September 10, 2018

Extending a game engine with custom
tools

Samu Kovanen

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo September 10, 2018

Thesis supervisor and advisor:

Prof. Perttu Hamaéldinen

, , Aalto University
School of Science

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF SCIENCE MASTER’S THESIS

Author: Samu Kovanen
Title: Extending a game engine with custom tools

Date: September 10, 2018 Language: English Number of pages: 4+40

Computer, Communications and Information Sciences

Professorship: Computer Games

Supervisor and advisor: Prof. Perttu Himélainen

Video games are primarily made using game engines nowadays with an ever
increasing abstraction on the details of individual components. The research on
the software development methods, software architectures and team and project
management is a vast area of interest and has been applied to game development
topics widely. However, there has been less focus on how to utilize and manage
the individual game development components from the perspective of the entire
development team and the creative process.

In this thesis the game development is examined through individual game
development components called tools. A definition of a tool is presented and
their usage and presence in different popular game engines is explored. The tools
are categorized to built-in, 1st party and 3rd party tools and their benefits and
use-scenarios are compared against each other. In addition the thesis presents
and adapts a "Tools Focused Development" methodology, which proposes a set of
guidelines that aim to improve the possible benefits gained from developing and
utilizing tools during development.

The thesis also analyzes several built-in, 1st and 3rd party tools of a popular Unity
game engine in the context of tools focused development, and their features and
limitations are documented from the usage and management perspective. Finally
the thesis reflects on how tools development was present in the development of a
critically acclaimed commercial game Bucket Detective, and how their use affected
the final completed game. The tools were found to be the source of emergent game
design, and improved non-programmer participation in creating content along with
making adapting to design changes easier from programmer standpoint.

Keywords: game engines, game development, game development tools, game
design

AALTO-YLIOPISTO DIPLOMITYON
PERUSTIETEIDEN KORKEAKOULU TIIVISTELMA

Tekija: Samu Kovanen
Tyon nimi: Pelimoottorien laajennus mukautetuilla tyokaluilla

Paivamaara: September 10, 2018 Kieli: Englanti Sivumaara: 4440

Game Design and Production

Professuuri: Tietokonepelit

Tyon valvoja: Prof. Perttu Haméldinen

Tyon ohjaaja: Prof. Perttu Hamélainen

Videopelien kehitys tehddan nykyaikana pédasiassa kéyttaen pelimottoreita,
mika on nostanut yksittaisten komponenttien ja yksityiskohtien abstraktiotasoa.
Ohjelmistokehitysmetodit, ohjelmisto-arkkitehtuurit seka tiimi -ja projektihallinta
ovat olleet laajoja tutkimusalueita pitkdan ja niiden tuloksia on sovellettu pelikehi-
tykseen monella tapaa. Yksittdisten pelinkehityskomponenttien hyodyntaminen ja
kaytto ovat kuitenkin jadneet vihemmalle huomiolle koko kehitystiimin ja luovan
prosessin nakokulmista.

Téssé diplomityosséd pelien kehitysta tutkitaan "tyokalujen'kautta, joilla kuvataan
yksittéisia pelinkehityksen komponentteja. Tyossa esitetadn maaritelma tyokaluille
ja niiden kayttoa ja laajuutta selvitetdédn suosituissa pelimoottoreissa. Tyokalut
kategorisoidaan sisdanrakennettuihin, ensimmadisen ja kolmannen osapuolen
tyokaluihin ja naiden hyotyja seka kayttoskenaarioita vertaillaan toistensa valilla.
Liséksi tyo esittelee ja soveltaa "tyokaluihin perustuvan kehitystavan', joka on
joukko ohjesdantoja, joilla pyritdaédn parantamaan tyokaluista saatavaa hyotya ja
helpottamaan niiden kehitysta.

Tyossé analysoidaan myos muutamia sisdanrakennettuja, ensimmaisen ja kolman-
nen osapuolen tyokaluja Unity pelimoottorissa tyokaluihin perustuvan kehitystavan
kontekstissa, seka dokumentoidaan naiden ominaisuudet ja rajoitukset myos kay-
ton ja hallinnan kannalta. Lopulta tyo késittelee miten tyokalut olivat kdytossa
kaupallisen Bucket Detective -pelin kehityksessa sekd miten niiden kaytto vaikutti
lopputulokseen. Tyokalujen kdyton huomattiin tuottavan uusia suunnitteluideoi-
ta, parantavan muiden kuin ohjelmoijien osallistumista sisallontuotantoon seké
helpottavan ohjelmoijien mukautumista suunnitelmien muutoksiin.

Avainsanat: pelimoottorit, pelikehitys, kehitystyokalut, pelisuunnittelu

Contents

Abstract

Abstract (in Finnish)

Contents
1 Introduction
2 Background

2.1 Previousresearch oo
2.2 Modern game development L.
2.3 Game development using game engines
2.4 Game development tools oL
2.5 Using tools for developing games

3 Game software architectures and development processes
3.1 High and low level engines
3.2 Development models in low level engines
3.3 Development models in high level engines
3.4 Developing tools in high and low level engines
4 Developing a toolset for game engines
4.1 Reasons to develop tools L
4.2 1st and 3rd party toolso
4.3 Developing 1st party tools L.
4.4 Using 3rd party tools in production
5 Tools focused development
5.1 Methodology
5.2 Maximizing encapsulationo
5.3 Minimizing setup oL
5.4 Favoring customizability 000000
6 Extending Unity engine with custom and 3rd party tools
6.1 Creating custom tools o
6.2 Limitations in built-in tools
6.3 Terrain
6.4 Navigation oo
6.5 Trail renderingo L
6.6 Character controller. oo
7 Tools development in Bucket Detective
7.1 Custom character controller
7.2 Custom physics based interaction system
7.3 3rd party tools in Bucket Detective
8 Conclusion
References

iv

ii

iii

iv

10
10
10
11
12

13
13
14
15
16

18
18
19
20
23
25
27

30
31
34
35

37

39

1 Introduction

Software development is an inherently evolving field with new applications built on
higher abstraction levels every passing day. Increasing the level of abstraction is a
natural consequence of the human nature to avoid work, and therefore it’s reasonable
to expect this trend continue to the unforeseeable future.

Game development is a field of software development which has seen this same
trend over the course of history. Most games are unique pieces of art which are
made to represent something the creators want the players to experience first-hand.
But while the experiences games attempt to convey are often completely unique,
the technologies that build them up are based on common software foundations.
Studying and developing these foundations to achieve the end-result with the highest
efficiency has therefore become one of the core focuses of game development.

This thesis discusses developing various custom extensions and tools for game engines
during game development. Most modern games are built on game engines, which are
pieces of software that provide various high-level tools for developers and designers
to use. These built-in tools provided by the game engine alone are rarely enough to
materialize the unique visions and ideas for games, so using either 1st or 3rd party
tools to augment the engine feature set becomes a necessity.

How the developed tools are utilized in game development is heavily dependent
on the developer team structure. Larger game studios generally have specified
developers who focus solely on developing 1st party tools for the studio to use.
Smaller studios on the other hand tend to avoid developing 1st party tools due to
the increased development cost and instead focus on utilizing 3rd party tools or
developing problem-specific solutions.

This thesis takes a look at various tools using a tools focused development methodology
that aims to improve the potential benefits of using tools within game development
and make it easier for programmers to develop tools using a set of game engine
agnostic guidelines. The thesis provides a case study of extending a widely used
Unity game engine, discussing the limitations of Unity’s built-in tools and features
and the benefits and challenges of extending the Unity engine with both 3rd party
and 1st party custom tools.

Finally, the thesis discusses the results of developing custom tools for "Bucket
Detective”, a commercial game created by myself and Jesse Barksdale. The game
development phase featured various 1st party custom Unity tools such as a physics
based character controller and physics interaction systems, which contributed to
realizing various emergent game features during the development, which ultimately
reinforced the positive public reception of the game.

2 Background

2.1 Previous research

The research on games development has seen a growth recently due to games’
increased socioeconomic effects in the modern world. Large portion of the research
is centered around adapting the software development methods from traditional
software development to fit games development. Several studies [8] [6] have found
scrum based agile methods to fit games development well due to the small sprints
proving to be effective for testing prototypes and features. This kind of momentum
shift towards more agile methods has started 30 years ago from the modified waterfall
methods[9] that were found to suit actual customer feedback loops better. However,
recent studies[10] tend to conclude that the choice of the software development
process depends largely on the project itself, which of course is a natural outcome
when looking at software on the whole. For games development projects though, the
overall trend seems to be towards agile methods working out the best.[11]

Engine tools development has been a central part of game development since the
early days. Jonathan Blow wrote[4] about the discrepancy of game development tools
and software tools in 2004, describing how the external tools used are not exactly
great for developing games. His points still hold true to today, although Blow himself
and recently the Unity engine have started to do work towards creating compilers
that focus solely on games development. Most notable external tools” difference to
today are the reduced cost of external tools and game engines themselves, with many
external software providing low-cost options that even small self-published developers
can afford.

The benefits of developing in-engine tools have also been noticed since long ago. The
developers at Turbine focused heavily on engine tools creation and found them to be
useful for the whole development phase. [5] They cite improved iteration speed and
deeper involvement of artists as important benefits of making in-house tools. They
also found there to be issues with the tools’ quality assurance and documentation,
but overall the effort spent on developing in-house tools paid off. Other developers
have also proposed[1] a portable architecture for developing tools within multiple
engines, echoing the usefulness of re-usable and modular components.

Game development has seen overall little love from the FOSS (Free and Open Source)
communities. Scacchi has written[7] about the role of FOSS within game development,
but there seems to be no major advances within this field to the date. While there
are multiple open source game engines available, currently the most competitive
ones are still considered commercial and closed source. This could be due to how
Jonathan Blow also mentions there’s a large amount effort and expertise required
for developing games, which contributes to the need to focus more on the real-world
business side of making content and assets.

2.2 Modern game development

Before mid 2000’s, creating games was considered to be a process of first creating
your own game engine and then using that to build the actual game on top of it.
[4] With the release of new professional openly available game engines like Unity,
Unreal and Source, the game creation process started to move towards expanding
these available engines instead of building your own from the scratch.

The release of openly available game engines has meant that many of who had
only dreamed of making games can now produce tangible results with considerably
less effort. This time can be called the beginning of democratization of game
development, which has lately brought upon many fundamental changes to the field.
Most importantly, the democratization has nowadays skyrocketed the amount of
released games on multiple gaming platforms, making the competition fierce and the
amount of openly available game development resources, materials and tools higher
than ever.

The rising popularity of game development has made many large studios to also turn
to using openly available engines|2], as commercial engines accelerate the development
process by providing many large features like cross platform support pre-implemented.
Trying to stay competitive with an in-house own engine is also proving to be ever
more difficult due to most game engines’ technology stack having developed internally
so far, that trying to implement all modern engine features from the scratch is proving
to be infeasible except to the largest game studios with their own sizeable engine
teams.

2.3 Game development using game engines

Game engines are software environments that provide developers with a collection
of tools to handle complex features, such as asset management, rendering pipelines,
physics or graphical features. These tools enable developers to achieve common game
creation tasks fast and allow developers to focus more on implementing their own
game specific features and mechanics. The extent to which game engines provide
these tools varies wildly, with some engines only providing modular standalone code
components and others providing a full visual editing environment with many game
genre specific features pre-implemented. Some game engines are made to suit some
use-cases better than others, and it’s not feasible for any engine to provide a feature
set or abstraction level that would fit all possible game projects.

Game creation software environments which are more oriented towards non-programmers
are known as Game Creation Systems, while programmers often work with the more
complex Game Engines. There is often a trade-off between the amount of freedom
in customizing the engine and the amount of features it provides. For example
the RPGMaker game creation system is solely made for making 2D RPG-genre
games, while the Cocos2D game engine is not the most feature-rich engine to use for

making 3D games. Understanding these engine limitations is of utmost importance
for developers, as trying to complete tasks that the engine is not designed for tends
to require a lot of extra work. When making features that challenge the limits of the
engine, utilizing 1st and 3rd party tools can be immensely helpful.

2.4 Game development tools

One way to look at game engines is that they’re simply a collection of tools that
help achieve implementing a specific game feature. Be it an editable 3D view of the
game world, automatic asset importer, a math library or the physics engine, all of
these can be considered to be game development tools. This thesis defines game
development tool as the following:

Game development tools are software components that
provide various re-usable customizable functionalities

The definition is an adaptation of widely known component based software engineering
to the field of game development. The definition generalizes software component
interfaces as functionalities, and also implies encapsulation similarly to components
in the sense that the user of a tool does not have to know it’s inner workings. The
main difference of game development tools and traditional software components can
be found in the tools’ requirement for customizability.

Indeed what makes a tool is how they’re meant to provide customizable features.
Customizable in this context is defined as the output or the effect of the tool changing
depending on developer input or the running environment. For example, a script to
explode the player character when the player touches a red coin is not a tool, because
it does a single, specific feature that is not customizable. However, if the script was
changed to cause a modifiable effect when a given type of unit touches the entity the
script is connected to, it would become a tool within the definition.

Using this definition it naturally follows that virtually any single modular part
of a game engine can be considered to be a tool. The definition also does not
exclude external programs, for example 3D modeling software from the scope of
the definition. This makes sense, because if someone implemented for example a
feature-rich 3D modeling tool inside a game engine, fundamentally it wouldn’t differ
from the functionality of using an external software.

There are many types of tools used in game engines. Some tools have their own
UL, while others are used via programming interfaces. Modern game engines have
invested heavily into increasing the amount of available tools by increasing the
number of built-in tools and also by including asset marketplaces into the engine
ecosystem.

Overall there are 3 types of tools used in game engines:
e Built-in tools
e 1st party tools
e 3rd party tools

From these, built-in tools mean the tools available integrated into the game engine
itself. These tools usually do not need to be installed separately, are generally easy
to use and are meant to be the basis of all other tools or game features.

1st party tools are tools developed by the makers of the game themselves. They’re
tools that implement more specific or improved features for the game or the engine
than the built-in engine tools provide. These tools tend to not be as finalized or easy
to use as built-in engine tools, as they’re usually created for the developers of the
game and not the general public.

3rd party tools are tools developed by other unrelated 3rd party developers. These
tools often provide similar functionalities as engine tools, but differ in that their
quality and support varies greatly. Some 3rd party tools are commercial and require
a purchased license to be able to use them in the game.

2.5 Using tools for developing games

The wide definition of a tool means they’re used in many different ways when
developing a game. In general their use in development is more about adapting the
mentality of creating and using tools to solve problems, rather than just attempting
to solve the problems directly. It’s possible to have tools for multiple different
purposes, for example ones that solve a specific problem, tools that improve/optimize
an existing feature or workflow or simply tools that allow the customizability to
provide new inspiration for ideas.

The integration of tools into the development process can be done in different
ways. Larger game studios tend to have specialized Tools programmers, whose main
purpose is to write tools for accomplishing different tasks and features. These tools
are then used by other developers or designers within the studio to implement the
required functionality for the game. This kind of work split is especially useful for
experimenting with the potential of tools and enabling coming up with new emergent
features for the game even late during the development.

Smaller game development teams tend to focus less on creating tools and instead
solve the problems directly. This is often due to lack of development workforce, due
to the team not seeing the potential in re-usability and customization of the tool or
due to the smaller scale of developed games. When the developers would likely end
up using the tools themselves it’s difficult to reason the slight level of indirection in
the feature implementation over a specific solution.

Finally it’s also possible to simply do a compromise in the game design to make
the design suit already existing and available tools instead of carrying out the
implementation of a new feature. This is especially useful if the feature is insignificant
compared to the required effort or if no 3rd party tools are available for solving the
issue. Some compromises are often inevitable during the development of a game, but
at wrong places they can lead to various problems for the finished game. This thesis
does not discuss the further implications for the game design or team management
of doing these decisions.

3 Game software architectures and development
processes

The choice of game engine for developing a game is often a sum of many factors.
Different games and development teams have different requirements for game engines,
and some engines are more suited for specific software development models than
others. The most important factors when deciding the engine choice are usually the
size of the game and the familiarity of the development team with the engine.

It’s possible to categorize game engines to different engine types based on how much
they abstract out the complex details of development. The engine abstraction is often
most importantly implemented via the selection of engine programming language,
the engine feature set and how deep access the engine allows to developers. We
can define more abstract game engines as "High-level engines', while engines that
abstract the least details can be defined as "Low-level engines".

It’s not possible to categorize an engine explicitly as high-level or low-level, as the
standards of abstraction in software development and the software itself change
over time. An example of this is the widely known programming language C++,
which was once considered to be a high-level programming language, but nowadays
is considered to be close to hardware low-level programming language.

3.1 High and low level engines

High and low level engines both have several trade-offs game developers need to
take into account when selecting an engine. Increased development time from more
complex programming languages, paradigms and architectures are often the main
contributors to the overall feature implementation cost. However, abstracting too
much out can also be detrimental to productivity, as trying to implement low level
game features in a high level engine may require bypassing the engine or programming
language limitations.

High level engines often provide scripting interfaces for high-level programming
languages. This allows developers to write their game code in high level languages

that abstract away some programming details, usually reducing bugs and improving
productivity for simple tasks. [12] The increased level of abstraction on engine
features can also make it easier for non-programmers to contribute their work directly
inside the engine, reducing some of the workload on programmers.

Low level engines on the other hand often provide their scripting interfaces in low-
level programming languages. In addition they tend to allow highly granular access
to the engine feature set and source code, making it possible to tweak, modify, fix
or optimize the engine features directly. This kind of increased control comes at
the cost of increased development time and expertise requirements, although some
studies have criticized the research on the effects of different programming languages
on productivity[13]. However, when working in game engines the use of low-level
programming languages comes with responsibilities that require more advanced
programming techniques and demand more focus on software architectures to keep
the codebase maintainable.

High and low level engine features directly translate to their applicability to different
software development models, which are used to guide the software project’s life
cycle and manage the development resources. Game development usually doesn’t
follow traditional software development models in a verbatim manner due to the
increased focus on game feel over well defined project requirements. Still, knowing
how to apply the principles of different software development models to different
game engine workflows becomes increasingly important as team and project sizes
grow.

3.2 Development models in low level engines

The increased feature implementation cost is commonly the biggest factor to take in
account when developing using a low level engine. This thesis examines the widely
used Unreal Engine, which as of writing could be considered a low level engine.
Unreal Engine is a commercial open-source engine written in C++ which features
modern advanced rendering capabilities and various higher level constructs inside
the engine such as the Blueprint visual scripting system.

Feature development in Unreal is generally recommended to be split between it’s
Blueprint visual scripting system and writing C++ script files. This means that
more abstract concise features such as "Open Door" could be handled as single visual
nodes in blueprints, while the actual logic for the nodes could be handled in C++
scripts. This kind of development split implicitly encourages the creation of re-usable
blueprint nodes in C++, but the added level of indirection in feature implementation
may become difficult to grasp for less experienced developers.

Feature implementation cost of Unreal engine stems from this split. Writing C++
code introduces layers of complexity to programming that are not present in high
level programming languages. Manual memory management and the complex lan-
guage specification of C++ are common bug hazards[14] that risk increasing feature

development time. Combined with the longer iteration times from compiling C++
code this means programmers need to have well thought game design and script
architecture design laid out before it’s wise to actually implement a feature. This
slightly resembles the methodology of the Waterfall development model, where the
development usually proceeds from defining requirements to implementation to
integration and testing.

3.3 Development models in high level engines

In high level engines the feature development cost is generally small for simple
tasks that fit the engine’s feature set. Historically the Unity game engine has been
considered a high level engine, although recently it has started to morph it’s feature
set into lower level territory. This originates from changes like removing support for
alternative higher level programming languages, opening more of the engine’s source
code to the public and implementing features that work close to the hardware like
custom render loops and supporting data-oriented programming models.

Compared to the low level Unreal the primary feature implementation methods in
Unity are still more abstracted, which is the reason it can be considered a high-
level engine. The C# programming language used in Unity doesn’t require manual
memory management and has considerably less complex language specification than
C++. This means more programmers can develop features for games as long as the
features are suitable to be implemented in a automatically memory managed high
level language.

If the game design requires features that are hard to translate to the context of a
high-level engine or programming language, the feature implementation cost of high
level engines can increase tremendously. For example, Unity engine did not support
low level access to the rendering code until very recently in 2018, which is over 10
years after the initial engine release. This made it very hard to create games that are
graphically competitive with commercial custom engines and other low level engines,
due to not having detailed access to basic features like shadow mapping or rendering
path code.

Among the more abstracted programming languages high level engines often also
provide many common features and tools pre-integrated to the engine, which can make
iterating simpler tasks fast. Being able to iterate features fast by more programmers is
directly translatable to agile development methods, which emphasizes fast iterations,
bug-free software and quickly responding to the ever changing project details. Agile
methods are popular within the field of modern software and game development and
their effects are widely documented. [6] [8]

3.4 Developing tools in high and low level engines

High-level engines do not implicitly promote tools-based game development. This is
because of their highly agile nature and generally smaller feature implementation
cost, it’s more attractive for developers to create quick specific implementations
rather than spend more resources on designing and creating a re-usable customizable
tool. There are several consequences to this, which can be considered to be unique
to game software projects.

It’s common that games are developed for a customer client, but it’s also common
that all the features of the game are not directly documented in the customer’s
project documentation. For example, it’s possible that the game design addresses the
issue of character moving around and the environment type, but doesn’t consider the
possibility to interact with physics or does it have to support walking on an uneven
terrain with small obstacles.

This means it’s very attractive for developers to develop a solution for the very
specific design document problem, instead of thinking about the feature as a possible
source of more gameplay features. If the development process was tools focused
instead, creating a character controller would be more about making a customizable,
re-usable character controller that is then simply adapted to work for the scope of the
design. This would fundamentally change the problem scope for developers, making
them instinctively think about corner cases and more generalized solutions. This in
turn would bring more ways for other team members to experiment and iterate with
the concept, making it more likely for emergent game features and new ideas to pop
up. Bringing this kind of mentality to high-level engines requires more conscious
effort from the developers, who must weigh the possible potential of the feature
against the increased implementation cost.

Low-level engines like Unreal have larger tendency to promote tools based development.
For Unreal this is largely due to the work split between their Blueprint visual scripting
language and native C++ code, which naturally drives programmers to create C++
solutions that they themselves or designers use from blueprints. Creating gameplay
functionality in Unreal has higher implementation cost than creating gameplay in
an engine like Unity, simply from the increased architectural complexity and code
compilation times. This increased cost can automatically force developers to think
more about creating logical modular pieces of code that can be reused around the
project and even tweaked by other non-programmers from the blueprint system.

10

4 Developing a toolset for game engines

Adapting the mentality of developing tools to solve problems over developing specific
solutions is a choice akin to applying a software development process to a software
project. The difference comes from the fact that for tools this selection can easily be
done on a per feature basis, instead of deciding on the whole game project. In most
cases there are no meetings held or collaborated code design phases for programmers
when developing new features for a game project. Instead it’s the programmers
responsibility to select the correct methodology for implementing a feature.

4.1 Reasons to develop tools

When developing a game it’s common to think about using the built-in tools of the
engine to the fullest extent when thinking about features. This is what often gives
certain game engines their characteristic feel to the graphics and common features.
For example, as of writing it’s easy to spot a 3D game made with the Unity engine,
as very nearly all Unity games use the same cascaded shadow map technology in
their real-time shadowing.

Pursuing uniqueness is one of the core principles of game development, and developing
a custom toolset for a certain engine can give game studios their own unique charac-
teristics to their games. For example John Nesky has talked about the significance
of details like how game cameras use whiskers to avoid line of sight issues are in
games. [15] These small, nearly invisible features like how your character behaves
when you run into a wall are features that are likely to be reused from game to game
and indirectly reinforce the studio’s brand.

Built-in engine tools are made to be customized to the fullest extent, which can allow
even non-programmers to create unique content with them during the development
process. Applying this same level of customizability and ease of use to 1st party
developed tools can potentially have the same effect, making it possible to experiment
with combining features completely unrelated to the original game design. This way
tools have the potential to reduce the workload of programmers and improve the
final game features due to increased iterating and overall experimentation.

4.2 1st and 3rd party tools

Tools focused development processes do not always have to incur the increased
development cost, as the implicitly modular nature of tools allows easier outsourcing of
the work. Modern commercial game engines have realized the potential of outsourcing
tool development just like assets have been outsourced since the early days of game
development. This is visible with the growth of various 3rd party tools within game
engine marketplaces.

11

The outsourced 3rd party tools have recently boosted the productivity and output
quality of game development teams significantly. These 3rd party tools often suffer
less from the engine-characteristic nature of built-in tools, and typically their usage
is difficult to notice in the final game. Since the tools are often sold at a certain
engine’s marketplace, they tend to solve specific issues the engine might have with
the built-in tools or provide features that the engine is completely missing. However,
the 3rd party nature of these tools often necessitates various testing and quality
assurance procedures to see if they are fit for the particular project.

Using outsourced 3rd party tools in game development has allowed even non-
programmers to step into the realm of game engines from game creation systems. The
wide variety and feature rich selection of 3rd party tools at game engine marketplaces
has made it even possible to assemble complete games without any programming
required, albeit this usually comes at the cost of making compromises in the game
design. Generally the quality of these games is often considered to be subpar to
games with dedicated programmers, but it underlines an important paradigm shift
in the level of abstraction within game development field.

Nearly all unique game designs still require dedicated programming to get the required
features implemented. Whether to use 1st party tools or 3rd party tools for a specific
feature implementation requires pre-research on available 3rd party tools. In many
cases there is little reason to develop a custom solution if a suitable 3rd party solution
can be found. As the number of available 3rd party tools and their quality increases,
it’s interesting to consider what is their role in game development in the future.

4.3 Developing 1st party tools

Developing customizable reusable 1st party tools takes more time than writing out a
specific solution to a problem. If the programmers working on tools are employees,
the direct monetary costs of producing results this way is often high. In addition there
is often a large amount of risk variance, as the development cost is fully dependent
on the feature itself and programmer experience.

The cost doesn’t come without benefits though, as completed tools are often valuable
assets as is. The 1st party tools usually solve game design problems exactly with no
compromises on the design-side, and their re-usable nature and usage benefits that
reach non-programmers can bring valuable new features, ideas and productivity to
the development process. In addition to this, 1st party tools are easiest to extend,
update and debug, as the developer of the tool is usually locally present at the
development team. As game engines go through new versions and the design evolves,
these traits are extremely valuable to the completion and quality of the game.

It follows that the downside of developing 1st party tools is that if the programmers
who implemented the tool leave the team, the tool may be hard to maintain. 1st party
tools can be less documented, less extendable and harder for other programmers to
pick up in case the tool requires more development or has to be extended. However

12

it’s possible to mitigate these issues with heavily modular, self-contained tools
development.

4.4 Using 3rd party tools in production

The cost of developing 1st party tools is the main reason many game projects desire
to utilize 3rd party tools over 1st party ones. Not only this, due to the 1st party
tools” heavy reliance on programmer expertise, sometimes 3rd party tools outperform
or have higher quality and customizability than 1st party tools have.

Still, applying myriads of 3rd party tools to a game project is definitely not a
silver bullet, as in the end they tend to create unnecessarily large and complex
development projects. Many 3rd party tools often provide many more features than
just implementing the feature they were originally applied for, meaning that the
codebase and the game project become littered with features and functionality that
is not used anywhere. Stripping these features out of the tools is often difficult, and
this dead code may create difficult issues when the engine or the tools themselves
are updated.

It’s also common that 3rd party tools are heavily commercialized. The current trend
is that the cost of these solutions is going down due to the increased supply, but
high-end 3rd party tools still cost large amounts of money or require royalties that are
out of scope for smaller game studios, or may become significant expenses for larger
game studios. The way 3rd party tools are developed to appeal to most possible
customers means that they might not implement the exact design the game design
document specifies, instead opting for the game design to adapt into the capabilities
of the tool instead.

3rd party tools rarely give access to the source code, meaning all the vast benefits
of open source development are lost. This means that extending 3rd party tools
or fixing their bugs becomes nearly impossible for game developers, and trying to
get the original developers to include suggestions or act on bug-reports may take
extremely long time. 3rd party tool licenses don’t generally consider what happens
to them in case the tool becomes abandoned by the original developers, meaning
that projects relying heavily on certain features might face unexpected potentially
even fatal roadblocks in development.

Even with all these fallbacks, outsourcing implementation of game design to utilizing
many 3rd party tools has definitely found it’s place in modern game development.
Some complex features that were often programmed by game studios themselves are
nowadays nearly universally outsourced to a 3rd party tool. Physics engines are one
of the earliest examples of this, with popular engines like Nvidia PhysX, Microsoft’s
Havok and open source Box2D or Bullet Physics finding their way to nearly every
game utilizing physics that ships nowadays.

13

5 Tools focused development

5.1 Methodology

In this thesis I have adapted a methodology I like to call Tools focused development,
which I've found to help programmers achieve the various benefits behind developing
game engine tools. It’s not a programming architecture because the way it’s applied
depends on the implemented feature, the game engine used and the programmers’
way of writing code. However it is an engine-agnostic set of guidelines which can
affect the way some of the game code is structured in a concrete way.

When creating new features for a game or utilities for the game engine, the program-
mers working on the problem have to choose a method to implement the feature in
question. At this point the workflows of different people start to diverge radically
depending on their experience, the engine they’re using and whether or not they’re
following any software development architectures in their code. It’s also at this point
when the tools focused methodology can begin to help the overall development process
and decision making. Creating tools shouldn’t be a rigid architecture one needs to
follow to succeed, but instead an implicit way to encourage the customizability and
modularity of the code via structural guidelines.

The methodology adapted in this thesis can be broken down to the following 3
points:

e Maximize encapsulation
e Minimize setup
e Favor customizability

When these 3 guidelines are applied together they can spontaneously help the game
features programmers are working on to turn out to be useful tools. Alternatively,
one can examine already completed features from the guidelines’ perspective and
see potential issues or improve their usage within game development environment.
To make useful tools one usually must satisfy all 3 guidelines, or else the features
instantly lose out on a large portion of the benefits of tools focused development.

Many of the principles of tools focused development can be attributed to applying
well studied programming paradigms to game and game engine development, but the
different use scenarios of various tools within the field of game development mean
it’s useful for programmers to have a certain kind of mindset when developing tools
to fully utilize their possible benefits.

14

5.2 Maximizing encapsulation

Encapsulation within programming languages is considered to be a sign of easily
portable, modular code[16], and the same principles apply to game development and
developing game engine tools. In it’s core encapsulation is all about separation of
functionalities by making modular pieces of code that do their work on a well defined
set of data. When applied to tools focused development and game development,
encapsulation often comes down to programming game scripts that do one thing
well, and contain their functionality and working data inside the script.

Game scripts often have to work on the scene graph, or the scene hierarchy, to
achieve some kind of visible effect to the game world. This often implies creating
code that goes far out of it’s location in the hierarchy to do something on separate
elements. Very commonly this happens with elements that contain sub-elements that
represent some smaller part of the whole element. For example, it’s common for a
UI button elements to contain various sub-elements that might define the button
text, the visible graphic or the interactable area.

Applying encapsulation to these kind of elements implies encapsulating both the
element’s scene hierarchy and the code that operates on it. In practice this comes
down to making self-contained elements that contain all their functionality on a top-
level element, and any sub-elements are managed under this top-level element. The
code that works on the whole element should be placed in the top-level element, and
it should aim to work only with elements that are it’s children in the scene hierarchy.
Constant restructuring and rearranging of elements in the scene graph is common
within game development, and this makes it possible to change the location of the
top-level element in the scene graph without affecting it’s self-contained functionality.
If the code interfaces with content outside the children of the top-level element, it
automatically loses it’s encapsulation status as it doesn’t self-contain it’s functionality
anymore.

When the code and the scene hierarchy for the top-level element are structured in a
self-contained modular way, it’s easy to remove, add or change various sub-elements
or functionalities from the whole element. This kind of flexibility allows the elements
to be re-used in multiple different projects and contexts with little effort, already
achieving one of the defined goals of tools focused development. Making highly
encapsulated features contained within modular elements is also immensely helpful
for being able to achieve the second guideline of the methodology, which is minimizing
setup.

15
5.3 Minimizing setup

Software engineers and game developers commonly work with various software that
needs to be set up in a certain way as documented by the creator of that software.
Tools within game engines should generally avoid this kind of prerequisite work, to
make it also possible for non-programmers to use the developed tools without stress
of breaking something or any other unneeded mental load. Games are inherently
creative arts, and likewise it wouldn’t work for example for the benefit of a painter,
if he had manually assemble his paint brushes every time he wanted a different result
on the canvas.

Game engine tools should aim to work in a plug & play manner: be quick to apply
and to remove. Most often for implementation this already implies well defined
encapsulation within the tool, so that the functionality of the tool doesn’t depend
on something else being done or present beforehand. Applying this in game engines
would mean avoiding certain commonly used ways to define references within code,
namely hard coded references, manually assigned field references or using names as
references. Unfortunately avoiding all of these becomes extremely hard on a larger
scale, as smart management of object references is one of the most important goals
of various widely applied architectural programming paradigms.

Instead of simply choosing the least bad solution, tools focused methodology encour-
ages efficient use of the scene hierarchy to manage references, as it can already work
as a structure for encapsulating features within elements and their sub-elements.
Most commercial game engines implement efficient serialization of specified hierarchy
trees and their inner references as re-usable objects called prefabs. By reusing these
serialized small parts of hierarchy the programmers can restrict their code scope to
work within the bounds of that prefab and achieve strong encapsulation by doing
their assumptions within the scope of that prefab. For example, it would be possible
to serialize a treasure chest element as a prefab as seen in figure 1, and then make an
assumption that if the element has a sub-element named "Particles', it would always
contain the particle emitter component of that chest element.

Going further, it’s possible to make the top-level element procedurally generate the
sub-elements it needs on-demand. This would enable the ultimate encapsulation, as
the whole functionality of the tool can be contained within a single top-level element
and it’s code. The element would not even have to have sub-elements it depends
on, making the pattern work on engines without a prefab system or efficient access
to the scene graph too. Containing the sub-element creation within the top-level
element makes it easier to hide reference management from the end user of the tool,
makes it harder to break the tool by changing the scene hierarchy and also allows
parametrizing the important values within a single script for easy modification.

Whatever solution is used, the end goal of minimizing setup can be achieved by
clever utilization of the scene hierarchy, and it’s also possible to make the code more
resilient to end user changes and hierarchy errors. The primary idea here is the
separation from traditional modularity of functionalities within scripts to modularity

16

Figure 1: A part of the scene hierarchy, with the Chest being a prefab top-level
element that contains all the other elements. The structure inside the prefab is static
and self-contained, which means the programmer can safely make assumptions about
the sub-elements in the top-element while still keeping their code encapsulated within
the scope of the prefab.

of concerns of larger entities instead. The modular piece, the tool, should should be
modular in regards to it’s concerns, meaning that whatever global effect it may do
within the engine, it should only depend on the things it manages itself. This kind
of behavior makes it easy for programmers to create a single point of customization
for the tool and making the tool easiest to use for non-programmers.

5.4 Favoring customizability

The final part implementing a useful tool requires is customizability, and this is also
where most of the perceivable benefits of tools focused programming can realize.
Clustomizability means the end effect of a tool changes depending on it’s parameters
or running environment. This means the tool must have tweakable parameters for the
end user or provide a different meaningful effect in a separate running environment.
For example, allowing changing the color of a UI button easily when looking at the
buttons as tools would satisfy this requirement for the button. Alternatively, making
a movement controller script that provides useful movement functionality in many
different kinds of terrains would also satisfy the requirement for customizability.

In other words, customizability could be considered to be a trait of how wide spectrum
of use cases the tool supports. This implicitly enables the use of the tool in different
contexts, making it more likely for developers to come up with new gameplay or
other interesting outcomes just from "thinking outside of the box" with the tool. It’s
for this same reason programmers should avoid constricting the use cases of the tool
by for example limiting possible parameter value ranges or doing other compromises
in flexibility of the tool on the code side. For example, as seen in the figure 2, the
developer can make decisions that limit the usefulness and possible emergent features
of the tool simply by changing the UI of the tool a tiny bit.

17

Unconstricted range

B ¥ 03 _Player Movement (Script)

Move Speed

Constricted to values 1...10

B ¥ 03 _Player Movement (Script)

Move Speed

Figure 2: Two different ways of implementing an UI for modifying a parameter. The
bottom one restricts the values to the range 1-10, which prevents developers from

even testing out unexpected outcomes that could happen with for example a value
of 100.

For the end user, the Ul for controlling the tool should be maximally simple, yet still
allow changing every meaningful value and encourage parameter experimentation
by making the user feel reassured he’s not going to irreversibly break something by
going wild with the values.

This same mentality extends to code interfaces too. When a value within the scope
of the tool is meant to be able to change, it’s better to make a clear method interface
for modifying it instead of just leaving it as a publicly modifiable variable. This
way the developer implicitly signals to other programmers that the value can be
changed and it’s meant to be done through the use of this method. Doing this the
developers of the tool can also easily do parameter validation and make sure the
changes occur at a valid state within the tool. Achieving this kind of control requires
strong encapsulation within the tool, and favoring customizability within the code is
in a way just an application of the encapsulated programming architecture.

18

6 Extending Unity engine with custom and 3rd
party tools

Unity game engine is one of the most popular engines for developing games nowadays.
This is largely due to it’s vast platform support, and it’s active and large development
community which provides vast learning resources. Unity is also positioned in a
sweet spot between high and low level engines with it’s C# programming language
and it’s easily understood gameobject-component programming architecture. While
historically only a commercial 3D engine, nowadays it has full support for 2D
development and provides all built-in engine features for free.

6.1 Creating custom tools

The entity-component-system (ECS) is a commonly used programming architecture in
game development due to it’s focus on compositing features from modular components
over more traditional inheritance patterns[23]. The ECS is not a well defined term,
and it’s usage regarding the "systems' part tends to vary between contexts. Unity’s
programming model resembles ECS in the sense that while entities map directly to
gameobjects, components on the other hand usually contain both the data and the
logic. This kind of split makes it very easy to implement simple functionality on
a given gameobject at any time just by attaching a scripted component to it and
modifying it’s data from the editor.

Unity abstracts many built-in tools as components. For example a particle system is
simply a component attached to a gameobject, and it does not require any external
control, renderers or logic to work. Working with these kind of modular tools is an
intuitive way to represent functionality attached to an entity. There are many different
programming patterns available when programming inside Unity, but most of the
time when creating gameplay functionality or tools in Unity the programmers directly
write scripts that will be attached to an object to give it the wanted behaviour.

It follows that applying tools focused programming methods to Unity means creating
re-usable scripts that allow non-programmers to modify the behavior from the editor
inspector. In addition the scripts should provide clear interfaces for other scripts
to modify it’s data and interact with it as required. This sounds self-explanatory,
but as project sizes start to grow, achieving this while managing to avoid a complex
dependency jungle requires conscious effort or the help of different programming
methodologies.

19

6.2 Limitations in built-in tools

Built-in tools in Unity are in general fairly well designed and are often easy enough
for non-programmers to use. In most cases the tools can be used simply by attaching
a script into a gameobject, and then modifying the relevant values in the inspector
to gain the desired functionality. These tools are used in myriads of Unity games to
implement various common functionalities games tend to require, and often using
built-in tools can boost the productivity by a huge margin. However in some cases
the various limitations built-in tools can have could be the source of production
delays or different game design compromises.

Unity engine has a long history and some of the built-in tools have seen little
updates over the years. There are also many tools that have various implementation
compromises resulting from Unity engine’s focus on cross-platform development,
meaning many tools still rely on outdated DirectX 9 rendering techniques and only
few are properly multithreaded. While the situation is getting better day by day as
Unity updates their built-in tools, the current state is still that many engine tools
lag far behind the state of the art.

Take for example the terrain tool of Unity, which is used to generate a height map
based terrain and then manually customize that with various textures, foliage and
repeating objects like trees. The tool has seen relatively few updates since it’s
introduction in Unity 2.0 over 10 years ago and is definitely showing it’s age in
regards to customizability and performance. It has various performance problems
due to the terrain splat maps being rendered with multiple passes, and is very limited
with customizing foliage visuals, object placement or manually modifying height
map features. Due to these problems there are many 3rd party tools that try to fix,
append and change the terrain tool functionalities with varying success.

Unity’s Al navigation tool is another tool that is commonly seen as limited and
problematic in real-world use cases. The tool was introduced in Unity 3.5 over
6 years ago, and contains a separate tool for baking a navigation mesh and then
navigating that using navigation agents. While the tool is suitable for simple Al
behavior, it’s very difficult to use it for more complex Al routing due to various
fundamental design issues. The agents are by default meant to use their built-in
pseudo physics based system for providing movement to the agents, which greatly
limits the available options when trying to implement custom movement or physical
interaction behavior. While it’s possible to work around this by disabling the agent’s
movement engine, this is hardly feasible due to the navigation API missing various
important functionalities regarding querying the recommended routing path.

The built-in trail effect tool of Unity is another tool which can be difficult to utilize
due to the limitations it has. Trails in games are often implemented by generating
a procedural mesh and then rendering a stretched or a tiling texture on that, and
Unity’s trail tool is no different. However due to the way Unity’s trail tool generates
geometry using only a single point as a reference it’s difficult to author the precision
of trails during turns, which can generate jagged edges and produce various overlap

20

and geometry flipping artifacts. Additionally, Unity’s trail tool does not support
modern texturing techniques like UV mapping using bilinear interpolation. [17]

Finally, taking a look at the character controllers in Unity reveals they also contain
multiple limitations and issues that make them difficult to apply to more complex
games. Unity’s built-in character controller is a traditional non-physical controller
that deals with collisions manually. It’s fully controlled via scripting and contains
simple utilities for determining states such as is the controller grounded. There are
multiple issues in it with regards to lack of more granular state information or with
the manually defined physical interactions. These kind of issues usually cause the
controller to feel stiff or rigid, resulting the games unconsciously feeling less satisfying
to the player. There are ways to overcome these limitations, and the easiest methods
often utilize the physics engine to deal with more complex interactions.

Because of the limitations often found in built-in engine tools, developers usually
have to re-invent or improve the functionalities themselves. Fortunately Unity’s
rising popularity has brought about a wave of 3rd party tools that tackle the built-in
tools issues, but even so finding a 3rd party tool for every issue is often impossible.
Next I'm going to document how I've solved some of these problems I've encountered
while developing games and commercial software using Unity, and also examine how
the built-in tools and the solutions fare when compared against the tools focused
development methodology.

6.3 Terrain

Modern terrain generation solutions are all about generating artist controlled content
procedurally using various noise functions or machine learning methods. Unity’s
built-in terrain tool has no support for these, but fortunately allows access to the
underlying data structures making extending the system possible. Terrain engines
are complex systems that require various high-performance culling and rendering
algorithms, so it’s better to extend the well working parts of the existing system
rather than build your own one from scratch. This is supported even further by the
fact that there are many 3rd party tools available that extend the limited parts of
the system.

There are 3 main issues with Unity’s built-in terrain tool: it’s hard to author the
terrain, it’s slow to render it and it’s slow to render foliage on it. I have solved these
issues using 3 different commercial 3rd party tools that were developed to solve each
issue separately. There are complete terrain engine overhaul 3rd party tools available
too, but since some parts of Unity’s terrain engine are still competitive when doing
traditional height map rendering it’s often not required to replace it entirely.

For authoring the terrain geometry I replaced Unity’s manual painting workflow
with a fully procedural generator that allows a large amount of controllability called
Terrain Composer 2[19]. Terrain Composer 2 provides a node based authoring
system where you can use different generator functions to modify the height map in

21

multiple controlled steps. This kind of dynamic generation system is made possible
by extensive use of GPGPU compute shaders that apply each node’s function to the
underlying height map texture in succession. The approach is fast enough to allow
seeing the results of the modifications in real-time, which greatly speeds up iteration
times even with complex terrains.

Terrain Composer 2 also supports texturing functionality using an intuitive rule based
node system seen in figure 3. This interface allows generating a natural shape, slope
angle or ground height based texturing on the fly without painstakingly manually
painting each feature to the terrain. This kind of combination of procedural nodes
and manual authoring of any important landmarks is leaps and bounds ahead of
the manual terrain painting systems, which have issues with combining multiple
terrains, generating natural-looking shapes and overall getting a pleasing quality to
the texture painting.

Figure 3: The splat map texturing node editing interface within Terrain Composer 2.
The final output of the entire terrain splat map is the blended result of all rightmost
vertical node groups. The output of each node is determined by the horizontally
arranged nodes.

Like many 3rd party tools, Terrain Composer 2 isn’t without it’s issues. It’s built

22

on a complex framework of authoring tools that are difficult to fix and update to
newer Unity versions in case the developer is late with the updates. Additionally,
the framework doesn’t contain support for drawing e.g. roads to the terrain with
ease, so it’s often required to augment the feature set of the tool using custom spline
systems that draw roads as a post-process step. However on the whole this kind
of added work is a small price to pay to update from the manual terrain authoring
workflow to a procedural one.

After getting the geometry and texturing done, the next step was to replace the
Unity’s standard terrain shader, which is heavily performance-bound by the use of
several legacy DirectX rendering techniques. Terrain texturing is often done using
splat maps, which are textures that contain the weights for how much of which
texture to blend at a given height map position. Unity built-in shader’s issue with
this is that it requires 1 new shader pass per splat map used, which means that
using more than 4 different textures in your terrain becomes extremely expensive
performance-wise. Nowadays this kind of rendering is cheaper to achieve using the
DX10+ texture array feature, which allows the GPU to have more than one texture
active at the same time.

There is a 3rd party terrain rendering tool for Unity called Microsplat that achieves
terrain rendering using the modern methods[20]. Microsplat is made to completely
replace the Unity’s terrain rendering with it’s own and it achieves it magnificently
performance and feature-wise. It’s use of texture arrays allows using up to 16 textures
using only 1 shader pass and it’s plug-and-play nature setup combined with easy
extending via other plugins makes it a very competitive tool even for AAA game
development. It also allows modifying the shaders it uses internally to your own
rendering style needs, making it complete all guidelines of tools focused development
with ease.

However, committing to a rendering technology like Microsplat may have consequences
later down the development when Unity updates the engine. As of writing Unity
is planning to add support for several different core render loop implementations
that are completely incompatible with the current rendering system, making any
rendering based assets obsolete until the developers update them. Ultimately all 3rd
party tools end up being a gamble against their continued support and the engine
features evolving possibly even past them, making it vital to developers to follow the
game engine feature road map and make outsourcing judgements based on that.

The final issue to solve with Unity’s terrain tool was rendering the terrain foliage.
Unity has a built-in support for painting various foliage details and grass on the
terrain, but the built-in solution is problematic due to not scaling well to procedural
generation systems, not having much room for customization and requiring a lot
of manual work to make the terrain lush with details. Unity supports rendering
trees made using a popular Speedtree suite of tree generation tools, but these also
have multiple performance issues with no support for proper batching or performant
billboarding.

23

Replacing foliage systems with custom tools is extremely time consuming due to their
very performance intensive nature. The systems that render the terrain contents
must be able to handle culling, serialization and rendering of multiple millions of
grass blades and possibly hundreds of thousands of smaller foliage details, all with
very strict performance requirements that tend to require implementing complex
GPGPU solutions all-around. There is another competitive 3rd party tool called
Vegetation Studio[21], that handles all of this and more.

Vegetation Studio is an asset that replaces the tree and foliage rendering systems in
Unity’s terrain engine completely. It’s similar to the Terrain Composer asset in that it
handles authoring the placement of foliage using procedural rules that allow creating
natural foliage formations based on the existing terrain data. Additionally Vegetation
Studio can handle rendering large amounts of foliage and grass thanks to it’s wide
use of GPGPU culling routines and efficient serialization. Due to these features
Vegetation Studio makes it possible to create terrains that can handle extremely
high amount of foliage and render it at the state of the art performance.

By selectively replacing parts of the terrain rendering with 3rd party tools and taking
only collision handling and geometry optimization from Unity’s built-in asset, it’s
possible to create different kind of terrains that suit many different use-cases and
graphical styles. The 3rd party tools used here are well encapsulated regarding their
intended purpose and do not interfere with other gameplay scripts or functionalities.
The tools also require very little to no setup, their source-code is available and Unity’s
asset store license permits their modification for personal purposes. Overall this
makes augmenting the built-in terrain tool of Unity a no-brainer at least until Unity
reveals their own renewed built-in terrain tool, that’s as of writing only looming in
Unity’s development road map with an unspecified date.

6.4 Navigation

Unity contains a tool for implementing 3D Al navigation behavior in arbitrary 3D
environments. The workflow of the tool is similar to other 3D navigation solutions,
where you first bake a navigation mesh and then use different path query algorithms
for traversing the mesh. Unity’s solution for baking a navigation mesh is special in
that it hard-codes the different agent size radiuses to the navigation mesh, making
only certain predetermined size agents work properly for traversing. Additionally
Unity’s built-in navigation mesh generation tool does not provide any ways for
developers to post-process or manually tweak the generated mesh, making it nearly
unsuitable for any kind of complex terrain or vaguely defined surfaces and spaces.
This issue alone can make it necessary for game developers to look into alternative
solutions for providing navigation.

Navigation, like foliage rendering is a heavily performance reliant feature that usually
requires a lot of optimization to not slow down the game’s frame rate. It’s especially
demanding due to normally having to support path queries from dozens of navigation

24

agents simultaneously and also having to provide local evasion procedures for agents.
The navigation mesh the agents traverse is a normal triangulated 3D mesh that is
overlayed on top of the game world and represents the areas the agents are able
to navigate in. In algorithmic sense, the triangles of the mesh are considered to
be graph nodes, with each node connecting to 0-3 other neighboring nodes. These
nodes are then traversed using various graph search algorithms, with A* search
algorithm being the natural industry standard choice due to it’s great performance
characteristics.

Even with good A* implementations the graph search operation often become
excessively expensive for real-time games due to the search space being a very large
2D graph. This often necessitates multi-threading the graph search operations and
asynchronously updating the queried path on the fly, because the agents need to
start moving towards the currently best known route immediately. In addition to
this, it’s often required that the agents can avoid other agents so they don’t bump
and push each other and possibly block movement routes in games. This kind of
agent avoidance is called local avoidance and is often implemented using variations
of flocking algorithms. Unity’s built-in tool has no support for local avoidance, and
creating a performant custom pathfinding solution with a well working local avoidance
makes 3rd party tools look very attractive to developers. There are few game-engine
agnostic navigation tools available, but for Unity there’s also a Unity specific 3rd
party tool called A* Pathfinding, that can manage all navigation functionality and is
found to work extremely well in many kinds of games.

A* Pathfinding is a 3rd party asset that contains a module for baking a navigation
mesh and a rich scripting API for doing queries on the generated mesh. It supports
multiple sized agents and works well for arbitrary sized game worlds while also
outperforming Unity’s built-in tool. Making agents for it is as simple as attaching a
single script on the object that requires navigation, and implementing more detailed
behavior with additional modifiers, as seen in figure 4. It’s navigation mesh authoring
tools combined with a logical scripting API for writing agent behavior make it an
easy choice for replacing the entire navigation system in Unity.

Usually when writing Al behavior in games, the principal pathfinding question the
agents want to know at a given time is "which way should I go to reach my target?".
Unity’s built-in navigation API does not have a straightforward way of getting this
information without constantly doing expensive full-path recalculations in a single
game frame. This kind of querying is often unusable for real-time games because the
path calculation could take several game frames to complete, making the game stutter
each time a path is recalculated. A* Pathfinding provides a clear asynchronous API
for doing these queries, which is easy to integrate to developers’ custom AI behavior
trees.

Overall the issues in Unity’s built-in navigation tool and the inability to extend it in
any ways make completely replacing it a standard procedure for larger games. A 3rd
party tool like A* Pathfinding is both modular and encapsulated due to focusing
on it’s only job which is navigation. It’s nearly fully self-contained code-wise, which

25

Seeker (Script)

Ewverything

B ¥ Funnel Modifier (Script)

Figure 4: A* Pathfinding agent scripts in the Unity editor inspector. Using the agent
navigation API requires simply querying the Seeker script with the wanted routes.
The routes can be post-processed for better quality using different modifiers.

makes it resilient against engine updates. Additionally it doesn’t pollute the codebase
with useless functionalities, requires no setup at all and can be integrated easily to
existing Al behavior code, which makes outsourcing game navigation to the tool a
good choice when examined through tools focused development guidelines.

6.5 Trail rendering

Game developers often find themselves needing a solution for rendering trails for
moving objects in 3D space. There are several good ways to render trailing effects in
game engines, and one of the simplest and most popular methods is to simply use
a particle emitter with a high enough emission value to make the particle stream
look like a solid trail. However, this kind of solution doesn’t scale well to longer
trails due to severe pixel shader overdraw issues and is often completely unusable on
performance bound platforms like mobile phones. Popular engines such as Unity and
Unreal both have a built-in support for more elaborate procedural mesh based trails,
which are based on a dynamic mesh that is generated as the object moves.

Dynamic mesh solutions are the standard go-to solution for more complex trails over
the simple particles, but these methods tend to have other issues with managing
the looks of the geometry in a 3D space. The dynamic mesh is normally generated
between 2 anchor points that represent the ends of the object that should have trails,
and the mesh is updated with new vertices as the anchor points have moved a certain
threshold distance in space. This means the generated mesh may look rough when
the objects move and turn fast due to insufficient sampling, and additionally there
can be overlapping mesh segments at steep turns.

The standard procedure for smoothing fast trails is to use one of the many interpola-
tion methods for making up additional points between the sampled points, which is
something Unity’s and Unreal’s built-in trail renderers do not support by default.
Fortunately it is a relatively small task to write a custom trail system with better

26

interpolation methods such as quadric or cubic Bezier curves, simple Euler interpo-
lation or use one of the many available 3rd party assets or toolsets for all of this.
The 3rd party solutions for trails generally perform well for simple tasks, but tend
to have little room for customization with regards to interpolation methods and
rendering.

Another trail rendering feature as of writing none of the 3rd party trail solutions for
either engine provide is the support for bilinear texture mapping. Bilinear texture
mapping is a relatively little used technique for interpolating mesh texture coordinates
using bilinear interpolation on quads instead of the standard way of using barycentric
interpolation on triangles. It’s not related to bilinear texture filtering, which is a
method for smoothing the samples of a 2D texture.

Bilinear texture mapping can be desirable in some situations like trail rendering, due
to it’s resilience against producing warped textures in non-uniform quad shapes. It
can be implemented for example by tightly packing the vertex shader input structure
on every frame with 4 3D points that represent the quad the vertice is part of. These
points are then transformed to screen-space in the vertex shader and passed to the
pixel shader, where the shader can bilinearly interpolate the resulting texture UV
value using the screen-space position of the fragment and the 4 bounding points. The
resulting texture UV value maps smoothly inside the quad, producing a distortion
free texture mapping solution that works for all kinds of quad-based meshes as seen
in 5.

Figure 5: Figure showing the difference between the bilinear and the traditional
barycentric UV mapping methods. Black lines show the triangles of the procedural
mesh. With barycentric UV’s the lines are distorted due to triangles being insufficient
to represent the texture coordinates of straight lines.

Trail rendering is a commonly encountered feature in game development, which leaves
one wondering why the available built-in or 3rd party solutions don’t provide easy
customization support for features like alternative interpolation methods or bilinear
rendering. The performance characteristics of bilinear rendering are more demanding
than those of traditional barycentric interpolation, but due to the small amount of
overdraw in rendering procedural mesh trails the differences are often minor in real

27

use cases. Trail rendering is often kept as it’s own well defined modular component,
which makes writing a custom tool for trails an attractive option compared to built-in
or 3rd party tools.

6.6 Character controller

Character controllers, which are the basic components that move the player are one
of the most important parts of games as they tend to define the overall gameplay feel
of games in a subtle manner without ever directly presenting their functionality to
the players. In this thesis character controller is defined as the core component that
determines character’s movement behavior when it’s controlled externally and when
it physically interacts with different terrains or other objects. Character controller is
the component that defines the movement limitations and state determination of
the character and is usually one of the key components of character based games
that still doesn’t get much explicit attention. Instead character controllers work as
a silent elephant in the room that everyone subconsciously acknowledge but rarely
point their focus to.

The players use the character controllers all the time, experimenting and testing out
their possibilities with different terrains and different gameplay situations. They’re
what can for example make possible different gameplay elements, make the player
think of alternative strategies on the fly, or can provide emergent gameplay from
finding unexpected interactions with the environment. Interestingly these same
principles also apply to game developers during their development phase too, making
them experiment and test out possible new game design ideas that challenge the
capabilities of character controllers as the development progresses.

Most character controllers are done by moving a physics engine primitive in the
world according to player input. It’s possible to augment the interaction by applying
physics engine interactions to the primitive, which is nowadays the more common
way of improving character controller interaction behavior due to the amount of
work needed to get custom physics solutions working well in different interaction
situations.

Many available 3rd party tools attempt to create different kind of character controllers,
but these solutions are often more targeted to be character frameworks rather than
just character controllers. The frameworks provide many different character movement
related abilities, such as support for hopping over different types of obstacles, ladder
climbing mechanics or other character systems like animator integration, character
inventory support and so on.

These 3rd party character frameworks tend to fall short on a fundamental level by not
focusing enough on the character’s movement and all the unspecified small interactions
with the environment. Instead they opt to be only capable of accomplishing the exact
features they’re hard-coded to do, making writing custom character controllers still a
standard practice in game development. I've developed a character controller in the

28

past that focuses on providing robust and logical movement and interaction behavior
with any kind of environment[18], and next I'm going over how a robust character
controller tool like this can be useful to game developers during the development
phase.

In character based games the movement of the character is generally the prerequisite
for all gameplay mechanics. The player progresses the game by moving a character
around in levels that are designed to be traversed by the character, and usually
the levels are filled with different content relating to the setting of the game. This
random content and the general layout of the level may appear in any shape or form
in games, making testing the controller behavior in every corner a huge undertaking
during development. An example of this is shown in figure 6, which shows a level
containing many small rocks player can collide with, an enemy unit and overall
uneven terrain.

Figure 6: Modern game terrain is cluttered with small rocks and other obstacles.
In character games the way the character movement handles these is of utmost
importance. Picture from the game "God of War" (SIE Santa Monica Studio, 2018),
which received extremely high critical acclaim upon it’s release.

It’s common to find small gaps, steppings or other random level content in games
where the characters can get stuck or seemingly can’t pass a tiny stepping, rock or a
gap in the environment. These are the types of geometry issues that players subtly
immediately notice, hurting the immersion for the player. The same applies during
development when level designers test the layout for the level and may not notice all
issues arising from the rough object placement, uneven surfaces, cavities or holes.
Having a robust controller can help with these issues without making the developers
even think about the problems, saving both nerves and development time with less
testing and tweaking.

29

A physically based character controller has the additional benefit of supporting
various physics interactions. If implemented properly, a character controller can
support common mechanics like moving platforms, physical impacts and physical
interaction with other characters without implementing any specific functionality
for these features. The obvious benefit here is the reduced development time, but
another less direct benefit also comes from the reduced complexity space within
code and interaction behavior. When the programmers don’t have to write specific
functionality for a feature, the chances of that feature interfering with other game
systems such as Al are also reduced. For example, a moving platform or an elevator
is difficult to integrate to AI systems if it requires special precautions in the code
when used, but if it’s just a moving physical object it’s easier to write a robust
behavior logic for an Al agent.

Additionally a robust physical character controller is less likely to encounter common
bugs found when developing environment interactions. For example instead of having
undefined behavior when a door closes with the character standing at the door frame,
or not supporting physical interaction like buoyant platforms on water, these kind of
features just work logically in physical character controllers without the need for any
additional code. An ideal character controller is nothing but a single encapsulated
component as illustrated by figure 7 that requires no setup from the developer side,
and is driven by a simple external script specific to the game.

h « Q3_Controller (Script)

Ground Layers Default

B 7 03_Player Movement (Script)

Move Speed

h + 03_Camera Controller (Script)

Camera Camera (Camera)

Figure 7: Unity inspector view of an entire character framework in a simple game.
The character controller is entirely self-contained in the "Controller" script, which is
driven by the "Player Movement" script.

Developing a physical character controller that feels good to use takes more de-
velopment time than using a 3rd party tool or a naive implementation, but there
exists a good amount of literature on the subject with algorithms for selectively

30

countering the unwanted effects of physics engines. One could expect the 3rd party
tools to achieve a good level of robustness in the near future, but as of writing they’re
generally more focused on providing a wide array of features instead of focusing on
generalized movement and physical interaction solutions. The development benefits
of robust controller combined with possible emergent game design arising from the
behavior that encourages experimentation make developing a custom tool for core
character controllers an attractive choice for developers.

7 Tools development in Bucket Detective

Bucket Detective is a commercial 3D first-person indie adventure game me and
Jesse Barksdale created mostly during the late 2016. The game was released on
the Steam digital games distribution platform on February 16th 2017, and received
critical acclaim from both games journalists and customer reviews. Popular websites
like RockPaperShotgun, PcGamer, Gamecritics and Vice all covered the game and
praised it’s dark themes and weird humorous take on serious subjects. On Steam
the game has as of writing nearly 90% positive customer review rating, which can be
considered very good on the platform considering customer reviews tend to be very
critical towards issues in games[22].

The development of Bucket Detective was completed over the course of 17 months
with mostly 2 people working on it; me as a generalist and programmer, and Jesse
as an artist and designer. Later in the development the project was aided by the
inclusion of Mikael Immonen for 3D art assets and Denis Zlobin to design and
create the soundscape of the game. The development team did not use any of the
common software development methods during the development, which in hindsight
might have been detrimental to the planned release date of the game. The game
was originally planned to be released in the spring of 2016, but the release was
delayed due to not having enough time scheduled for the development amongside
other university work. Having used some kind of framework for managing the work
could have been useful for scheduling purposes, but the idea wasn’t even considered
because of the small team size and indie nature of the game.

The indie nature of the game was ever present during the entire development, which
used a mostly head-on approach for implementing features. This worked out to be
surprisingly effective because the overall design of the game was clearly laid out in a
detailed game design document before the development even began in 2015. Some
features that weren’t accurately depicted in the game design document were heavily
prototyped and naturally evolved to generalized tools. Additionally we were able to
use some tools I had developed earlier for various other projects in the game, which
turned out to be extremely useful and also created new emergent game features
during the development.

In hindsight the development could’ve benefited heavily from more tools focused
development style and experimentation, instead of just implementing the abstract

31

features depicted in the game design document. Even smaller tools with tiny amount
of customization managed to turn to completely new features when the designer
could freely tweak the values. One example of such feature was the distorted censored
text as seen in figure 8, which was actually just normal text using the same wobbly
text tool as any other text but with parameters set to extreme values. The entire
birth of this new text feature was simply a result of experimenting with a developed
tool in unexpected ways.

fili with stone
and sin, but | forgive the
ik of

1.) "A Bucket Detective."
3.) "An Bucket Detective."
4.) "Unbucketed Etective."

Figure 8: Unique animated distorted text effect born from simply going over the
intended values of a normal wobbly text effect.

7.1 Custom character controller

The movement of the main character in Bucket Detective was implemented using a
custom physics based character controller I had developed earlier and have written a
thesis paper about.[18] The controller turned out to be very effortless to integrate to
the workflow, working simply by plugging it in and driving it from a movement script.
During development the robustness of the controller features were proved by the fact
that the core character controller code stayed the same without any functionality
changes during the entire development life cycle.

Even though the levels in Bucket Detective are not very complex geometrically, using
a robust controller was able to save development time in places that often require
manual tweaking or custom scripts to work as intended. One such place was a typical
door, which is one of the features in games that often require more development

32

time than one might imagine. Creating a door that opens with an animation and
does not break immersion in an atmospheric 3D game is not easy due to various
interactions it can have with the player. A physical character controller allowed us
to create doors that behaved in a logical manner when they hit the player, when the
player hit them or when the player was in between them when they were closing as
seen in figure 9. Traditionally these issues are solved with fades or making the door
non-interactable during animations, but these can have issues with immersion or
when the door returns to being interactable with the player clipping with it. Instead
of having to deal with these issues that are difficult to find out early and hard to fix
later, they were never even present by having a logical physical interaction with the
object in the first place.

Figure 9: The doors in Bucket Detective do not close if the player primitive is
preventing it. This is a natural consequence of a physical system and required no
additional work to implement.

The character controller proved to be extremely useful in implementing the Urn
puzzle of Bucket Detective too, in which the player is repelled by a strong force if he
tries to bring 2 special urns together due to their magical powers. The repel effect
affects the player only when holding an urn, and had to work similarly between the
urns outside of the holding state too. Implementing this effect was trivialized by the
fact that it was simply possible to add physics engine forces to both objects that were
supposed to be repelled. In traditional character controllers implementing this kind
of repel effect would often cause various jitter effects and/or various degrees of loss of
control from applying different conflicting object offsets, and these issues would have
to be fixed by programmers manually in order to produce a satisfying movement

33

result. These kind of implicit development benefits one does not have to think about
are often not emphasized enough in game development, because programmers can
spend countless hours tweaking small details like these that in the end define the
overall feel of the game.

After the main development was completed, the character controller made it possible
to quickly implement an emergent fun easter egg -like feature to the game. One
day I had an idea that the game would technically work just fine even if played
completely upside down with reversed gravity, so I tried reversing the gravity from
downwards to upwards instead. Indeed nothing in the game broke and the game was
completely playable, even if the ceiling of the building had bad geometry or difficult
obstacles at places. This gave birth to a speed-run mode, where the player could
freely manipulate the gravity of the game and attempt to complete it in fastest time
possible with a timer visible, as seen in the figure 10. The entire mode wouldn’t
even had crossed our minds hadn’t the controller been robust enough to work in any
terrain and in any orientation, and because of it the game had a lot of tangible value
added to it using only few hours of development time.

Finger Cut:
Documents:
Minigame:

Figure 10: The speed-run/gravity manipulation mode in Bucket Detective made it
possible to play the game in surreal ways, for example standing in ceilings.

34

7.2 Custom physics based interaction system

Another tool that was used extensively during the development of Bucket Detective
was a physics based interaction system for picking up and interacting with various
items. In Bucket Detective it’s possible to pick up one item at a time and carry it
in your hands while you see it float in front of the character as seen on the left in
figure 11. This was implemented using a fully physics based system that allowed the
objects in hand to interact with the environment and also provided smooth physics
based animations for picking and dropping objects. The concept for this kind of
object carrying is not new, but generally there are no 3rd party tools available that
provide features that are highly specific to certain scenarios, which was the case here.
Therefore we ended up developing our own system for object interactions that ended
up defining a large part of the feel for the game.

Figure 11: The physical interaction system in bucket detective. Left side shows
a normal state while the right shows how held items dynamically reacted to the
environment.

Our interaction system was special in that it was fully physics controlled even while
the objects were held in hand, as seen on the right side of figure 11. Only few
games implement item interaction systems with deep integration with physics, which
contributed to giving Bucket Detective a unique impression for players. The physics
based system also allowed us to make several unique interaction features like a magical
paper physically falling off your hand when you leave a room without breaking the
player’s immersion and making it feel like a gameplay element too much. This worked
particularly well because the player could see the paper falling off their hands in
front of their eyes, and could try to fight the effect to an extent by trying to pick it
up again before it hit the ground.

The interaction system also gave birth to several emergent gameplay features very
late in the development. We noticed throwing things around was surprisingly fun
because of all the physical interactions they made, so we added book objects to the
game that had to be thrown in air and dropped front-side down to be able to read
the backside, as seen in the figure 12. The throwing mechanic turned out to work so
well that it was utilized with various achievements in the game. There were several
silly moments in the game where players would often throw objects down the stairs

35

and got great fun out of that, so we implemented a secret achievement for doing that
enough times. The physical nature of held objects also turned out to be surprisingly
fun when people accidentally hit a wall when holding delicate objects and they made
a thump sound effect. None of these features were envisioned by any of our earlier
designs, and were made possible to integrate easily only by having such a natural
interaction system.

Figure 12: A gameplay feature born from physics based interaction system. The
book had to be thrown upside down on the table to be able to read the backside.

7.3 3rd party tools in Bucket Detective

The development of Bucket Detective utilized only very few 3rd party tools, with
most of them surprisingly resulting a negative experience among the developers.
The small usage of 3rd party tools was mostly a result of the mindset that Bucket
Detective is a portfolio piece and it should represent the best we could create by
ourselves, not just the best what we could assemble. In hindsight the benefits of this
development mentality are questionable, as many companies looking to hire people
working on games do not usually care about who has made a certain asset, just that
it exists in a game made by that person. Even so, the knowledge gained from making
custom solutions was definitely not in vain and it’s always good to assume that there
are no 3rd party tools to make the job easy for you.

One notable 3rd party tool that we attempted to utilize was SabreCSG 3D compu-
tational geometry library. SabreCSG is a library for generating 3D meshes in it’s

36

Unity-integrated editor interface using various boolean operations and modification
brushes based on Constructive Solid Geometry techniques. The library seemed useful
for creating the basic geometry of the levels and we attempted to create several 3D
objects and areas using it, but in the end the library turned out to be relatively
prone to software bugs and constantly being incompatible with newer Unity versions.
We tried to keep contact with the developer of the library and report all the issues
we had, but the owner was relatively slow to fix the issues and respond to our queries.
Eventually the amount of bugs forced us migrate away from SabreCSG models and
use traditional external 3D modeling software instead.

Long time after we had given up on SabreCSG, the developer of SabreCSG announced
that he didn’t have time to develop the library anymore, and he made the library
available for free and open sourced the project. It was a rational choice considering
the amount of work that had gone into developing the library and it definitely worked
for the best of the community. As of writing the tool is still maintained by active 3rd
party developers, but the development seems to be focused on maintenance rather
than new features, echoing some of the issues that tend to be present in less popular
open-source projects.

Another 3rd party tool we attempted to widely use were the Allegorithmic’s Substance
materials that were a relatively new feature in Unity at the time of development.
Substance materials provided a way to generate different procedural textures using
a node-based editor and simple generation rules. In Unity engine these textures
were handled as special Substance files, which contained the procedural generation
information and allowed Unity to create the actual bitmap textures on the fly.

In practice we found Unity’s support for Substance materials to be lacking for real
development use. Loading the levels that utilized substance materials was extremely
slow unless you had manually selected to "bake" the procedural information to the
material texture. It was also common that the procedural materials would simply
show as a solid color in the level and had to be manually re-baked by the developers
to get the actual texture to show. Even when making builds of the game these
issues stayed present and over time forced us to stop using substance files directly in
Unity altogether. To migrate away from substance materials we had to go over each
substance file and painstakingly replace each one of them with a manually exported
bitmap image of the substance material texture, hurting our motivation and using
up development time trying to fix the issues.

Eventually Unity removed the built-in support for Substance materials in the Unity
editor in the 2017.3 version, making developers that use substance files require an
external plugin maintained by Allegorithmic. This could be an indication that Unity
wanted to shift the development of substance integration more towards Allegorithmic,
making them look responsible for all the issues that might arise instead of Unity.

Final larger 3rd party tool we tried out was ShaderForge, which is a node based
shader editor that works directly in Unity. This tool was taken out fairly quickly as I
experienced the node structure for shaders became unintuitive and overly complex as

37

the size of the shaders grew. This is largely in line with the same behavior happening
when Unreal engine blueprint visual scripts become large, so this could possibly hint
a deeper trait of visual code editors.

8 Conclusion

It is possible to notice several benefits from treating individual game development soft-
ware components as software tools. When defined as re-usable software components
that provide various customizable functionality, it was possible to attribute multiple
development benefits to the use of tools in the development process. This made it
possible to further define a methodology for a tools emphasized game development
workflow that can be used to analyze the benefits and limitations of various existing
tools in game engines and 3rd party asset distributions, which can also work as a
programmer guideline when creating 1st party tools.

Some benefits of tools were realized during the development process of Bucket
Detective. Wherever the mindset of creating tools over specific solutions was applied
we noticed clear benefits to the creative process and productivity when examined
retrospectively. Additionally the usage of tools allowed a level of customization for
the designers that helped the game reach the intended final look faster. The inclusion
of more tools focused development didn’t come without it’s downsides though, and
the features that focused on being generalized tools definitely took longer to develop
than simpler solutions would’ve taken.

There are also many possible areas for improvement in the entire development process
for the future. One of the core problems we had especially for the latter part of the
project was a lack of concise scheduling, which resulted the work being done in erratic
bursts at mostly random dates as seen in the figure 13. This was detrimental for the
development for 2 main reasons: first the face-to-face development sessions between
the 2 developers had to be arranged manually each time, which added burden to
even begin doing the development. Second, the lack of scheduling made it easier to
leave the project hanging for longer periods of time, as there were no deadlines or
obligations to complete the work in a given time frame. Both of these could have
been solved by adapting some sort of scheduling system, having external deadlines
or trying to adapt a development method like for example scrum sprints.

38

Sep 20, 2015 — Mar 24, 2018

Contributions to master, excluding merge commits

Figure 13: Commit frequency to the Bucket Detective Git repository shows the
erratic development times. Some months have less than 5 commits while some go
over 50.

Another area which could have been improved was the prototyping phase. Our
mentality during the early development was that the game is kind of art and story
focused, which locked us to a mindset that didn’t encourage prototyping various
gameplay mechanics or different presentation styles. Having an actual early proto-
typing phase could’ve changed some of the core ideas and mechanics of the game to
possibly better directions. Another way to promote this kind of mentality would’ve
been to focus more on tools development. That way the core ideas wouldn’t have
had to be locked down in place so early in the design phase, and the tools could’ve
provided a way later in the development to experiment with different ideas.

Focusing strongly on tools development early in the development cycle seems like
a very attractive idea for future game development projects. Investing time and
creating extensive custom tools early on could pave a way for more creative and
expressive game design ideas later on, inspiring the developers themselves to play
around with the possibilities.

39

References

1]

(6]

[7]

[9]

[10]

[11]

Wim van der Vegt, Wim Westera, Enkhbold Nyamsuren, Atanas Georgiev,
and Ivan Martinez Ortiz, RAGE Architecture for Reusable Serious Gaming
Technology Components International Journal of Computer Games Technology,
vol. 2016, Article ID 5680526, 10 pages, 2016. http://dx.doi.org/10.1155/
2016/5680526

Wilson, J. (April 24, 2014). Even Hearthstone runs on Unity
- and that’s why it’s already on iPad. Venture Beat, Retrieved
from https://venturebeat.com/2014/04/24/even-hearthstone-runs-on-
unity-and-thats-why-its-already-on-ipad/

Church, Doug. "Object Systems: Methods for Attaching Data to Objects and
Connecting Behavior'. Game Developers Conference Proceedings, 2002.

Jonathan Blow. 2004. Game Development: Harder Than You Think. Queue 1,
10 (February 2004), 28-37. DOI: https://doi.org/10.1145/971564.971590

Frost, P. (August 20, 2003) The Tools Development of Turbine’s Asheron’s Call
2, Retrieved from https://www.gamasutra.com/view/feature/131224/the_
tools_development of turbines_.php

Schild, J., Walter, R., & Masuch, M. (2010). ABC-Sprints: adapting Scrum to
academic game development courses. FDG. DOI: 10.1145/1822348.1822373

W. Scacchi, "Free and open source development practices in the game com-
munity," in IEEE Software, vol. 21, no. 1, pp. 59-66, Jan-Feb 2004. doi:
10.1109/MS.2004.1259221 http://ieeexplore.ieee.org/stamp/stamp. jsp?
tp=&arnumber=1259221&isnumber=28149

Musil, Juergen & Musil, Angelika & Winkler, Dietmar & Biffl, Stefan. (2010).
Improving Video Game Development: Facilitating Heterogeneous Team Collab-
oration through Flexible Software Processes. Communications in Computer and
Information Science. 99. 83-94. 10.1007/978-3-642-15666-3 8.

W. W. Royce. 1987. Managing the development of large software systems:
concepts and techniques. In Proceedings of the 9th international conference on
Software Engineering (ICSE '87). IEEE Computer Society Press, Los Alamitos,
CA, USA, 328-338.

Balaji, S. and Murugaiyan, M. (2012). Waterfall vs V-Model vs Agile: A
Comparative Study on SDLC. International Journal of Information Technology
and Business Management, [online] 2(1), pp.26-30. Available at: http://jitbm.
com/Volume2Nol/waterfall.pdf [Accessed 27 Nov. 2016].

Christopher M. Kanode and Hisham M. Haddad. 2009. Software En-
gineering Challenges in Game Development. In Proceedings of the 2009
Sixth International Conference on Information Technology: New Generations

http://dx.doi.org/10.1155/2016/5680526
http://dx.doi.org/10.1155/2016/5680526
https://venturebeat.com/2014/04/24/even-hearthstone-runs-on-unity-and-thats-why-its-already-on-ipad/
https://venturebeat.com/2014/04/24/even-hearthstone-runs-on-unity-and-thats-why-its-already-on-ipad/
https://doi.org/10.1145/971564.971590
https://www.gamasutra.com/view/feature/131224/the_tools_development_of_turbines_.php
https://www.gamasutra.com/view/feature/131224/the_tools_development_of_turbines_.php
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1259221&isnumber=28149
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1259221&isnumber=28149
http://jitbm.com/Volume2No1/waterfall.pdf
http://jitbm.com/Volume2No1/waterfall.pdf

40

(ITNG '09). IEEE Computer Society, Washington, DC, USA, 260-265. DOI:
https://doi.org/10.1109/ITNG.2009.74

[12] Pamela Bhattacharya and Iulian Neamtiu. 2011. Assessing programming
language impact on development and maintenance: a study on ¢ and c++. In
Proceedings of the 33rd International Conference on Software Engineering (ICSE
'11). ACM, New York, NY, USA, 171-180. DOI: https://doi.org/10.1145/
1985793.1985817

[13] A. Stefik and S. Hanenberg, "Methodological Irregularities in Programming-
Language Research," in Computer, vol. 50, no. 8, pp. 60-63, 2017. doi:
10.1109/MC.2017.3001257

[14] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu.
2014. A large scale study of programming languages and code quality in
github. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY,
USA, 155-165. DOI: https://doi.org/10.1145/2635868.2635922

[15] Nesky, J. 50 common game camera mistakes — and how to fix them.
Retrieved from https://www.gamasutra.com/view/news/259610/Video_50_
common_game_camera_mistakes__and_how_to_fix_ them.php

[16] Alan Snyder. 1986. Encapsulation and inheritance in object-oriented pro-
gramming languages. SIGPLAN Not. 21, 11 (June 1986), 38-45. DOI:
http://dx.doi.org/10.1145/960112.28702

[17] Inigo Quilez. 2010. 'Inverse Bilinear Interpolation". Retrieved from http:
//iquilezles.org/www/articles/ibilinear/ibilinear.htm

[18] Samu Kovanen. 2014. "Fysiikkasimulaation hy6dyntdminen pelihahmon ohjauk-
sessa" http://urn.fi/URN:NBN:fi:aalto-201405302006

[19] Nathaniel Doldersum. "Terrain Composer 2'. Unity asset, Re-
trieved from https://assetstore.unity.com/packages/tools/terrain/
terraincomposer—-2-65563

[20] Jason Booth. "MicroSplat". Unity asset, Retrieved from https://assetstore.
unity.com/packages/tools/terrain/microsplat-96478

[21] Awesome Technologies. "Vegetation Studio'. Unity asset, Re-
trieved from https://assetstore.unity.com/packages/tools/terrain/
vegetation-studio-103389

[22] the whale husband. "Bucket Detective"'. Steam store, Retrieved from https:
//store.steampowered.com/app/461170/Bucket _Detective/

[23] Tobias Stein. "The Entity-Component-System - An awesome game-
design pattern in C++", Retrieved from https://www.gamasutra.com/
blogs/TobiasStein/20171122/310172/The_EntityComponentSystem__An_
awesome_gamedesign pattern_in_C_Part_1.php

https://doi.org/10.1145/1985793.1985817
https://doi.org/10.1145/1985793.1985817
https://doi.org/10.1145/2635868.2635922
https://www.gamasutra.com/view/news/259610/Video_50_common_game_camera_mistakes__and_how_to_fix_them.php
https://www.gamasutra.com/view/news/259610/Video_50_common_game_camera_mistakes__and_how_to_fix_them.php
http://dx.doi.org/10.1145/960112.28702
http://iquilezles.org/www/articles/ibilinear/ibilinear.htm
http://iquilezles.org/www/articles/ibilinear/ibilinear.htm
http://urn.fi/URN:NBN:fi:aalto-201405302006
https://assetstore.unity.com/packages/tools/terrain/terraincomposer-2-65563
https://assetstore.unity.com/packages/tools/terrain/terraincomposer-2-65563
https://assetstore.unity.com/packages/tools/terrain/microsplat-96478
https://assetstore.unity.com/packages/tools/terrain/microsplat-96478
https://assetstore.unity.com/packages/tools/terrain/vegetation-studio-103389
https://assetstore.unity.com/packages/tools/terrain/vegetation-studio-103389
https://store.steampowered.com/app/461170/Bucket_Detective/
https://store.steampowered.com/app/461170/Bucket_Detective/
https://www.gamasutra.com/blogs/TobiasStein/20171122/310172/The_EntityComponentSystem__An_awesome_gamedesign_pattern_in_C_Part_1.php
https://www.gamasutra.com/blogs/TobiasStein/20171122/310172/The_EntityComponentSystem__An_awesome_gamedesign_pattern_in_C_Part_1.php
https://www.gamasutra.com/blogs/TobiasStein/20171122/310172/The_EntityComponentSystem__An_awesome_gamedesign_pattern_in_C_Part_1.php

	Abstract
	Abstract (in Finnish)
	Contents
	Introduction
	Background
	Previous research
	Modern game development
	Game development using game engines
	Game development tools
	Using tools for developing games

	Game software architectures and development processes
	High and low level engines
	Development models in low level engines
	Development models in high level engines
	Developing tools in high and low level engines

	Developing a toolset for game engines
	Reasons to develop tools
	1st and 3rd party tools
	Developing 1st party tools
	Using 3rd party tools in production

	Tools focused development
	Methodology
	Maximizing encapsulation
	Minimizing setup
	Favoring customizability

	Extending Unity engine with custom and 3rd party tools
	Creating custom tools
	Limitations in built-in tools
	Terrain
	Navigation
	Trail rendering
	Character controller

	Tools development in Bucket Detective
	Custom character controller
	Custom physics based interaction system
	3rd party tools in Bucket Detective

	Conclusion
	References

