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Mobile edge computing is a promising technology which provides support
to time-sensitive applications by pushing centralized cloud processing ca-
pabilities to distributed Fog nodes. These fog nodes are deployed at one-hop
distance from end-user and provide real-time data processing capabilities
at the edge of network. Due to service provisioning at the edge of network,
no congestion occurs at the core of network, quality of service (QoS) is im-
proved and the overall network operational cost is significantly reduced.
However, these nodes have limited capabilities such as processing, storage
and coverage so, they face challenge of mobility support for a mobile user
when continued service (i.e. zero downtime) is required during handovers
between edge nodes. Furthermore, they also need an effective task alloca-
tion and resource management strategy to ensure smooth operation of edge
services. Unlike traditional VM based environment in Fog Computing, this
work explores lightweight Docker containers to deploy and migrate ser-
vices. In this work, an interactive event-driven dashboard is developed for
real-time edge node registration, system monitoring, service initiation and
migration. Then, motivated by Fog Following Me [47], a couple of resource
allocation schemes (i.e. algorithm-I & II) have been introduced to dynami-
cally manage the compute resources among fog nodes. For smooth service
operation and stable migration, an application profiling feature has been
introduced which assigns the needed quota for an application requirement
in terms of CPU, GPU and RAM. The developed system′s performance is
evaluated by conducting various experiments. The experimental results
clearly demonstrate and verify the working feasibility of the whole system′s
operation in context of edge computing. However, the observed processing
delays during service migration marks the limitation of Docker and suggest
the need to use latest optimization tools to cut down the network delays and
ensure zero-downtime service migration.

Keywords: Internet of Things, Fog Computing, CRIU, Docker Con-
tainers
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Chapter 1

Introduction

Ever since digital revolution, the internet technology has facilitated
every aspect of human life. At present, about more than 54% of world
population is connected to internet and this number increases signifi-
cantly on daily basis [35]. A recent survey by Gartner [28] shows that
by the end of 2020, more than 20.4 billion devices would be connected
to internet. Thus, future internet is perceived to consists of complex
communication scenarios in which every gadget and device would be
connected to internet and it can reach out to any other device from in-
ternet. This paradigm is also known as Internet of Things (IoT). The
key idea is to access information everywhere and at all time by inte-
grating physical entities with virtual world. For this purpose, IoT de-
vices are intelligently programmed to collect the data and then forward
it to external systems or data centers for data analysis, computations
and deciding on further actions [37].

The traditional two-tier model of IoT comprises of end-devices and
remote cloud servers. These end-devices lack sufficient storage and
processing capabilities. Thus, they heavily rely on remote cloud data-
centers to perform various data-intensive tasks including speech recog-
nition, augmented reality and computer vision etc. By offloading these
computation-intensive tasks to cloud servers, the resource-poor end-
devices are empowered by resource-rich computations in cloud and this
ultimately facilitates the end-user. This model of IoT involving remote
cloud is known as mobile cloud computing (MCC) [30]. However, MCC
entails high end to end delays when service is provisioned from far lo-
cated cloud servers. Therefore, it is not ideal for real-time applications
which require low-latency computation response and fast processing
e.g. real-time video processing, augmented reality (AR) based object
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CHAPTER 1. INTRODUCTION 2

recognition, gesture recognition etc [47].

To address this low-latency (i.e. 1ms-10ms) requirement, a new
concept is introduced which distribute and deploy cloud computing re-
sources near to user and at the edge of network. This concept is re-
ferred to as mobile edge computing (MEC) or Fog Computing. As shown
in Figure 1.1, it consists of 3-tier model: cloud, edge node and end-user.

Figure 1.1: Moving From Centralized cloud to Distributed Cloudlets
( Adapted from [11] )

In this architecture, services are processed (near vicinity of end-
user) at edge of network by edge nodes which are also termed as cloudlets
or Fog Nodes. Fog nodes can be imagined as the distributed cloud
servers or data-centers in a box which are equipped with sufficient
compute resources (i.e. CPU, GPU and RAM). Usually, these nodes are
placed at one-hop distance from end-user and due to their high band-
width, they are fully capable to perform time-critical operations such as
compute, control, decision making and communications etc. They exist
in soft-state (i.e. IaaS) and possess self-managing capabilities without
requiring any hardware management after installation. On the back-
end, they are connected to cloud via a high bandwidth fixed or WLAN
interface, so end-to-end delay is greatly minimized for local service pro-
visioning.
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In Fog & Mobile Edge Computing, the main problem is to dynami-
cally manage compute resources and initiate user-applications without
overloading the corresponding cloudlets. Another important challenge
is service provisioning to a 5G mobile user (and autonomous connected
cars), which moves at faster speeds and still wants uninterrupted ser-
vice from the nearest fog node. To solve these issues, a concept known
as Fog Following Me [47] is introduced. This concept presents an
efficient task allocation strategy, which helps both stationary and mo-
bile fog nodes to achieve the desired service latency. Whenever a mo-
bile user leaves the coverage area of one fog node and enters the cov-
erage area of another fog node, its corresponding service is migrated
with zero down-time from source to destination. This feature of service
migration not only provides continued service to mobile user but also
gives possibility to offload services from one fog node to another. As a
result, in case of congestion on a fog node, it′s all active services are
migrated to another available fog node to ensure smooth operation of
services and thus, avoiding un-necessary delays and quality loss issues.

At present, the traditional architecture of cloudlets is marked by
VM (virtual machine) based solutions which may take minutes and
hours to start an application [20]. Therefore, VM based cloudlets can
undermine the advantages of Fog computing due to their high response
time. The ideal solution in this case must be a lightweight implementa-
tion which can deploy and migrate services in edge cloud with the blink
of an eye. Fortunately, this solution can be imagined with lightweight
virtual machines or more specifically the Linux containers which only
require application-specific binaries and files to initiate an application.
Unlike VMs, they are small-sized and possess ability to reuse the host
operating system. As a result, the deployment time of applications is
greatly reduced to seconds.

1.1 Scope & Objectives
This research work aims to develop a resource management platform
for container based edge cloud devices. The architecture of platform
must be event-driven to get fine-grained control on all devices and ab-
stract tasks based on defining certain events. The complete picture of
platform can be imagined by defining the following research objectives:
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• Registration & Edge Node Discovery
The developed platform must support edge node discovery and
registration of all edge nodes to its database. At real-time, each
edge node will report its system utilization information including
CPU, GPU and RAM to resource manager so edge node can be
monitored for deploying and managing applications.

• Application Profiling
To control and limit an application′s access to system resources,
each application must be assigned a maximum quota in terms
of CPU, GPU and RAM. This application profiling would also be
consulted during service migration from one edge node to another.

• Dashboard for Control Monitoring
This platform must be user-friendly and supports web-based user
interfaces for configuring and launching containers. From its dash-
board, a user can view and monitor the system at real time, deploy
applications and view the system utilization at application level.

• Support of Service Migration
The important feature of platform includes the support of service
migration. This could be scheduled and triggered either by mon-
itoring WIFI-RSSI of edge node or its system level utilization in-
formation.

• Management of task allocation strategies
Another objective of this work includes the implementation of
some service migration and offloading strategies. The idea is to
make this platform flexible enough to accommodate multiple dif-
ferent task allocation strategies.

1.2 Contribution
Some important contributions of this work are as follows:

• Designing an event-driven platform for resource management across
edge nodes.

• Exploring feasibility of Docker as a tool for container manage-
ment (i.e. service provision and migration ) in context of Fog Com-
puting.
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• Developing and testing a couple of strategies to migrate contain-
ers from one edge node to another.

1.3 Structure
The Thesis structure is distributed among following chapters:

Chapter 2 covers brief introduction about cloud virtualization tech-
nologies (i.e. containers and VMs) followed by focus on famous con-
tainer management tool known as Docker.

Chapter 3 briefly summarizes relevant projects developed for re-
source management and container migration in Edge Computing. It
compares and discusses various methods of resource allocation from
both domains (i.e. MCC and MEC).

Chapter 4 presents the complete architecture of resource manager
and explains its constituent technologies and framework. Docker′s ex-
perimental feature docker-checkpoint is introduced and discussed
how it is used with CRIU (checkpint & restore in user space) to check-
point and restore a docker container. In addition, this chapter also de-
scribes the working flow of each process from node discovery to service
management. At the end, a couple of proposed migration strategies
(i.e. algorithm-I & II) have been discussed which trigger container mi-
gration across the network.

Chapter 5 evaluates the developed platform and its features. For
this purpose, some experiments are performed by emulating certain
situations and observing system response and obtained results to test
the feasibility of Docker as a tool for container orchestration. This
chapter also does comparative analysis of developed system & its in-
tegration with open source container orchestration tools (such as Ku-
bernetes, Docker Swarm).

Based on experiment results, Chapter 6 concludes by addressing
major findings and drawbacks with current setup. Finally it formulates
some guidelines for improvement so our system can become an ideal
candidate for resource management in Fog Computing.



Chapter 2

Cloud Virtualization

Virtualization is the prevalent and promising technology introduced in
mobile cloud computing. As a result, nowadays we have freedom of on-
demand, multi-tenant and flexible deployments from public cloud host-
ing companies whether it requires Infrastructure as a service (IaaS) or
platform as a service (PaaS). In this domain, some major cloud hosting
companies include VMware, Citrix, Microsoft Azure and Google. The
idea behind virtualization is to split up the resources of a single phys-
ical server into multiple logical and isolated instances (also termed as
virtual machines). The added benefits include on-demand and flexible
deployments, hardware independence, service isolation, system scala-
bility and secure execution environments. These benefits help cloud
providers to reduce deployment cost and instantiate services as they
are needed.

2.1 Virtualization Technologies
At present, virtualization can be classified into two main categories:
hypervisor-based virtualization and container-based virtualization.

2.1.1 Hypervisor-based Virtualization
In this type of virtualization, virtual machines are controlled and man-
aged by a piece of software called as hypervisor or virtual machine
manager (VMM). This software sits directly on top of host OS (Linux
in this case) and abstracts virtual hardware for guest operating sys-
tems. In this way a full OS is installed for each virtual machine on top
of this virtualized hardware. Some of its salient features include the
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following:

• Application Transparency: The guest VMs and applications
offer similar benefits as compared to when they run in real en-
vironment i.e. they are unaware of the fact being executed in a
virtualized environment. Due to this reason applications and pro-
grams produce same results despite running as virtualized pro-
cess.

• VM Isolation: Hypervisor-based deployed VMs are independent
to each other and also separated from host system. In this way,
applications belonging to one VM are unable to access applica-
tions of another VM instance. This VM-level isolation ensures
that application failure within a VM affects only that specific VM
instance and all other VMs and host OS are sandboxed.

• VM Migration: VM operating system and application-specific
files reside completely on a virtual disk file. In case of system
failure or in need of dynamic service provision, the virtual disk
file can be easily migrated to remote server and then restart the
VM to rapidly initiate the desired service.

However, this virtualization incurs large overhead during hardware
emulation. Furthermore, installing a separate OS for each VM makes
the final image size substantially higher. Therefore, VM′s take minutes
to boot-up the whole system and start an application.

2.1.2 Container-based virtualization
Like VM′s, containers also aim to isolate an application with the pos-
sibility to move the binary artifacts between multiple hosts. However,
they appear as lightweight VM′s with respect to their underlying ar-
chitecture as shown in Figure 2.1.

Unlike HW virtualization in case of VM′s, containers utilize OS-
level virtualization i.e. they share the host OS resources (OS kernel
and run time environment) and run on top of a container driver en-
gine. Compared with VM′s, they only need basic application-specific
binaries and libraries to start an application without requiring a whole
new version of OS. This reduces the base image size excessively and
deployed container requires a relatively low hardware footprint when
compared to VM based architecture. To perform service isolation and
resource management among container processes, following Linux Ker-
nel features are utilized:
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Figure 2.1: Comparison between VM and containers

1. Control Groups (cgroups): As the name suggests, control groups
perform control operations such as resource allocation, prioritiza-
tion, allow or deny feature and monitoring among group of user-
defined processes [16]. They sub-divide various processes and
their sub-processes into classified groups to restrict their resource
consumption. This keeps a container′s processes from utilizing
too-much system resources.

2. Linux Namespaces: According to [17, 19, 23],Linux namespaces
abstracts process isolation through kernel-restricted user-space
views. These views limit the access of all namespace processes to
global system resources in such a way that they can only view sys-
tem resources belonging to their own namespace. The resources
which can be assigned to a namespace include mountpoints, net-
work devices, IPC, host and domain information etc. Each sin-
gle container is mapped to a unique namespace which stays inac-
cessible to all other containers. In this manner, various running
processes are compartmentalized and remain isolated from each
other thus, enforcing container-to-container isolation.

3. SE Linux: SE Linux introduces a MAC (mandatory access con-
trol) mechanism to provide horizontal as well as vertical isola-
tion. In horizontal isolation, it prohibits one container to access
another one whereas in vertical isolation, it protects host oper-
ating system from all spawned containers. Due to SE Linux en-
forcement, container processes have limited access to system re-
sources. Furthermore, this enforcement also implements a secu-
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rity mechanism known as MCS (multi-category security) to pre-
vent container′s interaction with each other.

Compared to hypervisor-based VM’s, containers achieve isolation in an
optimal manner. Therefore, they appear to be more advantageous. As
mentioned in [2], some of the major gains involved with containers in-
clude the following:

• Small HW Footprint: Containers achieve environment isolation
by using host OS features (i.e. cgroups and namespaces). This
method reduces the CPU utilization and memory overhead of host
OS as compared to hypervisor-based virtualization.

• Process Isolation: As every container is sandboxed and isolated
from each other, so an update or crash to system libraries of one
container affects only that specific container application and all
other containers remain safe from that un-needed upgrade.

• Fast Deployment: Containers get spawned in a few seconds
without requiring the need to install and restart OS. Similarly, an
application upgrade involves only restarting the container with-
out affecting host OS services.

• Support of Multiple environments: In conventional deploy-
ments involving a single host, an application supports only cer-
tain environment and may break out in other incompatible envi-
ronments. However, containers avoid this conflicted environment
execution as now every container is setup using the same base
image hence, mitigating the chance of any differences in run-time
environment.

• Re-usability: Once containers are spawned, they provide flex-
ibility to re-use them by many similar applications without re-
quiring a new OS install each time.

• Support for micro-services: Containers make it easy to deploy
lightweight and agile services along with deployment support in
multiple environment which ultimately boost the micro-services
driven architecture and their development use cases.
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2.2 Docker
In context of Fog computing, many candidates and container manage-
ment platforms emerged for containerization such as LXC, coreOS, LM-
CTFY, openvz, vserver, Apache Mesos, runc and Docker etc. However,
since past few years, Docker has become the only viable option and
industry standard for OS-level virtualization on Linux. Developed by
dot Cloud, Docker is an open-source project for system administrators
and developers to create, migrate and deploy distributed cloud applica-
tions. On top of Linux standard features (i.e. namespaces, cgroups, SE
Linux), it gives freedom to create loosely-spaced isolated user space en-
vironments which are termed as containers. It streamlines the product
development life-cycle by giving flexibility of local deployment and test-
ing and finally integrating it into production environments. Therefore,
it is perfect for use-cases such as continuous integration and continu-
ous development (CI/CD).

2.2.1 Docker Architecture
It follows a client-server architecture as demonstrated in Figure 2.2.
A command-line tool (also known as docker) communicates with the
server through a RESTFUL API to orchestrate the containerization
process. On the server side, a docker daemon (dockerd) sits on the host
OS to handle all client requests and is responsible to build, upload and
download container images. In addition, it also creates and manages
major objects of Docker such as docker networks, images, volumes and
containers.

Whenever a docker command is executed on client-side, it is for-
warded to docker daemon to perform necessary operation. For exam-
ple, as shown in Figure 2.2, if docker pull nginx request is received
from client, the server will fetch the nginx image from public reposi-
tory (such as DockerHub) and store it on local host repository. Now to
start a container with downloaded image, docker run command is made
to server. At first, server will search in its local repository for the de-
sired image (i.e. nginx) and then use it to start a container. However, if
another request is received to start a nodejs application using node im-
age. Then, the server finds no corresponding image in local repository,
so it makes another pull request from public registry and download
the necessary node base image. Finally, docker run command starts
the container from downloaded image.
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As docker provides flexibility to build custom images so for this pur-
pose, docker build command is executed. In this process, docker adds
more layers on top of base image, so that an extended image can be
formed and pushed to public registry for private or public use. Accord-

Figure 2.2: Docker Architecture (adapted from [1] )

ing to Figure 2.2, the overall docker system consists of following three
core elements:

1. Docker Images
Docker images can be called as collection of read-only packages
or templates [8] which encapsulate everything needed to start a
containerized application. These templates contain application-
specific code, configuration files, libraries, environment variables
and required runtime environment. Docker daemon utilize these
images to start any type of container. As shown in Figure 2.3,
a docker image file comprises of a stack of multiple application
layers or dependencies. However, Docker maintains a UnionFS
(filesystem) which makes this layered model of an image to ap-
pear as a single virtual file system. Whenever a new file is added
to a docker image or an existing file is modified , a new image
layer is formed on top of earlier layers resulting into a new im-
age. During this process, only those layers are rebuilt which have
been changed keeping all other layers at their initial state. As
a result, we get lightweight images which are small and fast-to-
deploy.
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Figure 2.3: Container based on node:8 image (adapted from [1] )

In general, two methods have been introduced to build a docker
image:

• Using Docker Containers
This is the simplest and easiest approach to create docker im-
ages on top of running instance of a docker container. At first,
any changes made to configuration file or docker runtime re-
sult into a new read/write layer. Then, this extra layer is
saved on top of existing image to publish a new image. How-
ever, this approach is inefficient because it also adds some
extra layers from un-needed and temporary log files and re-
sulting image becomes much larger than the original image
size.

• Dockerfile
A text-formatted file which includes step by step instruc-
tions and commands to build a docker image starting from
a base image. Building an image using Dockerfile is the rec-
ommended approach because it avoids addition of unneces-
sary files and limit them to each layer. Within a Docker-
file, every instruction forms a new layer on base image in the
specified order to create the final image. As shown in Figure
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2.3, whenever a container is started, a thin writable layer
known as "container-layer" is created on top of all underly-
ing layers. In this approach, each new change to container′s
run-time environment is stored in this thin R-W (read-write)
layer. This layer also marks the difference between a docker
image and a container. It exists until and unless a container
is running, otherwise deleting a container also removes this
writable layer but without affecting image layers. For demon-
stration purposes, a sample Dockerfile to build a nodejs counter
application is shown below.

1 FROM node :8
2 WORKDIR / usr / src / app
3 COPY package ∗ . json . /
4 RUN npm i n s t a l l
5 COPY . .
6 EXPOSE 8080
7 CMD [ "npm" , " s tart " ]

Listing 2.1: A Sample Dockerfile for nodejs Counter Application

It starts with FROM command which defines node:8 as base
image for application. The second command WORKDIR spec-
ifies the working directory of container. On third line, nodejs
application package JSON file is added from Docker client di-
rectory to image directory. Similarly, RUN command makes
it possible to run the input commands directly in container′s
shell. An EXPOSE instruction makes the specific network
port (TCP/UDP) of container available to host. For example,
in given Dockerfile, the tcp port 8080 is exposed externally
so that container will listen on this port at run-time. How-
ever, docker avoids direct publishing of this port until and
unless a container gets started by specifying the publish port
with "-p" flag. Finally, CMD parameter shows the commands
(i.e. npm start) which need to be executed immediately after
starting a container.

2. Docker Registries
Docker manages a public repository known as registry to store
images. According to [13], Docker Cloud and Docker Hub are two
well-known public repositories which contain multiple images (in-
cluding official releases such as nginx, nodejs, CentOS etc.) avail-
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able to download for docker community. In addition, docker build
command facilitates the docker community to create custom im-
ages and then, push them to Docker Hub for public or private use.

Figure 2.4: Docker Containers sharing same node Image (adapted from
[1] )

3. Docker Containers
Docker containers can be defined as isolated Linux processes cre-
ated by executing run time instances of docker images. These
user-space segregated processes keep applications separate from
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one another. Sitting on top of Linux host kernel, all containers
share the same operating system and have native access to global
system′s resources. Due to immutable property of docker images,
we can create multiple instances of containers from same image
and each container maintains its own data state. Thus, each run-
ning container creates its own writable layer on top of base im-
age as shown in Figure 2.4. To store this writable layer as per-
sistent data, docker volumes have been introduced which persist
the container data directly on local file-system. However, to keep
un-persistent data in writable layer of containers, docker storage
drivers such as btrfs, aufs, zfs, vfs and overlay2 are used. These
drivers manage local disks through UnionFS (union-filesystem)
but at cost of performance loss (i.e. low read and write speed)
when compared to docker volumes.

2.3 Checkpoint & Restore In User-Space
(CRIU)

To realize the full potential of Fog Computing, container-based service
migration has been introduced. The technology developed for this pur-
pose is named as checkpoint-restore. The basic concept of this technol-
ogy is to freeze a running container, save its memory state as a collec-
tion of image files and then restore the container from those image files
on the destination. In past, many tools and projects have been devel-
oped to checkpoint and restore containers such as DMTCP (distributed
multi-threaded check-pointing), BLCR (Berkeley Lab Checkpoint-Restart),
PinPlay, OpenVZ and CRIU etc [5]. With respect to their checkpoint-
restore implementation, all these projects fall into two main categories:
low-level implementation (i.e. accessing Linux kernel for checkpoint-
restore) and a high-level implementation (freezing applications in user-
space environment). As low-level implementation demands more re-
quirements on applications to be check-pointed (including the need of
pre-compiling or loading special libraries) as well as need of complex
modifications to Linux Kernel. Therefore, Linux community recom-
mended a relatively more transparent and feasible method to achieve
checkpoint and restore feature entirely in user-space [12]. Based on
this recommendation, CRIU appears as a viable tool which exploits
user-space to make snapshots of containerized applications and then
restart them at a later stage from those check-pointed image files. In
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this process, it requires no need to pre-load custom libraries because
Linux Kernel (as of Kernel version 3.11) provides native support for all
CRIU features.

2.3.1 CRIU Working Principle
Developed by Virtuozzo as an open-source project, CRIU at present
is integrated into various container-based environments such as LXC,
LXD, Docker, runc and OpenVZ etc. However, this work explores check-
point and restore feature of CRIU using Docker. The overall checkpoint
and restore feature can be divided into two main steps:

1. Checkpoint
The main purpose of checkpoint is to collect the complete state of
all running processes so that at later stage, this state information
can be recreated for restarting the process. According to [4] , the
overall checkpoint process is further sub-divided into following
steps:

• At first step, the process tree (including parent tree and all
children processes) information of container is retrieved us-
ing /proc file-system to freeze the parent process and all its
sub-processes.

• In the second step, entire state information of application
is collected and dumped in the form of image files on local
disk. This state information includes many things such as
file-descriptors, socket-pipes, network connections, cpu reg-
ister, credentials, uids, gids, memory-mappings and timers
etc.

• With the help of process trace (i.e. ptrace debugging) inter-
face, CRIU takes charge of whole process and terminates it.

• Finally, CRIU utilizes that ptrace to inject a certain code
known as "parasitic code" inside the stopped process. This
code is executed directly from address-space of process to get
access to its memory and then to save all its contents.

• When all memory information is collected and written to disk
storage, then process can be aborted or continue working if
fault-tolerance is desired.

2. Restore
It is the reverse-process of checkpoint because now CRIU will
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have to recreate the processes from those image files which were
check-pointed earlier. This restore process consists of following
steps:

• First step involves reading image files and figure out which
resources are shared by which processes and what is the cor-
rect order of restoring. Then, one process is enough to re-
store shared resources and another one is inherited for each
remaining resource. For example, if one open file descriptor
is shared by multiple sub-processes, so it is just opened once
for all of them and then inherited for others.

• In the second step, CRIU forks the process tree including
all sub-processes. Then, it assigns the same process iden-
tifier (PID) to that process as it had during check-pointing.
However, if assigned PID is different, then CRIU is unable
to restart the process and restoring process of container is
crashed.

• In third step, CRIU restores and prepares some basic re-
sources such as files, sockets, name-spaces and private vir-
tual memory addresses.

• Finally, another piece of code known as "restorer-blob" is in-
troduced to un-map the CRIU code and its memory contents
from target process as well as restoring the main-process
memory mappings. Similarly, process timers and credentials
are also restarted so that CRIU can perform some privilege
operations and trigger restore process at a moderate pace.

Figure 2.5 demonstrates the default checkpoint-restore process from
source node to destination node. As discussed above, CRIU dumps and
writes down the memory of container to disk. Then, a Linux command
(scp or rsync) is used to read those files from source and writes them
to destination disk. Finally, CRIU-restore reads the copied informa-
tion to restart a new container on destination. However, this two-time
read-write operation starting from checkpoint to restore process is I/O
intensive and therefore, can result in increasing downtime when disk
I/O is not super-fast. This challenge can be solved by a technique intro-
duced as "disk-less migration" which is discussed in following section.
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Figure 2.5: CRIU Default Working Principle (adapted from [25])

2.3.2 Live Service Migration Using CRIU
The main application of CRIU is to live migrate containerized applica-
tions. In real-time, CRIU can checkpoint and restore containers from a
source node to a destination node. For example, it can migrate any type
of container (e.g. database server or game server) to remote end until
and unless it needs no direct access to low-level hardware resources.
In this mechanism, running containers are frozen on source. Their
check-pointed image files are copied to destination and finally, they are
restored from those frozen images. To achieve container migration, fol-
lowing things are required:

1. Updated and same version of CRIU should be installed on both
sides (better to install CRIU version 3.9 or 3.8.1).

2. Docker Enterprise Edition 2.0 must be used and docker experi-
mental feature (i.e. docker checkpoint) must be set to true. At
present, some versions of docker CE lacks the desired support
to properly checkpoint a container and then restart it from that
checkpoint.

3. Container file-system (i.e. binaries, libraries) as well as docker
images must be exactly of same version (without any differences)
on source and destination. Otherwise, CRIU restore will crash
and return the corresponding error.

4. For migrating TCP connections, source and destination should
have same IP address [18]. This is due to fact that CRIU enable
their bind() and connect() functions based on source credentials.
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In case an IP conflict occurs, the corresponding system-call will
fail and ultimately the CRIU restore process is aborted.

5. CRIU cannot migrate containers which try to access low level
hardware information. If an application requires this access, it
can be provided through necessary software plugins on source
which help CRIU to extract hardware state and then use the same
state on destination using CRIU restore.

As live migration is often linked and imagined with CRIU but in
practice they are barely equivalent to each other. This is due to fact
that CRIU is just a checkpoint and restore process. It suspends a con-
tainer and then restart it from check-pointed image files on destina-
tion. However, it lacks the ability to move a running container and its
memory pages to remote end. Therefore, it involves more delays and
downtime when migrating a container. The downtime includes the to-
tal time to checkpoint, migrate and restart the container. For complete
live migration of Docker containers, an open source project known as
P.Haul (i.e process hauler) [22] is proposed. However, at present, this
tool is under development and testing stage which is quite slow, so it
will take much more time to become a stable and mature tool for live
container migration. To envision live migration, CRIU achieves short
downtime with the help of following types of migration strategies:

1. Iterative Live Migration (pre-copy)
Live migration essentially requires two things: copying disk file of
container and its memory pages. Whenever disk files are copied,
container keeps running but moving memory-pages requires the
need to stop the container. Thus, if memory pages are of large
size (e.g 1 GB), then observed downtime would be critical. To
solve this challenge, iterative checkpoint feature was developed.
As the name suggests, iterative migration checkpoints the large
memory pages in a repetitive manner such that each new check-
point records only memory changes relative to previous check-
point. By adopting this approach, multiple repeated checkpoints
(known as pre-dumps) are created without stopping the running
container except the last one (i.e. dump-phase) which suspends
the container′s process. Furthermore, the observed downtime in
dumping a container will be decreased by a significant factor as it
just involves moving small memory-page to destination.
Recently, A.Reber [14] integrated this pre-dump feature of CRIU
with runc and LXD containers to achieve live migration. How-
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ever, Docker still lacks this integration so, at present, only simple
dump and checkpoint-restore facility is available for docker con-
tainers.

2. Lazy Migration (post-copy)
Unlike iterative migration, lazy migration is a type of post-copy
memory migration [25]. In this approach, the memory contents
of a container are kept on source node without moving them to
destination. Instead of copying everything, only freeze state in-
formation and bare minimum is copied over destination to start
the application. Later, source node pre-pages [25] the remain-
ing memory sate information to destination. The concept of page-
faults is introduced to request the required memory pages from
source. Through page-fault handlers, all desired pages are moved
to destination while application remains active at the same time.
This method also reduces the frozen time of an application. At
present, this method is still under development within CRIU com-
munity.

3. Diskless Migration
This is another type of technique to reduce the migration time of
an application. Instead of dumping a container′s image files and
memory to persistent storage, they are placed over temporary file
system (tmpfs) which is mounted on both sides [7]. As shown in
Figure 2.6, now a CRIU dump will launch a criu-page server on
destination side and instead of dumping data to disk, it is dumped
to page-server. This page server will receive pages from CRIU and
write them to tmpfs mount. In this manner, the data is dumped
directly to destination without storing it on source node. Thus,
CRIU-restore from this tmps appears to be very fast process due
to memory-to-memory copy and eliminating the need to perform
two-times read/write and I/O operations.

Apart from live migration, CRIU can be used for multiple pur-
poses. It can save the current state of a game-server which can be
resumed at later stage. Similarly, long jobs are suspended at cur-
rent state and can be restored whenever desired. It possesses the
ability to solve high performance computing issues (HPC) related
to cluster load-balancing. This also correlates with one of our
objective i.e. to trigger migration and implement load-balancing
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Figure 2.6: Disk-less Migration using Page-Server (adapted from [25])

among Fog nodes whenever they become overloaded. Some other
use-cases include building fault-tolerant systems, moving an ap-
plication into screen and fast kernel upgrade etc.



Chapter 3

Related Work

3.1 Resource Management in Decentralized
cloud

Resource Management, mobility challenge and fast service migration
(i.e. reduced latency) are some of key challenges in both mobile cloud
computing as well as edge computing environment. As cloud virtual-
ization platforms i.e. MCC and MEC both complement each other and
there is no perfect solution which can address current challenges by
just relying on a single technology. Therefore, in this work, resource
management and latency problems are studied from both domains.

In a traditional Mobile Cloud Computing environment, computation-
intensive tasks have been offloaded from mobile devices to remote cloud
servers to optimize their energy consumption and computation cost.
The recent research also demonstrates various techniques and algo-
rithms (e.g. Round robin and first come first serve strategy [44] ) to
schedule and optimize resource allocation among cloud servers. ThinkAir
[36], MAUI [34] and CloudClone [31] execute application code in re-
mote servers and harness their computation capabilities by executing
multiple VMs. In addition, energy consumption of tasks before and af-
ter offloading are also predicted to reduce the execution time and take
on respective cost-effective offloading decisions. Similarly, M. Lagwal
and D. Yao in [38, 45] solves this load-balancing issue with the help
of genetic algorithm method. At first, VMs and cloudlets are sorted
out with respect to their current load and local processing power. A
broker then fed this information to a genetic algorithm for allocating
necessary tasks to these cloudlets based on their current load and task

22
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handling capabilities. Other methods for load-balancing include traffic
engineering such as SDN based programmable Fog Networks. How-
ever, these all methods fail to address low-latency (i.e. 1ms) require-
ment for mobile edge users. Therefore, most of recent research work
involves exploring MEC in conjunction with MCC to address this chal-
lenge.

Mobile Edge Computing (MEC) provides service in proximity to end-
users but on the other hand, it also faces challenge of service migration
and resource management among Fog Nodes. The recent research ad-
dresses these issues with the help of novel methods and strategies for
resource management and fault-tolerant service provision from edge
nodes. T. Ojima in [30] presents Kalman Filter method to predict user
mobility which can be later utilized for service provisioning from near-
est edge node. To solve the problem of edge-node selection, terminals
anticipate the user location with respect to task collection time and
then fed this task processing request to any nearest edge node. Simi-
larly, [13] designed a resource management algorithm named as MExR
(Mobile Edge mixed reality) to enable the execution of mixed reality
applications at the edge of network. It can serve many tasks including
packet assignment, load balancing and placing computation tasks on
network nodes. The major components of this platform include SDN
based Ryu controller, NS-3 network simulator and HA-proxy load bal-
ancer. At first, workload information of all network nodes (including
edge and cloud servers) is sent to a load-balancer. Then, other network
parameters such as network latency and current network load are also
observed. Finally, a resource allocation algorithm utilizes this collected
information to decide on task processing either from edge nodes or from
remote cloud servers.

As mentioned in [32], V. Chamola simulated a SDN based network
of cloudlets that can offer computation intensive tasks to mobile de-
vices and as a result improves their quality of service. This framework
shows superior performance with respect to network latency when com-
pared to earlier existing solutions. In this framework, whenever a
fog node exceeds its processing limits, the offloaded tasks assigned by
mobile devices are transferred to a nearest fog node. A central cloud
manager (sitting on top of SDN network core) is aware of available re-
sources on all fog nodes and thus it enables fast service migration to a
nearest feasible fog node. Motivated by this concept, our work also de-
veloped a centralized control server, which monitors the resource usage
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on each fog node and then dynamically decides about service migration
to another available fog node. Similarly, H. Zhang [41] proposed some
policies for resource scheduling which allows seamless handover over
IPV6 and reduces latency time to some extent. Following the Game
theory approach, [46] demonstrates a 3-tier hierarchical model and al-
leviates resource allocation issue by forming a student project match-
ing game. In this framework, data service operators (DSO) act as lead-
ers and deliver virtual services to authorized data service subscribers
(ADSS) through Stackelberg game. A moral hazard model is designed
between fog nodes and DSO which help fog nodes to efficiently release
physical resources to ADSS.

3.2 Strategies for Container Migration in
Edge-Computing

Elijah [43] is one of the famous open-source edge computing platform
which provides VM based multi-tenancy environment. It creates cloudlet-
specific extensions of Openstack (known as Openstack++) to create and
manage cloudlets with VM migration and dynamic VM synthesis. How-
ever, this platform adds redundant hypervisor layer abstraction to de-
liver any software service. As a result, service provisioning and VM
hand-off strategy lacks zero-downtime support for latency-critical ap-
plications. Therefore, there is need to devise a solution for fast and live
service migration based on light-weight and container-based virtual-
ization.

The concept of resource management of fog nodes through container-
based live-service migration has gain great importance in recent years.
Based on this concept, some projects have been developed which focus
on fast service migration among fog nodes to ensure load-balancing and
reduced network latency. Some famous container management and or-
chestration tools (i.e. Docker Swarm, Universal Control plane [24] and
Kubernetes [26] ) also promise to dynamically initiate and monitor con-
tainerized applications on edge devices. These tools enable any phys-
ical or VM to join hundreds of other network nodes to form a cluster
of nodes which can be monitored and managed from a single interface.
However, at present these solutions lack feature of container migra-
tion from one edge node to another except Kubernetes which provides
pod migration service to edge nodes. As this work focuses on container
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migration strategy to manage work-loads among fog nodes, therefore,
some of recent container migration techniques are briefly discussed.

A. Machen in his article [39] solves the challenge of migration down-
time in live-service migration with the help of a layered framework pro-
posed for LXC containers. The basic method is to divide the application
into multiple layers and migrate only those layers which are absent on
target node. For this purpose, an incremental file synchronization (i.e.
rsync) method is utilized which can easily track missing layer on des-
tination. In its 2-layered model, an application consists of a base layer
(i.e. main application package file, OS and Kernel etc.) and an in-
stance layer (running-state of application code). The base layer size is
much higher (i.e. almost 90% higher) than instance layer and service
downtime greatly depends upon the size of application package. But
as same instance of base-layer is needed to start an application, there-
fore all mobile edge clouds (MEC) possess same version of application
package. In this manner, migrating a full-fledged application to any
MEC requires no need to transfer the heavy base images. Instead, only
instance layer files are transferred which ultimately gives us reduced
service downtime due to their small footprint. In an extended 3-layer
version of this framework, the instance layer is further subdivided into
an intermediate layer which is known as application layer. An applica-
tion layer encapsulates the application-specific files and data in an idle
state. On the other hand, the instance layer now consists of only run-
time requirements and in-memory information of an application. Now
to migrate a service, at first, the application layer is copied to destina-
tion while keeping the service in running state. Afterwards, the service
is suspended and instance layer is transferred to destination. Finally,
the service is recreated using image layer, an application layer and an
instance layer. This 3-layer model migrates most of service′s data be-
fore freezing it, and hence achieves low service down-time because live
migration involves transfer of only run-time state information.

As proposed in [40], Voyager presents a just-in-time (jit) live ser-
vice migration based on CRIU′s page-server model and is marked with
zero down-time data federation capabilities of union filesystems. It mi-
grates a container even before transferring its whole filesystem. Com-
pared to default CRIU-dump process, Voyager is based on tmpfs (tem-
porary filesystem) and avoids two times disk transactions from source
to destination by directly dumping the container filesystem to destina-
tion. Before checkpointing a container, the data federation strategy is
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imposed with remote-reads on destination without even transferring
the actual data to destination. With this data federated orchestration,
the rootfs (root filesystem) of a container is exported to destination us-
ing union mounts. Later, whenever container is resumed at destina-
tion, it performs lazy replication mechanism to synchronize all avail-
able files on source with destination and copy only those files which are
missing on destination. This data replication process contributes zero
downtime to overall service downtime so that Voyager′s total downtime
includes the time to checkpoint and restore the container.

Similarly, Cloud4IoT [33] represents another edge computing IoT
platform to perform horizontal and vertical Docker container migra-
tion in a Kubernetes cluster. This platform is a 3-tier model consisting
of cloud, edge and IoT gateways. The end-users discover nearest gate-
ways and establish connection based on BLE (Bluetooth low-energy)
communication. Whenever a user is discovered, an event is sent from
a gateway to cloud orchestrator (a central management entity) which
then starts the service provisioning container on corresponding gate-
way. The concept of horizontal migration is introduced to provide roam-
ing support to users who leave one IoT gateway and enter the coverage
area of another IoT gateway. In this process, their movement is ob-
served with respect to their RSSI (received signal strength indicator).
Incase of weak-RSSI, a user-leaving message is generated at one gate-
way while user-entering message is received on another gateway. Both
gateways forward the corresponding messages to central orchestrator,
which then changes the node affinity of corresponding container i.e. it
stops the container on previous gateway and starts a new container on
newly discovered gateway (i.e. stateless migration). On the other hand,
vertical migration is introduced to migrate services from IoT gateways
to edge or cloud in case the IoT gateways exceed their computation
limits. As gateway devices are computation limited devices, so they
can accommodate only a couple of end-users, therefore they need edge
or cloud migration support to deliver services to all end-users. Another
platform [39] also promises to deliver container migration for Docker
containers. Based on a MQTT Broker, an IoT device can communicate
with edge and cloud. To offload any container from one IoT device in
case of overload, the cloud orchestrator finds out the available node by
publishing its IP address to MQTT broker. Then docker checkpoint and
restore process is executed to restart the container on destination node.
This work also shows an exponential increase in migration time when
container image size is increased because large images demand more
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time to download them from DockerHub.

As stated in [42], CRIU has been chosen as a feasible migration tool
for LXC containers due to its checkpoint and restore capabilities. How-
ever, this work replaces traditional TCP protocol with multipath TCP
(MTCP) and integrates it with CRIU working to achieve fast migra-
tion with reduced service down-time. Unlike traditional setup, desti-
nation node is assigned two interfaces to establish connection with the
source. Now whenever, a running container is check-pointed, and its
memory state and file-system are transferred to destination, this pro-
cess get completed very fast because now we have multiple sub-flows
to copy container contents from source to destination. However, this
work stated that LXC containers find no support for liver container
migration because the migration tool (i.e. CRIU) lacks the ability to
live migrate an application as its basic feature is to suspend a running
application, then save its state information and copy all contents to
destination. Only then it can restart that application from same state
on which it was check-pointed. This is due to fact that it lacks feature
of iteratively dumping an application (i.e. iterative pre-dump feature
which is realized in upcoming container migration tools (i.e. Flocker
[10] and P.Haul [22] ).

Recently, Adrian added pre-copy support for runc and LXC/LXD
containers [21]. It issues lxc-move command to live migrate an applica-
tion to the specified destination. This single move command execution
involves many steps. At first, the container file system is synchronized
on source node and pre-copy checkpoints are created multiple times
without suspending the container. For default configuration of LXD,
the final checkpoint is performed only in case when either the number
of pre-copy iterations reach 10 or they account for at least 70% of mem-
ory pages of container. This final checkpoint instance contains rela-
tively small memory changes compared to earlier pre-copy checkpoints.
After migrating final checkpointed image files to destination, the con-
tainer file-system is again synchronized to ensure that same version of
container file-system exists on destination. Finally, CRIU can restart
container from those checkpointed files within zero-downtime. In some
cases, downtime may also increase if final memory page size is large.

Motivated by pre-dump feature in LXC based containers, MIRA
framework [29] developed by A.Ramy and Dutra also considered CRIU
for fast service migration in 5G networks. It discussed and compared
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the stateful migration scenarios from source to destination with respect
to pre-defined and undefined paths of migration. The pre-defined path
of migration involves two famous migration techniques (i.e. tmpfs and
disk-less migration) which have been integrated with iterative dump-
ing process. In tmpfs migration, the memory information of container
is iteratively dumped and then copied from source to destination when-
ever final checkpoint is performed. On the other hand, disk-less migra-
tion solves the issue of downtime by starting a page-server on desti-
nation and performing remote-reads repeatedly. Even though these
methods effectively reduce the migration time but still less efficient
when compared with undefined path migration. This is because copy-
ing of file-system and memory information is performed during migra-
tion phase which results in longer downtime. In contrast, when there
is no specific path defined from source to destination, then all MECs
are assigned a shared network file system (NFS). In case a container
needs to be migrated from one host to another, then it only needs to
copy memory state information while container file-system is already
accessible through shared storage. This method greatly reduces the
downtime and interruption in live service migration (as observed in
this work) but it achieves this at the cost of increasing overall network
utilization.

Table 3.1 demonstrates the relative comparison of each of the ser-
vice migration platform with respect to its service-migration strategy,
support for zero downtime migration and virtualization environment.
It shows that traditional VM based platforms such as Elijah have no
built-in support for low-latency service migration. On the other hand,
famous container-based solutions also take more than 2-3 seconds to
migrate the service. At present, only MIRA project claims to ensure
service migration near zero-downtime (i.e. under 1 second). From
container-environment perspective, all these projects achieve service
migration using low-level containers (i.e. runc, lxc/lxd) except Cloud4IoT,
which utilizes high-level containers (i.e. Docker containers) for service
migration. As our project demands support for Docker based applica-
tions therefore, current work focuses on service migration using Docker
containers. For this purpose, docker′s experimental feature docker-
checkpoint is used in conjunction with CRIU. At present, it only cre-
ates one-time dump of a container and lacks the support for CRIU′s
optimization tools. Therefore, our first target is to make a proof-of-
concept using CRIU′s default pre-dump feature and then experiment
the emerging optimization strategies.
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Table 3.1: Comparison of Container Orchestration Platforms

Platform Migration Low-latency Virtualization
Name Strategy Support Environment

Elijah VM Migration, No VM
[43] Dynamic VM

synthesis

Kubernetes pod No Docker
[26] migration no proof

of concept

Layered incremental No LXC,KVM
Framework file-sync. latency >=2 sec
[39] ( rsync )

Voyager just in time No runc
[40] migration latency >=2-3 sec

(page-server)

Cloud4IoT Hozrizontal No Findings Openstack,
[33] and Vertical Docker,

migration Kubernetes

MPTCP CRIU and No LXC
for lxc multipath TCP latency = 242 sec
[42]

Adrian pre-copy No LXC/LXD
Reber ( lxc-move ) latency >= 2-3 sec
[21]

MIRA tmpfs, Yes LXC
[29] Diskless Migration, latency >= 1.042 sec

Iterative pre-dump



Chapter 4

System Design & Implementa-
tion

After summarizing the related research work in previous section, now
this chapter focuses on describing the overall system architecture, pro-
tocol design and mechanism of autonomous migration with respect to
two algorithms.

4.1 System Architecture
Figure 4.1 demonstrates the overall system architecture of the testbed
developed for resource management. This testbed comprises of a public
cloud , three edge nodes and a central nodejs server to control all nodes.
For cloud-layer emulation, a Microsoft Azure VM (named as mec) is de-
ployed (from Europe region) with required specifications. Three phys-
ical machines (LAB3, LAB4 and VRONE) from Aalto campus research
network (research.netlab.hut.fi) form the edge cloud layer which is fur-
ther subdivided into two different categories (i.e. Edge Cloud A and
Edge Cloud B) with respect to their network information. Then, a
nodejs server runs on top of a physical machine which lie next to edge
nodes. The system specifications of all edge nodes and cloud device
are clearly mentioned in the system design. To reach each edge node
and remote cloud with minimum delay, the control server establishes
a persistent-SSH connection with them. In addition, cloud and edge
nodes can also access each other through SSH-configured connections.
In this setup, nodejs server acts as the master node and all other edge
devices and cloud act as clients. The real-time event-based information
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exchange occurs between server and clients through socket.io server-
client model which is discussed in following section.

Figure 4.1: System Architecture of container-based MEC Platform

4.2 System Dashboard
Figure 4.2 shows an interactive and user-friendly application dash-
board which is developed to monitor the real-time state of all nodes
and dynamically perform container orchestration service. Inside main
window, it shows the list of registered nodes, application profiles and
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all deployed applications. Then, a main menu on top-left gives user the
freedom to perform various operations such as node registration, ap-
plication profile handling, container service initiation and migration.
Before going into detailed description of dashboard features and its

Figure 4.2: Application Dashboard

work-flow, it is important here to first introduce the basic platform and
tools on which this whole dashboard is developed.

4.2.1 Front-end Technologies
The front-end of dashboard comprises of traditional web technologies
such as HTML5 (hypertext markup language), CSS (cascading style
sheet), Bootstrap and JavaScript (JS). HTML5 is used to construct
the structure of each webpage of dashboard. Along with it, CSS is
used to impart styling features such as font-color, size, text-formatting
etc. Then, JavaScript language comes to put action into webpages and
make them interactive and responsive. This is a multi-paradigm lan-
guage which is used for both client and server-side implementation.
Another important framework used is bootstrap, which is an open-
source library to create responsive web and mobile-first applications
using pre-built styling classes.
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4.2.2 Back-end Technologies
On backend, it uses node execution run-time environment to build the
web-server (i.e. nodejs server). Based on asynchronous JavaScript,
this platform follows a single threaded, event-driven and non-blocking
I/O model to give superior performance (in terms of speed and system
resources) for real-time data intensive web applications. This also cor-
responds to our requirement of lowest delays while performing CRUD
(create, read, update and delete) operations. To persist the applica-
tion data, a local database is created using mongodb driver engine. As
dashboard application requires RESTFUl API to create, store and fetch
data from a local database, so for this purpose, express framework is
used. On top of nodejs, this framework provides declarative routing
(i.e. routes) to perform HTTP requests (GET, POST, PUT, DELETE) on
specified URL identifiers. Furthermore, this application follows nodejs
MVC (model, view, controller) architecture to process HTTP requests,
consult with database and then render the response to user.

Figure 4.3: Application MVC Architecture (adapted from [9])

Based on MVC-architecture as shown in Figure 4.3, this application
consists of three main components (i.e. Model, View and Controller)
which are listed as follows:

• Models: define the proper schematic layout of application data
which needs to be stored in database entries. They are also re-
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sponsible to connect with database (through an object relational
mapper) and transform its contents as valid re-presentable ob-
jects. As demonstrated in Figure 4.3, our application employs six
models to read and write information related to registered nodes,
deployed services and application profiles.

• Views: They are re-structured templates which get data from
models (through controller) and then render it to user. In current
setup, template engine pug is used to acquire data from models
and then generate the user interface.

• Controller: It enables the interaction between views and models.
Based on HTTP requests, it triggers appropriate control functions
to fetch data from models and then show it with corresponding
views.

4.2.3 SocketIO for Real-time Communication
Socket.IO [27] is a library used to establish real-time and bi-directional
communication between client and server. It emits and listens on cer-
tain events (also known as socket.io events) to exchange real-time data.
This tool is chosen in current setup because it establishes reliable con-
nection even in the presence of proxies, system firewalls and load-
balancers. Furthermore, in case of disconnection, a heartbeat-mechanism
informs the server and client that a connection failure has occurred.
Then, the client will keep trying to reconnect to server based on auto-
matic reconnect support.

In current setup, Socket.io consists of a nodejs server (i.e socket.io)
and a JS library (i.e. socket.io-client) for client-side implementation.
An object io is defined as a new instance of socket.io server and socket.io-
client. On server side, the express framework is used to start the server
on http port 3000. Then this server instance is passed to socket.io
engine so that it can listen and respond to connection requests from
socket.io clients. An io.connect() method on client-side (i.e. on all
edge nodes and cloud device) takes the server address and port as in-
put parameters to connect to socket.io server. Finally, the server lis-
tens to that socket.io connection with io.on() method and establishes
a real-time socket-connection with each client. To perform real-time
event-based information exchange, socket.emit() method transmits
an event with certain information and the other side listens to the same
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event with socket.on() method to retrieve the transmitted data. De-
pending upon our requirements, the current setup contains following
socket.io events:

• set.role@cloudlet[i].ip
Server defines this event to assign designated role to each regis-
tered node. Here, cloudlet matrix contains information about all
system nodes so socket event

socket.emit(’set.role@cloudlets[i].ip’,{role:cloudlets[i].role})

emits role information of every node . Then, each node retrieves
this information with event-listener

socket.on(’set.role@nodeIP’, data=> {})

Here, the nodeIP is the IP address of an individual node and
data object contains the information about assigned role from the
server.

• send.load
When all nodes have successfully received their designated roles,
then nodes with role as edge-node will send their real-time sys-
tem utilization information (containing CPU, GPU and RAM us-
age) after every 5 seconds to server, which stores and update this
information at real-time.

• start.req@destination.ip
This event is emitted from server to start a container on the spe-
cific node with given IP address. The destination node listens to
this event using

socket.on(start.req@nodeIP, data=>{})

method, retrieves the transmitted parameters (including container
name, image, arguments ) inside "data" object and then a bash
script deploys the container from those parameters.

• stop.req@destination.ip
This event is triggered to stop a running container on any spe-
cific node. It executes the stop-script and suspends the container
service.
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• start.res/stop.res
When a container is deployed on any node, then start.res() event
is emitted to sends back the server a response which contains in-
formation whether container was successfully deployed or it en-
countered some error. Similarly, stop.res() sends back the server
execution result of container-stop script.

• mig.req@source.ip
This event is defined to migrate a container from the source node
with specified IP address. It contains information about container
name, image, arguments and IP address of destination node.

• mig.res
This event transmits the container-migration response to server
and informs whether migration was performed properly, or it in-
volved any issue.

4.2.4 Container Advisor (cadvisor)
Container advisor (cadvisor) [3] is a container-based tool developed to
collect and export real-time resource usage of a machine (physical or
virtual machine). Kubernetes [26], a famous container orchestration
tool, also utilize cadvisor to monitor the system performance and re-
source utilization. With its native support for Docker containers, cad-
visor can show the list of active containers on the system and also
provides system utilization information for each container. In current
setup, cadvisor is deployed as a docker container (on all active nodes)
which starts a web-server accessible on HTTP port 8080. Then, an
iframe [15] window is used to embed this web-server inside the main
view page of each registered node. Therefore, whenever the user clicks
on any registered node (e.g. lab3 in shown figure), a new view is ren-
dered to display the node-level information along with system-usage
statistics collected by cadvisor. Figure 4.4 shows cadvisor capabilities
to show running Docker containers, active processes, system usage in-
formation (i.e cpu, memory usage and storage information) and net-
work information. If the "Docker containers" button is clicked, then
it gives the possibility to view occupied system resources by each con-
tainer.
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Figure 4.4: System Monitoring with cadvisor

4.2.5 Docker Checkpoint for container Migration
Docker checkpoint is an experimental feature of Docker, which is used
in conjunction with CRIU to freeze a running container and then re-
sume it on the destination host from same state at which it was check-
pointed. This whole process of container checkpoint and restore is done
to migrate a container from one host to another. For this purpose, our
migration script adopts Shaun [6] strategy and achieve container mi-
gration based on following steps:
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1. Checkpoint
At first, migration script is provided with essential information
about the active container (such as its name, image, arguments
and destination host). Then, to create a checkpoint for container
e.g checkpoint_A for containerA,

docker checkpoint create ${containerA} ${checkpoint_A}

command is used. This command stops the containerA and saves
its memory information in the form of .img files at container loca-
tion /var/lib/docker/containers/containerA_ID/.

2. File-Transfer (using rsync)
The second step starts with copying container-checkpoint files from
container directory /var/lib/docker/containers/containerA_ID/checkpointA/
to /tmp directory. For this purpose, a tar package is used which
compresses the checkpointed folder (i.e. checkpointA) and moves
it to /tmp directory. Then rsync, a fast file-transfer tool is used to
transfer the checkpointed folder from /tmp directory to destina-
tion/tmp directory.

3. Restore
When the check-pointed compressed file is successfully transferred
to destination host under /tmp directory, then using SSH connec-
tion, a new container is created on destination using source con-
tainer credentials. The command,

docker create --name containerA ${arguments} ${container_image}

is used to create a new container on destination host. Then, the
check-pointed contents from /tmp directory are uncompressed and
transferred to new container checkpoint directory /var/lib/docker/-
containerA_ID/. Finally, the command

docker start --checkpoint containerA checkpoint\_A

will start containerA from same check-pointed state at which ear-
lier container (i.e containerA on source host) was frozen. Even
though, the container migration can be marked as complete af-
ter this step but, the migration script continues and removes the
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check-pointed files from /tmp directories of both source and des-
tination hosts. Then, the earlier created checkpoints are also re-
moved. This is done to avoid checkpoint-name conflict which may
occur in future container migration, if the checkpoint with same
name already exists on any host.

4.3 System Work-flow
The application dashboard is designed to perform following core func-
tions:

4.3.1 Edge-Nodes Registration
Figure 4.5 clearly demonstrates the complete work-flow to register a
node.At first, the user clicks the "Register Node" button, which loads
the controller function app.get(’/cloudlet/add’) to render the corre-
sponding view (i.e. cloudlet.pug). This view contains HTML form to
input the required fields (i.e. name, ip, ssh-key, role) for node regis-
tration. The drop-down option role offers three types of role (i.e. edge,
cloud and client) to system nodes. After entering the node-related in-
formation, a Submit button posts this information using controller
function app.post(’/cloudlet/add’) and saves it into database in the
correct format defined by model schema coudlet.js.

Figure 4.5: Edge Node Registration Work-Flow

4.3.2 Application Profiling
Application profiling works like edge-node registration feature, except
that in this case, the user submits a form containing application profil-
ing information which is then saved into database using model schema
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profile.js. This feature is developed to assign a limited quota of system
resources (i.e. CPU usage, GPU, RAM) for each containerized applica-
tion with respect to its base image. This is also utilized in autonomous
container migration to ensure that destination host possesses enough
system resources required for smooth service operation.

4.3.3 System Monitoring
As discussed earlier, cadvisor is the tool used to show the real-time
system utilization in the form of dynamic CPU and memory meters,
graphs and histograms. However, all edge-nodes possess separate mod-
ules and python scripts which measure real-time system usage at every
5 seconds and then fed this information to nodejs server. The server uti-
lizes this information to filter-out edge-nodes as normal or over-loaded.
The edge-nodes with system-utilization greater than a certain thresh-
old (i.e 50%) are marked as over-loaded or Red nodes whereas, the edge-
nodes with system utilization less than this threshold are marked as
stable or Green nodes.

4.3.4 Container Deployment
To deploy a container on a registered node, the "Deploy" button on
main-menu triggers the controller function app.get(’/deploy’) and ren-
ders the corresponding view (i.e. service.pug), which takes user input
including target node address, application name, type, image and ar-
guments. In the input form, the user can select service type as stateful
or stateless. The type "stateful" means that whenever this container
is migrated to another host, then it requires transfer of all memory
contents to destination side. However, the type "stateless" means that
container will be suspended on source host and then restarted on des-
tination from its initial state. This type is useful for scenarios where
containers perform real-time operations without requiring any earlier
memory contents.

Then, as shown in Figure 4.6, the "Deploy" submit-button posts
this information to the server using controller function app.post(’/deploy’).
Inside this function, an event "start.req@nodeIP" is emitted towards
the corresponding edge node to start a container with input parame-
ters. The edge node, then listens to this event and forwards the container-
start parameters to a bash script, which ultimately starts the container
using docker run command. Another event, "start.res" tracks the ex-
ecution result of script and sends back the server a response to inform
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whether the container was successfully deployed, or it incurred some
error. In case of positive response, the server follows service.js model
to store container-related information in the correct format (i.e. node
name, application name, image, type and arguments). On main menu,
"Deployed Apps" list also utilizes mongodb service collection to show
all newly deployed containers of the system.

Figure 4.6: Container Deployment Process

4.3.5 Container Migration
From dashboard, container migration process follows the same work-
flow as the container-deployment phase. However, now the user only
selects some parameters (such as deployed application name, source
node and target node) from drop-down options. Then, the "Migrate"
button submits this information using "app.post(’/migrate)" function.
As depicted in Figure 4.7, this function consults with service database
to find out the application type and then take the following actions:

1. If the service-type is state-less, then container is stopped on source
host and re-created on destination host. For this purpose, "stop.req@source_IP"
event is emitted towards source and "start.req@destination_IP" is
emitted towards destination. These two events get the required
information from database and then return corresponding responses
to server i.e. "start.res" and "stop.res".

2. If the deployed application is stateful, then server emits the mi-
grate event "mig.req@source_IP" towards source host and com-
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pletes the migration process in three steps (i.e. checkpoint, file-
transfer and restore) which are already discussed in earlier sec-
tion about docker-checkpoint. After container-restart on destina-
tion, a migration response event "mig.res" is sent to server to in-
form about migration result.

Figure 4.7: Container Migration Process

4.4 Communication Protocol Design
In previous section, this chapter briefly discussed the system architec-
ture and constituent technologies to build the system. Now, this sec-
tion will present the protocol design of system and explains how server
communicates with client-nodes to perform various operations such as
system monitoring, container deployment and autonomous service mi-
gration.

Figure 4.8 demonstrates the protocol design of system consisting of
server and all clients. In this setup, client-nodes are already registered
with server using "Node-Register" feature described earlier. Except
mec, a cloud device, all other system nodes (i.e. lab3, lab4 and vrone)
are registered as edge-nodes. Now, when the server and all client nodes
start their operation, they follow a sequence of steps which are briefly
described as follows:

1. Connection Establishment
As a first step, server starts listening on HTTP port 3000 and all
client nodes will be able to access socket.io server using io.connect()
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Figure 4.8: Protocol Design Of System

method. When server successfully establishes the socket.io con-
nection with client, it prints out a message to user that a socket
connection is opened for a certain client.

2. Role Assignment
As soon as client nodes establish a connection with server, they
start listening for event set.role@node_IP to perform designated
role defined by server.



CHAPTER 4. SYSTEM DESIGN & IMPLEMENTATION 44

3. Resource Monitoring
As in current system, edge-nodes are responsible for service provi-
sioning, so their real-time state information must be monitored to
take timely action in case of system failure. For this purpose, only
clients acting as edge-nodes would transmit their real-time sys-
tem utilization information (i.e. CPU, GPU and RAM percentage)
to server after every 5 seconds. Then, server save those values in
load schema and depending upon CPU utilization percentage, it
filters out nodes as green nodes or red nodes. Those nodes with
CPU utilization percentage greater than 50% are labeled as green
while, nodes for which CPU utilization exceeds 50% are marked
as red nodes. A rescue function is also defined here, which keeps
searching for red nodes and is responsible to take an appropriate
action if some node becomes red.

4. Container Deployment
Now, user can deploy some containers on any desired node. (e.g.
on lab3). As expressed before, start.req@node_IP event will
take user inputs and start the container on target node. Then
start.res event will send back corresponding response to server
for each container.

5. Container Migration
As server is continuously monitoring all edge-nodes, so as soon as
any edge-node CPU utilization exceeds 50%, its record is removed
from green node and added to red one. Then, the server searches
all deployed services with the same node address as the red-node.
If found, then it gets service deployment parameters (i.e. app-
name, image. type, arguments) for each service and follows a cou-
ple of resource allocation algorithms to decide the most feasible
green node. Finally, mig.req@destination_IP event migrates
each service from affected node (i.e. the red one) to selected green
node. For each service-migration request, a corresponding mi-
gration response event (i.e. mig.res) informs the server whether
migration is performed successfully, or it involves some errors.
To understand how destination nodes are selected, the proposed
resource allocation algorithms are briefly discussed as follows:

• Resource Allocation Algorithm-I
For service migration, this algorithm gives priority to near-
est edge nodes from same network and finds a green node
with least system utilization. If this node lacks sufficient
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system resources for service provision, then a least utilized
green node is selected from other available networks. The
current setup designates that node as dgreen. In case, this
node is also fully utilized or unavailable, then services are di-
rectly migrated to cloud device (i.e. mec). The flow-diagram
in Figure 4.9 clearly shows that algorithm-I performs node-
selection mechanism in an iterative manner for each service
of red node. At first, it looks for available green nodes from
same network. If they are unavailable, then second priority
is given to available edge node from different network. In
case, they are also busy, then as a last option, the cloud de-
vice is selected as the destination node for all services.

Figure 4.9: Resource Allocation Algorithm-I

In case, if green node from same network is available at the
first instant, then first application′s required CPU usage (de-
fined in application profile) is added to green node′s current
CPU usage. If their aggregated value becomes less than 50,
then it means that application profile has matched with cur-
rent green node and hence, this service can be migrated to
it without causing congestion. Similarly, the remaining ser-
vices follow the same process of node-selection and algorithm
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will migrate them to same green node until and unless their
application profile matches with it. Otherwise, dgreen node
is checked and all those services are migrated to it whose ap-
plication profile matches with it. If no dgreen node is avail-
able or application profile involves mismatch, then all re-
maining services are migrated to cloud.

Figure 4.10: Resource Allocation Algorithm-II

• Resource Allocation Algorithm-II
This algorithm aims to achieve green cloudlets to save en-
ergy consumption of the system. The idea is to sort out all
available edge nodes in descending order of their cpu utiliza-
tion and select those nodes first as destination host whose
system utilization is relatively higher. By doing this, some
edge nodes can be switched to sleep-mode or turned off to
save energy consumption. For this purpose, each service loop
through each node to match its application profile. As shown
in Figure 4.10 , a service migration is performed if applica-
tion profile is matched with corresponding edge node (also
known as Ecogreen node). In case of mismatch, the service
will look for next available edge node to match its applica-
tion profile until and unless the last available edge node is
reached. If service profile matches with last edge node, it is
selected as destination node and corresponding service is mi-
grated. However, if last available edge node also involves ap-
plication profile mismatch, then service is migrated to cloud.
At present, this algorithm works without moving any under-
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utilized edge node to sleep mode. However, in future, some
power-saving settings can be defined which switches any under-
utilized edge node from active state to sleep mode and move
its services to a near-by edge node. Depending upon the need
to deploy new services or support the existing ones, an edge-
node can be later switched back to active state and start de-
livering the service to end-users.



Chapter 5

Performance Evaluation

In previous chapter, we discussed the system architecture, protocol de-
sign and application work-flow. Now, this chapter focuses on validating
the design of developed system and comparing its efficiency with re-
spect to service initiation and migration time. To evaluate the overall
system performance and understand its behavior, various experiments
have been performed and obtained results are discussed in the follow-
ing sections:

5.1 Deploying & Migrating Stateful Appli-
cations

Before deploying any container service, we first add its corresponding
application profile information to associate the desired system usage
quota in terms of CPU, GPU and RAM percentage. For a nodejs counter
application, we register a corresponding application profile with name
"node-counter"and 10% usage quota each for CPU, GPU and RAM.
Then, we deployed a container on lab3 with name "node-app1" as shown
in Figure 5.1. Once deployed, this containerized node application starts
on port 3000 and then it is exposed on lab3 HTTP port 8003. Figure 5.1
shows that we can access this counter application on lab3 and for each
new page-load request, it increments the counter by 2. Now, using "Mi-
grate" option, this container is suspended at state where the counter is
15 and then restarted from same state on lab4. It took 3.2 seconds to
migrate the container and when accessed from lab4 it started from 17
instead of 0. This validates that stateful migration works properly and
keeps the memory state while moving a container.

48
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Figure 5.1: Deploying and Migrating a nodejs Counter Application

Similarly, the stateful migration is performed for famous 2048 puz-
zle game. As this involves migration of an active TCP connection, so
IP address should be same on source and destination hosts. However,
with default docker bridge, new containers can be assigned only an IP
address from default IP pool and it lacks flexibility to assign a user-
specified IP address for a container. Therefore, we first created a new
customized bridge network on source and destination with name "mec"
and subnet 172.18.0.0/16 using command
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docker network create -d bridge

--subnet=172.18.0.0/16 --gateway=172.18.0.1 mec

Figure 5.2: Deploying and Migrating 2048 Game
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As demonstrated in Figure 5.2, we started a container "game-app"
on lab3 with specified IP address and then successfully migrated it
towards lab4 within 1.9 seconds.

5.2 Stateful Vs Stateless Migration
To study the impact of service type on migration downtime, both state-
ful and stateless containers are deployed and then migrated from each
source node to each other available destination host. For this experi-
ment, nginx servers are deployed using official nginx base image with
109 MB size.

5.2.1 Stateful Migration
In case of stateful migration, the experimental results in Figure 5.3
clearly state that edge nodes with high processing capabilities (i.e. lab4
and vrone with Octacore CPU and more than 4GB available RAM) ex-

Figure 5.3: Stateful Migration Downtime
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perience less service migration downtime as compared to an edge node
with limited system resources (i.e. lab3 with 1GB available RAM and a
Quadcore CPU). The overall migration downtime comprises of process-
ing delay (on both source and destination to checkpoint and recreate
the container) as well as network delay (to copy the memory contents
to destination host). For vrone as the destination node, migration time
from lab3 (i.e. from same network) is 2.3 seconds, which is 0.7 seconds
higher than the migration time from lab4 (i.e. from different network).
This shows that for limited capable edge node, the processing delay
dominates the overall service migration downtime as compared to net-
work delay. Due to persistent ssh-connection, migrating a container
from cloud VM mec to vrone takes about 2.2 seconds which is 0.6 sec-
onds more than the migration time from lab4 (i.e. 1.6 seconds). Now,
in this case, 0.6 seconds correspond to additional network delay experi-
enced when reaching a local edge node vrone from remote cloud device.
For lab4 as destination, migration time from mec and and vrone almost
remains the same as observed when vrone acted as destination.

Now when containers are migrated towards lab3, then it means that
they must be checkpointed on source hosts and recreated on lab3. In
this case, migration time becomes even much larger than the case when
lab3 acted as the source node. From lab4 to lab3, a container migration
takes about 1.2 seconds more time as compared to when container was
migrated to vrone. Similarly, migrating a container from vrone takes
almost 1 second more time compare to when migrating it towards lab4.

At last, the same process is repeated for mec. To migrate a con-
tainer from lab4 to mec, it takes about 2.83 seconds, which is different
and higher than the delay observed when migrating container from
mec to lab4. Similar trend is observed when migrating from lab3 and
lab4. This difference could be the result of different routes followed
from edge nodes to remote cloud and vice versa.

5.2.2 Stateless Migration
In this type of migration, containers are suspended on source node and
then restarted on destination from their initial memory state without
requiring any need to copy the previous memory contents to destina-
tion. This significantly decreases the service downtime to almost 0.5
seconds as observed in Figure 5.4. In relation to stateful migration,
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Figure 5.4: Stateless Migration Downtime

same experiments have been performed except that now containers are
restarted from their initial start scripts and memory information. Ex-
cept lab3, all other edge nodes require only 0.5 seconds to restart the
container on destination. Similarly, for mec the stateless migration
time is slightly higher (i.e. it ranges between 0.5-0.6 seconds).

5.3 Migration between Same Network Edge
Nodes

To test the processing limits of Docker in terms of container migration,
multiple containers are simultaneously migrated between edge nodes
from same network. Figure 5.5 shows that with the introduction of
each new service, the average migration delay increases. When three
containers are migrated in parallel, then the average delay per each
new container is almost 0.6 seconds. The same trend continues when
four containers are migrated at same time instant. This corresponds
to Docker limitation when multiple migration requests are received si-
multaneously, and Docker address them at cost of 0.6 seconds delay for
each new service migration.
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Figure 5.5: Migration between Same Network Edge Nodes

Figure 5.6: Migration between Different Network Edge Nodes
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5.4 Migration between Different Network
Edge Nodes

After getting an insight about service migration between same network
edge nodes, now this experiment involves multiple service migration
between different network edge nodes. As demonstrated in Figure 5.6,
the obtained results depict a prominent increase in service downtime
when they are migrated across different networks. Compared to previ-
ous experiment, the average downtime for each new service migration
has increased to 0.7 seconds. However, the increment in total migra-
tion time show that each service migration suffers from the network
delay of 0.3 seconds when migrating an application to the edge node
from different network.

Figure 5.7: Migration From Edge Node to Cloud

5.5 Migration from Edge Node to Cloud
In this experiment, multiple containerized services are migrated from
a local edge node to the remote cloud device as shown in Figure 5.7.
The purpose is to understand the effect of network delay on service
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migration when destination is at far off distance. Like previous exper-
iment, same number of services are migrated in parallel to the cloud
VM mec. Compared to migration between same network edge nodes,
the total migration time has now increased beyond 1 second for each
service. Similarly, the average downtime for each new service migra-
tion also becomes equal to 1 second. This shows that migration from
an edge node to remote cloud entails unfavorable network delays which
can limit the quality of service (QoS) and ultimately harm the user ex-
perience. However, service migration to cloud can avoid the outage
issues when all edge node are unavailable or they lack sufficient re-
sources for service provision.

Figure 5.8: Effect of Checkpoint Size on Migration Downtime

5.6 Effect of Checkpoint Size on Migration
Time

To explore the effect of checkpoint size (i.e. the payload to move towards
the destination) on service migration downtime, containers of varying
checkpoint sizes are migrated. From Figure 5.8, the observed results
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clearly show that with the increase in checkpoint size, the correspond-
ing service downtime increases exponentially. At the start, processing
delay constitute almost 80% of overall service downtime, while net-
work delay constitutes the remaining 20% delay. However, this trend
changes significantly and ultimately get reversed when a container
with large checkpoint size is migrated. This change occurs because
copying the large files takes more time and hence the overall network
delay is increased. On the other hand, the processing time (to check-
point a container and then restart it from checkpoint) varies from 1.52
seconds to 4 seconds. This shows that for time-critical services, docker
exceeds the minimum delay requirement and hence require an opti-
mization mechanism (such as iterative pre-dump feature of CRIU or
page-server model) to deliver near-zero downtime service migration.

5.7 Autonomous Migration
In all previous experiments, service migrations were triggered on be-
half of user from control server dashboard. Now this experiment fo-
cuses on verifying the working feasibility of dynamic service migration
using algorithm-I and II. On any edge node, these service migrations
are triggered when high-load events are reported to control server. To
emulate the high CPU load condition and fully utilize the CPU re-
sources on any edge node, a Linux terminal command yes > /dev/null
& is used. It′s one run execution utilizes about 25% CPU resources
on lab3 with a quadcore processor. However, for edge nodes with an
octa core processor, its one run iteration occupies about 10% of CPU
resources. Multiple iterations of this command are used to generate
the desired CPU load on any edge node. Now to test the system behav-
ior with respect to algorithm-I and II, the following experiments are
performed:

5.7.1 Service Migration Using Algorithm-I
To test the service migration using algorithm-I, three containers are
deployed on lab3 with type defined as "stateful" and application profile
named "nginx" having 10% CPU usage quota. Figure 5.9 shows that at
this stage (i.e. scenario-I), the current CPU load on each node is less
than 50%. Using one iteration of Linux stress tool on lab3, about 25%
extra CPU load is injected. As a result, the CPU load on lab3 exceeds
the normal CPU threshold (i.e. 50%). Now, as soon as this load-exceed
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event is reported to server, it finds out all deployed services on lab3
and then finds out the appropriate destination node for each service.
As algorithm-I gives priority to edge nodes from same network, so first
container (app-1) is migrated to vrone because the aggregated value of
app-1 required CPU and vrone current CPU level (i.e. 10+ 38 = 48) is
less than 50%. However, for app-2, this value exceeds 50%, hence it
is migrated to lab4. Similarly, the third container involves mismatch
with lab4, so it is migrated to cloud VM (mec). The corresponding ser-
vice migration downtimes exhibit the same behavior as observed in
previous experiments.
Now, in scenario-II, two iterations of stress tool on lab4 incremented

Figure 5.9: Service Migration Using Algorithm-I

the cpu load upto 59%. The rescue function on server detects the lab4
as red node and finds no green node from same network for app-2 mi-
gration. The only available green node is vrone from different network,
so after matching application profile (i.e. 10+ 38 < 50), app-2 is mi-
grated to vrone. For this migration, it only took about 2.4 seconds to
migrate the app-2 from lab4 to vrone.
Finally, the scenario-III emulates the high-load situation on an edge
node (i.e. vrone) when all other nearby edge nodes (i.e. lab4 and
lab3) are unavailable. In this situation, algorithm-I migrates each ap-
plication to cloud device at the same time instant. However, due to
processing and network delays, each next service migration (app-1 at



CHAPTER 5. PERFORMANCE EVALUATION 59

present) took about 1 extra second to start on destination. These re-
sults clearly validate the service migration mechanism of algorithm-I
and in real life, this can ensure service migration without causing con-
gestion on destination host and hence enable load-balancing feature in
edge cloudlets.

5.7.2 Service Migration Using Algorithm-II
Now this experiment evaluates the service migration mechanism of
algorithm-II. The aim is to first select those edge nodes as destination
which have highest system utilization and still they can accommodate
affected applications of red nodes. To start the experiment, 4 contain-
ers are deployed on lab3 with each one requiring 10% CPU load. Using
two iterations of stress tool, the CPU load on lab3 exceeds 50%. Figure

Figure 5.10: Service Migration Using Algorithm-II

5.10 show that at this stage, algorithm-II selects the highest utilized
edge node (i.e. lab4) as the destination node for first three services (i.e.
app-1, app-2 and app-3). After migrating three services, lab4 is unable
to accommodate the fourth one and hence, it is migrated to next avail-
able highly utilized edge node (i.e. vrone). In scenario-II, high-load
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emulation is performed on lab4 and as a result the deployed services
are migrated to only available edge node (i.e. vrone). Like previous
experiment, all services are successfully migrated to cloud when vrone
also becomes a red node. In real network settings, when all services
can be accommodated by a powerful edge node, we can switch the other
available edge node into sleep mode to save some energy consumption
and make it active again when needed.



Chapter 6

Conclusions

Emerging IoT and 5G technologies involve time-sensitive applications
which require support for real-time low-latency communication, fast
processing and data analytics. A new paradigm, known as Fog Comput-
ing (or MEC), has been introduced to meet these requirements. How-
ever, traditional Fog network architecture is composed of heavy-weight
virtual machines, and since very few projects have explored OS-level
virtualization in context of edge computing. Therefore, in this thesis
work, container based MEC has been proposed. The developed control
server also addresses the resource allocation challenge in Fog Com-
puting. With a user-friendly dashboard, it provides the possibility to
register the edge nodes, deploy and migrate the containerized services
and monitor their health state information. Motivated by Follow Me
Edge Cloud concept, two resource allocation algorithms have been de-
veloped for resource management and deciding on service migration
when some edge node becomes overloaded. The developed testbed is
then evaluated by conducting various experiments. The obtained re-
sults clearly show that event-driven strategy follows the low-latency
requirement of edge computing. The container-based service provision
is fast and easy to migrate. However, as service migration involves
only pre-dump feature of CRIU, so all memory contents are copied to
destination after freezing the container on source node. As a result,
the service downtime is increased. Apart from it, docker-checkpoint
on source and docker-start from checkpoint on destination takes al-
most 1.5 seconds which makes service processing delay unfavorable for
latency-critical applications.

To improve the undesired processing time of Docker, it must be inte-
grated with latest optimization tools such as page-server and iterative
pre-dump feature of CRIU. At present, CRIU integration is only avail-
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able for low-level containers (such as runc and lxc/lxd). However, some
open-source projects (P.Haul, Flocker) are in active development phase,
which will make Docker a feasible tool for real time container migra-
tion.

From design perspective, the developed platform is quite flexible
that it can support new events and entities for desired integration. It
is built using Docker′s Enterprise version 2.11 with built-in support for
latest container orchestration tools such as Universal Control plane,
Kubernetes and Docker Swarm. In future, this work can be extended to
support 5G vehicular Fog Computing. We can register the mobile end-
users and based on RSSI of nearby edge nodes, they can be provided
a continued service when they switch the coverage area of one edge
node to another. Furthermore, Fog Nodes can act as virtual traffic con-
trollers when they process the real-time video streams of 5G connected
cars and then, guide them in deciding major actions for autonomous
driving such as lane change, speed control and car parking etc.
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