 [online]. Available https://sites.google.com/site/amitsciscozone/home/lte-notes/pcc-architecture [Accessed:

Nov. 25, 2017]

https://sites.google.com/site/amitsciscozone/home/lte-notes/pcc-architecture

pg. 22

PCRF plays as a negotiator between other operations that include allocating required

bandwidth, QoS parameters and resources for session creation, call establishment and

management. This enables an option with the operators and Internet Service Providers (ISP)

to charge the customer on the basis of provided Quality of Service. A call with least

interruption, delay and jitter can cost more than a normal call which has low QoS values.

Moreover, it has opened the way of prioritizing calls by assigning priority based on various

parameters such as dialling special codes, user-based priority, destination-based priority etc.

This also enables the possibility of emergency calls which get top priority and might be

exempted from credit or charging information while dialling to make it independent from OCS

and OFCS.

The functions of PCRF can be summed up as 1) it manages network and policies of users

and subscribers in real time, 2) prioritizes call setup and network traffic along with

dynamically handling traffic routes, 3) data gathered through device, location, billing and

network policies join together to give a unified view of the user and the subscriber and 4)

resource management and bandwidth allocation to assure maximum possible revenue

In terms of network management, PCRF takes the responsibility of allocating equal

resources from the network to the users along with ensuring availability of services in the

hour of need. It can limit the bandwidth for apps which consume maximum throughput thus

dividing equal share of services amongst users. Moreover, in emergency situations, it can limit

the usage of a user in order to provide the necessary resources to the maximum possible

number of users thus handling emergency scenarios in an optimum manner. Inside PCRF,

resides a Policy Decision Engine (PDE) which is responsible for decision-making tasks. This

engine needs to be triggered to generate an output. This trigger can be initiated by processes,

interfaces or messages from other nodes. Furthermore, internal timers can also play a role to

trigger these decisions thus allowing the possibility of different resource allocation strategies

according to the changing time of day.

The next section discusses the communication and interactions between different

elements of PCC and the form of data exchanged.

2.1.4 Interfaces and protocols

Elements of PCC are interconnected through interfaces which have been given a name in

the architecture for identification. According to Figure 3, Gx is the most important of the

interfaces which connects PCEF with PCRF. Interfaces can be logical or physical depending on

the nature of PCC components and their placement. The type of protocol used depends on

the type of information to be retrieved, the frequency of communication and the amount of

data. The performance and scalability of the network heavily depend on used protocols. For

most interfaces, Diameter and Radius protocols are used for Authentication, Authorization

and Accounting (AAA) where Diameter is the newer and extensively deployed AAA protocol

which provides several additional features over RADIUS. It is a signalling protocol to retrieve

pg. 23

data and is based on request/response principle. Major interfaces of PCC architecture shown

in Figure 3 are briefly discussed below [10]:

S5: This interface is between PCEF which resides in P-GW and BBERF which resides in S-

GW. It provides tunnelling between S-GW and P-GW for the user plane along with

involvement in the exchange of information related to management of the tunnel.

Furthermore, it signals the P-GW about the changing S-GW due to the mobility of the user. S5

interface is also referred as the S8 interface when a user is in roaming and there is a need to

collaborate between nodes of different operators. The interface is based either on Gn/GTP

(GPRS Tunnelling Protocol) or uses the Proxy Mobile Internet Protocol (PMIP). PMIP is

involved in mobility management and handling of QoS parameters.

Gy: It behaves as Diameter Credit Control Application (DCCA) proxy between the two

charging management entities, PCEF and OCS. This interface allows online charging and

crediting based on SDF. Diameter protocol is used on this interface with the additional

Attribute Value Pairs (AVPs) which are Diameter protocol’s header fields. It controls the

charging of user services based on the blocks of 100Kb (not strict) and can terminate the

sessions when required. After each block consumption, the OCS checks for the remaining

credit to be used in next block usage.

Gz: The interface connects PCEF with OFCS for offline charging control. In offline charging,

the credit information does not affect user’s session and services. The interface also uses the

Diameter protocol as suggested by 3GPP. Charging Data Records (CDRs) are transferred

between the nodes using Gz interface.

Gx: The interface handles communications between PCRF and PCEF. Most of the policy

rules and charging based information are exchanged on this interface. It also uses the

Diameter protocol. The AVPs in Diameter can be altered easily by PCRF to meet the customer

needs and adapt to changing scenarios. PCEF informs PCRF about the session initiation of a

subscriber so that the relevant data can be retrieved from the database and formulated in

the form of rules which can be implemented at PCEF. PCRF has the ability to change the

parameters of an ongoing session and can instruct PCEF to terminate a session. All

instructions provided directly to PCEF from PCRF are sent using this interface. Two procedures

are used for communication between PCRF and PCEF. A Pull Procedure in which PCEF

generates a request to PCRF for fetching a rule and Push Procedure in which PCRF can instruct

PCEF to enforce a rule without receiving any request. An example of Pull Procedure is Credit

Check Request (CCR). PCC rules pushed to PCEF use Re-Auth Request (RAR) messages which

are replied by PCEF using the Re-Auth Answer (RAA) message.

Gxx: The interface connects BBERF with PCRF. The rule formation at PCRF can base on the

information collected from BBERF allowing PCRF to have dynamic controls over charging

policies. The interface also works over Diameter protocol. Gxx interface can be further

specified as Gxa and Gxc depending on the location of BBERF. If it is located in S-GW, the

interface is more precisely called as Gxa whereas Gxc applies when the BBERF resides in non-

pg. 24

3GPP access. The interface is used for management of QoS rules from PCRF to BBERF of S-

GW and also vice-versa for the recording of events occurred in the traffic plane and are

monitored in S-GW.

Sp: This interface is used to connect PCRF with the SPR (database). Lightweight Directory

Access Protocol (LDAP) is used for the retrieval of information from SPR as the node does not

include any processing task and objectively is a storage device. The interface is used to

retrieve subscription related data and policies of the user which are implementable at the

transport layer. Many parameters can be used as querying values such as subscriber identity,

IP-CAN session Attributes, PDN identity. The interface can also be used in 2 ways, push and

pull policies. Pull is used when an information needs to be retrieved by PCRF so it initiates a

request whereas Push is used by SPR to notify PCRF about any change occurred if PCRF has

subscribed for such changing notifications. PCRF can also issue a cancellation notice to SPR to

stop such messages.

Rx: The interface supports communication between PCRF and AF in the current 3GPP

specification and is used to exchange application and session level information of user’s

communication sessions. The information is then used for policy decision making and rule

formation in PCRF. Diameter protocol is used on this interface.

Sy: The interface connects PCRF directly with OCS to send the credit related information

and reports. The information exchanged on this interface includes the status of policy counter

for its request, notification and cancellation between the two nodes. The Sy interface also

uses Diameter as its underlying protocol. Credit accounting in roaming is handled in a similar

manner where charging information is transferred to PCRF occasionally for keeping the log of

usage and credit.

2.2 Firewalls

The section introduces the concept of firewalls, their functioning methodologies, types of

tasks they perform and limitations. After introducing firewalls, we discuss their operative

procedures, usage scenario, inspection and filtering tasks. Next, we describe different types

of firewalls. Finally, their implementations would be analysed according to the need of the

hour, which is the protection of networks against malicious activities and attack.

2.2.1 Introduction

A firewall is used to enforce security policies on a communication between different

entities. A firewall is needed because the communicating parties can be of different trust and

security level. A firewall is also used to enforce the security policies. For example, it can

restrict the internal users of a network from accessing services residing outside the network

or restrict global users from accessing services on local systems of a network. thus, making

the networks more trust-worthy and secure [11]. Firewalls are of two different types based

pg. 25

on the location of its deployment. A firewall is operated on an end-user device or in a network

node running the firewall software. This, in turn, requires a secure host machine with all the

latest updates and security patches installed and disabling all non-required features of the

operating system thus protecting the processes from unwanted interrupts.

A firewall also behaves like a router, thus connecting different networks and providing

interconnectivity between them. It is not exactly a router as a normal home class router is

comparatively a dumb device used to just route packets rather than inspecting all 5 layers of

Open Systems Interconnection (OSI) model. A firewall needs to perform faster processing

since it needs to process every packet in detail for enforcement of all the security policies

defined in the rule set. A slow firewall would induce an unnecessary delay which would affect

the QoS and QoE for user services. Moreover, the primary purpose of a router is to route

packets but the newer versions of business class routers of Cisco provide several firewall

capabilities internally. This security feature of a router is just an added benefit over the

baseline purpose. A firewall is used to filter packets so it is primarily used for security that

includes authorization, authentication, content security and encryption whereas routing is an

added or required functionality for inter-network communications without which the packets

cannot be forwarded and routed.

When a firewall receives a packet, it inspects the packet and takes any of the three

predefined actions. The actions comprise 3 responses which include Reject, Drop and Accept.

 Accept: Allow traffic to pass through the firewall

 Drop: Drop the packet without any notification to the sender

 Reject: The packet is dropped and a notification of “Unreachable” is replied

back

There are two types of Accept as the action of a firewall. An accept decision can be either

hard accept or soft accept. Hard accept means a packet is accepted and it passes through the

firewall. Soft accept passes the packet through the current chain and forwards the packet to

the next chain or rule set. This would further be discussed in section 2.2.2.

Figure 4- Firewall Placement for separation of LAN and WAN 5

5 [online]. Available https://cdncontribute.geeksforgeeks.org/wp-content/uploads/introduction-to-

firewall-1.png [Accessed: Nov. 25, 2017]

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/introduction-to-firewall-1.png
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/introduction-to-firewall-1.png

pg. 26

Figure 4 shows the placement of a network firewall which resides at the edge of the Local

Area Network (LAN) towards the Internet or the Wide Area Network (WAN). In case of a home

or small network, a firewall is placed with a router. Business class routers are installed in small

companies where some functionalities of firewalls are achieved through Access Control Lists

(ACLs) configured in routers. ACLs have the capability to check packet headers and deny or

allow the access according to the rules, but they lack the capability to inspect packet above

the transport layer. Firewalls not only allow or deny services but also impose limitations on

the allowed services such as number of simultaneous connections for File Transfer Protocol

(FTP). An advanced firewall has a captive portal which requires users to enter credentials

before their packets could be routed.

2.2.2 Working methodologies and limitations

Firewall works on rules or policies defined by the network administrator. A set of rules are

deployed in the firewall and a given packet is passed through all the rules till it matches any.

Once a rule is matched with the headers of the packet, the actions against that rule are

applied to that packet. A firewall mostly protects the internal LAN network from attacks

originating from WAN, but it can also be used to block any destination for the local users such

as blocking Facebook in universities. Firewalls work primarily by matching source IP,

destination IP, source port, destination port and protocol which is commonly known as a five-

tuple match. In the current Internet world, the most used protocols include Transmission

Control Protocol (TCP), User Datagram Protocol (UDP) and Internet Control Message Protocol

(ICMP). TCP and UDP use port numbers that identify the application level service. Firewalls

also maintain a default policy which is executed if a packet does not match any rule. The

default policy can either be Reject, Drop or Accept. In a very secure implementation, where

the incoming traffic is known beforehand, Drop or Reject is used as a default rule. A heavy

loaded network where there is a need to handle huge traffic, usually Drop is used instead of

Reject because, in case of Reject, the node needs to do additional work in the creation of a

response packet and sending it back towards the sender. This introduces an additional

processing load on the firewall node [12]. Contrary to this, a general ISP’s firewall works with

Accept as a default rule and all other forbidden domains are added in the rule set with action

as Drop or Reject.

There are firewalls which can go up to the application layer to provide deep packet

inspection and filtering. These firewalls work in today’s world where the forbidden traffic is

passed through HTTPS encrypted sessions. Firewalls have a limitation where it cannot drop a

packet containing forbidden content wrapped within an authenticated protocol. Some

workarounds have been enforced in practical implementations to deal with this

aforementioned issue but the concept of Virtual Private Network (VPN) still exists. Packet

filtering on the basis of a five-tuple match is the easiest to implement and configure and is

more efficient on the firewall end. Inspecting layers above transport layer of packet induce a

pg. 27

delay in packet processing and also require specific configurations in order to avoid

interruption in the normal communication of services. A good firewall does not only provide

adequate security but also caters to other functional variables such as performance, easy

management, reliability, event logging and intelligence. Event logging and intelligence of

firewall mean to record the interesting events and learn from them to either notify the

network administrator or to dynamically create rules for such events.

Next, we study the limitations of firewalls. This helps the administrator or manager to

make a better analysis about the potential risks that exist. If the connections are not

monitored and the firewall does not interfere in encrypted sessions or the policy executed by

the firewall is not effective, then it would be of no use to install such a system for protection

and degrade the network performance. Following are the well-known shortcomings of

firewalls [13]:

1) Authorized or legitimate services can be used for malicious purposes. Firewall is not

intelligent enough to recognise any malicious attempt over a legitimate authentic session

such as telnet. After connecting to a Telnet session, an attacker can run commands and get

data from the target machine for which, the firewall would have no information. Moreover,

tunnelling a forbidden service or protocol over a legitimate session of an authentic protocol

is not identifiable by a firewall. An example of such is the VPN where a blocked website can

be viewed using this service. 2) A firewall can only monitor the traffic passing through it. For

example, if an internal host of LAN wants to attack a local user, it cannot be detected by a

network firewall. Firewall works on the principle of packet inspection and matching the packet

with the defined rule set. If the packet does not pass through the firewall, the required

filtering cannot be achieved. Internal intrusion can be detected by routing all the traffic

through a firewall or installing intrusion detecting systems. Additionally, if the attacker still

uses some alternate means to reach his target, such as attack through a backup dial-up server

connection, the firewall would not be able to intercept such threats.

3) A firewall cannot prove beneficial against the attacks caused by social engineering. If

an attacker is successful to obtain the password of a user, then he might be able to access the

system or restricted services by pretending to be an authentic user. Similarly, an attacker can

fake himself to be a network administrator to get the user’s credentials. 4) Security and

robustness of firewall are dependent on the operating system over which the firewall is

installed. A firewall cannot rectify the security risks originated through flaws in the operating

system. It is necessary to install the latest security updates for making the host machine as

secure as possible. Thus, the operating systems with embedded firewall software have gained

more popularity such as, developed by Nokia. 5) There is always a lag between the firewall

developers and attackers which keep attackers ahead of firewall manufacturers. An attack is

first attempted after which its counter is updated in the firewall software. Because of such

potential risk, an administrator must always devise ways to minimize loss and create recovery

methods.

pg. 28

2.2.3 Firewall types

Various types of firewall solutions are available on the market depending on the usage

scenario and the required functionalities. More advanced features and deeper packet

inspection require more investment which then provide reliable security and robust

framework. The firewalls can be categorized based on the location of their installation and

the type of functionality performed. Firewalls are fundamentally categorized into two

different types, Host-based firewalls and Network-based firewalls. Classification of firewalls

is shown in Figure 5. Each component of the figure is discussed briefly [14].

Figure 5- Types of firewalls

Host firewall is the installation of a firewall software in an operating system running over

an end-user hardware. In recent years, many of the operating systems are offering built-in

firewall tools and are provided as an added feature. Windows, Linux, and Mac are common

well-known examples of such operating systems. The firewall is installed on an individual

machine and is configured, maintained and controlled by the administrator/end-user through

physical or remote access to the machine. It can also be pre-configured by a vendor to

monitor and eliminate the known attacks. Host firewall is typically concerned with protecting

an individual against threats offered by WAN users as well as internal LAN attackers. A host

firewall can protect against viruses and other malicious activities which might cross network

firewall due to loosened security checks. Host firewall provides the following advantages:

1) Network Firewall Failure: Installation of host firewall protects the computer in case of

network firewall failure which is installed at the network edge. If network firewall is crashed

due to an attack, a host firewall should be more robust to tackle and mitigate such activity

and protect the user. Though backup firewalls can work against attack, there are some attacks

which are still out of a firewall’s domain such as spam. 2) Simplicity: It is relatively simpler to

configure a host firewall than network firewall and likewise it gives more security against

threats and attacks. A host is more service specific and knows about the expected traffic

whereas network firewall needs to meet the demands of all internal users. Due to this, the

security level of network firewall cannot be set very strict in order to avoid interference with

legitimate session and services.

3) Wide Protection: Host firewall can inspect packets thoroughly because it is not

concerned much about the delay caused since it only needs to inspect packets for a single

pg. 29

machine. Whereas, the network firewall cannot spend considerable time in inspecting a single

packet as it would induce an overall delay to packets of all users in the network. 4) Relevancy

and Specificity: The host firewall can be configured precisely to allow applications and services

which a host machine is expected to use and block all other traffic. Network firewalls are

usually configured other way around where the default policy is to accept the packet and only

the packets with blocked parameters are dropped. It is due to the reason that services used

by the clients of a huge network cannot be presumed.

A Network firewall is installed at the edge of the network to protect a group of users from

potential attacks by WAN users and block specific services and applications for internal users.

Network firewalls include an added functionality of routing capability where it is connected

with more than one network and provide interconnectivity and Network Address Translation

(NAT). A network firewall is static and can only protect the end devices as long as all incoming

traffic is routed through this network. But if a device has more than one communication

interface, then the device is subjected to potential threats from all of these interfaces. Thus,

in such scenarios, a host firewall is recommended which does not only protect the system

from attack through all the peripheral devices and interfaces but is also mobility independent.

Network firewall can crash which then shifts all the security responsibility to the host firewall

whose absence might open a door to threats. Network firewall provides following advantages

[13]:

1) Improved Security: A network firewall has the responsibility to protect all the nodes

inside the network and thus contains rather flexible rules in order to avoid interruption in the

normal functioning of most of the end users applications. Similarly, the firewalls need to be

updated with all the latest patches to keep the network secure and reliable. A host firewall

might not get updated in time as it would depend on user’s end device processing power and

available resources etc. but network firewall is updated right away, thus, offering better

security against latest threats. Moreover, network and host firewall provide backup for each

other in case of need.

2) Availability: Network firewalls and solutions are usually robust and reliable because of

the need of today’s world where attackers are more active than defenders to find and exploit

vulnerabilities. In such cases, network firewalls are usually equipped with recovery plans and

backup systems which come into force when needed.

3) Scalability: Network firewalls are more scalable and perform better in terms of packet

processing delay, parallel processing of packets and the number of packets processed in unit

time. They are designed to handle more flexible Maximum Transmission Unit (MTU) and

higher bandwidths which host firewalls lack and might need an update or change of software

when handling different network parameters and values.

4) Reach: Network firewall solutions are mostly provided by well-known vendors which

have inter-company collaborations to provide up-to-date security patches and information

about the latest and upcoming threats. This, in turn, makes network firewalls more updated

pg. 30

than host firewalls and thus greatly expands the protection scope to meet the network

requirements.

5) Affordability: Network Firewalls are usually auto-configured and all the major

functionality features have an impressive user interface which could be handled by a minor

IT administrator. A host firewall needs a user to configure it and does not provide easy to

operate Graphical User Interface (GUI). Moreover, a network firewall does not require any

configurations on each client system and configurations at one device serve the purpose for

all the clients in the network.

Host firewalls are usually Packet Filter type of firewalls whereas network firewalls are

further divided into four types, based on the methodology of packet filtering and OSI layer

inspection level, as shown in Figure 5. These types of network firewalls are also referred to as

generations of the firewall. The types of network firewall include Packet Filtering Firewall,

Circuit Level Firewall/Stateful Inspection Firewall, Application Level/Proxy/NAT Firewall and

Next Generation Firewalls will be discussed briefly.

Packet Filtering Firewall: These are the simplest type of firewalls which filter packets on

the basis of information provided by the network layer and transport layer. The information

is then matched with the already stored rules and relevant action is executed over the packet.

Filtering is performed on the basis of a five-tuple match as explained before which include

source IP, destination IP, source port, destination port and transport protocol. In addition to

this, an entry interface can also be considered as a filtering parameter. Packets are handled

individually and there is no information about the session or stream of packets. When a

packet reaches the firewall, it passes the packets through all the rules and when a packet is

matched, a relevant action is executed.

Stateful Inspection Firewall: This firewall inspects the packet up to the session layer to

get more information about the application and session that lies above the transport layer. It

keeps a record of the state of the session in order to extend the capabilities of packet filtering

firewall rules to include the information collected from the previous history of session or

packet. This, thus, transforms the firewall to monitor the session initiation, handshake and

termination information. As the firewall decisions are also based on the previous session

information, therefore stateful inspection firewall is also named as a circuit-level firewall in

which firewall keeps track of a circuit which is a session in our case.

Application Level Firewall / Proxy Firewalls / NAT Firewalls: Application level firewall is

also known as the proxy firewall or NAT firewall because of its extended functionality,

provided over the previous generation of firewalls. Connections and sessions of clients inside

the network are forced to go through a configured proxy, thus performing deeper packet

inspection up to application level information. These firewalls require rules to be declared

more carefully with additional granular level information for matching with data retrieved

from the packet. These firewalls not only filter packets related to application level information

but also ensures the legitimate use of generally allowed services such as File Transfer Protocol

pg. 31

(FTP) and Hyper Text Transfer Protocol (HTTP). There is no direct connection between hosts

in presence of this firewall and all sessions have to go through a proxy

Next Generation Firewall: This is the most advanced form of firewalls which are currently

being deployed and are most robust against threats and attacks. It employs deep packet

inspection which inspects application layer of packets along with the exploration of

information inside the encryption protocols such as Secure Socket Layer (SSL) and Secure Shell

(SSL). These firewalls are not only responsible for ensuring authorization of packets but also

detect malware, virus and other application-level threats. The security provided by these

firewalls is deployed at the cost of high financial investment and delay in packet processing.

No security is fully reliable as NG firewall cannot prove robust against many threats such as

email attacks, social engineering and insider attacks which are originated from inside the

network.

2.2.4 SPM for firewall

CES, a proposed architecture for core network communication, proposes the deployment

of a firewall at the network edge. This firewall performs extended functions as compared to

a typical and conventional firewall and is responsible for securing not only the users but also

less intelligent devices, in IoT, such as cameras inside the network. In addition to normal

firewall functions, a CES node can make queries to the remote CES and to other nodes before

making the final admission, reject or deny decision. Normally, as instructed by the

communications security policy, a CES node will carry a policy negotiation with the remote

CES to establish a level of trust before the admission decision. All steps and aspects of this

negotiation are guided by the policy that is stored in the SPM for the local user.

2.3 Policy Management System (PMS)

A policy is a set of rules that comprise of matching parameters and an action to be taken

on the matched packet. It is a separation between functional elements of the system and the

rules that govern these functions. It makes the system compatible with different work

scenarios using changing rules to adapt to the new environment without changing any

functional coding of the system. Because of its use and appealing approach, the concept has

been used by various companies such as Cisco in making their systems flexible for

deployment, use, update and management. Furthermore, there is an ongoing research to

improve the architecture of such systems to enhance the performance, security and

scalability which are the key factors of any management system. This section discusses the

terminologies used for designing such a system. Next, it will describe a few already

implemented policy management systems and their functioning. Finally, the section would

evaluate the feasibility of using existing systems with CES.

pg. 32

2.3.1 Terminologies:

To understand and implement SPM, there is a need to get familiar with all the architecture

and functional terms of such system in order to have smooth implementation and reasonable

documentation. This, thus, requires mentioning most of the related terms that would be part

of the SPM developed in this thesis. The major terms of SPM are mentioned below [16]:

AAA: It is an acronym for Authentication, Authorization and Accounting. The basic parameters

included in AAA exclude the parameters for encryption of data. AAA only includes access and

accounting information which is important for SPM as firewalls and policies mostly deal with

authorization and authentication.

Action: It is the response to be taken on a packet when it matches with any stored rule. A

policy table includes a set of parameters with relevant action which are executed on the

packet in case of rule match. It includes three actions Accept, Reject and Drop.

Configuration: It includes static or dynamic parameters of a network element. It can either

be defined by the manufacturer or by the administrator. There are some static parameters

which are predefined and cannot be altered whereas the functional parameters are usually

left to customer discretion. Packet queue length is an example of a static parameter whereas

an action taken against a policy match is usually dynamic.

Filter: The set of parameters or matching variables used to either categorize a packet or to

separate it from a list, is called a filter. Filtering is achieved through matching of packet fields

with the parameters of the defined rule and then executing the defined action against the

matched packet.

Outsourced Policy: It is the delegation of authority to another entity for taking a decision

against any event. This is usually done when there is a need to reduce the delay in packet

processing. An example is the emergency call which faces the minimum delay requirement in

a network.

Policy: It is a rule or set of rules to authorize, manage, maintain and control access to services

and entities. It can also be defined as the rules to handle packets in a network and make

decisions about actions to be performed based on the matched rules, past information and

statistics.

Policy Conflict: It is the conflict of the actions to be taken on a packet when more than one

rule matches with the packet with different actions. In such conditions, an administrator

needs to define and set rules for resolution of policy conflicts. First Come First Serve (FCFS) is

one approach to handle such conflicts where a packet is matched with rules and the action

against first matched rule is executed.

Policy Decision: It is the actual action executed against a packet which matched a rule based

on various other information inputs such as past record and current state. The decision can

be based on parameters involved in the processing of a packet or the result that includes the

action taken on a packet.

pg. 33

Policy Decision Point (PDP): It is a node in a network or an entity that takes a policy decision

for its internal process or for an authorized entity.

Policy Domain: It is a physical or logical set or devices or a geographical region of devices

which are administered using a common entry point where the communication is controlled

through a defined set of policies. It also constitutes the collaboration of policies between

different sub-nodes of a domain.

Policy Enforcement: It is the execution of an action or a policy decision on a packet. It is

usually done in the functional or edge node of a network.

Policy Enforcement Point (PEP): It is an entity where a policy enforcement action takes place.

Policy Error: It is the error which occurred during the execution of a policy decision. This

failure of policy action can be due to various reasons such as compatibility of a host with the

defined action or change of state of the packet. It can also occur if the policy conflicts are not

accurately resolved.

Policy Management Tool (PMT): It is a software or tool to manage policies in the database

and enforce any set of policy to be executed in PEP. This tool interacts with policy repository

for formulation and management of policies and provides a GUI to the administrator or user

for interaction with the database.

Policy Repository: It is the repository for storing policy rules and their related information

and actions. Policy Repository holds the database and its schema for policy storage, retrieval

and management. It usually consists of a Directory Service or a Database such as MySQL.

Policy Request: A query sent from the client to a server for retrieval, storage, management

and editing of policy or its related information is a policy request. When a policy request is

sent from PEP to Policy Repository, it would probably be a policy retrieval, addition or edit

request whereas a request origination from PEP to PDP would possibly be a policy decision

request.

Policy Server: Initially the term was not defined but according to the RFC2753, policy server

is the PDP. It is an abstract term which can be considered as one node or set of nodes working

in collaboration to achieve the required functionality.

Policy Translation: It is the transformation of policy from one state to another. A policy

entered through front-end in plain text format using text fields can be reformed in a different

layout to be stored in a database which is called policy transformation. Another example is

the retrieval of policy from the database and then transforming it in such a format which is

executable at the firewall node. This task involves conversion to another form using functions

such as encoding, plain text mapping or translating functions.

Schema: It is the layout of a database and set of minimum parameters which a policy must

possess in order to enter the database. The schema includes different database tables, which

are also known as models, with table definitions that need to comply with the policy structure.

pg. 34

A policy complying with the database table definition would be successful to get inserted in

the database table.

2.3.2 Variants

Firewall vendors and network administrators have developed several management and

storage systems to store and retrieve policies for the smooth functioning of a network. This

makes the system more flexible and adaptable to changing scenarios. Each system developed

for the purpose of PMS is designed to address a particular usage scenario. These systems are

requirement specific and do not offer much more than what is needed. Moreover, they lack

proper documentation for its customization and does not give assurance of the reliability of

free software. Comparatively, some business solutions have been provided by Cisco and other

vendors which provide better documentation and a user-friendly interface but is not flexible

enough to meet all requirements of SPM. They, too, are designed for storage and

management of specific expected information and it is not possible to change the core code

or database schema of such solutions to comply with the changing needs of CES PMT. Some

deployed and well-known solutions from renowned companies would be discussed hereafter.

Cisco has developed a policy management system under name of Cisco Security Manager

(CSM) 6. The software is able to manage policies from small networks to huge sized networks

consisting a large number of devices. The software provides the ability to share resources

such as policies and objects to manage more users in a large enterprise. This feature of sharing

resources helps in improving the scalability of the system to accommodate a high number of

devices and new users. The views are customized for different users depending on the

proficiency and role of the user which provides a flexible interface for policy management.

Moreover, it provides logging information to track events of attacks and request for change

of configuration. Besides policy management, the software tends to provide other networking

control and provisioning options such as routing control, assurance of QoS and interfaces

management. Moreover, an instance of CSM is able to handle several security devices and

networks.

The API module of CSM uses Representational State Transfer (REST) interface for

communication with PEP. It is a Java-based application providing a REST interface with all

management and functional components programmed in Java. The application provides a

number of features such as showing a graph of statistics, processor and memory usage

information by application and also keeps a log of states of sessions. Furthermore, it also

saves the record of actions taken on previous packets which are then analysed to make future.

It has an interface to connect to devices and listen to the incoming originated alert messages

from connected entities.

6 [online]. Available https://www.cisco.com/c/en/us/products/security/security-manager/index.html

[Accessed: Jan. 15, 2018]

https://www.cisco.com/c/en/us/products/security/security-manager/index.html

pg. 35

Figure 6- Cisco Security Manager Features 7

The application is able to sort history in terms of all 5-tuples. To address the future threats

and keep the record of previous malicious activities, the application records identities (IP

addresses) from which a vulnerability has been attempted to be exploited. Usage monitoring

is a necessary feature of such applications where it records the most hit destinations, top

Victims, most active hosts etc. For scalability purpose, it makes user groups for policy

implementation. Like a quality analysis software, CSM also provides periodic reports in form

of graph and sheets for analysis. Figure 6 summarizes the features provided by CSM.

AlgoSec is another network policy management software, which is developed by Bell

Laboratories, primarily used to manage firewalls 8. Besides firewalls, software is used to

manage various security devices and protocols such as Virtual Private Networks (VPN) and

routers. Corporate world uses AlgoSec to improve network security by analysing the network

for vulnerabilities and test the policy rule set against possible and well-known threats. The

software has three different variants which can either work together or any of these

components and can be purchased and deployed to work as standalone. These components

include Firewall Analyzer, FireFlow and BusinessFlow. Firewall Analyzer is responsible for

auditing network elements and analysing security risks. Fireflow is used for automated

transition from an old state to a newly updated state with different security policies whereas

BusinessFlow is used to translate business application policies to firewall rules that can be

executed in a firewall to allow necessary services and protect the application from threats.

AlgoSec is vendor independent and can be used with any number of devices. Along with

physical and logical devices, it can also be used to manage policies on cloud and Software

Defined Network (SDN). The AlgoSec key feature is to automate policy creation and

implementation according to the changing network scenarios which is achieved 4x faster than

7 [online]. Available https://www.slideshare.net/CiscoGreece/cisco-john-tzortzakakis [Accessed: Dec. 19,

2017]
8 [online]. Available https://www.algosec.com/ [Accessed: Jan. 19, 2018]

https://www.slideshare.net/CiscoGreece/cisco-john-tzortzakakis
https://www.algosec.com/

pg. 36

conventional methods. With minimal changes, AlgoSec provides the same features as

provided by CSM for network management, control and monitoring. A key feature of AlgoSec

is the compatibility with a hybrid network where different equipment from various vendors

are installed and being monitored by AlgoSec Management Tool. Moreover, it graphically

shows a complex network for easy modification and automatically mitigates suspicious

firewall rules in order to ensure system integrity and security.

 The most commonly deployed firewall management tools are Tufin and Firemon 9 10. Like

AlgoSec and CSM, Tufin and Firemon are also network management software to automate

the changes in network infrastructure or in a security module. Besides already mentioned

features, Tufin and Firemon are also able to provide support for network switches, next-

generation firewalls, web proxies and cloud and network switches. Furthermore, Tufin also

has three suites that include SecureTrack, SecureChange and SecureApp. These three suites

are the alternatives to AlgoSec’s Firewall Analyzer, FireFlow and BusinessFlow and provide

similar functionalities. Besides CSM, all other tools provide technologies for automatic policy

formation with policy creation tools to adapt to changing network scenarios and automate

security management.

2.3.3 Variant’s limitations

The famous solutions stated in the aforementioned sections have different shortcoming

because of which they are not suitable to accomplish tasks of Security Policy Management for

CES. Some limitations of the variants of solutions presented above have been discussed in this

chapter. All these solutions are proprietary and no opensource code is available for

customization of software because vendors do not allow editing of source code in order to

ensure software integrity. The limitation arises because of the limited options integrated into

the developed software and a client is not provided with the flexibility to introduce a new

option but to stick with only available features. An SPM for CES requires an interface to handle

front-end for administrator and user to input and manage policies. Moreover, this interface

would be used by CES node to retrieve policies. The policy parameters are flexible and can

vary from very simple policies to diverse service-specific parameters. It requires validation of

fields to be saved and also the policies that are retrieved should be in a format that is

implementable in edge node.

Cisco Security Manager is principally formed to manage and control only Cisco devices.

The solution is currently available on the Windows platform and no support has yet been

provided for MAC and Linux based system by the vendors 11. There is no command line

interface that can be accessed remotely for the retrieval of policies. Though REST interface is

provided in AlgoSec but with a limited use. The software offers pre-defined filtering

parameters and the packet inspection based on distinctive fields is hard to implement.

9 [online]. Available https://www.tufin.com/ [Accessed: Jan. 21, 2018]
10 [online]. Available https://www.firemon.com/ [Accessed: Jan. 21, 2018]

https://www.tufin.com/
https://www.firemon.com/

pg. 37

Moreover, the solutions mostly run using a dedicated hardware module for quick inspection

of packets. The database of such software is write-protected because of which, new features

are difficult to implement.

Due to the aforementioned reasons, a new Security Policy Management needs to be

designed and developed which is opensource, relevant, and flexible for future extensions.

Furthermore, this system would be performing tasks defined in policy requirements of CES

node including policy validation and formatting. The database has been designed to handle

device-specific policies and organizational policies where an admin set policy for its

dependent users. Additionally, it provides security for IoT devices and enables dynamic

control over the diverse offered services.

2.3.4 Research on policy management

In recent years, considerable research has been done on the designing and development

of policy management systems. Few of the developed policy management software are

inspired by the proposed designs from research. Edward and Stockwell proposed a policy

management system which is a United States patent and aims to address the firewall policies

[17]. This system has a database for storing of policies and a query is received by the system

for fetching the set of policies. The requirement of authentication between the sender and

the receiver depends on the confidentiality of information that is requested. The system is

simple compared to its counterparts and the SPM developed as part of this thesis resembles

this system but the requirements of SPM are far more than merely storing firewall rules.

Similarly, David Matthew developed another United States patent for Policy-Based Network

Management [18]. The system proposed the storing of underline rules upon which, the

policies can be created on run-time and sent to the central node for execution. The current

SPM needs the policies for already registered users and work on the principle of knowing the

expected traffic. Hence, it would not be feasible to create the dynamic rules on runtime.

Morris Sloman suggested providing flexibility to the already developed policy

management system to comply with the changing needs of application [19]. The solution

provided in this Journal is the mechanism of adaptation of the current system with the device

and application requirements. The solution would need to incorporate the machine learning

principles to get the optimum result in today’s diverse network traffic. Dinesh proposed a

policy management architecture in [20] which suggests dividing the management of policies

into two layers including business policies and technical policies. The paper aims to address

the areas of managing performance service level agreements and supporting enterprise

extranet. The solution does not suggest the handling of firewall policies and to store

information in the database related to counter the malicious traffic and attack events. A

domain-based policy management system is proposed in [21] which uses LDAP to store

11 [online]. Available https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/ [Accessed: Jan. 29, 2018]

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

pg. 38

policies and other data and aims to provide flexibility to the network. The development of

SPM requires a system to store firewall rules along with policy negotiation parameters. The

leverage of policy management to end-user demands a secure full stack with a web front-end

which the above research solution clearly lacks.

pg. 39

3. Customer Edge Switching (CES)

The Security Policy Management designed as a part of this thesis provides policy service

to a network edge node called CES node, which is a cooperative firewall and tunneling

endpoint residing at the network edge. Conceptually, a CES node acts as an agent of end host

for ensuring the minimum level of security and trust before the end-to-end communications

can take place with a remote entity. This chapter introduces the CES and focuses on its design

and describes the policies used by CES in the establishment of a connection and to maintain

uninterrupted communication between hosts. Based on the operations and requirements

defined in this chapter, a proof-of-concept SPM is presented in the subsequent chapters.

Finally, the chapter discusses the flexibility of CES node policies and their possible future

extensions. This flexibility must be fused in the design of SPM to make it suitable for future

upgrades and use cases.

3.1 Motivation

The widely used version of Internet Protocol version 4 (IPv4) uses 32 bits addresses which

can be allocated to approximately 4 billion devices. According to statistics 12, 23 billion devices

are connected to the Internet and this number will increase to 75 billion by 2025 due to an

ever-increasing number of connected and Internet-enabled devices. It has been possible to

connect the 23 billion devices to Internet despite the limited number of IPv4 addresses due

to the introduction of a technology called Network Address Translation (NAT). It is a

mechanism which allows a large number of user devices in a private network to share a set

of limited number of public IP addresses towards the Internet for connectivity. One such

example is a home router where all home devices communicate with the Internet through an

allocated public IP. Inside the network, a range of private IP addresses is used which are then

translated to the public IP at NAT Router using transport layer ports and source IP addresses.

This scenario is shown in Figure 7.

12 [online]. Available https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/ [Accessed: Jan. 29, 2018]

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

pg. 40

Figure 7- NAT Architecture 13

Besides providing scalability, NAT introduces some new challenges for which, no

universally deployed solution is adopted yet. Internet protocols require an end to end

connectivity which is affected by the presence of intermediate router (i.e., NAT) between the

communicating hosts. Various methods have been proposed to rectify the problem such as

Traversal Using Relays around NAT (TURN) [22] and Session Traversal Utilities for NAT (STUN)

[23], but they lack scalability with a large number of applications, slow down session

establishment and require applications specific port forwarding. Moreover, NAT hides the

identity of the end-user as packet takes the identity of the NAT router, which dynamically

allocates the source IP and port to the outgoing packet. Therefore, a server cannot

differentiate between various senders residing behind NAT devices which in turn raises the

problem of applying the sender-receiver security. Tunneling protocols are complicated to use

with NAT because NAT router modifies the header of the packet which effects the integrity

check of packets performed at the tunneling end-nodes. The translation of the packet at NAT

node needs additional processing on both ways which induce a minimal delay in packet round

trip time. A solution to this problem is using IPv6 addresses in which all devices around the

globe can have globally unique IP addresses, thus eliminating the need of NAT. Deployment

of IPv6 is under process but not yet implemented in the last mile of networks.

A solution pursued by the research group of Prof. Raimo Kantola (at COMNET Department

of Aalto University) is published as Customer Edge Switching, where the identity of the device,

which classically is its IP address, has been replaced with a Fully Qualified Domain Name

(FQDN). For global reachability, the system relies on the Domain Name System (DNS) to map

the FQDN of a host to IP address of the network edge node serving the host. Network

algorithms and functions that are part of CES then solve the security and reachability issues

introduced by NAT. The idea is that the communication security relies on the trust relation

created between the network nodes based on provided parameters during the session

establishment phase. The system keeps track of all the connected network nodes around the

13 [online]. Available http://www.learnabhi.com/wp-content/uploads/2018/02/NAT-min.jpg [Accessed:

Jan. 15, 2018]

http://www.learnabhi.com/wp-content/uploads/2018/02/NAT-min.jpg

pg. 41

globe and the host devices have their unique FQDN. Therefore, a user can be identified in

case of tracking any malicious activity. A typical use case of CES is in providing and ensuring

adequate security for IoT devices in the network edge nodes according to the policies set by

the users and administrators. Besides FQDN, the system can use any alternative stable

identifier which then can be dynamically and quickly mapped to the host IP address.

3.2 Architecture

The adaptation of CES at network edge splits the Internet into Customer Network (CN)

and Service Provider Network (SPN). At the edge of the CN, resides the CES node which

employs different forwarding technologies to suit the changing set of requirements. The edge

node also acts as a trust boundary where a different network, and therefore a different level

of trust starts. Figure 8 shows a sample architecture of CES where customers together form a

CN, which is separated from SPN by a CES node. The hosts have their unique FQDN through

which they are accessible on the global Internet. The CES node maintains a table for mapping

inward and outward connection packets, which enables packet forwarding locally and

towards a dissimilar trust domain.

Figure 8- Architecture of CES [26]

In terms of its fundamental composition, the CES uses Dynamic Host Configuration

Protocol (DHCP) server which allocates the IP address to a newly connected device. The device

is then registered and the DNS server, normally residing on the CES node, is updated

accordingly with the IP address and FQDN of the newly connected host. Once a user has been

registered in DNS, it can be reached globally via its allocated FQDN. Besides FQDNs, CES also

introduces Service FQDN, which allows a more specific addressing of a service running on the

host. “ssh.abc.aalto.fi” is an example SFQDN of the Secure Shell (SSH) service running on a

host with FQDN “abc.aalto.fi”. Identification of hosts in CES architecture relies on the principle

of Dynamic Domain Name System (DDNS) which prevents the need of giving the static IP

addresses to hosts. This feature thus helps to develop web or other servers using a unique

SFQDN which is independent of dynamic IPv4 addresses allocated in the Customer Network.

pg. 42

3.3 Communication and protocols

(The communication in) CES is divided into the control plane and the data plane. The

control plane includes signaling for establishing the required level of trust between networks

serving the sender and destination host, whereas data /forwarding plane is concerned for

routing of user’s data packets. The signaling cases are Inter-CES Communication and Intra-

CES Communication. When a communication takes place between hosts of the same CES, it

is termed as Intra-CES communication, whereas Inter-CES communication commences

between the hosts of different networks served by different CES nodes. For interworking with

the legacy Internet, a CES node will have a Private Realm Gateway (PRGW) that uses well-

defined protocols to provide a source NAT (SNAT) and a destination NAT (DNAT) functionality.

The CES node uses the well-known and standard protocol called DNS as a communication

trigger. However, the CES nodes rely on a new protocol for network and host policy

negotiations. The introduction of this dedicated protocol customizes the behavior of CES node

according to policy requirements. For real deployment, this new protocol would have to be

standardized by IETF to allow multivendor interoperation. For verifying our ideas and required

algorithms, we have designed the experimental version of the protocol that we call Customer

Edge Traversal Protocol (CETP).

3.3.1 Inter-CES communication

In this case, the sender and destination host reside in different private networks served

by their respective CES node. For connection establishment at the initiator’s end, the

outbound CES performs a DNS resolution to get the CES-ID and control plane Routing Locators

(RLOCs) of the inbound CES for session initiation. After getting the RLOCs (the publicly

reachable IP addresses of the remote CES nodes), the two CES nodes negotiate various policy

parameters according to the defined policies. Upon successful negotiations, a connection

state is established in both the CES nodes. The connection state locally represents the remote

host in the private network with a proxy address. At the conclusion of policy negotiation, a

DNS reply with the destinations proxy address is sent to the sender host, and the data

communication takes place via connection states established in the CES data plane.

Figure 9 shows a scenario where a host served by CES-A triggers communication with the

Host-B served by CES-B. For connection initiation, Host-A generates a DNS resolution request

with the FQDN of Host-B, which reaches to CES-A. CES-A does not recognize the destination

as a localhost, so it translates the request to a NAPTR query and forwards it to the DNS

infrastructure of the Internet. DNS identifies the remote CES based on its name server record,

which is CES-B in our case, and forwards the query to the DNS server of CES-B. CES-B acts as

the leaf node of the DNS hierarchy and replies with the corresponding CES-B routing locator(s)

(RLOC), implying that the destination host is reachable through these RLOCs on the CES-B

node using CES service.

pg. 43

Figure 9- CES to CES connection establishment [24]

After receiving the DNS NAPTR response, CES-A initiates a policy negotiation phase to

establish a connection state with CES-B so that the Host-A can communicate with Host-B,

based on the principles and parameters agreed between CES nodes during policy

negotiations. Subsequently, inbound and outbound CES create a state entry in their

connection tables and store the address binding between private address, the proxy address,

local/remote RLOCs ports and session tags etc. The NAPTR DNS response is received by CES-

A, which then modifies it to carry proxy address (for destination Host-B) to represent the

destination host locally and forwards the DNS response to Host-A. Subsequently, the Host-A

then communicates with this proxy address assuming it to be Host-B and starts sending data

packets. When this data packet reaches CES-A with the destination of a proxy address of Host-

B, CES-A matches it with the stored state entry in the connection table and forwards it to CES-

B complying with the negotiated parameters. CES-B examines the inbound packet according

to its stored state and forwards the translated packet to Host-B. Finally, CES-B forwards the

packet to Host-B and the reverse packet from Host-B to Host-A follows the similar procedure.

3.3.2 Intra-CES communication:

Intra-CES communication also involves policy negotiation between sender and

destination host, but in such scenario, the DNS of the local CES node serves the senders DNS

query, and CETP policy negotiations occur locally. All communication packets between the

local hosts still pass through the CES node to ensure the policy application. When Host-A

needs to communicate with Host-B, both of which reside behind the same CES, Host-A

generates a DNS request which is received by CES node. The node then creates a session state

containing the information of addresses of both the hosts and other defined policy

parameters. Once a connection state is established, the user data flow starts, where each

packet is inspected to comply with the policies of both hosts. The normal case is that the hosts

reside in different private address spaces although the hosts are served by the same CES. This

follows the addressing model adopted for mobile devices in mobile networks.

pg. 44

In Intra-CES communications, we assume that the two hosts belong to trust domains

under the same CES. So, CES level policy negotiation is not required, but host-to-host policy

negotiations are required to negotiate and implement user policies. These two negotiation

steps are introduced by CES architecture after which, a user data transfer commences. CES

node allocates proxy addresses to represent remote hosts, therefore a DNS response with the

allocated IP resource is sent to the Host as a reply to DNS request. CES architecture imposes

an additional delay in session creation because of the additional step of policy negotiations

but this, in turn, provides robust security for clients and servers. In an Intra-CES

communication, the connection establishment is comparatively faster because the

communication packet does not need to undergo the propagation delay. This thesis focuses

more on the Inter-CES communication because of its rich set of parameters included in

session creation and handling. Whereas, Intra-CES communication can be considered as a

sub-set of Inter-CES communication.

3.3.3 PRGW and legacy host

For real-world deployments, any new technology must be backwards compatible with

legacy networks for its smooth adoption. For this reason, the CES architecture contains PRGW

functions for communication with legacy IP networks. The architecture and detailed

description of Primary Realm Gateway (PRGW) is available at [25].

Figure 10- Inbound Communication between Legacy IP and CES host

Figure 10 shows the CES interaction with a legacy IP host on the Internet. Host-P in the

figure is a public host that wants to create a connection with Host-A behind CES. For

connection establishment, Host-P will originate a DNS query which will first reach to the global

DNS server. The global DNS does not have information about the Host-A, but it has records

for CES domain, the query would be forwarded to the CES node by public DNS. The

authoritative DNS at CES would reply to this query (with TTL=0). Host-P will start direct

pg. 45

communication with Host-A as it now has the addressing information of Host-A. When the

data packet reaches CES (PRGW), it gets mapped with local IP addresses and other

parameters, which is then reverse mapped to the public address when Host-A sends a reply

to Host-P. In this scenario, CES(PRGW) acts as destination NAT (DNAT). A detailed description

of connection and session information is described in [25].

3.4 Policy information

A policy is a description of what a host or a network entity expects and what it is willing

to offer to a remote entity so that the desired action takes place. In CES, the policy is defined

as a set of rules and parameters upon which a connection establishes and data

communication occurs. A policy is formed using several keywords and parameters. Different

types of policies in the context of CES are described next.

3.4.1 Types of policies

CES architecture is divided into Control Plane (CP) and Data Plane (DP), where each deal

with different types of policies. CP is responsible for the initiation and establishment of

signaling sessions and user connections, whereas DP governs the rules for packet forwarding.

Functionally, there are three types of policies; CES-CES Policies (C2C), Host-Host Policies (H2H)

and firewall policies. A C2C policy and H2H policy are involved in session creation and thus

come under the category of CP policies, whereas firewall policies are concerned with packet

filtering and thus are DP policies. Each of these policies will be discussed in following

paragraphs.

An inter-CES communication undergoes both C2C and H2H policy negotiations. The C2C

policy is negotiated first between the two CES nodes and it is concerned with network-specific

policy elements which are independent of communicating hosts. A C2C policy comprises of

three sections of policies which includes “request”, “offer” and “available”. Request policies

are demanded from remote CES, and express some constraints, which means that CES will

not establish a signaling session if the provided parameters by remote CES do not comply with

the defined constraints. The second part is the available parameters which are used to

provide the available policy parameters of a CES. Whereas, offer parameters are the subset

of available parameters, which a CES node provides at the start of policy negotiation. Figure

11 shows a sample section of the C2C policy.

pg. 46

Figure 11- CES-CES sample policy

This sample policy set only contains the available parameters. An offer and request

section looks similar to this but with different values to “ope” parameters. The parameters

are CES specific, which implies that a CES can dynamically change any of its policies to create

a lax connection with known or trusted remote CES nodes, whereas untrusted CES networks

can be treated severely. The representation of policies is in JavaScript Object Notation (JSON)

format. Similarly, an H2H policy has the same policy structure but with a different set of

parameters. A complete sample H2H policy is shown in Figure 12.

Figure 12- Host-Host sample policy

The H2H policy in Figure 12 shows all three sections of an H2H policy. The H2H policy

needs to be negotiated for each source and destination user upon the need of establishing a

connection between the end-nodes. The parameters are host specific and thus allow a user

to restrict access to a host or impose an additional requirement from the remote entity.

In comparison, a firewall policy comes under the domain of DP policies. These are simple

firewall rules with an added information to identify the user. A sample firewall policy is shown

pg. 47

in Figure 13. The policy contains five groups which include ID, GROUP, CIRCULARPOOL, SFQDN

and FIREWALL. Details of the functioning of these units are described in detail in [25]. A user

might belong to one or more groups of policies as defined in the GROUP section. SFQDN

includes all the service FQDNs that a user might have to identify/address its services.

Figure 13 - Sample firewall policy

Firewall section contains firewall rules which are further divided into two types;

FIREWALL_ADMIN rules and FIREWALL_USER rules. This classification is performed to

differentiate between the entity defining these rules and to prioritize the rules. This

separation and priority resolve the conflict between policies. An admin policy is added by the

network administrator for the user whereas a user can add a firewall rule for himself or for

his dependent users. In both cases, the rule is stored in FIREWALL_USER section with different

priorities. Admin policies are executed first and then the user-specific filtering is applied.

3.4.2 Management Scope

Policies described in section 3.4.1 need to be stored in a Policy-Database. These policies

will be retrieved by CES when a user attaches with the network or when a new connection

needs to be established. For C2C and H2H policies, it is possible to store the policies according

pg. 48

to the Host CES and Destination CES which would enable networks to change policy

requirements depending on the destination CES node. Some parameters are fixed and do not

change according to the destination and thus, can be stored as the default policy. A default

policy must always exist in the Policy-Database in case no destination specific policy exists.

CES policies are only inserted by the administrator, whereas user has a restricted access to

modify and add his Host-to-Host and firewall policies.

Firewall policies are divided into 5 groups as explained earlier. Most of these are only

configurable by the admin whereas a user can edit the FIREWALL_USER section of the policy

shown in Figure 13. The policies need to be formatted in the similar format as shown in the

figure for it to be directly executable in CES node. All the policies are in JSON format.

3.5 Conclusion (and SPM requirements)

There are three types of policies that need to be stored in the Policy-Database. For

storage, two approaches exist with their own benefits. Either parameters can be stored and

policies can be created from these parameters when fetched, or already formed policies can

be inserted in the Policy-Database. The later approach significantly reduces policy retrieval

time. The policies described in the above section are operational policies and are retrieved

when needed, whereas there is another set of policies called bootstrap policies which are

retrieved by CES when it starts up. It includes the bootstrap information for setting up

parameters and tables in CES node.

All mentioned policies can be inserted by a user or an administrator which requires 1) a

GUI interface to interact with the SPM. Moreover, 2) to ensure that no malicious policy is

inserted in the Policy-Database, various checks need to be incorporated in the SPM. 3) An

additional interface is required through which a CES node will retrieve policies for attached

users. 4) Another interface will interact with the Android application developed in [26] to

automate the population of policies to the SPM. This, thus, requires developing a robust full-

stack system which needs to interact with users, network administrators and policy sourcing

systems with the management of the SPM and Policy-Database.

pg. 49

4. Proposed architecture

This chapter presents the architecture of a Security Policy Management to store, retrieve

and manage policies needed for CES operation. The policy types are already described in

Chapter 3. The major components of SPM primarily compose of the front-end, the central

Policy-API/back-end and Policy-Database.

4.1 Design

SPM has been designed to provide policy services to three critical entities of a CES

network, namely users/admin, CES node and a policy-sourcing Android application. A Policy-

Database has been designed for storing the policies, where the Policy-API is a single-entry

point to the Policy-Database. The Policy-API provides a REST interface to entities for

managing/retrieving policies in the Policy-Database. Android application and CES node are

policy creation and application systems that directly communicate with the Policy-API,

whereas the users and admin express their policy via a web interface developed in Django

web framework of Python. This front-end interface is called as Django-webserver in SPM as

shown in Figure 14. The GUI of Django-webserver provides easy handling of policies through

a web service and interacts with Policy-API to provide new/updated policies. Django is a

robust web framework which creates front-end pages automatically along with data

validation and session management. The automatically generated web pages from Django

integrate diverse features to handle various front-end threats, thus eliminating malicious

policies from reaching the Policy-API backend. Figure 14 shows the basic SPM architecture

which illustrates Policy-API as the single-entry point to the Policy-Database and the three

communicating nodes towards Policy-API.

Figure 14- Basic SPM structure

Policy-API offers a REST interface to the system and allows pursuing a stateless

implementation. After validation of users input, Django-webserver generates an HTTP

pg. 50

request to the Policy-API to perform relevant action. Similarly, CES node and Android

application also generate REST queries towards Policy-API. Access to Policy-API can be

restricted using certificates or IP whitelisting. Moreover, additional authentication

parameters can be implemented to authenticate nodes communicating nodes but it is out of

the scope of this thesis. The Policy-API is able to handle GET, POST, PUT and DELETE REST

queries.

Figure 15- LTE Architecture with SPM

Backward compatibility is an essential feature of any newly developed system or

technology for its adoption. Our SPM draws upon LTE PCC architecture, where PCRF is the

central policy management entity. In LTE, P-GW generates a request to PCRF for policies. CES

node can reside with P-GW as all traffic of network passes through P-GW and execution of

policies would be easy to achieve. Similarly, a CES node residing in the gateway generates

requests towards PCRF which would then retrieve policies by forwarding queries to Policy-

API. The modified version of LTE architecture using SPM is shown in Figure 15.

4.2 Policy-Database schema

We have designed the Policy-Database for SPM to store the policy types defined in

Chapter 3. Bootstrap policies and user’s identifications are stored in separate tables. The

database structure is GET operation centric, which allows better performance when retrieving

policies. Whereas PUT and POST functions for policy insertion/modification are relatively

more time consuming, since the processing assures the insertion of safe policies into the

Policy-Database, so that the response time for a GET query is less. The Policy-Database divides

the policies into two separate databases namely Bootstrap_Policies and Session_Policies.

Bootstrap policies are stored in Bootstrap_Policies database that has only one table to store

all the bootstrap policies, whereas Session_Policies database has multiple tables to store the

firewall and session establishment policies (DP and CP policies). In Bootstrap_Policies

pg. 51

database, more tables can be added in the future to accommodate future expansions of policy

management.

4.2.1 Bootstrap policies

Bootstrap policies are requested by the CES node from SPM at the start of the CES node.

In contrary, Session_Policies database is used on demand as the throughout CES node

operation as it requires retrieving session policies for communicating nodes and need for

checking updates.

The schema of the only table in Bootstrap_Policies database is shown in Figure 16. In

addition to the “id” column which is an auto-increment unique primary key, the table contains

columns: “name”, “types”, “subtype” and “policy_element”. Out of these, first three

parameters are used as filtering parameters based on which, a “policy_element” (of 2048

characters string) is retrieved. “id” column in all Policy-Database tables is to select a unique

row of the table for update and delete operation.

Figure 16- Bootstrap_Policies database schema

“policy_element” contains JSON formatted data wrapped as string datatype, since the

database does not support JSON format in the column. This stored string of JSON is converted

back to actual JSON format on retrieval from the database by Policy-API. On retrieval of

information, the column label is used as the key of JSON whose value is the data contained in

that column. This formation of policies is handled in Policy-API when a policy is retrieved. The

flexibility of database comes at the cost of limited filtering parameters (or number of

columns). The filter for a policy query applies to the database table columns, which allows

retrieving the rows matching the query. For example, in case of retrieving all rows where

“name” is equal to “IPSET”, the database would retrieve all rows of a bootstrap table in which

the column “name” has “IPSET” as value.

pg. 52

4.2.2 Session policies

The second database “Session_Policies” contains six tables. Two tables are dedicated for

storing H2H policies and two tables are used for C2C policies. The remaining two tables

include an ID table which stores all the identifiers of the users and the “firewall_policies“ table

which records all data-plane policies of users. These policies have already been discussed in

Section 3.4. ID table contains all the possible identities of users which currently include FQDN,

IPv4 address, username and MSISDN. This can further be extended if mobile operators need

to store other identities of users such as International Mobile Subscriber Identity (IMSI) etc.

All these identities are mapped to a unique 64-bit identifier in the Policy-Database, which is

used internally in the database as a key to retrieve the user policies thus, making the policy

retrieval independent from the provided identity of the user. Schema of “Session_Policies”

database and linkage between tables is shown in Figure 17.

Figure 17- Session_Policies database schema

pg. 53

Since H2H policies and user-firewall policies are user specific, they are shown together

with the host ID table. CES policies are independent of hosts, therefore, the 2 tables of CES

are shown separately in the bottom of the figure.

4.2.3 Host Policies

Firewall policies are user-specific policies and are identified through a unique user ID

(UUID). UUID is a 64-bit key used to retrieve user policies from different tables of databases

and are unique for a user. Contrary to this, “id” an integer column in all database tables which

is a row identifier of the table and is unique within a table. The policy data stored in the

firewall table is structured into “types” and “sub_types column”. The “types” column can get

the following values: ID, GROUP, CIRCULARPOOL, SFQDN and FIREWALL, whereas the

“sub_type” column allows specifying if a FIREWALL policy is FIREWALL_ADMIN or

FIREWALL_USER. The policies can be filtered using either “types” or “sub_types” column.

“host_policy_identity” and “host_policies” tables are again mapped with a separate

unique 64-bit Universally Unique Identifier (UUID). A new key is generated when a new

distinct set of parameters is inserted in “host_policy_identity” table. These distinct

parameters are then mapped to the corresponding host policies inserted in “host_policies”

table using this 64-bit identifier. Therefore, this identifier is completely isolated from the one

mentioned in the ID table for user identification. Policies that need to be stored in the host

policies table are shown in Figure 12 which are mapped to relevant columns in

“host_policy_identity” table.

As shown in the table of “host_policy_identity”, the filtering of policies can be achieved

using one or more of the following parameters in the incoming request that include

“local_fqdn”, “remote_fqdn”, “direction” and “reputation” upon reception of a request. By

providing these parameters, a corresponding UUID is retrieved which is then used to fetch

the set of policies from the “host_policies” table. In case of a lesser number of provided

parameters than maximum possible, more than one UUID can fulfil the provided criteria. In

such a case, the UUID is fetched on the first match basis. The case where more than one

identifier matches the provided parameters, the conflict is resolved by first come basis.

“host_policies” table has one query parameter; UUID and two columns are retrieved which

include “types” and “policy_element”. As shown in Figure 12, “types” can have three possible

values including request, offer and available. “policy_element” contains a JSON string of

parameters against the “uuid” and “type” of policy. Two columns of Type and Policy element

are then formatted into JSON in Policy-API to produce the policy that is executable at CES

node.

pg. 54

4.2.4 CES Policies

Schema of tables for storing CES policies strongly resemble with that of H2H policy tables.

“CES_policy_identity” table contains filtering criteria for policy retrieval. It defines the

“host_CES_ID” for which policies need to be retrieved and the “protocol” that will be used.

These two unique parameters are mapped to 64-bit Universally Unique Identifier (UUID)

based on which, C2C policies are retrieved from “CES_policies” table. Like “host_policies”

table, “CES_policies” also contain a column for UUID which acts as key. “types” column

specifies the type of policy which is request, offer and available and the “policy_element”

contains a JSON string which is used to produce final policy in Policy-API upon retrieval. All

these policies are formatted and validated upon a POST or PUT request for policy

insertion/modification, while the retrieval process consumes very little processing which

significantly reduces the policy retrieval time.

4.3 Summary

This chapter proposes an abstract architecture of SPM to store policies and provide an

interface to the Android application, CES node and Django_webserver to retrieve and manage

policies. The policies are stored in two different databases. The first database stores only the

bootstrap policies which are used by the CES node on system initialization whereas the other

database stores all other policies including C2C, H2H and firewall policies. The database tables

contain the formatted policies that are directly executable at CES node to reduce the policy

retrieval time. All the policies are validated and formatted prior to storing in the database

which increases the processing time for policy insertion.

pg. 55

5. Implementation

This chapter presents the implementation of Security Policy Management. We first

describe the tools used for the development of the system and the reasons for selection of

chosen tools and their possible alternates. Next, the implementation of the system is

discussed along with the interconnection of different nodes, and functions being performed

by each entity. Finally, we discuss the optimizations in the system to achieve better

performance and scalability results.

5.1 Tools and specifications

While developing a system, the choice of tools can be an important factor in the stability

and performance of the system. SPM has been developed using Python 3.5. The system

contains two web servers namely Django-webserver and Policy-API server as shown in Figure

14. Since the Django-webserver provides a portal for users and admins to edit their policies,

it requires a GUI which is developed using Django tool. The backend system has been

developed using AIOHTTP, which is an asynchronous library of Python for creating REST

service. For storage of policies, MySQL has been used as the database for this system and

python connects with the database using “AIOMySQL” package. It is also an asynchronous

library to connect with the database by opening a pool of connections which are distributed

among the using functions. The unused connections are automatically closed after being idle

for a set value of time. It reuses the already opened connection through sharing, thus reducing

the time for establishing a new connection.

Python3 is the latest version of python and contains a built-in framework to handle

asynchronous calls. Our SPM has been developed in the latest available python version

(Python 3.5 at the time of development). The asynchronous implementation allows full

utilization of the limited system resources. This improved performance is achieved through

the concept of Co-routines where, a sequence of programming instructions, called tasks, is

put to sleep while it waits for a response, and in the meanwhile, programming control is

passed to handle another request.

The Policy-API server needs to interact with the database to store and retrieve policies.

MySQL has been selected as the database of this system, since it is easy to develop systems

database with extensive online support available, and it is open-source. It is scalable and

provides better performance in scenarios with frequent read and write operations. On the

contrary, the Oracle database is not open-source, and the free storage capacity is limited.

MySQL provides unlimited storage. Furthermore, an extensive range of libraries are available

in python to communicate with MySQL than any other database.

The aim of this thesis is to develop a system which can be used to store policies and

provide a front-end to the user, therefore we chose Django which is a simple and powerful

pg. 56

web framework based on python. Django has been the choice for developing policy front-

end, because of its ability to handle various front-end based attacks internally and form

creation for policy management. It offers a Model View Controller (MVC) architecture, where

a developer does not need to create the complete Hypertext Markup Language (HTML) pages,

as it is mainly handled by the framework itself. Moreover, Django has built-in validation and

form creation tools, which reduce, the task of the developer to handle HTML and web form

field errors and in turn validates the user’s input. It also displays an error message in case of

error. The Django-webserver developed as part of this system is a standalone system and can

be moved to any node, and it interacts with the Policy-API server through HTTP REST queries.

5.2 System architecture

SPM has been developed to store, validate and populate policies all the way to the Policy-

Database, and to provide policies to CES node for execution. For users and admin, the function

of SPM is to provide an interactive interface to manage their policies and it provides an

additional interface for CES node for the retrieval of policies. The actual execution of policy is

out of the scope of this thesis. Figure 18 presents the high-level implementation of SPM.

Figure 18 - SPM nodes in CES Network Architecture

Admin and user login to Django-webserver for management of policies as shown in the

figure. The permissions for storing a policy in a particular location and the execution of

conflicting policies are resolved based on login credentials. Authentication parameters limit

the authorization of users to modify certain policies only and correspondingly allocate a

priority value to an inserted policy. A Policy-API server, which provides REST interface for

management of policies, offers a protective boundary to API and Policy-Database.

To compare the SPM with RFC 3198 for the terminologies of Policy Based Management

[16], the nodes have been assigned names to elaborate their functionality. A set of users

pg. 57

residing behind a single CES node is the Policy Domain where the internal hosts are treated

as localhost. On the change of CES for a user, the Policy Domain changes and the new CES

network might be served by the similar SPM which served the previous CES network. Policy

Enforcement Point (PEP) is the CES node where the policy retrieved from the SPM is executed.

Policy-API along with Django-webserver allows the task of Policy Management Tool (PMT)

which manages policies in the Policy-Database using a GUI. Policy-Database designed over

MySQL is the Policy Repository of SPM, where policies are stored into the database according

to the table’s schema. Policy Request can be initiated from the CES node or from the Django-

webserver for the retrieval or management of policies respectively, and Policy-API serves the

request and thus, it behaves as a Policy Server and a Policy Decision Point (PDP) because of

its ability to formulate policies. This complies with the RFC 2753, where a Policy Server resides

inside PDP. Policy Translation is also performed inside Policy-API where a policy entered in

plain text from the front-end is translated to an executable JSON format for the CES node.

Figure 18 shows the sequence of policy insertion in the Policy-Database using the

proposed SPM architecture, and the retrieval of policy for execution by CES. The user

authenticates himself on Django-webserver after which he edits or inserts his policy which is

then forwarded to Policy-API for storing in the database. After saving the policy, a user

initiates a connection with a remote Internet entity. When a connection is initiated, a DNS

request is originated towards the CES node. Upon reception of this request, the CES node

sends a policy request to Policy-API for the retrieval of the user policies. These policies are

negotiated over the control plane to establish a data plane session between the end-nodes.

We discuss the detailed implementation of each component of SPM in the following sections.

5.2.1 Policy-API

All functional elements of the SPM backend reside behind the REST Server, which acts as

a single-entry point towards the Policy-Database. Authentication parameters are exchanged

between the authenticating connected entities and Policy-API for authentication of node and

identification of the user. Policy-API provides functionality to three different services. First is

Django, which is used to provide GUI to users and admins for managing policies. Second is the

CES node that retrieves the policies from the database for execution and third interface

handles mobile application which has been developed for policy sourcing from user devices

but is out of the scope of this thesis. Policy-API provides an interface for storing, editing,

retrieving and deletion of policies. A CES node cannot execute POST or PUT operations

towards the API as only safe actions, such as GET, are permitted to CES node allowing it to

only retrieve policies. In order to perform an active function, such as POST, PUT or DELETE, a

CES node needs to get verified with the SPM either using authentication credentials or by pre-

shared keys/certificates.

Policy-API functionality has been divided into sub-modules for easy management and

maintenance of code while keeping modularity of system as shown in Figure 19. The node

pg. 58

title defines the functions performed by each module. In the current implementation, all the

nodes reside in the same system, but the connection between Django Web Server and Policy-

API is based on HTTP REST queries, therefore, both the nodes can reside entirely independent

of each other. Similarly, SQL Client interacts with the database which resides locally, but it can

also be moved to another system. However, isolating the Policy_Database from SQL Client is

not recommended because directly opening MySQL port 3306 for external connection

escalates potential threats to the Policy-Database. All other nodes or elements can be

distributed to different systems (with dedicated hardware). This would distribute the task of

policy creation thus improving the efficiency of the SPM system. However, this could

introduce additional delays due to communication between different modules.

Figure 19 - Implementation hierarchy of SPM

The REST Server is an HTTP entry point to the Policy-API and thus, the Policy-Database.

The REST server is responsible to receive all incoming connections and serve accordingly. It

has been developed over AIOHTTP, which creates an interface for incoming REST requests

and routes them to the relevant function. The response is created by the AIOHTTP (within the

REST Server) containing either the data in payload or error message in case of a validation

error. AIOHTTP replies with the error code and message without forwarding the query to API

if the request query either contains bad HTTP headers including URL or does not provide the

essential processing parameters for the query. For example; if the incoming URI does not

match with any routing function, an automatically generated reply of error 404: “Page not

found” is sent to the user by AIOHTTP REST Server. AIOHTTP is not intelligent enough to

counter malicious requests with false data, sent with the intent of an attack. A new

connection establishment, at REST Server, is handled by AIOHTTP without user intervention.

After the establishment of a TCP connection between client and REST Server, REST server

receives a REST query where a Universal Resource Identifier (URI) is parsed to extract the

parameters for GET and Delete requests. In case of POST and PUT methods, the information

is extracted from the HTTP payload. The method and URL of the received query identify the

pg. 59

function to be called in REST Server for further processing of the request. Validation of the

HTTP query is a distributed task and a validation error can be originated from any node of the

Policy-API. A dedicated Validator module validates the parameters for POST and PUT request

to ensure that only safe and non-malicious policies are stored in the Policy-Database. GET and

DELETE functions do not go through extensive validations as these are safe methods, and are

not concerned with storing malicious payloads.

After validation of query from Validator module, the request is then returned to the API.

The Validator also assigns default values for missing parameters. If the missing parameters

are necessary or a validation error occurs, the validator raises an error. The error is replied to

the sender to modify the HTTP request parameters accordingly. In case of successful

validation, the API then creates an SQL query to store policies in the Policy-Database. The

execution of query returns None in case of successful execution or returns an error. The SQL

Client checks the query for the existence of any special restricted character, which can convert

the query to a potential SQL-injection attack to Policy-Database. If such character is found, an

error is returned to remove the special character. The unsafe special characters for a query

are combined in a variable list in SQL Client which can be modified depending on the unsafe

characters for the database. Figure 20 shows the handling of a request from its reception at

the REST Server until its insertion in the Policy-Database. The tasks shown in different stages

of Figure 20 are performed by the different modules of Policy-API displayed in Figure 19.

All nodes in the SPM which are dependent on INPUT/OUTPUT systems, such as MySQL

connector, are programmed with ‘asyncio’ module for asynchronous handling of requests.

Similarly, SQL Client is implemented using “AIOMySQL” which is the asynchronous socket

connector with MySQL. It creates a pool of connections with the database and handles

requests to the database in parallel. A single SQL query to Policy-Database is handled by a

single connection to which, the SQL Client then replies with either success or the error code

(and message in case of unsuccessful execution). On execution of a query in the Policy-

Database, an error can be raised by MySQL if the provided data does not comply with the

table definition or a duplicate entry exists for the provided data. This provides an additional

validation of inputs avoiding duplication in tables. For GET requests, the data retrieved by SQL

Client is provided to API for further action, whereas in case of POST, PUT and DELETE requests,

an OK message is returned to API which shows the successful execution of the query in Policy-

Database. An idle TCP connection with the Policy-Database is terminated by “AIOMySQL”

after a certain time-period.

For GET requests, the API forwards the retrieved data from Policy-Database to a

processing function which formulates the data into a policy format that is executable in CES

node. The processing function resides locally in the Policy-API and provides a formatted policy

to the CES node. This policy-formatting is handled sequentially in the Policy-API, where the

performance can be improved by using multiple threads and multi-processing module of

python.

pg. 60

Policy-API corresponds to the services and functionalities provided by the PCRF. This

resemblance is drawn based on functionalities of validating, constructing, formulating and

deciding policy rules that need to be provided for execution. Therefore, like PCRF, Policy-API

can be considered as PDP and Policy Server of our SPM.

Figure 20 – Flow diagram for Request handling at API

pg. 61

5.2.2 Django-webserver

The policy management interface to the Policy-API is based on the Django-webserver. It

allows users to get authenticated with the system and manage their policies as well as of their

dependents. Login credentials, entered in Django login page, specify the authorization level

of the user. It also defines the scope of policies that the user can modify, delete or add.

Django is a Model-View-Controller (MVC) architecture in which a model handles the

database and tables definition, controller is named as “views.py” in Django which contains

the logic behind actions performed on templates and views are called “templates” in Django

which are the front-end webpages of the Django-webserver. In the model, definitions of all

tables have been defined, though the tables do not actually reside within Django-webserver,

but this assists in producing the form on templates and validate the input fields. As the Django

handles user login sessions internally, therefore, an authentication database exists within

Django-webserver. The models of Django contain the definition of all the tables described in

Figure 16 and Figure 17. The model offers various types of column definition such as IP

address, phone number, comma-separated list, integer, email address and password hash. If

a user enters some alphabets in an IPv4 address field, the model raises a validation error

which is shown to the user, to correct his input.

An additional file called “form.py” in Django-webserver serves the purpose of formulating

a front-end form for inserting and editing of policies. The styling of input fields, validation of

input data and the selection of error message to be shown in case of validation failure are

defined in this file. It also handles the dynamic change of values in the choice field such as a

drop-down menu. While creating a dropdown-menu, form.py retrieves data via REST Server

and makes a dropdown menu of the available options. A URL file in Django folder allows to

route the incoming requests to specific controller (views.py) function upon a URL hit. The

validation of certain input parameters in the URL can be performed by this file, and it forwards

the parameter values from URL to controller function. Figure 21 shows the flow of a query

between different modules of the Django architecture. Running of the server is automatically

handled by Django’s “manage.py” file in the main directory. By default, Django runs on port

8000 but it can be altered. The default port of Django-webserver has been changed in this

thesis to 80 while the REST Server running on the same machine is running on a different port.

REST Server needs to be accessed by our own entities (such as CES node, Android Application)

therefore, we can configure it to any port. Whereas, the Django-webserver needs to be

accessed by users via their browsers who, by default, use HTTP port 80 to access the server.

pg. 62

Figure 21 - Architecture of Django Framework 14

“views.py” is the controller entity of Django and it handles all the logical operations

performed via User Interface (UI). Additionally, it is used to manage user sessions and handle

Cross-Site Request Forgery (CSRF) tokens. Each action at user end has a specific corresponding

function in the controller. When a user submits a new POST request from the front-end, it is

received by URL file in Django which forwards the request to relevant controller function

according to the URL mapping. Controller forwards the request to “form.py” and model for

validation. After being validated, the controller creates a REST POST request to Policy-API for

inserting data in the Policy-Database. In case of success, the user is redirected to a webpage.

An error message is shown if the request was unsuccessful, and the HTTP code in the reply

message from Policy-API is not 200. If the validation of input field fails at front-end, the

request is not sent to the REST Server to reduce validation load on the Policy-API. The user

needs to authenticate himself in Django and then these credentials are sent with the query

to Policy-API for user identification while processing policies. Because of this ease of

controller configurations, Django has been the choice for development of web GUI as part of

this SPM. The front-end which is rendered to the user on their web browsers includes HTML,

Cascading Style Sheets (CSS) and JavaScript, while the python executes loops and variables

forwarded to templates by the controller (views). By providing a front-end, Django-webserver

ensures that only a safe and validated policy is inserted by a legitimate user in SPM.

5.2.3 Policy Management Tool (PMT)

The PMT includes all the components that are linked to policy sourcing and management,

where Django-webserver is a subpart of PMT. It is responsible for providing an interface for

policy management to administrators and subscribers.

A network administrator can use the Django Web-server described in Chapter 5.2.2 to

manage policies of a complete network including user, system and network policies. The

14 [online]. Available https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-
content/uploads/2017/08/Architecture-Django-Tutorial-Edureka-1.png [Accessed: Jan. 19, 2018]

https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-content/uploads/2017/08/Architecture-Django-Tutorial-Edureka-1.png
https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-content/uploads/2017/08/Architecture-Django-Tutorial-Edureka-1.png

pg. 63

administrator has the full access to the Policy-Database and can modify any table entry.

Moreover, in case of emergency or attack, a customized policy to handle such scenarios is

taken into force and is activated by the administrator. An administrator can add or delete

users and has the authority to terminate an ongoing session. Our Policy-Database supports

adding a new administrator by using a secret key in the signup form or by the existing

administrator. In either of the cases, the administrator is not added to the ID table of

subscribers but to the login table for administrators. This keeps the administrator’s

information isolated from Policy-API thus improving the modularity of database and table. A

policy inserted by the administrator in the database gets higher priority in the policy

formation because of which his policy supersedes the user’s policy. An example for such

scenario is that a service allowed by the administrator can be blocked by the user whereas

the vice-versa is not possible as the administrator policy is executed first. Furthermore, a user

can put a limit on the allowed services such as restricting the number of simultaneous

connections, restricting an end-user from accessing a service. This approach helps SPM to

maintain a minimum level of security and integrity.

A user is provided with two different tools for policy sourcing. The user can use the same

Django web server which is used by admin but the authorization scope for management of

policies is limited. The extent of limitation and access to policies is determined by the login

credentials. Similarly, priority is allocated to the policy inserted by the user according to the

credentials which then helps to resolve the conflict between policies assigned by subscribers

and their dependents. Nevertheless, the policies specified by subscribers always supersede

the policies defined by their dependents. An alternative to the web-based system for policy

sourcing is an Android application, which has been developed as part of a different thesis in

a similar project [26]. The application interacts with Policy-API through REST Server to

manage policies. The application is authenticated with the Policy-API to ensure that only safe

policies are maintained in the database. Android Application system maintains a separate

database which is then periodically synchronized to populate the changes in Policy-Database.

This application automates the policy sourcing by determining the services being used on a

user’s device and allows to create policy templates for such services. The detailed

implementation of the Android application is out of the scope and is described in [26].

5.2.4 Policy-Database

The Policy-Database has been developed in MySQL for storage and management of policies.

SQL Client in Policy-API is the only node that interacts with the database through “AIOMySQL”

library of Python3. One connection of MySQL connects with only a single database, thus

requiring one unique connection per database to handle its tables. In case of SPM, two

databases have been defined that include “Session_Policies” and “Bootstrap_Policies” which

requires at least two distinct simultaneous connections with MySQL to interact with tables of

pg. 64

both the databases. Database Schema and table structure has already been discussed in

Chapter 4.2

5.3 Additional features

Apart from main functions of SPM, few additional features have been implemented to

improve the operation of the system and provide flexibility in the SPM. These features add

towards the flexibility and scalability of the system and make the system compatible with the

state-of-the-art technologies. This includes the implementation of the Reputation System,

User registration methodology and the mechanism of managing various identities of User in

mobile and Internet networks.

5.3.1 Reputation service

The communication in CES relies on trust level between various CES nodes which changes

according to the malicious traffic being offered. A legitimate traffic increases the reputation

of a CES whereas a CES offering potential attacks loses its trust level. A reduced trust level

limits the services being communicated with the hosts of such CES.

We have added a reputation table as part of Policy-Database to keep track of remote

networks host reputations, which would be populated by a trusted third party. While

retrieving policies from API, based on the reputation of a remote entity, one can further

enforce additional restrictions over the defined policy parameters. Reputation system

provides an added layer of security over conventional methods because of which, all CES

networks strive to improve their security systems and filter the malicious traffic.

5.3.2 User registration and ID service

A user is identified by his FQDN within a CES network which is stored in the Policy-

Database. This is because an IP address is not a reliable identification of a user since it might

change frequently. Thus, we devise a method to update DNS about the current IP address of

the user for FQDN resolution. The captive portal is one of the solutions to address this

problem where a user is identified through allocated credentials. The user ID credentials are

mapped to an FQDN which is updated in the DNS when a user attaches with the network or

in case of change of IP address of the connected user. The technology of captive portal takes

the inspiration from web-portal deployed commonly at airports [27], whereby it redirects a

newly attached user of a network to a login page for authentication. Credentials allocated to

users are authenticated using the database and an updated information of a user is registered

to the DNS server. FQDNs for registered users are stored in ID table of database whereas, for

guest users, a temporary FQDN can be created for use and populated to DNS server. For

future referrals, CES node uses FQDN of registered users as key for policy retrieval from API.

pg. 65

This method of user registration is more suitable for smaller networks. A solution based on

tokens or other identity parameters might be more suitable for large networks with their own

identity parameters. An example of such scenario is the mobile network where the Subscriber

Identity Module (SIM) based credentials can be used for policy retrieval purpose.

The Internet technology requires various identities of users to identify an entity. A single

type of user ID might not satisfy the need to address the different types of users. A mobile

operator might want to use MSISDN as an identity of a user which would not be an option in

case of ISP. In SPM, ID table of the database can contain different types of user identities. All

these IDs are mapped to 64bit unique identifier which is used as a key for policy retrieval from

Policy-Database tables. This approach provides flexibility in user identification and the

possibility of policy retrieval through any of the available IDs. This can be a use case for mobile

operators where a unique SIM identifier such as IMSI can be used to refer to the user.

5.4 Optimizations

Performance is an important feature of any system design since the delay induced by SPM

will affect all the users of a network. The delay caused by the fetching of policies from SPM

will add to connection establishment. Policy-Database schema and implementation of Policy-

API have been optimized to minimize the delay.

Initially, the Policy-Database contained various columns to store each parameter of policy

which allowed the flexibility in Policy-Database providing various filtering options. However,

the policies were not in executable format and upon receiving a policy request, the Policy-API

retrieved information from Policy-Database and then formatted it in JSON format which is

executable at CES edge node. This approach induced a considerable delay in the fetching of

policies from the database and thus, lead to a considerable delay in connection

establishment. For optimization, the Policy-Database was modified to store the executable

format of policy. The sequence of formatting of policies was changed and in the current

implementation, the policies are formatted in executable format upon insertion in the

database. This, thus, affected the performance of POST and PUT requests but these methods

do not directly affect the performance of CES sessions.

The initial Policy-Database schema consisted of different tables for storage of various types

of policy elements. This implementation required N number of round trips to Policy-Database,

where N is the types of policy elements in the policy. This affected the policy retrieval time

while fetching of policies. In the current implementation, the approach has been optimized

by combining different policy types in a lesser number of tables to decrease the round trips

to Policy-Database. As an example, the different table for CIRCULARPOOL, SFQDN and

FIREWALL have been merged to improve the performance. The above two optimizations

helped to decrease the RTT by more than half for a policy retrieval request, compared to

earlier implementation.

pg. 66

6. API manual

This chapter discusses the operational procedure of the SPM. First, we discuss the code

structure of SPM along with the classes and the use of different class modules in the system.

It also discusses the code structure of Django-webserver. The chapter then discusses the

procedure for setting up an SPM on a machine along with all the package and software

requirements. The setup includes the configurations of SPM along with Django-webserver.

Finally, we present the manual for handling SPM through URL end-points which include URLs

retrieve, add, modify and delete policies in Policy-Database. The Django-webserver uses the

similar URLs mentioned in API for communication with the SPM.

6.1 Code Structure

The coding methodology of API is Object Oriented Programming (OOP) where the

different modules are programmed in classes and the information and resources are shared

among various methods of a class. The error handling is done through “try except”

methodology of Python where the location of error suggests the error code for the HTTP

response to the sender. For example, an error raised in case of missing necessary parameter

will provide a status code of the series of 400 to be sent back to the client. As the

implementation of SPM is single threaded, therefore a function taking more than usual

processing time would delay all the pending requests. SPM is more optimized as compared to

Web-server because the REST Server does not include any HTML and front-page information

whereas Django needs to communicate with the templates for creating a webpage. The data

provided by the controller of Django to browser is used in the formation of a front-end on

user’s screen. The section further explains the code structure of SPM and Django-webserver.

6.1.1 SPM

As explained above, OOP is used in the implementation of the modules of SPM. The REST

Server is a class which is initialized when the server is initialized. The AIOHTTP takes host and

port as input parameters, so the user can decide the port on which, the server is required to

be set up. An asynchronous method “build_server” in the REST Server is responsible for

setting up the server with an initialized class object for the handling of incoming HTTP

requests. It is an AIOHTTP function for creation of server and is called in “__main__”. The

function has a list of URLs with mapped object functions which are called according to the

matched URL and method. A request with the correct URL but with wrong methods is replied

automatically with “Method not allowed” error. Similarly, a wrong URL is replied with “404:

Not found”. In case of a correct method with URL, the request is redirected to the mapped

method of the object for further processing. The creation of an object in REST Server

pg. 67

automatically creates an object for Policy-API class. The Policy-API class is responsible for the

actual processing of the request along with the validation of query and creation of SQL query

for execution in the database. All the mapped functions, with URL and method, are also

asynchronous functions to handle multiple queries simultaneously. The purpose of these

functions is to extract information from the received query either from the URL or from the

payload and pass this information to the relevant object method of Policy-API. These

functions also incorporate logging capability, thus providing logging information for every

query in the terminal.

The class object of API is created in REST Server on initialization of the web server. On

creation of API object, an object for MySQL Client is automatically created to connect to the

database. As there are two databases and each connection handles a single database, so two

objects are created to handle queries for the two databases. The objects of MySQL Client are

used in the methods of API and it includes a dedicated function for using both the

connections. The methods that are specific to Bootstrap_Policies database uses the object for

Bootstrap_Policies database connector whereas the remaining function uses the connector

object of Session_Policies database. The API class has methods to receive a request from REST

Server, performs initial validation of query parameters, creates SQL query to be executed in

MySQL database, receive the response from MySQL Client and post-process the received

information to provide it back to the REST Server. Advanced level validation is performed in

the validator which is a separate file containing validation functions. These functions are

called by the methods of API object for validation of data. The functions in validator validate

the input fields of a query along with providing default values for missing parameters and

raises the error in case of validation failure of missing of necessary parameters.

MySQL Client object, used in API methods for execution of SQL query in databases,

comprises of various methods depending on the type of query. This module also has an

internal function to check for the presence of special characters. The methods of MySQL

Client object methods are primarily divided into two different types including retrieval and

execution methods. The retrieval function is called when MySQL provides some information

on the execution of query such as GET which is used to retrieve the information from database

tables. Contrary to this, execution method returns nothing in case of successful execution of

a query in the database or returns an error in case of an error such as POST request which is

used to insert a policy in the Policy_Database. On Successful insertion of data, MySQL does

not respond with any error but an error might occur in case of duplication or validation of

input table column fields. Therefore, the hierarchy of information flow is through different

objects created on the initialization of the REST Server. This approach optimizes the system

performance by re-using the available resources.

pg. 68

6.1.2 Django_webserver

Django has its own MVC framework that we have discussed before. Using the proposed

methodology of programming in Django is recommended to achieve better performance

results and to keep the smooth interaction between system components. Django has a ‘urls’

file which is used to map the incoming request to the relevant controller function (controller

is views.py file in Django). The controller receives the request and gets the query parameters

if they are contained in URL or extract them from the HTTP payload if the request has POST

or PUT method. The queries are then forwarded to forms for further validation of the input

parameters. The validation in Django is distributed to Models and forms. “forms” is the

additional file in Django which contains constraints for the input parameters and raises an

error if validation is unsuccessful. Forms, after validating the input, forwards the parameters

to Models for further verification with the column definition in a table. After being verified by

both these entities, the controller then generates a REST query forwarding the parameters

and action required to the Policy-API. In case of GET requests, the controller directly

generates a data retrieval query to the Policy-API without the intervention of Forms or

Models.

Policy-API contains additional functions to retrieve information which is only required by

the Django_webserver and is not needed by CES node or Android application. The error that

is raised by Django in the validation of a parameter is shown above the form field in the

template but the error replied by Policy-API is just shown at the top of the page in plain text.

All database related operations are forwarded to Policy-API from Django-webserver,

therefore, the delay at SPM is sequentially added in all the requests from a client’s browser.

As Django_webserver and Policy-API, both are running on the same machine, so this delay is

minimal but can be increased if these modules are geographically placed farther apart.

6.2 SPM Setup

The setup of SPM requires necessary packages to be installed on the system to get the

system running. The code is separated in different folders of the project file where “src”

contains the most relevant files to setup the server. The folder contains database backups,

the code for running SPM through REST Server and the Django application to deploy the

Django_webserver. The transport ports can be changed on both the application through

configurations. In Django, it can be changed in command line whereas, in Policy_API, the port

can be set in the REST Server file. As Django_webserver interacts with the Policy_API so a

changed port should also be configured in Django_webserver for proper communication

between the nodes. A set of required software and packages are already mentioned in the

installation file. Further information for the SPM setup and the relevant commands are

mentioned in the “README.md” file of the project directory.

pg. 69

6.3 API end points

The section shows the URLs for inserting or retrieving data from Policy-Database. There

are two different set of requirements for the usage; policy retrieval by CES and policy

management by Django and Android application. The scope of both these sets is different in

terms of usage, therefore they are separated into two different tables. The tables in

Session_Policies database uses the AIOMySQL connector which provides a connection with

Session_Policies database whereas, while dealing with bootstrap policies, the connector with

Bootstrap_Policies database is used. The tables below show the URL with HTTP method to

perform the function mentioned in Function column. Parameters are the variables in the URL

and the possible values for these parameters are mentioned in the column of Possible values.

6.3.1 Retrieval API for CES

Table 1 shows the URLs which are used by CES node for retrieval of user policies and the

all the retrieved data is already formatted in a form which is directly executable at CES node.

CES node is involved in only retrieval of policies because of which, all the below mentioned

methods are GET centric.

Table 1 - End Points of API for CES Policy Retrieval

Method + Static URL Function Parameter Possible values

[GET]
/API/firewall_policy_user/

<id_type>/<id_value>?
policy_name=<value>

Retrieve single type or
all of formatted policies

for a user.

id_type

‘fqdn’

‘msisdn’

‘ipv4’

‘username’

id_value Value of id of the user

policy_name

‘CIRCULARPOOL’

‘CARRIERGRADE’

‘GROUP’

‘SFQDN’

‘FIREWALL’

[GET]
/API/cetp_policy_node?
policy_name=<value>&

lfqdn=<value>&
rfqdn=<value>&

direction=<value>

Retrieve formatted
H2H policies from

database matching the
filtering parameters

policy_name

‘available’

‘offer’

‘request’

lfqdn Value of local FQDN

rfqdn Value of remote FQDN

direction

‘EGRESS’

‘INGRESS’

‘*’ Or Leave black

[GET] /API/ces_policy_node?
ces_id=<value>&

protocol=<value>&
policy_name=<value>

Retrieve formatted C2C
policies from database
matching the filtering

parameters

policy_name

‘available’

‘offer’

‘request’

protocol Transport protocol

ces_id FQDN of CES

pg. 70

[GET]
/API/bootstrap_policies_ces?

policy_name=<value>

Retrieve formatted
bootstrap policies for

CES
policy_name

‘IPSET’

‘IPTABLES’

‘CIRCULARPOOL’

6.3.2 Policy Management API

Table 2 shows the endpoints for the management of policies. GET operation in all these

end-points retrieves database information without formatting of data. The URLs, mentioned

in below table, are used by Django_webserver and Android application for the management

of policies. The operation includes GET, POST, UPDATE and DELETE. The table name specifies

the table in which action needs to be performed. As filtering parameters, multiple column

values can be used in the URLs to filter the table data. The below table includes the URLs only

for Session_Policies database.

Table 2 - End Points of API for Policy Management for Session_Policies Database

Method + Static URL Function Required Parameter Possible values

[GET] /API/firewall_policy/
<table_name>?

<table_column_1> =<value>&
<table_column_2> =<value>

Fetches policies from
table matching the
provided filtering

parameters. All policies
in the table are

retrieved if no filtering
parameter is provided

table_name TABLE NAMES

table_column_1
Column name for
filter and its value

table_column_2
Column name for
filter and its value

[GET] /API/firewall_policy/
<table_name>/<id>

Retrieve a single policy
by id from the table

table_name TABLE NAMES

id Policy ID in table

[POST] /API/firewall_policy/
<table_name>

Insert a row of policy in
a table

table_name TABLE NAMES

[PUT] /API/firewall_policy/
<table_name>/<id>

Modify a row in a table
identified by the id

table_name TABLE NAMES

id Policy ID in table

[DELETE] /API/firewall_policy/
<table_name>/<id>

Delete a policy from
table identified by id

table_name TABLE NAMES

id Policy ID in table

[DELETE] /API/firewall_policy/
<table_name>?

<table_column_1> =<value>&
<table_column_2> =<value>

Delete set of policies
from table matching

the filtering
parameters

table_name TABLE NAMES

table_column_1
Column name for
filter and its value

table_column_2
Column name for
filter and its value

[GET]
/API/tables_get_columns/

<table_name>

Retrieves the column
names of a table and is
used by Django forms

table_name TABLE NAMES

[GET]
/API/user_registration?

username=<value>&
ip=<value>

Receives the request
for DNS update from

captive portal and
stores IP address

Username Username of user

ip IP address of user

pg. 71

In Table 2, the TABLE NAMES include ’CES_POLICIES', 'CES_POLICY_IDENTITY', 'HOST_POLICIES',

'HOST_POLICY_IDENTITY', 'FIREWALL', 'ID'. The filtering of parameters can be made precise to

one row by providing all the necessary parameters. Table 3 shows the URL end-points for the

management of ‘bootstrap’ table in Bootstrap_Policies database. The end-points perform all

four basic functions including GET, UPDATE, INSERT and DELETE. The parameters for

Bootstrap policies are limited because the database includes only one table with fewer

columns hence, less flexibility in filtering criteria.

Table 3 - End Points of API for Policy Management for Bootstrap_Policies Database

Method + Static URL Function Required Parameter Possible values

[GET]
/API/bootstrap_policies/<id>

Retrieve a row from
table by id

id Policy ID in table

[GET]
/API/bootstrap_policies?

policy_name=<value>

Retrieve rows from
table by policy type

policy_name

‘IPSET’

‘IPTABLES’

‘CIRCULARPOOL’

[POST]
/API/bootstrap_policies

Insert a row in
bootstrap table

- -

[PUT]
/API/bootstrap_policies/<id>

Modify a row in
bootstrap table by

id
id Policy ID in table

[DELETE]
/API/bootstrap_policies/<id>

Delete a row in
bootstrap table by

id
id Policy ID in table

[DELETE]
/API/bootstrap_policies

Delete all entries in
a bootstrap table

- -

pg. 72

7. Results and evaluation

This chapter analyzes the implementation of SPM and discusses the results achieved in

terms of scalability, reliability and performance testing of the system. First, we argue on the

tools explored, their performance benchmarking and leading edge against their counterparts.

Next, the performance and efficiency of the system will be debated through results obtained

using benchmarking tools. Succeeding to that, the scalability of SPM is analyzed through all

major interacting modules. The chapter also explains the additional important modifications

which were implemented for optimizing the system. Finally, the performance and scalability

are compared in terms of security and efficiency of the system.

7.1 Tools benchmark

As mentioned above, Security Policy Management has been developed on python web

server using asynchronous HTTP library which is AIOHTTP to get the best possible results using

single-threaded program. There are no defined figures or numbers of improvement between

asynchronous and synchronous programming as it is dependent on the implementation

approach. To comply with the asynchronous HTTP module, asynchronous MySQL package

AIOMySQL is used as a connector to the SQL database. MySQL is an open source database

providing remarkable results in performance, efficiency and scalability because of which it has

been selected as a database for storing policies in SPM. MySQL provides a maximum of 64

kilobytes (KB) of row size and 256 terabytes (TB) of table size. According to Oracle website 15,

MySQL can handle 1.6 million queries per second with 1024 parallel opened connections.

Moreover, it can create more than 100,000 connections per second. The front-end has been

developed in Django which can handle up to 45,000 requests per second. Moreover, it can

handle a large number of users and templates because of which it has been a popular choice

for many organizations such as Instagram, NASA and Pinterest.

WRK tool has been used to benchmark HTTP server for GET and POST requests which

would be the most used methods in Security Policy Management. This tool is open source and

involves major contribution by NGINX. The tool allows testing with limiting the number of

threads, connections and duration of the test. To test the POST method, LUA file16 containing

the POST parameters has been used to send data to the server. A self-created asynchronous

python code has also been used to test the performance and scalability of the system. The

results received through WRK and self-created python code match closely. MySQL database

performance has been tested through ‘MySQLslap’ which can generate burst connection

initiations towards the database. Functions of API includes unit testing to check for the

smooth integration of new features without affecting the existing system.

15 [online]. Available https://go.oracle.com/LP=22041 [Accessed: Feb. 20, 2018]

16 [online]. Available https://fileinfo.com/extension/lua [Accessed: Feb. 20, 2018]

https://go.oracle.com/LP=22041
https://fileinfo.com/extension/lua

pg. 73

7.2 Security and integrity

Four-layer security has been added in the system to avoid malicious policies to enter in

the database. Policies are first validated in the Django application. Afterwards, policies are

received by AIOHTTP server from Django where the input fields are again validated using

validation functions and then sent to MySQL for storing in a table. MySQL connector then

checks for possible SQL injection attack. MySQL database receives the policies through the

MySQL connector of python and generates an error while inserting if the input value does not

match with the column definition. MySQL also raises the error if a duplicate row exists in the

database. Django validates the query from the front-end with all the necessary elements and

if a validation error occurs, the query is not passed to AIOHTTP server. This basic validation

check avoids server overloading due to bogus or malicious requests from users and attackers,

thus sharing server load.

The sender might pass the Django application and directly send a query to AIOHTTP server

where the responsibility of validation is shifted from Django. This case is possible where the

Policy-API is not restricted to serve queries from the recognized entities only. If the queries

are directly sent to AIOHTTP server, the validation tool of the server takes the responsibility

and generates an error of validation and sends back the response. In case of error, the server

replies with an HTTP code in header code field and replies with the relevant error message in

the payload. Similarly, the error can be originated from MySQL where the HTTP header is

created with a predefined code along with a message in the payload for sending a response

to the sender.

Security and Integrity are also maintained through user identification in Django. All users

get an account on SPM to manage their policies so that an attacker cannot change policies for

other users. Moreover, it restricts unauthorized users from interacting with the database.

Django also caters for Cross Site Request Forgery (CSRF) through CSRF token. This token

prevents the attack on the web-application using an already authenticated session.

Additionally, Django provides easy HyperText Transfer Protocol over Secure Sockets Layer

(SSL) (HTTPS) session handling for secure communication between client and server. It also

includes protection against clickjacking which is hiding of malicious commands or scripts

behind legitimate inputs.

MySQL includes special characters in its queries which can execute various tasks according

to their selection and placement in the query. One such example is a semicolon (;) which is

used to end a statement. Two queries can be executed in one line in MySQL provided that

both the queries are separated by a semicolon at the right place. So as a prevention to such

attacks, a check for special characters has been implemented in API which checks every SQL

query for special characters before execution and returns an error if it finds any.

API also includes parameters, paths, query strings and methods validation which prevents

the user from inserting policy in the database using a GET request or vice-versa, thus following

the REST principles. Furthermore, it also limits the server to handle only predefined

pg. 74

parameters and queries which then prevents various potential attacks on web server and

database that might arise due to flexibility in the handling of incoming request parameters at

the server.

7.3 Performance

After the implementation of the system, testing for its scalability and performance is the

most important part to analyze its usage in a deployed network. Testing involves performance

analysis of AIOHTTP server from the perspective of different HTTP methods and the web

front-end developed on Django. Django is not very critical in terms of latency because the

web front-end can accommodate a delay of a few milliseconds. As there can be many users

using GUI so Django needs to be tested thoroughly regarding the scalability of the server. API

server has been tested with different input parameters to analyze the performance variation.

The policies are retrieved in two different structures depending on the usage. The policies

retrieved by CES node are formatted in a structure which is directly executable at the CES

whereas the policies retrieved by Django_webserver and Android application for policy

management include the plaintext information from the database tables. The same URL end-

points have not been used for all the contacting entities because the formatting of policies

for Django_webserver and Android application is needless and an unnecessary processing

load of the server at both ends. The Django_webserver also does not need policies in

formatted form, therefore, if it receives the format of policy that is needed by CES node, then

Django_webserver would again need to format it back to its original shape. Therefore, two

different types of testing have been performed which include the testing of fetching and

inserting the policies into the database through the perspective of policy management

whereas the second testing includes the formatting of policies for the user in a real scenario

with an assumed number of policies. The sections 7.3.2 and 7.3.3 shows the results.

7.3.1 Test environment

Tests have been performed on a Linux 16.04 operating system. Two different platforms

have been used to test the performance. The performance is first tested on a virtual machine

with 64-bit architecture over Oracle Virtual Box platform with Windows 7 as the host

machine. The other system is on Aalto cloud which has dedicated hardware and the SPM runs

on the local host machine without any virtual environment. The requests in both systems are

generated locally to exclude propagation time as it depends on external parameters that are

out of the scope of SPM. The specifications of the two systems are mentioned in Table 4.

pg. 75

Table 4 - Test machines specifications 17

Machine
Operating

System
Environment RAM

No. of
processor

cores

Processor
clock speed

Processor
Type

Cache
Bus

Speed

Local
machine

Linux
(64-bit)

Virtual-box 3GB 2 2.5 GHz
Intel I5
2400

6 MB
5

GT/s

Cloud
machine

Linux
(64-bit)

Host
machine

16GB 32 2.6 GHz
Intel Xeon
E5-2640 v3

20
MB

8
GT/s

In HTTP, the result and processing delays are dependent on the amount of data retrieved

and requests per second. Therefore, the same data cannot be used for performance analysis

of POST and GET requests. GET test has been performed on both, Local and Cloud machine

whereas POST request performance has only been done on Local machine. GET request is

directly linked to the performance of the network and initiation of the connection between

hosts and hence, more concerned about the delay in the processing of requests. All

performance tests are performed for 30 seconds and the result is an average time per request

in milliseconds (ms) for a specific query method.

7.3.2 Policy management performance

For testing of GET method, ‘firewall_policies’ table has been used because it would be the

most extensively used table of the Policy-Database as user and admin, both need to handle

the firewall policies using this table. The tests have been performed with 50 policies (rows) in

the table. Firewall policy that is being retrieved from the database includes policies with all

distinct combinations of column values. The types of policies from the firewall table include

circular pool, carrier-grade, user groups, SFQDNs and admin and user policy of firewall. The

table contains 20 “FIREWALL” policies, 10 SFQDN policies, 10 carrier grade policies and 5

policies for user group and circular pool each. No extensive post processing is involved in this

retrieval of policies because Django_webserver and Android application need these policies

for policy management. The first column in the tables shows the number of connections.

Table 5 - Performance Results in ms of HTTP GET to API Server with single thread

1 thread. 30 seconds
Response Time for Local machine Total Response Time for

Cloud Machine HTTP RTT API Processing Time Total Time

1 Connection 0,41 1,86 2,27 1,8

5 Connection 1,86 7,09 8,95 7,86

10 Connection 3,6 14,83 18,43 16,89

25 Connection 9,17 35,63 44,8 42,26

50 Connection 18 76,39 94,39 85,23

17 [online]. Available https://ark.intel.com/compare/83359,52208 [Accessed: Sep. 1, 2018]

https://ark.intel.com/compare/83359,52208

pg. 76

Table 5 shows the round-trip time of an HTTP query in the second column followed by the

time taken by the server to process a query in the third column. The time in the third column

is the duration of API to validate input parameters (which is table name in this test case),

retrieve data from Policy-Database. Sum of these two values, the total time taken by the

query during HTTP RTT and processing at API, is shown in fourth column of Table 5. The fifth

column shows the performance optimization in GET request when Cloud machine was used.

Graph 1 shows an increase in latency of requests as the number of connections increases due

to the reason that all queries are executed sequentially except the interaction with database

and HTTP request/response.

Graph 1 - Latency per packet for HTTP GET request

The number of parallel connections also affects the requests per second in HTTP. The

number of requests increases with an increase in the number of connections but after a

threshold, it starts decreasing. The reason for decreasing requests per second is the

overloading of the server with many requests as every request must go through multiple

sections before being replied to the client. Table 6 shows the number of requests

corresponding to number of connections. The second column presents the number of

requests for HTTP round trip without API processing whereas the third column includes the

complete processing of query and sending a response. The graphical representation of Table

6 is shown in Graph 3.

Table 6 – GET Requests per Second to Server

Connections Without Processing With Processing

1 2488 481

5 2686 578

10 2779 632

25 2736 542

50 2788 495

For performance analysis of POST requests, only one row is inserted in the database per

query. The query comprises of one policy of firewall type which is the most extensive policy

of database constituting of total 17 different fields including different data types. Processing

0

20

40

60

80

100

1 5 10 25 50

La
te

n
cy

 p
er

 p
ac

ke
t

in
 m

s

Number of Parallel Connections

API Processing Delay Total Time HTTP RTT

pg. 77

of input data involves validation of field, formatting of fields, putting NULL for optional

parameters that are not provided and cater for duplication of policy. The performance can be

improved when using a larger number of policies to be inserted in a single HTTP request, a

flexibility feature being offered by SPM. Also, significant delay reduction can be observed

when sending multiple policies in a single HTTP request because it includes single POST

request to the Policy-Database for insertion of queries in a single table.

Table 7 - Performance Results of HTTP POST to API Server with 1 Thread

1 thread. 30 seconds
Response Time per query in milliseconds

HTTP RTT API Processing Time Total Time

1 Connection 0,41 19,82 20,23

5 Connection 1,86 28,58 30,44

10 Connection 3,6 37,78 41,38

25 Connection 9,17 57,46 66,63

50 Connection 18 81,15 99,15

Table 7 shows the same information as Table 5 but the results are for POST request. HTTP

RTT is the HTTP round trip time. It is the time when a POST request was created and sent to

the server with data and server sent a reply to the client without doing any processing. The

third column shows the API Processing delay, which includes the time taken by MySQL in the

insertion of policy and the validation of input at API and MySQL. The fourth column shows the

sum of HTTP RTT and processing time at API which makes to the total time taken by a single

request to process. A similar analysis has been shown graphically in Graph 2.

Graph 2 - Latency per packet for HTTP POST request

The analysis of the graph shows that processing delay and HTTP RTT increase with an

increase in parallel connections. The reason for the delay is that when the number of queries

increases at the server end, then the delay per query also increases because of more

processing requirement. An analysis of requests per second with simultaneous parallel

connections is shown in Table 8 which would help to understand the increased processing

delay of Table 7.

0

20

40

60

80

100

120

1 5 10 25 50

La
te

n
cy

 p
er

 p
ac

ke
t

in
 m

s

Number of Parallel Connections

API Processing Delay Total Time HTTP RTT

pg. 78

Table 8 - POST Requests per Second to Server

Connections Without Processing With Processing

1 2405 166

5 2636 395

10 2719 410

25 2691 410

50 2669 383

In Table 8, the first column shows the simultaneous connection to the server and second

and third columns show the number of requests per second without and with API load

accordingly. We can see from this table that increasing the number of parallel simultaneous

connections does increase the number of requests per second but does not multiply it. It is

due to the load at the server which becomes a bottleneck. This increased requests per second

induce a greater delay at server end for processing. Graph 3 shows the reduction in number

of requests per second to the server when a processing load is applied to the HTTP query.

Graph 3 - GET and POST Requests per Second at API Server

Results show that the increase in parallel connections does increase the requests per

second but also increases the processing time per query at the server end.

0

500

1000

1500

2000

2500

3000

1 5 10 25 50

N
u

m
b

er
 o

f
R

eq
u

es
ts

 /
 s

ec

Parallel Connections

HTTP Requests GET Requests POST Requests

pg. 79

7.3.3 Policy retrieval performance

The section shows results for the testing of retrieval of policies of a user by CES node. CES

node only uses GET method for the retrieval of policies because of which only GET requests

have been considered. For performing the test, firewall policies of a single user have been

used. Firewall policy that is being retrieved from the database includes policy from two

different tables. These two tables consist of the user identification and policies of the user.

The policy of a single user comprises of 6 different elements from the policy table along with

identity details. These elements include ID, circular pool, carrier-grade, user groups, SFQDNs

and admin and user policy of firewall. To test the system for a real-time scenario, a total of 30

policies have been used for a user which include 20 firewall policies per user. Added to this,

we assume a total of 10 extra policies that comprises of ID, carrier-grade, SFQDN and circular

pool values. We assumed that there are 20 mobile applications on average running on a user’s

end device and hence, 20 firewall admin and user policies in the table.

When a GET request is received at the SPM, the policies retrieved from the database are

then structured in the format which can be directly executed at CES node. This two steps

procedure increases the processing time for fetching a user’s policy and the processing delay

at API increases in proportion as the number of rows to be retrieved increases. To analyze the

performance of the system and its optimization with a high-end machine, the system has

been tested on Local machine and on Cloud machine. The results of testing on both the

machines are shown in Table 9.

Table 9 - Performance with high-end system compared with normal system

1 thread. 30 seconds
Response Time for Local machine Total Response Time for

Cloud Machine HTTP RTT API Processing Time Total Time

1 Connection 0,41 2,15 2,56 2,13

5 Connection 1,86 9,41 11,27 9,14

10 Connection 3,6 20,49 24,09 19,1

25 Connection 9,17 50,37 59,54 48,4

50 Connection 18 79,58 97,58 81,79

The first column of Table 9 shows the simultaneous number of connections. HTTP RTT is

the round-trip time taken by HTTP query without any API processing whereas the sum of API

processing and HTTP RTT constitutes the total time taken by a GET query for fetching of user

policy. The total time taken by a query on the Cloud machine is lesser than Local machine

because of better specifications. The analysis in the above table shows that the performance

has been improved using more computing capacity, but the increase is not proportional. With

a single connection, a query takes 2,13 second on Cloud machine which is delayed to 2,56

seconds with the Local machine. The code has been implemented using asynchronous

programming methodology without using multi-processing module which limits the code to

optimally use the multi-core processing power. For a single threaded application, a processor

pg. 80

with higher clock rate gives better results than using multiple processors having low

processing power per core. Figure 22 provides a graphical representation of the results of

Table 9.

Figure 22 - Latency per packet for HTTP GET request by CES node

Table 10 compares the requests per second served by Policy-API when using a Local

machine and Cloud machine. The number of requests has improved while using the system

with more power but the improvement is not proportional to the increase in system

specifications. The reason stays same which is the lack of parallel processing of the code.

Table 10 - Requests per second with high-end system and normal system

Connections With Local machine With Cloud machine

1 417 439

5 503 546

10 491 523

25 480 516

50 475 503

To get an idea of the delay in a successful attachment of user with the CES, let us consider

50 users who attach with the network simultaneously, and CES generates a request to SPM

for retrieval of Firewall policies of these 50 users. As mentioned above, we assume that each

user has 20 applications and hence, a total of 30 policies including all other policy types.

Therefore, a total of 30 policies per user need to be fetched which would then make a total

of 30x50 = 1500 policies for 50 users. The time taken by the server in the processing of 50

requests and sending the response with formatted policies is shown in Table 11.

Table 11 - Latency for policy retrieval of 50 users by CES node

1 thread. 50 requests
Total response time in ms for 50 users

With Local machine With Cloud Machine

1 Connection 126,41 110,65

5 Connection 119,53 101,43

10 Connection 127,40 110,41

25 Connection 135,72 118,74

50 Connection 159,01 141,84

0

20

40

60

80

100

120

1 5 10 25 50La
te

n
cy

 p
er

 p
ac

ke
t

in
 m

s

Number of Parallel Connections

API Processing Delay Total Time

HTTP RTT Cloud Machine Total Time

pg. 81

The results of Table 11 show the total time taken by SPM in replying policies for 50 users.

The duration of response increases with the increased number of connection as it then affects

the balance between the number of requests and the connection opening time. Initiating

more than 5 connections to the server delays the query more because the tool then needs to

first create connection and then start sending the requests. The results show that it takes only

119,53 milliseconds on a Local machine for 50 users to attach with the system which is

acceptable because the fetching of policies is performed once for a user attached to the

network. An increased number of requests with higher clock speed processor can improve

the response time of queries and help to optimally use the parallel connections

7.4 Scalability

The next concern for the analysis of SPM is to inspect its elements in terms of scalability

with increasing policy requirements, number of users and large networks. The scalability can

be defined as the power of the system to handle a large number of clients with relatively

challenging amount of data. According to the results obtained for number of HTTP requests

in GET and POST queries shown in Table 6 and Table 8 reveals that SPM is scalable to the large

network scenarios with a substantial number of users. The results are graphically compared

in Graph 3. The increase in processing delay is caused due to the asynchronous nature of

programming. The results can be further improved using multi-processing module so that the

functions can run in parallel. A load balancer for various instances of SPM can further provide

impressive performance results for commercial deployment. Having many instances of SPM

would eliminate the bottleneck of maximum 1023 connections to the REST Server.

The SPM leverages many users to handle the policies of a single user having similar policy

elements. The conflict of policies in such scenarios is elegantly resolved through the priority

field of policies which is assigned by SPM on the insertion of new policies and is mapped to

the login credentials to the system. On request from CES, in final policy creation, the policy

with lower priority is overridden by a higher priority policy. The thesis refers only to two

stakeholders which include a network administrator and a user.

Table 12 - Scalability of firewall policies

Users Basic Policy size (bytes) 1 additional FW rule (bytes)

All policies Per user All policies Per user

1 334 334 453 453

25 8,639 345 11,543 461

100 34,845 348 46,924 469

1K 351,355 351 478,230 478

100K 36,184,413 361 48,157,144 481

Scalability not only refers to the number of users or connections being handled

simultaneously but also considers the memory element. Memory aspect shows the scalability

in terms of increase in storage size when new policies/parameters are added. The analysis

pg. 82

has been performed on different types of policies such as firewall policies, C2C and H2H

policies. In these policies, most of the fields are defined by the user and only limited and safe

policy editing is leveraged to end user. An addition of firewall policy increases the size of the

Policy-Database by 119 bytes whose default size is 334 bytes. To start with 100K users, the

firewall policy makes a storage size of 34.5 MB which then increases to 45.9 MB on the

addition of single firewall rule by each of these users. The results are shown in Table 12.

Table 13 - Scalability of CETP-H2H policies

Users Basic Policy (in bytes) 1 Addition in policy (in bytes)

All policies Per user All policies Per user

1 190 190 246 246

25 5043 201 6483 259

100 20501 205 26391 264

1K 215809 215 276699 276

100K 22660535 226 28949900 289

Likewise, a basic H2H policy amounts to 190 bytes in the Policy-Database. The scalability

results show that the policy for 100K users is about 21.6 MB. The results according to the

increasing number of users are shown in Table 13. Therefore, the total amount of storage

required to store firewall and H2H policies of 100K users is almost 56MB which then increases

to 6GB for 10 million users. This amount of required storage is quite easy to manage in the

advance storage options available in local system and cloud. Thus, SPM can scale to a large

number of users requiring a limited and manageable amount of storage and resources.

7.5 Integration testing with CES

The basic purpose of SPM is to provide policies to CES nodes for its automation. CES node

queries the REST Server for policy retrieval when a user attaches with the network and when

a connection is initiated. This, thus, adds to the delay in the connection established at source

and destination end before data exchange. Several policies are retrieved on the attachment

of a user with the network such as firewall policy whereas C2C and H2H policies are retrieved

on connection establishment. This affects the connection establishment time as the data

communication policies have already been fetched on attachment. The analysis has been

performed over the more effected type of policies which are C2C and H2H.

To perform the test, two virtual machines have been considered where one contains the

SPM, which has already been discussed before. The second VM runs the test components

containing two private networks having independent controlling CES nodes. LXC containers

have been used for the establishment of test scenario for CES network and hosts 18. The CES

networks consist of hosts using which, a connection is established from host to destination.

When a connection is initiated from a host, the serving CES retrieves the policies of the host

from SPM relying on which, the serving CES generates a request to the destination CES. On

18 "LXC," [Online]. Available: https://help.ubuntu.com/lts/serverguide/lxc.html. [Accessed: Mar. 03, 2018]

https://help.ubuntu.com/lts/serverguide/lxc.html

pg. 83

reception of connection request from outbound CES, the destination CES then generates a

REST query to its SPM for policy retrieval of destination user based on which, the trust

negotiation proceeds. This negotiation is usually finalized in 2 or 3 RTTs [28].

Figure 23 - Impact of SPM integration on CETP-Policy negotiation at CES-CP

The implementation of SPM in the communication hierarchy of two different CES nodes

induces an additional delay in fetching policies at both ends. This delay at both the ends is

sequential because the initiation message from host CES includes parameters that are fetched

from the Policy-Database. Similarly, on destination CES, the query to SPM is generated when

a request is received from the host CES. This additional delay of fetching policies from SPM is

shown in Figure 23. As shown in the figure, a single RTT of policy negotiation between two

CES without SPM takes nearly 2ms and the corresponding DNS request originated by a user is

served in approximately 3 ms.

On integration with SPM, a delay of 5.5 ms is added to the connection establishment

which increases the policy negotiation time from 2 ms to 7 ms and DNS response time from

3 ms to 8ms. This delay of 5.5 milliseconds includes the delay at both the ends for policy

retrieval and would be half for each CES network. Therefore, a delay of 2.7ms is added at a

CES node for policy retrieval during connection initiation. The delay caused by policy retrieval

in CES is open to optimization by using pre-fetching where a serving CES could retrieve all user

policies at the system startup before the user initiates its first session and store the policies

locally at CES.

pg. 84

8. Discussion

The development of SPM over asynchronous module allows getting the maximum of

single-threaded code of Policy-API developed over python which can further be enhanced

using a multi-threaded and multi-processing implementation. A load balancer with many

instances of API can further improve the scalability and thus the performance results. The

performance is currently comparable to state-of-the-art HTTP technologies but can further

be improved using high-end processors available as system hardware or in cloud computing.

With respect to scalability, the API is currently able to handle more than 100 users per second

which is inspiring for the testing on a limited scale deployment. Furthermore, the memory

requirements for policy extensions can be handled either locally or through the cloud storage.

Performance further relies on the upcoming technologies such as HTTP2.0 which handles all

requests asynchronously that includes the sending of responses back to the sender.

The ultra-high reliability demanded from the 5G network comes under the premise of

Future Internet and requires the following features:

 Handling potential threats and vulnerabilities in the conventional Internet

architecture such as traffic floods, DDoS attacks, address spoofing, phishing and

sniffing.

 The network should be able to accommodate user-centric security policies which then

helps to satisfy end-user needs on per connection or session basis. This provides

flexibility to the network and end-user to allow advance services for the user whereas

restricting attacks at the network edge for basic or dumb host devices such as IoT.

To address these concerns, CES has been developed as an enhancement to NAT where a

cooperative network firewall takes responsibility of protecting end user and only allows relax

connections between trusted end nodes. This, thus, helps to mitigate the attacks mentioned

above along with providing reliable session and data communication between hosts and

networks. The reliability is achieved through the establishment of trust between the

communicating networks through policy negotiations. The user-centric policies can tailor the

default parameters of policy negotiation based on the host/destination CES nodes,

host/destination users or devices and the transport protocol or service. These policies are

stored by administrator and user in the database through front-end and backend of SPM. The

CES node then retrieves theses policy on connection initiation and establishment before the

data communication. The approach helps to modify the session between entities on per-user

basis, therefore providing flexibility to end users.

pg. 85

9. Conclusion

The thesis focuses on the development of Security Policy Management for dynamic

handling of user policies to provide flexible session handling for ultra-reliable services. SPM,

developed in this thesis, provides services to Customer Edge Switching nodes which is a

proposed architecture for 5G core network that controls the malicious activities at the edge

of the network, thus allowing only expected traffic to pass through the gateway. The goal is

to provide flexible network management to network operators and end users along with

ensuring the reliability and security of all entities of a network.

SPM has mainly contributed to the automation of functioning of CES nodes. The other

contributions of CES are: 1) leveraging a part of SPM to end-user for managing and monitoring

his policies and alter them in case of need, thus, providing autonomous control over

connection and session parameters. This approach helps to cater for the IoT use case where

the devices are dumb and the responsibility of security is shifted to operators. Therefore, 2)

filtering the unexpected traffic for a host at the network edge, thus saving the end user from

attacks and waste of resources on processing unwanted traffic. The approach helps to

improve the reliability and ensures the availability of services. 3) FQDN has been used as the

identity of a user in this thesis which aims to fill the gap caused by the depletion of IPv4

addresses and the migration of network devices handle IPv6 traffic. Furthermore, use of

FQDN can help to address individual services of a user using SFQDN which then serves the

purpose of using DDNS for hosting services over dynamic IP such as web server. 4) SFQDNs

allows filtering of traffic and restricting of access on the per service basis which implies that a

host can restrict a device for creating an SSH connection whereas allowing to access the web

server running on the same machine.

The development of SPM and its experimental implementation along with scalability and

performance analysis motivates the operators and researches to integrate the SPM in the

traditional mobile-network policy architecture to provide better security, reliability of

services and flexibility to handle sessions. The thesis proposes the addition of SPM in the

policy architecture of mobile operators and using the CES methodology to cater for the

security threats in current Internet-networks. Besides mobile operators, the ISPs can also

benefit through CES deployed with SPM to provide robust security. In this case, the

identification of a user can use other parameters such as interface or login credentials to

identify the user at CES node for policy retrieval. The computing and storing capacity can be

provisioned on demand from the cloud or other hardware solutions to expand the

deployment of CES at large network with millions of hosts.

pg. 86

10. Future works

SPM, developed in this thesis, provides a basic framework to store, retrieve and manage

policies. It also incorporates the capability to handle few well-known attacks and malicious

activities. But, it still provides a scope for the addition of new features related to network

management, network optimization, system security and reliability, and compatibility. The

future work for SPM is its expansion to optimize the system by caching the most used policies

to reduce their fetching time. Moreover, the SPM can be made secure through the latest

protocols and apply robust authentications between the communicating nodes. A valuable

performance optimization would be achieved by making the SPM code to include multi-

processing module of python along with the asynchronous capability to achieve better results

and to improve the scalability of the system. The multi-processing module allows python to

use more than one core simultaneously for processing. This would enable the SPM to take full

advantage of multi-core hardware.

 Machine learning can be used in SPM in the future to create policies dynamically using

the rules provided in the database rather than storing the hard-coded policies. This approach

would automate the usage of SPM with various networks with minimal user intervention.

Furthermore, this enhancement would help the system to monitor the changing

requirements of users and devices and adapt to the changed network on runtime.

pg. 87

References

[1] Rysavy, Peter. "Mobile Broadband: EDGE, HSPA and LTE’." Online Material URL:

http://www. itu. int/ITU-D/imt-2000/index. html (2006).

[2] Donegan, Patrick. "The security vulnerabilities of LTE: Risks for operators." Juniper

Networks white paper (2013).

[3] Jimaa, Shihab, Kok Keong Chai, Yue Chen, and Yasir Alfadhl. "LTE-A an overview and

future research areas." In Wireless and Mobile Computing, Networking and

Communications (WiMob), 2011 IEEE 7th International Conference on, pp. 395-399. IEEE,

2011.

[4] Popovski, Petar. "Ultra-reliable communication in 5G wireless systems." IEEE 1st

International Conference on 5G for Ubiquitous Connectivity (5GU), 2014.

[5] Singh, Rakesh Kumar, and Ranjan Singh. "4G LTE Cellular Technology: Network

Architecture and Mobile Standards." International Journal of Emerging Research in

Management &Technology ISSN (2016): 2278-9359.

[6] 3GPP TS 29.336, "Home Subscriber Server (HSS) diameter interfaces for interworking

with packet data networks and applications," V 12.2.0, Jun. 2014

[8qqq] 3GPP TS 129.212, “Policy and Charging Control over Gx reference point” V7.4.0 April

2008

[9] Quality of Service in LTE (2014), Sandvine Intelligent Broadband Networks.

[10] Ali-Yahiya, Tara. Understanding LTE and its Performance. Springer Science & Business

Media, 2011. Chapter 2: Network Architecture and Protocols

[11] Singh, A., Madhu Pahal, and Neeraj Goyat. "A Review Paper on firewall." International

Journal for Research in Applied Science Engineering Technology (IJRASET) (2013): 4-8.

[12] Wesinger Jr, Ralph E., and Christopher D. Coley. "Firewall providing enhanced network

security and user transparency." U.S. Patent No. 5,898,830. 27 Apr. 1999.

[13] Stallings, W. (2003). Cryptography and network security: principles and practice.

Pearson Education India. Chapter 22: Firewalls.

[14] Bhagchandka, Dhiraj. Classification of firewalls and proxies. Department of Computer

Sciences, The University of Texas at Austin, 2003.

[15] Strassner, John. Policy-based network management: solutions for the next generation.

Elsevier, 2003.

[16] Westerinen, Andrea, John Schnizlein, John Strassner, Mark Scherling, Bob Quinn, Shai

Herzog, A. Huynh, Mark Carlson, Jay Perry, and Steve Waldbusser. Terminology for policy-

based management. No. RFC 3198. 2001.

pg. 88

[17] Stockwell, E.B. and Klietz, A.E., Secure Computing Corp, 1999. Generalized security

policy management system and method. U.S. Patent 5,950,195.

[18] Putzolu, D.M., Intel Corp, 2003. Policy-based network management system using

dynamic policy generation. U.S. Patent 6,578,076.

[19] Sloman, M., 1994. Policy driven management for distributed systems. Journal of

network and Systems Management, 2(4), pp.333-360.

[20] Verma, D.C., 2002. Simplifying network administration using policy-based management.

IEEE network, 16(2), pp.20-26.

[21] Damianou, N., Dulay, N., Lupu, E., Sloman, M. and Tonouchi, T., 2002. Tools for domain-

based policy management of distributed systems. In Network Operations and Management

Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP (pp. 203-217). IEEE.

[22] Matthews, Philip, Rohan Mahy, and Jonathan Rosenberg. "Traversal using relays around

nat (turn): Relay extensions to session traversal utilities for nat (stun)." (2010).

[23] Wing, Dan, Philip Matthews, Rohan Mahy, and Jonathan Rosenberg. "Session traversal

utilities for NAT (STUN)." (2008).

[24] Hammad Kabir. “Security Mechanisms for a Cooperative Firewall”. School of Electrical

Engineering Aalto University 2014

[25] J. S. Llorente, "Private Realm Gateway," Master Thesis, Aalto University, School of

Electrical Engineering, 2012.

[26] Fofana Ibrahima Kalil. “Policy Creation and Bootstrapping System for Customer Edge

Switching”. School of Electrical Engineering Aalto University 2018

[27] "Captive Portal (Authenticated DHCP)," Infoblox.

[28] Kantola, R., Llorente Santos, J., and Beijar, N. (2016) Policy-based communications for

5G mobile with customer edge switching. Security Comm. Networks, 9: 3070–3082. doi:

10.1002/sec.1253.

