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The field of bottom-up nanotechnology has been the subject of much research
in the recent years. Most of that research has focused on creating nano-scale
shapes and structures using multiple strands. DNA origamis and various tile-
based schemes are perhaps the most famous examples. No such robust design
schemes exist for the design of single stranded RNA structures, however, despite
their potential to offer a cheap and sound approach to nanomanufacturing.

In this thesis, we study the problem of designing single-stranded RNA polyhe-
dral wireframes, i.e., such RNA strands that fold into the wireframe of a given
polyhedron. We introduce a kissing-loop based design scheme, which routes an
RNA strand around a spanning tree of a polyhedron, and we show how to do the
routing on arbitrary polyhedra while avoiding knots. We also introduce a design
tool, Sterna, which is based on these principles. It allows the user to convert a
3D model of a polyhedron into an RNA secondary and tertiary structures, which
can be further developed into a primary structure with the additional scripts we
have provided. Finally, we design three RNA polyhedra, which are synthesized
and imaged in a project related to this master’s thesis. The resulting images lend
credence to the soundness of Sterna and the underlying design process.
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Yksi koostavan (engl. bottom-up) nanoteknologian keskeisié tutkimusalueita vii-
me vuosina on ollut DNA-nanoteknologia, so. nanokokoisten kappaleiden ja
rakennelmien tuottaminen biopolymeereistd. Niinsanotut DNA-origamit ja -
laatoitukset ovat tdmén ldhestymistavan tunnetuimpia esimerkkejd. Vastaavaa
yleistd menetelméié ei toistaiseksi ole ollut nanorakenteiden tuottamiseen yk-
sisdikeisistée RNA-polymeereisté, vaikka namé periaatteessa tarjoaisivat edullisen
ja skaalautuvan lahtokohdan nanovalmistukselle.

Téasséd diplomitydssa tarkastelemme 3D-monitahokkaiden rautalankamallien las-
kostamista yksiséikeisistd RNA-polymeereisti. Kehitdmme automatisoidun suun-
nitteluprosessin, joka tuottaa syttteens annettua monitahokasta vastaavaan muo-
toon laskostuvan RNA-emésten jonon. Kayttamémme menetelmé perustuu RNA-
sdikeen reitittdmiseen monitahokkaan virittdvan puun ympéri ja rakenteen sul-
kemiseen ns. silmukkapareilla (engl. kissing loop motif). Esitimme myos, miten
mielivaltaisen monitahokkaan virittdva puu on mahdollista reitittda tuottamatta
topologisia solmuja, jotka estéisivéit vastaavan RNA-polymeerin laskostumisen.

Toteuttamamme Sterna-suunnitteluohjelman avulla kdyttdja voi tuottaa misté
tahansa 3D-monitahokasmallista sen muotoon laskostuvan RNA-jonon se-
kundééri- ja tertidarirakennekuvaukset. Tarjoamme myos ohjelman jonka avulla
ndméa voidaan edelleen tdydentédéd eméstiedoilla biosynteesid varten tarvittavak-
si RNA-primééarirakenteeksi. Kéayttoesimerkkeind suunnittelemme kolme RNA-
monitahokasta, jotka on syntetisoitu ja kuvannettu tdmén diplomityén kump-
panihankkeissa. Saadut tulokset todentavat suunnittelumenetelmdmme ja siihen
pohjautuvan Sterna-tydkalun oikeellisuutta.

Asiasanat: RNA, Nanoteknologia, Suunnittelu, Monitahokkaat, Rauta-
lankamalli, Virittdva puu, Sterna
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Chapter 1

Introduction

The DNA double helix might be the best known and most iconic symbol of
nanoscience. It consists of two DNA strands circling around each other, each
base of one connected to those of the other at equal intervals in complexes
known as base pairs. It is perhaps less known that these two strands might
actually be one. In a process called molecular folding, biopolymers wrap
around themselves to create intricate shapes and structures at nanometer
scale. This process can turn even just a single strand into a truly complex
three dimensional structure [20, p. 26].

The approach of creating nanostructures through the self assembly or
synthesis of nanoscale building blocks is called the bottom-up approach. This
is the way all life is formed in nature. Bottom-up approach is the opposite
of top-down approach, which attempts to reach the same goals by shrinking
larger structures through etching, cutting or sculpting. The main benefits
of bottom-up approach are potentially lower costs, higher scalability and
efficient parallel processing [14, pp. 66-106].

One of the more famous approaches to bottom-up nanotechnology is Paul
Rothemund’s DNA-origami [16], which forces a long strand of DNA to desired
conformations by attaching to it numerous short DNA-strands called staple
strands. This approach has been very successful, but it requires the synthesis
of a great number of different strands. In 2016, Veneziano et al. published
spanning tree based designs, which greatly eased the design process for DNA-
origamis [22].

DNA-origamis, tiles and other methods have been used to create a num-
ber of exceptionally complex nanoscale structures, including Platonic solids,
maps and even tiny bunnies and nanoscale computers. Despite these ad-
vancements in DNA nanotechnology, RNA still lacks behind. While the
most complex structures created in DNA consist of hundreds of thousands
of nucleotides, their RNA counterparts are still constrained to a fraction of
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that [10, 19].

RNA might nevertheless be a more suitable material for nanotechnology
than DNA due to its greater structural variety and the possibility of syn-
thesizing it through cloning.[8] This thesis focuses on single-stranded RNA
structures that do not use any staple strands. With only one strand to
synthesize, this could eventually be a simpler process than the synthesis of
DNA-origamis, which may require hundreds of different strands. Presently,
however, it actually is easier to synthesize numerous short strands rather than
a single longer one. Nevertheless, single-stranded RNA can theoretically be
synthesized even at room temperature by cellular processes and continuously
cloned inside the nucleus of a cell, which would not be possible for multiple
strands.

1.1 Problem statement

In this thesis, we try to solve the problem of algorithmically designing sin-
gle RNA strands that fold into wireframes with the topology of a target
polyhedron. This involves modelling the RNA strand, routing it around
the polyhedron and designing the final sequence. Our ultimate goal is to
create an automated process of converting a 3D-model into a sequence of nu-
cleotides that will fold into a wireframe of the given model when synthesized,
as depicted in Figure 1.1.

This thesis will introduce new algorithms and tools for the design of three
dimensional structures using a single strand of RNA. We present a spanning
tree based routing algorithm to guide a strand of RNA into taking the shape
of almost any arbitrary polyhedron, and we provide new design tools, Sterna
and snacseq, to convert almost any given 3D-model into an RNA-strand,
which should fold into the wireframe of the given model.

Figure 1.1: The essence of the thesis distilled into one image: Converting a
3D-model to an RNA strand folding into its wireframe.
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1.2 Structure of the thesis

This thesis is divided into seven chapters. In the first two, we introduce the
problem of designing RNA polyhedra and lay the foundations for our work.
We give a brief overview of the field and explain key concepts relevant to
RNA from a computer science point of view.

In Chapter 3, we focus on finding single stranded RNA secondary struc-
tures that correspond to arbitrary polyhedra. In Section 3.2, we show how to
route a strand around any spanning tree without forming topological knots.
We introduce a sorting algorithm called zig-zag combing in Section 3.2 and
use it in conjunction with depth first search to find an unknotted path around
a polyhedron. Section 3.3 explains how we generate an RNA strand along
this path based on the P-stick model by Geary and Andersen [9]. We also
show how to use a spring relaxation algorithm to orientate double helices
along the edges of the polyhedra.

Chapter 4 describes how we convert secondary structures into final RNA
sequences by splitting the primary structure into a stem and kissing loops and
by generating them separately with NUPACK [26]. Section 4.1 introduces
constraints on the stem exerted by DNA synthesis and transcription. In
Section 4.2, we discuss kissing loops, their orthogonality and their generation.
We also present a greedy algorithm for generating sets of orthogonal kissing
loops.

Chapter 5 introduces Sterna, a secondary structure design tool based on
the principles, procedures and algorithms described in the previous chapters.
In Sections 5.1, 5.2 and 5.3, we explain the capabilities and input and output
formats of Sterna and introduce the snac file format. Section 5.4 presents
three additional scripts to generate pseudoknots and primary structures and
to convert RNA strands from snac format to oxDNA input files for further
analysis.

Finally, in the results chapter (Chapter 6), we discuss how we designed
and simulated three single stranded RNA polyhedra, which were synthesized
by our collaborators Ibuki Kawamata and Lukas Oesinghaus and imaged by
Ibuki Kawamata. Section 6.2 presents the laboratory results and electron
microscope images of the polyhedra. The final chapter, Chapter 7, concludes
the thesis, sums up our work and suggests interesting problems for future
studies.



Chapter 2

Background

2.1 RNA

Figure 2.1: A P-stick model of an RNA helix

RNA (ribonucleic acid) is one of the principal biopolymers essential to
life, alongside DNA (deoxyribonucleic acid) and proteins. RNA and its more
famous cousin, DNA, are both nucleic acids, i.e., they consist of a chain
of nucleotides. In RNA, these nucleotides come in four flavors, the bases
adenine, uracil, guanine and cytosine, denoted with letters A, U, G and
C respectively. The order and the number of the nucleotides defines the
primary structure of the molecule, and it determines how the strand folds
and interacts with other molecules [18, pp. 20-22]. RNA is created in a
process called transcription, where the enzyme RNA polymerase binds to a
DNA template and creates the RNA-strand one nucleotide at a time [7, p.
11].

Since the primary structure is defined with the language of four bases, it
can be easily represented as a simple string of A’s, U’s, G’s and C’s. This

10
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string starts from the 5’ (five-prime) end of the RNA strands and ends at the
3’ (three-prime) end. This order is imposed by 3’-5" phosphodiester bonds
joining riboses together to create the backbone of the RNA strand [20, p.
22]. Although four letters are enough to fully describe the primary structure
of an RNA strand, it is often useful to specify the bases less rigidly: Nucleic
acid notation expands this language by twelve additional characters.

A strand of RNA folds around

Symbol | Description Bases itself, since its constituent bases
A Adenine A interact with each other to form

C Cytosine C base pairs with specific hydrogen

S ngiﬁe S bonds. The canonical base pairs,

W Woak AU also called Watson-Crick base pairs,

S Strong C. G are guanine-cytosine, adenine-uracil

M aMino A, C and so-called wobble-pair, guanine-

K Keto G, U uracil[18, p. 23, p. 211]. In spe-

R puRine A, G cial circumstances, such as at the

E pYrrll(inime CC&}UU end of a helix or when flanked by

D ot C A: G: ) no other base pairs, any two bases

o ot & AC U can form non-canonical pairs [17,

\ not U A, C, G pp. 15-16]. The strength of a base

N any Nucleotide | A, C, G, U | pair connection depends not only

Z Zero None on the bases themselves but also on
Table 2.1: Nucleic Acid Notation Ta- the surrounding bases and their ori-
ble entations. Base pair strengths are

commonly modeled with the nearest
neighbor model of RNA energetics [25]. It assigns energy values for all base
pairs according to a large experimentally derived rule set of short sequences
pairing up with other sequences.

The base pairs of an RNA strand are most often represented using the
dot-bracket-notation as shown in the caption of Figure 2.2. In dot-bracket-
notation, dots represent unpaired bases, opening brackets represent the first
base of a pair, and closing brackets represent the second base of a pair.
The secondary structure of an RNA strand is defined as the base pairs that
can be depicted with dot-bracket-notation and these three characters. More
formally, if the primary structure is defined as an indexed array, the secondary
structure P is defined as a set pairs (i, j) € P,i < j, where Y(p1,p2), (¢1,¢2) €
Pipr <@ <p2 4> g <pa

As shown in Figure 2.2 and Figure 2.3, base pairs can also be illustrated
with an arc diagram. An arc diagram of an RNA strand is constructed by
laying its primary structure on a single line and by drawing an arc for each
base pair. All arc diagrams with no overlapping arcs can be equivalently
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5 >3

Figure 2.2: Left: A secondary-structure diagram of a loop with six basepairs
and four unpaired bases. Right: An arc diagram of the same structure. The
dotbracket-notation for this structure would be “((((((....))))))”.

represented with dot-bracket-notation. The tertiary structure of an RNA
strand is defined in relation to the secondary structure as the base pairs that
do not fit the definition of the secondary structure. Equivalently, the tertiary
structure consists of the unnested base pairs, or pseudoknots, i.e., as those
pairs denotable only by crossing arcs in the arc diagram.

2.2 RNA models

As previously mentioned, the strength of base pairs can be modeled using the
nearest neighbor model. The sum of the strengths of all base pairs defines
the total free energy of the secondary structure. The second law of thermo-
dynamics necessitates that the RNA strand tends towards the structure that
minimizes its free energy. By finding this structure, we can predict the final
conformation of the strand in nature. We can therefore in principle predict
secondary structures based on primary structures or even design primary
structures based on given secondary structures.

The nearest neighbor model is a simplified thermodynamic model based
on observed energies of RNA strands. In principle, it defines a set of all
possible pairs of two base pairs and assigns an energy value to them. The
energy of the secondary structure can be calculated by summing up all of
these pairs occurring in it [12, pp. 20-23]. The actual nearest neighbor model
contains multiple additional rules and exceptions, but they are irrelevant for
the understandability of this thesis.
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Figure 2.3: First row: A well nested RNA strand with loop and helix sec-
ondary structure motifs. Second row: An RNA strand with pseudoknots and
a tertiary structure.

Parameter | Variable | A-form The geometry of RNA is similar
Radius R 8.7A to that of DNA. It will also form
Rise D 2.81 A helical structures, albeit with slight
Inclination I 745 A differences. Since atomic models of
AXi.S A 139.9 A RNA would be unreasonably compli-
Twist T 32.73 A . : :

Flclicity i 11 bp cated and almost impossible to sim-

ulate with modern computers [12,
Table 2.2: P-stick model parame- 43-66], we abstract RNA by using
ters. Adapted from the 2014 paper by the P-stick heliz model as defined
Geary and Andersen [9]. by Geary and Andersen [9]. In this

model, an RNA strand is thought of
as a series of beads, whose placement is determined by the Equation 2.1.

x p-D
y| = |R-cos(p-%)| . peZ (2.1)
2 R-sin(p- )
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The parameters for the P-stick model are listed in Table 2.2. Reality
is not quite this well parameterized, however, as the helicity of RNA is not
fixed. There can be significant variance in the exact form between bases even
in the same helix. These parameters are therefore only averages of clusters
of natural RNA molecules derived by Geary and Andersen. In this thesis,
we consider all RNA helices to be of the A-form, which is the most common
form in nature [20, pp. 23-25].

2.3 Building with RNA

An RNA secondary structure consists of different structural motifs. These
are, for instance, double-helix, hairpin-loop, multi-loop, bulge and internal
loop. Hairpin loops can be thought of as U-turns and multi-loops as junctions
between helices. An internal loop is a special bulge, where both sides of a
double helix are bulged with unpaired bases [17, pp. 31-34]. Three of these
motifs are illustrated in Figure 2.4. All of the secondary structures in this
thesis are combinations of loops, double helices and multiloops. However,
bulges, internal loops and possibly some more exotic motifs can occur in
misfolded structures.

Figure 2.4: Two-dimensional representations of a stem loop, a stem loop with
a bulge and a multi-loop. In dotbracket notation, these structures would be

denoted with “(((..)))”, “(((-((C-))))))” and “((()))-((()))-(((..)7,

respectively.

Pseudoknots form the tertiary structure of RNA. They consist of loops
or bulges or any other unpaired bases in the secondary structure pairing up
with each other. A kissing loop is a type of pseudoknot, where two hairpin
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loops pair up and “kiss” each other. If the angle between these loops is
180 degrees, the kissing loop forms a continuous double helix as depicted in
Figure 2.5.

Figure 2.5: Kissing loop geometry and its 2D representa-
tions. The extended dotbracket notation for this structure is

SCCCCCCCTTEM) - CCCCCCCTIITN)

As previously hinted, pseudoknots and kissing loops cannot be repre-
sented with the traditional dotbracket-notation, since it would be impossi-
ble to deduce which open bracket a closing bracket corresponds to. There-
fore, dotbracket-notation is often extended with square brackets to account
for kissing loops. Furthermore, additional extensions are necessary for non-
nested pseudoknots, i.e., in case some pseudoknot closes only after another
pseudoknot begins. However, dotbracket-notation with square brackets is
often enough, since pseudoknots are usually nested and rarely cross this way.
Nested and nonnested strands are depicted in Figure 2.3. Only the first one
of these can be represented with unextended dotbracket notation.

In this thesis, we are interested only in wireframe representations of poly-
hedra, that is, polyhedral beam networks, since filling the volume or even only
surfaces of an entire shape would require exceedingly long RNA strands. To
create an RNA wireframe of a polyhedron, we must route the RNA strand
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around it in such a way that the structure stays rigid and that the folding
pathway is feasible. The folding pathway of an RNA strand refers to the
set of secondary and tertiary structures the strand transitions through on
its way to the final structure. Some folding pathways might include such
local energy optima that reaching the intended structure would be unlikely
or almost impossible.

The stiffness of a polymer is characterized by its persistence length [1].
RNA double helices significantly shorter than their persistence length of
about 60 nm can be thought of as rigid sticks and the junctions between
them as almost freely articulated linkings. If we were to replace all the edges
of a polyhedron with double helices, we could recreate it with RNA. However,
these helices cannot be connected to one another in such a way that they
form a single strand and recreate the intended topology, because at least one
of the double helices would end in a loop, i.e., the double helix would not be
fixed in place.

By replacing some edges of the polyhedron with helices and some with
kissing loops, we actually can recreate a wireframe of the polyhedron with a
single strand. Since a spanning tree (the smallest tree covering all vertices
of a graph) of a polyhedron has no cycles, we can always route a strand
around it. We can then fix some of the vertices together with kissing loops to
recreate the non-spanning-tree edges. This way the edges in the spanning tree
become helices and the non-spanning-tree edges become kissing loops. This
procedure has been used in various papers on DNA nanostructure design,
although usually without explicitly mentioning spanning trees [15].



Chapter 3

Design

In this chapter we introduce the process of converting a polyhedron into a
viable RNA secondary structure. The process can be divided in three steps,
modeling, path finding and generation.

3.1 Modeling

The first step of converting a polyhedron to an RNA strand is to choose the
polyhedron. Our algorithm will work for all connected graphs lineraly em-
bedded in three dimensional Euclidian space, but for simplicity we consider
only three dimensional solids as valid input here. Even though we allow all
3D solids as input, some concave objects might lead to unrealistic results,
like strands colliding or going through one another. Just a few of the possible
polyhedra are depicted in Figure 3.1. The complexity of the object can span
from anything as simple as a tetrahedron to a tesseract or even the head of
a monkey.

It might be necessary to triangulate the polyhedron to make the final
structure rigid, i.e., such that it cannot be deformed in any way, although
triangulation is by itself not quite enough to guarantee rigidity [5, 6]. If
rigidity is important, internal struts should be considered. The drawback of
struts is that they complicate the structure and make it therefore harder to
generate and less likely to fold properly.

3.2 Path finding

In the path finding step we choose a spanning tree of the polyhedron and
trace a path twice around it to create a wireframe of the whole model via
a single path (Figure 3.3). The actual bases will eventually be placed along

17
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Figure 3.1: Three possible polyhedra.

this path, so it will dictate the ordering of the structural elements and the
folding pathway of the final strand. Since the choice of the spanning tree will
affect the folding pathway, some spanning trees might lead to more consis-
tently correctly folding structures. Therefore, this choice is not completely
inconsequential.

The path-tracing is done by the way of a depth first search, where the
next vertex is always chosen in such a way as to avoid topological knots. The
reason we want to avoid knots is to make the folding pathways feasible. Any
knots will make the structure less likely to fold properly, since they force the
folding strand to navigate through the knots, i.e., it would at best be like
guiding a thread through the eye of a needle. Since electrically charged par-
ticles repel each other according to Coulomb’s law, atoms repel each other at
small distances, making it potentially impossible to fold knotted structures.
In case of cotranscriptional folding, the choice of a spanning tree is especially
important because of the sheer size of the RNA polymerase [13].

To avoid topological knots, we use the so called zig-zag combing algo-
rithm. It sorts the adjacent edge at each vertex as we traverse the tree. The
algorithm is exemplified in Figure 3.2 and explained step by step in the fol-
lowing paragraph. Python code for the zig-zag combing algorithm is given
in Listing 3.1.

1. Create a sphere with radius of some small r at the vertex.

2. Cut all edges by r, i.e., by whatever of them falls within the sphere.
This way, the starting points of all edges will fall onto the surface of a
sphere, and they all have a certain latitude and longitude with regard
to some axis.

3. Sort the edge incidence point into groups in an increasing order based
on their longitude.
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4. Sort the points in each group based on their latitude. Alternate between
increasing and decreasing order to zig-zag along the sphere.

def zig_zag_comb (incoming_edge):
latitudes = {}

1

2

3 for e in vertex.edges:

4 direction = e.verts[0].co — e.verts[1].co

5 phi = math.atan2(direction.y, direction .x)

6 theta = math.acos(direction.z)

7 latitudes.setdefault (phi, []).append((e, theta))
8 sorted_edges = []

9 for i, phi in enumerate(sorted (latitudes.keys())):

10 sorted_edges.extend ([x[0] for x in sorted(latitudes[phi],
key=itemgetter (2), reverse=(—1)%xi)])

11 return sorted_edges

Listing 3.1: Python code for the zig-zag combing algorithm:

Figure 3.2: An example of the zig-zag combing algorithm.

This algorithm can be shown to result in an unknotted strand by con-
sidering how the strand is laid on the surface of the sphere. The strand
will zig-zag across the sphere’s surface from one pole to the other until it
reaches the starting point again. This will naturally result in a non-crossing
cycle. A sphere can be mapped to a plane by puncturing a hole in it and
by stretching it across the plane, i.e., the non-crossing cycle on the sphere
will be non-crossing also on a plane. Since a non-crossing cycle on a plane is
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topologically equivalent to a circle, it is an unknot and therefore the strand
itself must also be an unknot. Since the sum of unknots is an unknot and
as the strand is an unknot at every vertex, the strand must be an unknot
across all vertices and, therefore, across the whole structure.

The algorithm for routing a path twice around the spanning tree via
depth first search, utilizing the zig-zag combing algorithm, is explained in
the following paragraph. The Python code for it is given in Listing 3.2 and
the algorithm is further illustrated in Figure 3.3.

1. Choose an edge as the root. Sort all edges connected to the end point
of the root edge according to the zig-zag combing algorithm.

2. Iterate through all of the sorted edges: If the current edge is a non-
spanning-tree edge, add it to the path. Otherwise, extend the path by
calling this function again with the current edge as the root.

3. Return path.

def traverse(root, spanning_tree, pseudoknots):
path = [[”stem”, root],]
neighbors = zig_zag_comb (root)
for edge in neighbors:
if edge in pseudoknots:
path.append ([” pseudoknot” , edge])
elif edge in spanning_tree:
path.extend (traverse (edge, spanning_tree, pseudoknots))
return path

Listing 3.2: Python code for the routing algorithm

3.3 Generation

The generation step places nucleotides on the previously found path. First,
we choose a scale-factor, which defines the exact lengths of the edges in
nanometers, that is, it determines how many bases are placed on each edge.
The factor must be large enough to allow for kissing loops to form. A kissing
loop requires at least 13 bases, i.e., the path segment corresponding to such
a loop must have room for at least 13 bases. Once a valid scaling factor has
been chosen, we can use the default P-stick model parameters to place the
beads on the path.

Next, we determine how close to a vertex the helices can be placed to
avoid overlaps between helices. This can be thought of as placing such a
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Figure 3.3: The twice around routing algorithm.

sphere on the vertex so that no helix segments outside of it overlap with each
other. We do this by using the Formula 3.1 for each vertex, where « is the
most acute angle between the edges corresponding to that vertex and r is
the radius of the helix in the P-stick model.

r

R= (3.1)

tan o

As the helices defined by the P-stick model can rotate around their axis,
it is not quite enough to know only the path and scale factor, but we must
also decide how to orient the helices. Poor orientations might result in long
distances between neighboring helices or even in knots. This problem is
illustrated in Figure 3.4.

To orient the double helices, they can be modelled as cylinders with four
anchors linking them to other helices. Each cylinder will, then, be associated
with a four dimensional vector, whose elements consist of the lengths of the
links incident to it. Now, the problem of orienting the helices becomes one
of minimizing the norm of each of these vectors by rotating the cylinders.
The norm of ||z|2 would minimize the sum of the lengths of links, whereas
the norm ||z||. would minimize the length of the longest link. To do this
minimization, we use a spring relaxation algorithm, which tries to iteratively
optimize the orientation of each cylinder while the other cylinders stay fixed.

First, we calculate the exact positions of the anchors for each cylinder by
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Figure 3.4: An example of a malformed corner and a well formed corner. In
the left image all three helices are poorly oriented, resulting in a tangle at
the junction. In the second image all helices are well oriented.

using the P-stick model parameters (listed in Table 2.2). The first anchor
will be at one end of the cylinder with an angle of 0. The second anchor will
be (num — 1) - rise nanometers from first anchor at angle (num — 1) - twist,
where num is the number of bases on the helix. The third and fourth anchors
are the same as the first and second, but they are rotated by axis degrees and
shifted by inclination nanometers. The chosen scale factor is very important
here, since twist for A-form helices is 32.73°, which means that the angle
repeats every 11 steps. Therefore, the anchors on both ends of a cylinder
with 11 - z,x € Z bases will have the same angle. Such cylinders are very
easy to orient, and a shape consisting of only them is likely to have a very
good optimal solution.

The second step of the spring relaxation is to calculate the torque exerted
upon each anchor by the other cylinders. We can calculate this one anchor at
a time by projecting the anchor of the other cylinder onto the normal plane
of the current cylinder and by calculating the angle between the current
position of the anchor and the projection. The equation for this is show in
Formula 3.2, where pos is the position of the current anchor, rel the position
of the other anchor relative to the current anchor and helical_axis is the axis
of the cylinder. The exact torque is proportional to this angle. We can next
add the signed angles of each anchor together to get the total torque exerted
upon the cylinder. We then rotate the cylinder accordingly and proceed to
the next cylinder.

pos e (rel — helical_azis(rel o helical _axis))

) (32)

le =
angle = arccos( |rel||helical _axis|

Once all the cylinders are optimally oriented, we can proceed by placing
the nucleotides on their surfaces as described by the P-stick model. Since the
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distance between the nucleotides connecting two anchors together will usually
be longer than that between two consecutive bases in a normal helix, we must
add extra linkers between helices. This is not a problem, if the number of
linkers stays small, i.e., fewer than four, since we would normally add at least
one linker between helices anyway in order to allow some flexibility along the
joints. If there are too many linkers, however, the structure might start to
lose too much of its rigidity.

If a cylinder corresponds to a kissing-loop edge, we generate the nu-
cleotides only half way along the length of it and turn back. The second
half is formed as we re-visit the edge later. Because we want the kissing
loops to serve the same function as double helices, they must form at a 180
degree angle in relation to each other. This can be enforced by placing two
unpaired bases before the loop and one after it as depicted in Figure 3.5 [9].
This also keeps our kissing loops consistent with the P-stick model. Since we
use 180 degree kissing loops, we can treat kissing loop edges also as regular
cylinders for the spring relaxation phase.

Figure 3.5: A kissing loop. The unpaired bases around the pseudoknot are
marked red.

The output of this design process is the secondary and tertiary structures
of the RNA strand. The final step is to generate the primary structure.



Chapter 4

Generating a sequence

This chapter focuses on generating an RNA primary structure, i.e., the fi-
nal sequence itself, from its secondary structure. Since primary-structure-
generation goes well beyond the scope of this thesis, we use the NUPACK
[26] software package for the purpose. NUPACK uses the so-called con-
strained multistate test tube design algorithm, which optimizes the primary
structure based on the nearest-neighbor model.

NUPACK, however, does not support the design of kissing loops. We
circumvent this problem by generating kissing loops ourselves and by only
generating the stem with NUPACK. This is possible, because NUPACK al-
lows one to fix any number of bases as either specific nucleotides or as any
nucleotide from a given class as defined by the nucleic acid notation. Fix-
ing any bases will, of course, shrink the pool of possible primary structures,
which might make it impossible to find a suitable primary structure, if the
pool is too constrained.

We generate the primary structure in three steps: fix stem bases, find
kissing loops and generate the sequence. The whole procedure is demon-
strated in Table 4.1. This process is started with the secondary and tertiary
structures, which are converted to a primary structure consisting solely of
N’s in nucleic acid notation, that is, no bases are fixed in any way yet.

24
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1
Secondary and tertiary structures:
.................... CCCCCCCEEECeeeCCC wo CCCC o LOLLEL. D)) v CCCCCeeeCeeeCCC vvn CCCC wuteeeee. »» ..
CCCC L DEEOEE. D))« 020)00)00000000))  «« INMNMMIIIMIID) - ... ((CC..I11I1IT. N .. CCCCCCCeeeeeccc ...
(CCCII1130. ) . (CCCITITI. 000) oo DM e

1
Secondary and tertiary structures:
.................... CCCCCCCEECeeeCCC oo CCCC o LOCLEE. D)) .o CCCCCeeCCeeeCCCC vve CCCC o Loeeee. )y ..
CCCC L DEREEE. D))+ 03)00)00000000))  «« INMNMNININMIYY - ... ((CC..I111IT. ) ..o CCCCCCCeeCececcc ...
(CCC . I1113. )00y v CCCC L ITIT3. 000) oo DI e

Primary Structure with polymerase promoter sequence and linkers fixed (see Section 4.1):

GACUAAUACGACUCACUAUA GGGNKNNNNNNNKNNNN AA NNNN NNNNNNNNN NNNN AAA NNNNKNNNNNNNKNNNN AAA NNNN NNNNNNNNN NNNN AA NNNN
NNNNNNNNN NNNN AA NNNNKNNNNNNNKNNNN AA NNNNKNNNNNNNKNCCC AAA NNNN NNNNNNNNN NNNN AAA NNNNKNNNNNNNKNNNN AAA NNNN NNNNNNNNN
NNNN AAA NNNN NNNNNNNNN NNNN AAA NNNNKNNNNNNNKNNNN NNNNNNNNNNNNNNN

1
Secondary structure:
.................... CCCCCCCOEECCEECCC v CCCC vvnnnens D)) v CCCCCCCCCCCCCCCCC vne CCCC wuennnn ..
[ QS G D)) 0IIIINIIIIIIIIID e DINMVINMIMINII) ... (C ) CCCCCCCeCCeeCC e
[CCQGTII NN CC D) e DI

Primary structure with kissing loop sequences fixed (see Section 4.2):

GACUAAUACGACUCACUAUA GGGNKNNNNNNNKNNNN AA NNUG AAUGCCCCA CGNN AAA NNNNKNNNNNNNKNNNN AAA NNUG AAUGGGCCA CGNN AA NNUG
AAUGGCCCA CGNN AA NNNNKNNNNNNNKNNNN AA NNNNKNNNNNNNKNCCC AAA NNUG AAGGCCCAA CGNN AAA NNNNKNNNNNNNKNNNN AAA NNUG AAGGGGCAA
CGNN AAA NNUG AAGGGCCAA CGNN AAA NNNNKNNNNNNNKNNNN NNNNNNNNNNNNNNN

1

Primary structure with all bases fixed (see Section 4.3):

GACUAAUACGACUCACUAUA GGGUGUCGGUCUGCUGC AA GAUG AAUGCCCCA CGUC AAA CCUGGCCUGGGCUCCCG AAA GCUG AAUGGGCCA CGGU AA CGUG
AAUGGCCCA CGUG AA CGGGGGCCUAGGUCAGG AA GCAGUAGACCGAUACCC AAA UCUG AAGGCCCAA CGGA AAA GGAGUGGUACCUGCAAC AAA UCUG AAGGGGCAA
CGGA AAA GGUG AAGGGCCAA CGCC AAA GUUGUAGGUACCGCUCC ACACCCCAAACCCCA

Table 4.1: The workflow of converting a mesh to a secondary structure and
a primary structure.
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4.1 Stem

We define the stem of an RNA structure to consist of those bases that form
only its secondary structure. This includes all linkers, other unpaired bases
and nested base pairs. Only the bases forming any pseudoknots are excluded.

Because RNA strands are transcribed from DNA, some restrictions apply
as to what kind of primary structures are feasible. Ideally, the single-stranded
DNA used for transcription has no secondary structure at all itself, since that
interferes with the process, making it potentially fail completely. Further-
more, synthesizing the DNA strand itself sets additional restrictions. Con-
ventionally, the following sequences are avoided: AAAA, CCCC, GGGG,
UUUU, KKKKKK, MMMMMM, RRRRRR, SSSSSS, WWWWWW and
YYYYYY [8, supplement p. 11]. The supplier of the DNA template might
set further restrictions depending on their synthesis process.

When DNA is transcribed, (T)hymine and (G)uanine transcribe to (U)racil
and (G)uanine, respectively. Since U’s and G’s form strong base pairs but
T’s and G’s repel each other, one can create such an RNA strand that forms
secondary structures but whose DNA counterpart does not. By replacing
every X:th base pair in the stem with either U-G or G-U, the DNA should
have less secondary structure. The ideal value for X being uncertain, the
sequences designed in this thesis replace every sixth base pair, rounded up,
because that should not be too restrictive in terms of sequence design while
still preventing the unwanted DNA secondary structures. In nucleic acid no-
tation, K’s correspond to G’s and U’s, so we can replace every X:th base pair
in the stem simply with K’s.

As previously defined, the stem does not consist solely of base pairs.
There must always be unpaired bases, linkers, between two or more double
helices to give the strand enough flexibility to actually form the intended
structure at the junctions. One such junction is illustrated in Figure 4.1
Linkers could potentially be any of the four bases as long as they do not pair
up with anything. However, since G’s and C’s form the strongest bonds, it
is unlikely that they would not form any base pairs. Therefore, we choose
between A’s and U’s. As U’s can form strong bonds with G’s, A’s might be
the obvious choice. However, if there are more than three linkers, we would
be violating one of the restrictions by using only A’s, so we should instead use
a combination of A’s and U’s. As A’s and U’s correspond to W’s in nucleic
acid notation, we will replace linkers with A’s when possible and with W’s
when there are more than three of them consecutively.

To successfully transcribe an RNA strand, it also needs to contain addi-
tional primer sequences that serve as the starting points in polymerase chain
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Figure 4.1: A junction between three helices. Linkers are portrayed as red
beads.

reaction, a technique used for DNA synthesis. To this end, we add an addi-
tional forward primer at the beginning, i.e, 5’ end, of the primary structure.
The exact bases of it are "GACUAAUACGACUCACUAUAGGG” and the
matching secondary structure is 7.................... (((". To the end, we append a
reverse primer, which is simply fifteen unpaired bases, i.e., the primary struc-
ture ends with ”NNNNNNNNNNNNNNN" and the secondary structure with

bM 7

4.2 Kissing loops

As NUPACK does not consider kissing loops, we must generate them our-
selves and then add them to the stem as fixed bases and mark them as
unpaired in the secondary structure. This should yield the desired structure,
since if a kissing loop were to pair with any bases in the stem, that would
violate the modified secondary structure. The problem, then, is to find such
loops that they form pseudoknots only with their intended counterparts and
not with any of the other loops. This leaves us with two options: Either
generate kissing loops completely from scratch or use kissing loops from lit-
erature that are known to work well together. Since the number of such
kissing loops is a handful at most, we must create new kissing loops for
larger structures. The structures in the results chapter all use the kissing
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loops extracted from RNAJunction [3] and the 2014 paper by Geary et al.
[8, supplement pp. 35-38], but we provide a utility to generate new kissing
loops as well, making larger structures at least theoretically possible.

The nearest neighbor model allows us to calculate the energy of any two
strands pairing up with each other. If we consider kissing loop base pairs to
be energetically essentially the same as regular base pairs, we can use this
model to find strong kissing loops that are orthogonal to each other. Since we
are interested only in the energies of kissing loop base pairs in comparison to
other kissing loop base pairs and not to normal base pairs, this model should
be adequate for our purposes. As the nearest neighbor model will give us
some energy for any two strands pairing up, there is strictly speaking no
such thing as orthogonality between two strands. However, in this thesis, we
consider two strands to be orthogonal to each other, if their energy is below
some threshold in comparison to the strands they are intended to pair up
with.

The kissing loops we are using are all six base pairs long, and the loops are
flanked by the sequences UGAA on the 5’-side and ACG on the 3’-side. The
A’s are the padding making sure that the loops are oriented at 180 degree
angle, when they form a kissing loop, i.e., they basically form a double helix
[9]. The UG and CG initiate the kissing loop, because that maximizies
the stability of the loop according to the nearest neighbor model. Since
there are six unknown bases in such a loop, there are 4° = 4096 possible
loops. A kissing loop consists of two loops, which means that there are
4096% = 16777216 possible pairs in total. This is small enough, so we can
actually calculate the energies for all of these. Using NUPACK, again, we
calculated the nearest neighbor energetics for all of these strands and saved
them in a file in a decreasing order. The first ten lines are listed in Listing 4.1.

1 GGGAOG GCOCGG —13.8840164

2 GGOCOG GAOGGG —13.8840164

3 GGGOOG ACOCGG —13.8840163

+ GGOCCA GOOGGG —13.8840163

5 GGOCCA ACCGGG —13.8840163

¢ GGGOCA ACCOGG —13.8840163

7 GGGOCA GOOCGG —13.8840163

s GGOCOG ACCGGG —13.8840163

o GCCOCA GOGGGG —13.8831708

10 GGGGOG ACCCCG —13.8831708
Listing 4.1: The first ten lines of the seventeen million length 6 kissing loops.
Note that the energies have been calculated with the A + AA linkers included
around the loops even though they are not shown in the listed sequences.

Since we have enumerated all possible kissing loops, we can consider them
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all as a weighted complete graph, where loops are nodes and edge weights
the energies of each kissing loop. The problem of finding n kissing loops
now becomes one of finding such a subgraph of 2n nodes, where all edges
with weight above some w form a perfect matching of the subgraph, where
the matching edges have weights above some T'. Finally, maximize for T
and minimize for w. Due to time limitations, we must leave this as an open
problem. However, we present the following suboptimal algorithm, which
should nonetheless be adequate for the purposes of this thesis.

1. Sort all pseudoknots in decreasing order based on their energy.
2. Start reading kissing loops from top down.

3. Calculate the energy difference between both strands of the current
pseudoknot and all chosen strands. If they are all higher than X, mark
both strands in the pseudoknots as chosen.

4. Return N chosen pseudoknots. If the end of the list is reached, the
algorithm has failed.

1 def find_pseudoknots(pair_generator , count):

2 chosen = []
used = set ()
s start = next(pair_generator)
5 last_energy = —float (”inf”)
6 d = {start [0][0]: [(start[0][1], start[1])], start[O][1]: [(

start [0][0], start[1])]}

7 for pair, energy in pair_generator:

8 if len(chosen) >= count: break

9 p = set (d[pair [0]]) .union(d[pair[1]])

10 conflict = False

11 while last_energy — threshold < energy:

12 pair_t , energy_t = next(pair_generator)

3 last_energy = energy_t

14 d.setdefault (pair_t [0], []).append((pair_t[1],
energy_t))

d.setdefault (pair_t[1], []).append((pair_t[0],

energy_t))

16 for x in p:

17 if conflict: break

18 if x[0] in used and energy > x[1] — threshold:
conflict = True

9 if not conflict:

0 chosen . append (pair)

21 used . extend ((pair [0] , pair[1]))
22 return chosen

Listing 4.2: An algorithm for finding orthogonal kissing loops.
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The algorithm described above will return only orthogonal pseudoknots,
since orthogonality is strictly enforced for all chosen strands. However, the
result is not necessarily optimal, since only one viable combination of pseu-
doknots is considered. Moreover, the search might fail even when viable
solutions exist. Nevertheless, the algorithm does successfully find dozens of
length 6 pseudoknots, when orthogonality is defined as minimum energy dif-
ference of 20 % between two strands. Considering how even the most complex
structures created in this thesis have only twelve pseudoknots, this should be
more than enough. The problem is still an interesting one and might warrant
further study.

4.3 Sequence generation

Once all nucleotides are adequately restricted, we can generate the final se-
quence. We use NUPACK to do this as well, although it is by no means the
only software capable of generating RNA sequences. NUPACK will try to
find one or more such strands that the number of mispaired bases is below a
user defined threshold. If the structure is too constrained, no such sequences
exist and NUPACK will naturally fail.

One peculiar problem we encountered while using NUPACK is that the
desktop version of it seems to be unable to deal with conflicts between fixed
bases and restricted sequences, although the online version works simply by
keeping the fixed bases and ignoring the conflicts. Furthermore, we have had
some trouble generating sequences of about 1000 nucleotides or longer. It
is unclear at this time whether these problems are due to too constrained
search pool, too large search pool or something else entirely. However, we
have been able to successfully use the software to generate valid sequences
for many shapes, including a tetrahedron, a bipyramid and a triangulated
prism (Chapter 6).

After the primary structures are generated, we validate them against
computer simulations. Tools such as [Pknot calculate the minimum near-
est neighbor energetics for the structure, producing the expected secondary
structure [11]. An example of IPknot output is depicted in Figure 4.2. Other
tools, such as Kinefold, SimRNA and oxRNA [4, 23, 24] try to do physical
simulations on the actual molecules or coarse-grained representations of them
to come up with the folding pathways and the final tertiary structure. Since
this latter approach works only for very small structures within reasonable
timeframes due to the extremely large search space, it is quite unsuitable for
strands longer than some hundreds of nucleotides.

Finally, a validated primary structure can be transcribed from a synthe-



CHAPTER 4. GENERATING A SEQUENCE 31

Figure 4.2: An IPknot prediction of the tertiary structure of a tetrahedron.

sized DNA strand, hopefully producing the desired structures in the real
world. Since the size of the actual RNA strand will be only some dozens of
nanometers, powerful microscopes, such as electron microscopes or atomic
force microscopes, will be needed to image them.



Chapter 5

Sterna

Sterna is a tool for converting polyhedra to RNA strands. It is implemented
as an add-on to Blender [21], an open-source 3D computer graphics software.
At its simplest, a single click generates a random spanning tree, routes a
path around it and generates the kissing loops and helices. However, Sterna
can also be used interactively to generate a strand one base at a time. Some
possible inputs outputs of Sterna are demonstrated in Figure 5.1. Source
code for Sterna and additional tools is available from https://github.com/
Ritkuli/sterna.

Figure 5.1: Typical use-cases of converting 3D-models into RNA strands.
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5.1 Automatic generation

Sterna can be used to automatically convert a 3D-
model into a viable RNA structure based on vari-
ous parameters as shown in Figure 5.2. By using
a random spanning tree, the user only has to de-
fine the scale, and Sterna will convert the selected
mesh into a strand. The user is naturally free to
manually select the spanning tree edges as well.
The scale-parameter defines how many nanometers | sy
each unit of length in Blender is. Alternatively, the | Twisi:_05712
user may choose to only define how many full turns

a helix should be, and Sterna will automatically e
chooose the appropriate scale. A polyhedron can, | comerofset mutipiier
of course, have many edges with different lengths, [ B8asebstence

© Minpadding: 1

making it impossible for all of the helices to be the [ _
~ Use adaptive offset

same length. Therefore, this parameter only guar- FEEss s
antees that the most common edge length is equiv- [ o 0 00
alent to the given number of turns. Other available
parameters include minimum and maximum num- | Pestpecess

ber of linkers between helices, a switch for spring
relaxation and the length that should be culled from
all edges at vertices. The adaptive offset switch can
be toggled for Sterna to calculate this culling on an
edge-by-edge basis.

Sterna also allows the user to manipulate the
parameters of the P-stick model. Theoretically, this
should allow Sterna to also work with DNA or even artificial bases.

The input to Sterna is any single polyhedron. Only single polyhedra are
accepted, since the structure is traced with just one RNA strand. A future
version might feature an option to allow multiple polyhedra and therefore to
generate multiple strands without having to split the 3D-model into its con-
nected subcomponents. Since Blender supports most 3D-model file formats,
Sterna is able to turn almost any model into an RNA strand.

By generating a new strand, Sterna creates a new mesh, where vertices
represent bases and edges represent connections between them. The connec-
tions can either be backbone-connections, base pairs or pseudoknots. The
user can then manually modify this mesh or export it as is.

© Spring ordk 5.00 © ©  Relaxation: 100

Figure 5.2: Generator
parameters.
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5.2 Interactive generation

Sterna was not designed with interactivity in mind, but it has a rudimentary
support for that as well. Since Sterna generates a normal mesh, it can also
be edited just like any other with certain restrictions. The user is free to
move, add and delete bases. Pairing bases as either A-helix stem or kissing
loops is also possible. A simple edit operation is depicted in Figure 5.3.

Figure 5.3: Manually adding a new loop.

There are no checks in place to prevent the user from creating infeasible
structures. For instance, the user may create cycles, add multiple base pairs
to one base or even branch the backbone multiple times. The order of the
bases is determined by Blender’s internal indexing, so some of the more
advanced operations might also break the structure. These limitations might
prevent some strands from being exported. However, by fixing the problems
or by undoing the changes, the user is again able to export the structure.

In theory, it would be possible to create the whole strand manually, al-
though this would be extremely cumbersome, since Sterna has no function-
ality to add full helices manually at this time. Future versions might include
helper functions to produce full helices, kissing loops and multi-loops, but
no such features exist at the time of writing this thesis.
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5.3 Output

Sterna itself will generate a Blender mesh with such connectivity that it can
be interpreted as an RNA strand. This mesh can be saved as a normal
Blender blend file or the user may export it in a variety of 3D-model file
formats. However, Sterna also provides an export-option to a snac-file, which
is the intended output for Sterna. Sterna is also able to import snac files, if
the user wishes to modify the structure or to simply visualize it again.

A snac file is a simple text file with a notation based on the YAML
markup language [2]. The name is an acronym for Simple Nucleic Acid
Configuration. A snac file contains fields and values separated by colons. A
field can be any string, and the values can either be single strings or multiple
strings separated by commas. Comments are marked with hash tags. An
example snac file is shown in Listing 5.1.

By default, Sterna will export a snac file with primary structure, sec-
ondary structure, secondary structure numbering and coordinates fields. The
primary structure is a string based on the nucleic acid notation. Secondary
structure is a dotbracket-string with additional square brackets for pseudo-
knots. The secondary structure numbering field indexes the pseudoknots to
help avoid ambiguity, if kissing loops happen to cross. This, however, is
mostly redundant, since Sterna outputs only structures where kissing loops
are nested, unless the user manually alters them to be crossing. Finally, the
positions field lists the exact coordinates for all bases in the RNA strand in
nanometers.

1 # Nucleic acid notation

INNNEKINNNNNEKNNNNNEKNNNNNEKNNNNNKNNNNN | A | NNNKNNNNNKNN |

NNNINNEKNNNNNENNNNNEKNNNNNKNNNNNKNNN

3 primary_structure:

a‘a,

. # domains separated by |:

s (CCCCCCCCCCccccccccecccccceccecce e
(CCCCCCCCCCCCCCCeCeeeeccl -
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) 1 1)) | |

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC T e |

)-)-HHH- DD | - 11111111
¢ secondary_structure:

(CCCCCCCCCCCCCCCCCCCCeeeceeeecec cecceeeceecec

(CCCCCCCCCCCCCCCCC CeCeecCCCCCC- -3 )))--)))))

))))))))))))))))))))))II)) ) )))))) )))))IIIIIIIIIIIII))))

)))) - CCCCCCCCCCCCCCCeCCCC

CCCCCCCCCCCCC - CCCCCCCCCCCC I MMM - D)

)))))))))))))))))))))))

7 # the following numbers are assigned to pseudoknot complexes in
the same order as they appear in the secondary structure. For
instance , 1 2 1 2 would mean that the first complex connects
to the third one, and the second one connects to the fourth.

s pseudoknot_numbering: 0 0

9 # The coordinates are represented as comma—separated three—
tuples, x y z, in nanometers. The coordinates correspond to
the primary and secondary structure in the same order.

10 positions: [—4.833355903625488 3.9717981815338135
0.4350000023841858, —5.188178062438965 3.690798044204712
0.7733058929443359, —5.669579982757568 3.4097981452941895
0.8660528063774109, —6.124694347381592 3.128798246383667
0.6837893724441528, —6.409002780914307 2.8477981090545654
0.2843928039073944, —6.432225704193115 2.566798210144043
—0.20531120896339417, —6.18698787689209 2.2857983112335205
—0.6298201680183411, —5.751162052154541 2.004798173904419
—0.8543331623077393, —5.263144493103027...

Listing 5.1: An example snac file

5.4 External tools

Sterna is complemented with three additional tools, snacseq, pkgen and
snac2ox. They extend the functionality of Sterna outside the framework of
Blender. All of them are commandline software implemented with Python.

5.4.1 Snacseq

Snacseq is a commandline tool we developed to generate the primary struc-
ture of an RNA strand based on its secondary structure and various other
constraints. It uses Pkgen to select pseudoknots, and it generates the pri-
mary structure with NUPACK. The input is a snac-file, and the output either
modifies the input file or generates a new snac-file.
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Snacseq generates the input for NUPACK by completing a premade tem-
plate file, which contains fields such as prevented sequences, temperature
and sodium content. Snacseq also allows the user to define the maximum
GC-content, to enforce certain pseudoknots to be selected or to define the
minimum energy between mismatching pseudoknots. Snacseq can also be
used to generate only pseudoknots, if the user wishes to generate the rest of
the sequence by other means.

5.4.2 Pkgen

Pkgen is a tool used to generate and select pseudoknots. When used as a
commandline program, it generates all possible combinations of two strands
of length N and calculates the nearest-neighbor-energy of them using NU-
PACK. It takes N as an input and outputs a sorted list of the strands and
their energies. Pkgen also implements an API of Python functions that can
be called directly from another Python script to select pseudoknot strands
from a list based on restrictions such as GC-content, prevented sequences or
the energy between mismatching strands.

5.4.3 Snac2ox

Snac2ox is a preliminary converter used to convert snac-files to the input for-
mat of oxRNA [23], i.e., a topology file, a configuration file and a simulation
setup file. It also allows the user to generate a file describing kinetic traps
between either pseudoknot base pairs or all base pairs.

Since Sterna is based on the quite coarse-grained P-stick model, and
because it inserts various linkers in the strand, the distances between bases
are not necessarily exactly correct. Therefore, as we have found oxRNA to
be very sensitive to such errors, snac2ox also runs the relaxation simulation
shipped with oxRNA, which tries to correct them. The converter can, of
course, be run without the relaxation, but the simulation is unlikely to work
without it.



Chapter 6

Preliminary results

Figure 6.1: Three designs with Sterna from left to right: a tetrahedron, a
bipyramid and a triangulated prism.

Using the tools and processes described in the previous chapters, we de-
signed three RNA strands for the target polyhedra of a tetrahedron, a bipyra-
mid and a triangulated prism as depicted in Figure 6.1. The secondary
structures were designed with Sterna, kissing loops were chosen from a list
of known pseudoknots, listed on Table 6.1, and the primary structures were
generated using NUPACK. The DNA templates were ordered from IDT,*
and the final RNA strands were synthesized from in vitro transcription of
the DNA templates by our collaborators Ibuki Kawamata and Lukas Oesing-
haus.

ntegrated DNA Technologies. https://eu.idtdna.com/pages
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GGAGGC CCUCCG
GUGGAC CACCUG
GCCUGC CGGACG
GCGAGC CGCUCG
AGGCUC UCCGAG
GCGUUC CGCAAG
GUCACC CAGUGG
CGUGGU GCACCA
CUUCGC GAAGCG

Table 6.1: The list of known kissing loops. Extracted from RNAJunction [3]
and the 2014 paper by Geary et al. [8, supplement pp. 35-38].

The complete primary and secondary structures for the tetrahedron, bipyra-
mid and prism are listed in Appendix A in Tables A.1.1, A.1.2 and A.1.3,
respectively. The tetrahedron is 455 nucleotides long, the bipyramid 663 nt
long and the prism 801 nt long.
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6.1 Computer simulations

Since the designed strands are relatively long, the smallest being well over 400
nucleotides long, it would presumably be very time consuming to simulate
their folding process using typical molecular dynamics tools. Therefore, only
minimum free energy calculations are available at this time. To this end,
we used IPknot, which tries to predict minimum free energy conformations
using the nearest neighbor model.

Figure 6.2: IPknot prediction for the structure of the tetrahedron.

The IPknot results for the tetrahedron are shown in Figure 6.2, the results
for the bipyramid in Figure 6.3 and the results for the prism in Figure 6.4.
The stem base pairs, i.e., the secondary structures, seem to be very well
formed in all of the predicted structures. The tetrahedron has a small defect
at the 5’-end, the bipyramid has a slightly malformed first kissing loop, and
the prism has a similar deformity in the third kissing loop. The predicted
tertiary structures are more worrisome.

The tetrahedron’s tertiary structure is nearly perfect (Figure 6.2). This
is to be expected, since it is the simplest of the designs and contains only
three pseudoknots. There are only two mispaired pseudoknot bases located
at the defective part of the secondary structure. When the three dimensional
geometry is considered, one can reasonably expect the tetrahedron to fold
properly.

The bipyramid (Figure 6.3) is decently well formed, although it misses one
pseudoknot completely. This might be due to the deformity in the secondary
structure of the first kissing loop. There is also some mispairing between the
second and third kissing loops. Again, the three dimensional geometry might
still pressure the defective parts to fold as designed.

The predictions for the triangulated prism (Figure 6.4) are the grimmest.
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Figure 6.3: IPknot prediction for the structure of the bipyramid.

It has two missing pseudoknots with the first kissing loop forming a pseudo-
knot with the stem. It is the largest and most complicated of our structures,
so these defects are to be expected. Five out of seven pseudoknots are well-
formed, however, so there is a chance the structure might fold properly in
nature.

Figure 6.4: IPknot prediction for the structure of the prism.
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6.2 Laboratory results

Due to time constraints, the electron microscope results for all of the designs
are incomplete. The DNA templates for each structure were acquired and
transcribed into RNA, but we were unable to perfrom the final imaging with
a high resolution microscope due to problems with logistics. We were able to
acquire low-quality atomic force microscope images only for the tetrahedron
and the prism. Nevertheless, the simulations for all of the structures are
encouraging, and the preliminary images for the tetrahedron and prism are
very promising. The images were taken by our collaborator Ibuki Kawamata.

100 nm

Figure 6.5: An atomic force microscope image of ostensibly well folded RNA
tetrahedra.

AFM images for the tetrahedra are shown in Figures 6.5, 6.6 and 6.7. In
the first image, we can see numerous tiny specks and longer string-like shapes
saturating the image. We expect the strings to be unfolded RNA strands or
RNA-DNA hybrids, but the tiny specks have dimensions roughly matching
those of the designed tetrahedron. The dimensions for the bounding box
of the designed tetrahedron are 12.5 nm x 11.2 nm x 10.3 nm. The yield
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of seemingly well formed structures might be a result of improper folding
conditions or the stresses of AFM imaging.

50 nm

Figure 6.6: An atomic force microscope image of partially folded tetrahedra.

50 nm 50 nm

Figure 6.7: Atomic force microscope images of a tetrahedra seemingly un-
folding.

The image in Figure 6.6 seems to contain numerous double-triangles
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alongside the unfolded RNA. We expect these to be partially formed tetrahe-
dra, where one kissing loop has not formed. The tetrahedra might have either
broken open or they might have never formed in the first place. The images
in Figure 6.7 in particular seem to depict a kissing loop of a tetrahedron ac-
tually breaking up. These partially formed structures do lend credibility to
the claim that the specks in Figure 6.5 are indeed properly folded tetrahedra.

50 nm

Figure 6.8: Atomic force microscope images of a triangulated prism.

The images in Figure 6.8 depict our triangulated RNA prisms. These
results are somewhat less exciting. It is hard to say anything definite at this
time, since the number of seemingly well-folded structures is low, and even
they are quite obscure. The dimensions for the bounding box of the designed
prism are 11 nm x 14 nm x 9.7 nm. The low yield is again likely due to
either the folding process or the sample being contaminated with DNA. We
must wait for higher resolution images of the prism before making claims
about how well or how poorly they are folded. This is of course true for the
tetrahedra as well.
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Conclusions

In this thesis, we have studied and expanded upon RNA-based bottom-up
nanotechnology. We have introduced the problem of designing polyhedra
from single-stranded RNA. We provide a solution to it with a scheme based
on spanning trees and the elementary motifs of kissing loops and double
helices.

In Chapter 3, we showed how to route a strand around any spanning
tree without forming topological knots. We introduced the zig-zag combing
algorithm and we explained how we can generate RNA strands based on the
P-stick model by Geary and Andersen. Chapter 4 described how we generate
our primary structures. We also presented a method for generating sets of
orthogonal kissing loops. Chapter 5 introduced Sterna, explained its capabil-
ities and introduced the snac file format. We also presented three additional
scripts to generate pseudoknots and primary structures and to convert RNA
strands from snac format to oxRNA. Finally, in Chapter 6, we discussed how
we designed and simulated three single stranded RNA polyhedra. These
designs were synthesized and imaged elsewhere, as discussed in Section 6.2.

Possible follow-up works of this thesis should focus on refining and im-
proving the routing algorithm and the spring relaxation introduced in Chap-
ter 3 Section 3.3 by optimizing the length of the cylinder in addition to the
orientation. Another interesting problem would be the search for orthogo-
nal kissing loops, which would involve determining the exact free energies
for kissing loops and solving the sub-graph problem introduced in Chapter 4
Section 4.2. Further work on Sterna (Chapter 5) could focus on improving its
usability and interactivity and on adding support for more diverse secondary
structure motifs.

In conclusion, we have introduced a fully automated design process of
converting almost arbitrary polyhedra into RNA strands. Our results give
credence to its viability. Even so, we have introduced new problems and the
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process is far from perfect. By working on refining Sterna and by solving
the problems encountered, we might be on our way to be able to design and
synthesize truly arbitrary nano-scale objects with RNA.
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Appendix A

Appendix

A.1 Designs

A.1.1 Tetrahedron

Figure A.1: The Sterna design of the tetrahedron.

30
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Primary structure:
GACUAAUACGACUCACUAUAGGGUCGGCGUCUCAGUAAAUCGCGGAGGCUGAAGGAGGCACGGCCUC
UGCGAAACUGGGCGAGGUGAAGCGAGCACGCCUCGUCCAGAAUACUGGGACGCUGACCCGGACUUCC
GGUUCCGAAACAGCGUUUCUAGGCGUCUCGGAGCCAUAUGGCGAACCUGUCCUGGUGAAGCUCGCAC
GCCAGGGCAGGAACCGUGCUCGGUGAAGUGGACACGCCGAGUACGGAACGCCAUGUGGCUCUGAGAC
GUCUAGAAGCGCUGAAGUGCAUCAGUUUGACGCUGUGCAUAUGGCACAGAACGACUGGAGGUGAAGU
CCACACGCCUCCGGUCGAACGACUGAGGGUGAAGCCUCCACGCCCUCGGUCGAACUGUGCUAUAUGC
GCAGCGUUAAACUGGUGCACAAUCGGAGCCGGAGGUCCACUUCACUUCACUCC

Secondary structure:

.................... CCCCCCCCCCCCCCCC. . . . LOCEEE-22322))
22220 .. CCCCCCCCCCCC. . 111111.023333333322..3333233232222))) (CCCC((C
CCCCCCCC . (e (. . e, . L.
2222333332 .. CCCCCCCCCCCC. .111111.933333333333..3333333333333))))))
2332333)3322)) .. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC. . . . It
CLCEL-D222)))30))) .. CCCCCCCCCCCC..111111.333)33333)3)3)..33333)3)))))))
033)33333333)33333))-20)2320)00)))000)) - e e e v e

Table A.1: The tetrahedron.
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A.1.2 Bipyramid
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Figure A.2: The Sterna design of the bipyramid.
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Primary structure:
GACUAAUACGACUCACUAUAGGGUCUACGCUGAAAGGCUCACGGCGUAGGCCCAAGCUUGGGAUGAU
GUCUGACAAGUUCUAUCCAGGAACCGUGUACGGCCAUCGAGUAAUAGAGCUACUGCAAGGCUCAGAG
GUGAAGAGCCUACGCCUCUGGGCCAAGCUGGGUCGGUGAAGCGAGCACGCCGACCUAGCAAGCAGUG
GCUCUGUUACUUGAUGGUCGUACGCGGAAGCGUGAGGUCUGAAGCCUGCACGGACCUCGCGCAACGG
UGAUCGGUGAAGUGGACACGCCGAUCGCCGAACCUGGGUAGAAUUUGUCGGACAUUAUCCCGAGCAA
GGGUCAGCUGCCAGGGUCAGGUGAUUCUGCCUGAAACCGGAGACCUGAAGUCCACACGGGUCUCUGG
UAAACGGGCUCGGUGAAGGAGGCACGCCGAGCUCGUAACAGGCGGAAUCGCCUGAUCCUGGUAGCUG
GCCCAAGGCUUAGAGUUACAAGUUGAGGUCUACUAAUCCAAGGGUACAGGGUGAAGCCUCCACGCCC
UGUGCCCAAGACGGGCUGGUGAAGCAGGCACGCCAGCCUGUCAAAGGCGGUCUGGUGAAGCUCGCAC
GCCAGACUGCCAGGAUUGGUAGAUCUCAAUUUGUAGCUCUAGGCCACUUCUAACUACACA
Secondary structure:

.................... CCCCCCCCCCCC. . CEOOOE-2223332)3))) .. CCCCCCCCC((
CCCCCCCCCCCCCCCCCCCCC. . e, . ceeeecdC
(CC..111111.533333333))) .. CCCCCCCCCCCC. . LEEEEL-))))222)))))..))))))
132333333333333333333333))) .. (CCCCCCCCCCC. . CLLLLL-)))222)))))) .. (((C
CCCCCCCCC . LOEOEE-2222332)2332)222)33)2333)3333)33))3)3)33))3)))))))) ..
CCCCCCCCCCCaCCCaaaa . e 11331195:)999m M
). CCCCCCCCCCCC. - COOOEE-222222)32332)..322)3)333)3))33))))3))3)))))))))
2))) . CCCCCCCCCCCCCCCCCCCCCCCcCCCCCC. . e, .111311.533))
22))))) .. CCCCCCCCCCCC. . 111111.3)333))3)32)) ... CCCCCCCCCCCC. . 111111 .)
333333333)-33333333)))33333))))IIIIIIIIIID) ceeeeeee

Table A.2: Bipyramid.
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A.1.3 Prism
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Figure A.3: The Sterna design of the triangulated prism.
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Primary structure:
GACUAAUACGACUCACUAUAGGGAUGAAGUCACCACGUCCCAAGGUCUGAAGCGUUCACGGACCAGC
AAGUGUGCGGCACUGAAAGGCUCACGGUGUCGCACAUUUGCAGCGUGUGCGGUGUAAUAGCGUGAUG
CAUUGAGCAAAGGCAGUACAUUUGCUUUGUACCAGGGUACGUUGCGGUCGUGAAGAGCCUACGCGAC
CGUAACGUGCCCAAGCGUGACCUCUGAAGCGAGCACGGAGGUCGCGCAAAGUCCUGAAGCCUGCACG
GGACAAGGUGCAAAGCGAAUGUAUUGCCAACGGUCACCGAUUAUCCAUGCCAAGGUACUGAAGCAGG
CACGGUACCAGGAAUUGGAUACGGGUGAAGUGGACACGCCUGUAUCCAGUUCCAGACUCGGACGUUC
CGGCAGCAUAGGCAUAUCCGAAAGCUAUCUGCCUGCGAGCUUGGCAGCGUAGCCUUUACUGGUGAAG
UCCACACGCCAGUAGAGGCUGCGCAACGGUACUCGGUGAAGCUCGCACGCCGAGUGCCGAAAGCGUC
UGAAGAACGCACGGACGCAGCCGAGCUCGUAGGCAGGUAGCAACAGGGUGAAGGUGACACGCCCUGA
GGACGUGGAUGCGGCUGAAGGAGGCACGGCUGCAUCCAUGUCCACGGAUGUGCCUGUGCUGUCGGAA
UGUCCGGGUCAAAGGCGUGGAUAGUCGGUGGCCGUAGGAUCCUUAUCGUCGGUGAAGCCUCCACGCC
GACGGUAAGGGUCCAAGCUCAGUGCAUUACGCUGUUACAUCGCACGCGCACCUCCAACUCCACC
Secondary structure:

.................... (CCCCC. . LOCLOE.2))))) .. CCCCCC. . LELLIE.D))))) . ((
CCCCCCCCCCCCCC . LOLEEL-2233333333332)3))) . CCCCCCCCCCCCCCCCCCCaCcdd(
CCCCCCCCe . CCCCaaaCCCCCCCCCCCCC. CeceaeeeeeaeeccC.+ 131311100
232233333330 .. CCCCCCCCCCCC. . LODEOE-222))))))))) ... CCCCCC. . LOLLLL.))
23))..3333323))33312))323)))) . CCCCCCCCCCCCCCCCCCCCC(. . . . 11111
1.33777)) . CCCCCCCCCCCCCCCC. . COOEE-222233233333333)) . (CCCCCCCCCC((
CCCCCCCCCCCCCCCCCCC. . . . ]
11111.533))3)333333333)))) .. CCCCCCCCCCCC. . 111311.33333333)))) ... ([
(C..111111-3333333.333333)33333332)3))))) .. CCCCCCC. .111111.))))))) .
CCCCCCCCCCCCCCCCC. . COOOOE-222333323333333332333333333333))33)3)))))
233333333)...33333333333322)))))))) . CCCCCCCCCCCCCCCCCC. .1131113.))))
033333333322)--3)3333333333)))2)IIIII000000))) e

Table A.3: Triangulated prism.
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A.1.4 Sterna

Source code for Sterna is available from https://github.com/Ritkuli/sterna.


https://github.com/Ritkuli/sterna
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