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Network address translation (NAT) was introduced to decelerate the IPv4 ad-dresses 
depletion through separation of a network into the public and private realm. The hosts 
in a private network connect to the public Internet by sharing a pool of public IP 
addresses, and NAT acts as a gateway between the public and the private networks. 
Although NAT alleviates the problem of addresses depletion, it leads to a reachability 
problem as NAT would generally block any outside connections to the private 
network from the Internet. 

 
This thesis examines a new concept called Private Realm Gateway (PRGW) which is 
developed to overcome the shortcoming of NAT. PRGW imitates the NAT 
functionality and allows the inbound connections initiated from the public networks 
towards a private realm via the Circular Pool of Public Addresses (CPPA). PRGW 
provides interoperability between the legacy IP network and hosts in the private 
networks and vice-versa, using pre-existing TCP/IP protocols and applications. 

 
PRGW has been implemented on top of Linux operating system, and therefore, the 
primary approach in this thesis is to evaluate the forwarding performance of Linux 
kernel networking (Netfilter subsystem), as well as inspect the possible performance 
tuning methods to achieve higher packets processing rates. 

 
The performance of Netfilter is evaluated by offering heavy traffic load to measure 
packet forwarding capability, memory usage by IP traffic as well as overloading the 
CPU process. In addition, the stateful mechanism for packet filtering and NAT routing 
was evaluated using appropriate iptables lookup and packets traversing through 
different chains. When conducting the various tests, by adjusting different parameters 
in Linux Netfilter subsystem revels that the PRGW can be deployed over the Linux 
architecture.  
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      1   Introduction  
 

Since the dawn of the Internet, it is growing exponentially and transforming the means 
of communication every day. The Internet has become the underlying communication 
mechanism for information sharing, collaboration and interaction between individuals 
regardless of the geographical location. Behind the massive structure of the Internet, 
TCP/IP has played the most significant role for expansion of communications and 
connecting the vast numbers of network devices on the Internet. Despite the tremendous 
success of the Internet, today, the Internet is facing a problem of address exhaustion 
after all the number of IP addresses is not unlimited. To resolve the address exhaustion 
problem, long-term, as well as short-term solutions, are being developed. 

 
IPv6 being the long-term solution has yet to be deployed across the Internet. 

Therefore, until IPv6 is ready and take over the demand for IP addresses, short-term 
solution, for instance, CIDR, RFC 1918 addresses and NAT have been compensating 
for the problem. In order to address the issue of IP address depletion, NAT is being 
extensively implemented across the Internet. A NAT is a device that translates the 
private IP addresses to the public addresses and vice versa. In a NAT framework, a 
single node acts as a midpoint between a private network and the public network. As a 
result, an individual or a pool of unique IP addresses represent a larger group of hosts in 
the global IP network. 

 
Furthermore, the NAT device acts as a firewall, blocking the incoming connections 

to the private network from the public realm. Consequently, a host from the public 
Internet cannot initiate communication with a host in the private network. [1] Thus, the 
deployment of NAT causes the loss of end-to-end IP reachability. 

 
To overcome the reachability problems, Professor Raimo Kantola, at the De-

partment of Communications and Networking of Aalto University, proposed a new 
technology called "Customer Edge Switching (CES)." CES is based on the transition 
from the end-to-end principle to the trust-to-trust principle and replacement of NAT. 
CES allows a private host to be globally reachable across the public Internet by 
conducting trust and policy negotiation between the communicating edge nodes. In 
order to establish trust, both sites should be running CES at their edge, and both the ends 
have to be identified through globally unique domains names. [3] 

 
Moreover, communication from the legacy IP networks to the private hosts can be 

carried out via Realm Gateway also known as Private Realm Gateway (PRGW). 
Furthermore, in order to be able to deploy CES one network at a time, the CES and the 
PRGW functionality can be introduced in a single edge node. Alternatively, the PRGW 
can be implemented as a standalone solution to overcome the weakness of the NAT 
transversal that is needed at present. [2] 
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1.1 Motivation 
 

Private Realm Gateway(PRGW) is developed to overcome the shortcomings of NAT. 
PRGW depict the functionality of NAT solutions and allows unilaterally initiated 
inbound connections from the public networks towards the private hosts via the Circular 
Pool of Public Addresses (CPPA). The PRGW architecture has been implemented over 
the Linux operating system. Therefore, the primary motive of this paper is to evaluate 
the forwarding performance of Linux kernel networking (Netfilter subsystem) and 
inspect the possible performance tuning methods to achieve higher packet processing 
rates. 

1.2 Objectives 
 

The objective of this thesis is to find the possible bottlenecks of Linux kernel in terms 
of packets processing and viability of deploying Private Realm Gateway (PRGW) in 
terms of those bottlenecks. 

 
In order to achieve the research objective, the following research questions were 

identified: 
 

– What tools and test frameworks can be used for testing Realm Gateway? 
 

– How can the selected testing environment be implemented in end-to-end testing? 
 

– How would the possible bottlenecks in packet processing in the Linux influence 
the performance of PRGW? 

 
– What could be proposed for optimization of possible bottlenecks and how? 

1.3 Thesis Structure 
 

The thesis has been sub-divided into five chapters; Chapter 2 provides a theoretical 
background of the literature review associated with the topics of the thesis. In addition, 
the test suite development process has been described in Chapter 3 and detailed 
description of results, evaluation and discussion are outlined in Chapter 4, followed by 
conclusions and discussion in Chapter 5. 
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2    Background 
 

This chapter focuses on discussing some fundamental concepts and definitions to 
understand the key notion of this thesis. The Section 2.1, describes the necessary 
background information relevant to the Network Address Translation (NAT). In Section 
2.2 and 2.3, the technology underlying the Customer Edge Switching (CES) and the 
Private Realm Gateway (PRGW) are discussed. Moreover, the Section 2.4 and 2.5 
discusses the Linux Netfilter architecture and Connection tracking on which this thesis 
is primarily focused. 

2.1 Network Address Translation (NAT) 
 

Network address translation (NAT), was designed as a short-term solution for solving 
the IPv4 address depletion until long-term solutions are operational. In a NAT 
framework, a single node acts as a midpoint between the public and the private 
networks. And consequently, NAT binds the private IP addresses with the globally 
routable IP addresses and vice versa, to provide the forwarding functionality for IP 
packets traversing between the private and the public networks. [8] 

 
NAT uses RFC 1918 private addresses inside the private networks. These private IP 

addresses are then translated to globally unique public IP addresses for connecting to an 
outside network. In a NAT architecture, a single or a pool of IP addresses represent the 
entire private network on the Internet. Therefore, a NAT device can connect two 
networks and translate a private IP (not globally unique) addresses in the internal 
network to globally unique routable IP addresses before IP packets are forwarded. [9] 

 
NAT is classified into static and dynamic NAT translation. In static translation, a 

single private IP address is mapped to a unique public IP address. The static translation 
is not efficient as this solution cannot provide a mechanism for solving the IPv4 address 
depletion problem. This solution can be used for servers and devices whose IP addresses 
are fixed. In dynamic translation, however, NAT randomly translates the provided 
addresses using its pool of public IP addresses. When the last session using an address 
binding is terminated, NAT would free the binding so that the global address is recycled 
for the later use. NAT devices maintain a table, called NAT table, for keeping track of 
sent IP packets and incoming IP packets. NAT devices maintain a state for every 
connection with outside networks and any outside connection that does not match any 
state will be denied. [7] 

 
A NAT device maintains a state for mapping the translated IP packets for every 

connection. A mapping is dynamically allocated for the connection initiated internally 
and potentially reused for the specific subsequent connections. A host from a private 
network initiates a connection through NAT by sending the first packet. NAT allocates 
(or reuses) mapping for a connection where the mapping holds a tuple of IP addresses 
and the port used for translation of all the IP packets for that connection. [6] 
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Figure 1: NAT translation 
 

The detail working mechanism of NAT is shown in Figure 1. The diagram illustrates 
the working principle of NAT, where a host (IP: 10.0.0.100) in a private network is 
communicating with the server (IP: 20.20.20.1) in the public domain. The host creates 
an IP packet with the destination IP field to be the IP address of the server, i.e., 
20.20.20.1, while source address to be the host itself, i.e., 10.0.0.100. Then, the private 
host sends the IP packet to the default gateway, i.e., the NAT router. When the default 
gateway receives the IP packet, it would look into IP header and see a private address, 
which cannot be routed in the Internet. Therefore, the private address is translated to the 
outbound public address in this case 200.200.0.1, which is globally unique and can be 
routed in the Internet. 

 
Now a new packet is created with the source from the NAT router interface and the 

destination to be the server (i.e., 200.200.0.1 > 20.20.20.1). The translation information 
is stored in a NAT table, and when receiving response traffic from a server, the NAT 
table is examined to find the matching entry. If found, the NAT router replaces the 
destination again with the IP address of the private host (20.20.20.1 > 10.0.0.100) and 
forwards the packet. 

 
As the example (above) illustrate, NAT devices represents an entire private net-work 

via only one or a pool of IP addresses in the global network. This ability provides 
additional security by effectively hiding the entire internal network behind the one 
address. However, a NAT device causes a reachability problem by hiding a private 
network from the public Internet. [8] [9] 
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Although NAT allows the public IP addresses to be shared by a large number of 
hosts in a private network, its deployment leads to the incoming reachability problem. 
The reachability problem restricts an individual host from being reachable via the 
Internet and from accepting connections via the public network or a different private 
network. 

2.2 Customer Edge Switching (CES) 
 

Customer Edge Switching (CES) is a new technology developed in order to replace the 
NAT. CES is a new type of firewall based on the principle of trust-to-trust be-tween the 
public and the different private networks. CES connects two components namely: 
Customer/User Network (CN/UN) that can use the provided IP addresses for the hosts, 
while Service Provider Network (SPN) uses the globally unique IP addresses. This 
separation of different networks provides complete isolation and transparency, by 
creating the possibility to use new technologies and protocols in different network 
domains. For example, a core network could be running IPv4, IPv6, IP/MPLS or 
Ethernet independently from the technology used in a CN. In addition, the core network 
provides Directory Services (DS) for domain resolution, such as DNS. [3]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: CES Architecture 
 

The architecture of CN consists of private end hosts while SPN consists of the core 
networks that interconnects and routes traffic between the different customer networks. 
CES at the edge of CN and SPN networks operates as the stateful firewall and allows or 
denies the traffic based on the policy. Furthermore, CES allows a private host to be 
globally reachable across the public Internet by establishing trust and policy 
negotiations between communicating edge nodes. In order to establish the trust, both 
sites should be running CES at the edge and all hosts should be identified through a  
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globally unique fully qualified domain name (FQDN). The CES architecture is deployed 
on top of the existing legacy Internet framework using the current IP addresses scheme, 
as well as extensively using DNS for global reachability. The hosts residing in a private 
domain are identified by using their FQDN instead of unique IP addresses, while IP or 
MAC addresses are used as routing locators(RLOCs).[1] 

 
A DNS name resolution triggers every communication in the CES. A name res-

olution is the first step in creating a valid connection state in the CES. CES uses Name 
Authority Pointer (NAPTR) queries in order to provide extensibility and better support 
for abstract identifiers during communication with another CES. CES uses the circular 
pool of private IP addresses for addressing the end-host and the public address to 
identify a host uniquely in the public domain. Furthermore, CES implements both 
inbound and the outbound policy negotiation for creating a state and allows the packets 
to flow or be discarded based on the policy. Thus, the final ’allow’ or ’drop’ decision to 
the inbound packets is determined only after a policy negotiation. Therefore, the policy 
negotiation prevents unwanted traffic towards the private hosts. [1]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: CES to CES Communication 
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 Table 1: Notations 
  

Legends Definitions 
A Private IP for Host-A 
B Private IP for Host-B 
R Public IP for Host-A 
PA-B Proxy -address representing Host-B to Host-A 
PB-A Proxy -address representing Host-A to Host-B 
IDA ID of Host-A 
IDB ID of Host-B 
RLOCA Routing Locator of CES-A 
RLOCB Routing Locator of CES-B 
SSTA Session Tag for session initiated in CES-A 
SSTB Session Tag for session initiated in CES-B 
 Creation of waiting state on incoming DNS query 

 
 

Figure 3 shows a CES to CES communication. The scenario consists of two different 
CES networks: CES-A and CES-B, which are interconnected by a service provider 
network (SPN). The Host-A performs a DNS name resolution for destination host, i.e., 
Host-B to establish a session. Then, the Host-A sends a DNS query for hostb.cesb to 
CES-A, at this point the CES-A initiate a NAPTR resolution to DNS. In turn, DNS 
response conveys the information about the host-B ID and a routing locator for the CES-
B. Next, CES-A initiates a policy negotiation with CES-B. When the policy match is 
satisfied for the Host B, CES-A sends back DNS response to the Host A. The response 
contains the allocated private IP address. As a result, the Host-A sends the data packets 
to a given proxy-address where CES-A will process and forward them accordingly 
towards the destination CES-B. 

 
Similarly, the destination CES-B carries out a connection establishment procedure 

by a host admission policy. A successful connection establishment creates a connection 
state in each CES device, where CES represents a remote host locally using a proxy 
address. Both hosts exchange data packets using the respective proxy address. 

2.3 Realm gateway 
 

Private Realm Gateway (PRGW) is designed to provide interoperability between the 
legacy IP networks and the host in a private network and vice-versa, by using the 
existing TCP/IP protocols and applications. Besides, PRGW is a component of CES that 
can be implemented in standalone edge devices as well as integrated into CES. PRGW 
provides inward reachability from legacy Internet towards a host that resides behind a 
CES. 
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PRGW aims to replace the NAT devices at edge networks; in turn, reducing the 

problem of IPv4 addresses depletion. PRGW use a pool of addresses at the public side 
allowing the inbound connection towards the private networks. In addition, the 
communication between the legacy IP host and a host in the private domain would be 
carried out identically as NAT by sharing a single/pool of public addresses. [2][4] 

2.3.1 Realm Gateway Architecture 
 

PRGW proposed an architectural solution to overcome the drawbacks of the classical 
NAT solution. PRGW mirrors the functionality of conventional NAT solution by 
allowing the IP devices residing in a private realm to be able to communicate to the 
public networks by sharing a single or pool of IP addresses. Contrary, to the NAT, 
PRGW allows unilaterally initiated inbound connections from the public net-works 
towards the private host via the circular pool of public addresses (CPPA). In addition, 
PRGW, distinguishes networks into the public realm and a private realm as shown in the 
Figure 4.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Realm Gateway 
 

Figure 5 illustrates a typical PRGW communication between a host-A in private 
realm and public host-B in public domain. The public host-B sends DNS query on the 
FQDN of a private host-A, i.e., hosta.foo. Upon receiving the DNS query, PRGW 
allocates a public IP address from its pool to represent the host-A on the Internet. At this 
point, temporary half connections state has been created that allows inbound data 
flow/initiation to private host-A. 
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Figure 5: PRGW Communication 
 
 

2.3.2 Inbound communication 
 

The host residing in the public network sends a DNS query for hosta.foo to its name 
server. The DNS server relays the message to a PRGW and upon receiving the DNS 
query, host-A reserves an address from the circular pool. The DNS response is sent back 
to the public host containing the reserved IP address. 

 
When public host-B receives the DNS response, it sends data packets to the reserved 

address. Then the packet is forwarded to the private host after performing public-to-
private address translation. At this point, PRGW creates a full five-tuple connection 
entry. Similarly, the response from the private host is sent back to the public host after 
performing private-to-public address translation at PRGW. [4] 
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Figure 6: Inbound Communication 
 

 
            Table 2: Notations    

  

Legends Definitions 
A Private IP for Host-A 
B Private IP for Host-B 
R1 Public IP for Host-A 
iPA Local port of Host-A 
oPB Local port of Host-B 
   Creation of waiting state on incoming DNS query 

 Creation of connection state 
 Inbound translation modifies the destination IP address and port 

with the private host information 
   Outbound translation modifies the source IP address and port with 

the public host information 
 

2.3.3 Outbound Communication 
 

The host from a private network initiates a connection to the public host as shown in the 
Figure 7. The outbound connection to the public host would be translated into the public 
address similar to classical NAT, and PRGW would maintain a connection
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state. When the response from the public host is received PRGW will look up its 
connection states, and if a connection is valid, inbound translation of packet would be 
carried out, and the packet will be delivered to the private host. However, during the 
inbound connection from the public host, the PRGW would use the circular pool of 
public addresses (CPPA) for accepting the incoming connections. [2]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 7: PRGW Outbound communication 

 Table 3: Notations 

  
Legends Definitions 
A Private IP for Host-A 
R1 Public IP for Host-A 
B Public IP for Host-B 
iPA Local port of Host-A 
oPA Public port of Host-A 
oPb Public port of Host-B 
 Inbound translation modifies the source IP address and port with the public 

host information 
 Outbound translation modifies the destination IP address and port with the 

private host information  
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2.4 Netfilter 
 

Netfilter is a network subsystem that offers user-space tools to control the packet 
forwarding functionality in the Linux kernel. Netfilter provides a mechanism for packet 
mangling, packet filtering, network address translation as well as port translation 
implemented by the kernel networking stack. Furthermore, Netfilter is a set of different 
intercepted function calls known as hooks inside Linux kernel. [10] These hooks will be 
triggered/callback when an IP packet enters into the Linux networking stack and 
depending on the packet property, one or the other hook is called. Netfilter hook 
controls the traffic flow inside the kernel networking stack. There are five Netfilter 
hooks that will be triggered/callback when the IP packet enters into the Linux 
networking stack. Table 4 describes the different hooks and their functionality.[13] 
 

Table 4: Netfilter Hooks 
 

Hook  Definations 
NF_IP_PRE_ROUTING All the incoming IP packets will trigger this hook. 

Further, this hook is processed before any routing 
decisions take place regarding where to send the 
packet. 

NF_IP_LOCAL_IN When the incoming IP packets is destined for the 
local system, this hook will be triggered after the 
routing of IP packets has been done. 

NF_IP_FORWARD This hook is triggered after an incoming packets has 
been routed, and when IP packet is to be routed to 
another host 

NF_IP_LOCAL_OUT Any locally generated outbound IP packets triggered 
this hook. 

NF_IP_POST_ROUTING This hook is triggered by any outgoing or forwarded 
IP packets after routing has taken place and just 
before being put on the wire. 

 
 

Therefore, all the IP packets, both the incoming and the outgoing through the 
network device have to be processed through Netfilter network subsystem. [10] 

2.4.1 Netfilter chains 
 

Netfilter chains allow the administrative control of the IP packet delivery and the packet 
flow within the networking stack. These chains will be triggered when IP packet 
registers with netfilter hooks. Netfilter consist of five chains namely PREROUTING, 
INPUT, FORWARD, OUTPUT and finally POSTROUTING. These chains will be 
triggered sequentially throughout packet flow, for example, every
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packet without any exceptions will first hit the PREROUTING chain. In the 
PREROUTING chain, the packet will be processed through different tables, for 
instance, RAW table, MANGLE table and then, NAT table. 

 
Soon after the PREROUTING chain, the routing of the IP packet takes place, where 

the packet is sent either to INPUT chain or FORWARD chain depending on the final 
destination of the packet. The packet will hit the INPUT chain if the IP packet is 
destined for the local system. And the packet will hit FORWARD chain if the packet is 
destined for a remote system. In both situations, filtering as well mangling of the packet 
is carried out. In addition, if the local system has generated the IP packet, the packet will 
hit the OUTPUT chain. And finally, POSTROUTING chain is triggered, where mangle 
and source NAT is carried out. 

 
Figure 8 illustrates the packet flow inside the Netfilter subsystem. [17] 
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Figure 8: Packet flow in Netfilter and General networking in Linux 
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2.4.2 Netfilter packet flow 
 

When the physical interface receives an IP packet, NIC driver passes the packet to the 
kernel. Next, the packet goes through a series of different steps in the kernel networking 
stack to be appropriately processed and delivered to the correct application/system. All 
the IP packets traversing via networking stack firs register in PREROUTING chain and 
its corresponding table. In the PREROUTING chain, firstly, the packet will hit the 
RAW table. The RAW is primarily used for configuring exemptions from connection 
tracking. Therefore, the IP packets that are marked as NOTRACK in RAW table will 
not appear in connection tracking. [16] And then after the RAW table packets arrive at 
the connection tracking, where the connection state is stored. 

 
Soon after connection tracking, packets will go through the MANGLE table. The 

MANGLE table is used for altering packet fields, for instances TOS (Type of services), 
DSCP, ECN, MARK, IPMARK, and ROUTE. Next, to the MANGLE table, NAT table 
is triggered, where the destination address of the IP packet is changed, i.e., DNAT 
(Destination NAT) and REDIRECT, BALANCE is also carried out. On most IP 
packets, only the destination address of IP packet will be modified. Finally, the IP 
packet hits the routing table, in which a decision is made to send the IP packet either to 
the INPUT chain or the FORWARD chain based on the destination of IP packets. [13] 

 
 

– IP packets destined for the local process/applications. 
 

The IP packet will register with the INPUT chain when the packet is destined for 
the local system. The INPUT chain has further the MANGLE and then FILTER 
table. Firstly, the packet goes through MANGLE table, where, TOS (Type of 
services), DSCP, ECN, MARK, and ROUTE fields are modified as per the 
requirements. Secondly, the packet travels to the FILTER table where filtering of 
the IP packet is carried out for all incoming packets. Finally, after being passed 
from all chains and tables, the packet will be delivered to the appropriate process. 
Figure 9, details the overall packet flow, destined for the local system only. 
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Figure 9: Packets Destined for Local system 
 
 

– IP packets destined for the remote system 
 

Similarly, when the packet is destined for a remote system, then the packet will hit 
the FORWARD chain. The FORWARD chain also consists of the MANGLE and 
the FILTER table, where respective packet fields are modified in MANGLE table, 
and further filtering of the packet is carried out. Moreover, now the IP packet 
travels through the POSTROUTING chain, where the packet again goes through 
MANGLE table and then to NAT table. In the NAT table MASQUERADE, 
source NAT (SNAT), and NETMAP are carried out. Finally, after being passed 
from all chains and tables, the packet will exit the output interface. Figure 10, 
details overall packet flow, destined for a remote system only. 
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Figure 10: Packets Destined for remote system 
 
 

– Locally generated IP packets 
 

In addition, when a local process generates an IP packet, the packet will travel 
through the RAW, the MANGLE and the NAT table in the OUTPUT chain, 
where similar functionality is carried out as in the PREROUTING chain. For 
instance, adding the connection state entry to the connection tracking, mangling 
the packet fields and replacing the destination address (DNAT). Likewise, after 
routing table, the packet reached the FILTER table in the OUTPUT chain where 
filtering is carried out. Furthermore, the packet traverses through the 
POSTROUTING chain, where the packet again goes through the MANGLE table 
and then to the NAT table where MASQUERADE, SNAT, and NETMAP are 
carried out. Finally, after being passed from all the chains and table packets will 
exit the output interface. Figure 11, details overall packet flow, for locally 
generated packets only. 
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Figure 11: Packet generated by local system 

2.4.3 IPTABLES 
 

IPTABLES is the packet selection mechanism at user-space implemented by the 
Netfilter framework, which provides a transparent means for packet filtering and 
mangling. All the IP packets that enter the networking stack have to traverse through the 
different tables and chains. In these table and chain packets are filtered and mangled 
through the different rule sets. To, determine what types of packets will be dropped and 
which kinds of packets will be processed through iptables is based on the IP packet 
header information. [14] 

 
Furthermore, iptables has been organized into different rule sets by ordering the 

different chains and tables. Netfilter chains are the sequential order of processing 
different rules and making decisions based on the different criteria found in the packet 
header. Netfilter has five different chains PREROUTING, INPUT, FORWARD, 
OUTPUT, and POSTROUTING. These chains are classified based on the type of action 
that needs to be performed during the packet processing. The tables are a functional 
group of packet processing, for example, packet filtering, address translation or packet 
mangling. The rules determine either the packet is forwarded to the upper layer for 
processing or simply dropped. 

 
In addition, iptables operates at the transport and the network layer of the OSI stack 

for processing the IP packets and delivering to the appropriate destination of the packet. 
When the kernel receives the packets, IP layer processes the packet and compares the  
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and compares the packet information with the first rule in the rule sets. After reviewing 
the rule, the packet will be passed to a local process or sent to another host depending 
upon the property of the IP packet. If the packet did not match the first rule, then the 
next rule will be evaluated and so on until a matching rule is found. If no matching rule 
is found the packet will be discarded, which is defined in the default table-chain 
POLICY. Table 5 illustrates the different tables that are available in corresponding 
chains in Netfilter. 

 
Table 5: Netfilter iptables and chains 

 
 

Table  / 
Chains PREROUTING INPUT FORWARD OUTPUT POSTROUTING 
RAW *   *  
MANGLE * * * * * 
NAT * *  * * 
FILTER  * * *  
SECURITY  * * *  

 

2.5 Connection Tracking 
 

Connection tracking is a block of Netfilter framework that is responsible for storing the 
information of all the network connections traversing through the network stack. 
Connection tracking provides a mechanism for the kernel to act as a stateful packet 
filtering firewall by keeping track of all the network connection states. Further-more, a 
particular framework called conntrack module in the kernel is responsible for handling 
all connection tracking. This module enables a stateful packet inspection for iptables as 
well for the NAT routing. Moreover, connection tracking manage all the active sessions 
traversing through the system and the state information is revoked/removed when a 
session is closed or the timeout value expires. [14] [17] 
 

Furthermore, the connection tracking is handled in the RAW table of the 
PREROUTING chain for both the incoming and outgoing packets. For locally 
generated IP packets it is handled by the OUTPUT chain. 

 
The connection entry is stored as a five-tuple element, i.e., protocol, source IP, 

source port, destination IP, and destination port for each unique entry. Figure 12, is an 
example of a connection tracking entry, the connection entry is for TCP protocol 
indicated by TCP keyword at the beginning of the connection state and by the protocol 
number as 6. This connection state will expire in 299 seconds, and the communication is 
in the ESTABLISHED state and will not be deleted from the table even if the table 
becomes full, which is indicated by the ASSURED keyword. 

 
The conntrack entry is stored into two separate nodes (one for each direction) in different 
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Figure 12: Connection tracking entry 
 

linked lists as shown in Figure 13. The hash value is calculated based on the received 
packet and used as an index in the hash table. Therefore, the connection states hash 
value will be stored in the two nodes of a bucket for both directions, i.e., the incoming 
and the outgoing IP packets. In addition, the linked list is known as buckets which are 
an element in a hash table. [18]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Hash Table and linked list 
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Furthermore, iteration is done over the linked list (length of a bucket) of the nodes to 
find an appropriate entry. The cost to find the distinct conntrack node depends on the 
length of the list and the position of the node in the list. Therefore, increasing the 
number of buckets decreases the number of nodes in the linked list and thus reduces the 
cost of iteration over the linked list. However, with a large number of buckets, there is a 
higher probability of buckets being empty and each bucket takes non-swappable 
physical memory. [18] 

 
Netfilter defines two essential parameters in Linux kernel for handling the 

connection tracking namely, nf_conntrack_max and nf_conntrack_buckets. The 
nf_conntrack_max is used for handling the maximum number of connection entries, 
while the nf_conntrack_buckets define a maximum length of the hash-table or the 
maximum number of buckets. These two parameters are tunable allowing the maximum 
entries to be stored in the connection tracking. Furthermore, each connection entry takes 
a certain amount of non-swappable memory, and increasing the maximum limit 
consumes more memory resources. 

 
In addition, both nf_conntrack_max and nf_conntrack_buckets are computed 

automatically according to the amount of available RAM. The maximum connections is 
equal to size of hash table multiplied by Hash Table (HT) load factor which is a 
command standard. The HT load factor is an average length of linked-list per bucket in 
hash table. For optimal performance maximum connections is equal to eight times the 
bucket- size, which is a command standard in Ubuntu systems. In addition, in a standard 
Linux system, which has 1GB RAM, the maximum number of connection is configured 
as 65536, whereas bucket size is set to 8192 (nf_conntrack_max/8). This means the 
system can store only 65536 number of entries in a table after that kernel starts to drop 
packets since table if full and it cannot keep track of more connections. [18] 

2.5.1 Connection states 
 

The connection tracking is further classified into four valid states for determining the 
connection status for a particular connection flow. These four states are NEW, 
ESTABLISHED, RELATED and INVALID. 
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 Table 6: Connection states 
  

 State Details 

NEW 
 
 
 
 
 

When the connection tracking detects an IP packets that is not 
associated with the existing connections states. The connection 
tracking puts that IP packets flow into the NEW state. The NEW state 
implies the first IP packet in the communications has been noticed. 
The typical example in connection  tracking is of TCP 
communications, as soon as the conntrack sees the TCP SYN packet, 
conntrack will put that packet flow into NEW state. In the case of 
other protocols, the first packet might be different than the SYN 
packet; still conntrack will consider the NEW state. 

 
 
 
 
 
 

ESTABLISHED 
 
 

 
 

The state is changed from NEW to ESTABLISHED when conntrack 
has seen the traffic in both directions. For example, during TCP 
connection when the conntrack identifies the  SYN/ACK packet, the 
state will be updated from NEW to ESTABLISHED. While a valid 
response has to be received from the remote end in the case of UDP 
protocol, and for the ICMP protocol, ICMP echo reply has to be seen.  

RELATED 
 
 
 

In the connection tracking, any IP flow that is not a part of an existing 
connection, but related to another ESTABLISHED connection state, 
then the IP flow will be marked as RELATED. For example, FTP-
connection is considered as RELATED.  
INVALID  & The IP packets that are not identified to be part of any 
connection states are considered as INVALID.  

INVALID 
The IP packets that are not identified to be part of any connection 
states are considered as INVALID.  

UNTRACKED 

The packets that are marked in the RAW tables as NOTRACK is 
considered as the UNTRACKED state and these states are not stored 
in a conntrack table.  

 

2.5.2 TCP state 
 

TCP communication has three stages called three-way handshake as illustrated in Figure 
14. 

 
The first packet in the TCP session is always the SYN packet sent to the destination 

host and the destination host replies with the SYN/ACK packet. As soon as the 
conntrack detects the SYN packet a NEW state is created with keyword SYN_SENT, 
meaning only one direction traffic has been tracked. When replay traffic from the remote 
end is seen, i.e., SYN/ACK packet, the state is updated to SYN_RECV, implying that 
traffic in both directions has been identified. The SYN_RECV is an intermediate state 
between NEW and ESTABLISHED, immediately upon receiving the SYN/ACK packet 
the state is updated to ESTABLISHED as shown in Figure 15.
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Figure 14: TCP connections establishing 
 

During the ESTABLISHED state, actual data packets are transferred between the 
hosts and the state is put into the ASSURED mode. The ASSURED mode implies that 
the connection state information will not be removed from the conntrack table if the 
table becomes full. [10] 

 
At some point in time, the connection state will change from ESTABLISHED to 

TIME_WAIT state before terminating the session. The TIME_WAIT state is considered 
as a buffer time for any lost or delayed packets received after a connection is closed and 
to avoid misunderstanding at the transport layer. [17] 

 
The TCP connection has predefined timeout values for each connections state and 

Table 7 shows the default timeout values for different TCP states. 
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Figure 15: TCP connection entry 
 

Table 7: TCP state timeout 
 

State Timeout value 
NONE 30 minutes 
ESTABLISHED 432000 seconds 
SYN_SENT (NEW) 120 seconds 
SYN_RECV 60 seconds 
FIN-WAIT 120 seconds 
TIME_WAIT 120 seconds 
CLOSE 10 seconds 
CLOSE-WAIT 12 hours 
LAST_ACK 30 seconds 
LISTEN 120 seconds 

 

2.5.3 UDP state 
 

UDP is a connection-less protocol, that is UDP does not try to establish a session first, 
as TCP does before actual communication could begin. Therefore, when the connection 
tracking sees the first UDP packet conntrack will create a NEW state 
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with the keyword UNREPLIED as shown in Figure 17. When the reply traffic from 
destination end is observed, then the NEW state is updated to ESTABLISHED and the 
state is moved to ASSURED mode. Figure 16 depicts UDP communication with 
appropriate state. [17]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: UDP connections establishing   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: UDP connection entry 
 

Similar to TCP, UDP also has predefined timeout values. However, UDP has only 
two timeout values, and they are relatively small and mostly suitable for all UDP 
applications. 
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Table 8: UDP state Timeout 
 

State Timeout value 
NEW 30 seconds 

ESTABLISHED 180 seconds 
 

2.5.4 ICMP state 
 

ICMP protocol will not establish any session during the ICMP communication. 
However, ICMP packets are also stored in conntrack as valid states just like TCP or 
UDP. All ICMP messages will have two states NEW and ESTABLISHED, and Figure 
18 illustrates the ICMP connections state in connection tracking system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18: ICMP connections state 
 

The first packet in ICMP communication is the ICMP echo request message, which 
is considered as a NEW state in conntrack. And upon receiving ICMP echo reply 
message from the remote end, the state is updated to ESTABLISHED. In case of ICMP 
protocol, ESTABLISHED state is not marked as ASSURED because ICMP doesn’t 
establish a session. Figure 19 shows the ICMP connection entry in connection tracking. 

 
Furthermore, if an ICMP packet is lost or denied by the remote host or the network 

is unreachable, then, the initial state will be NEW in connection tracking. However, the 
ICMP error message as network unreachable is recognized as the RELATED state, and 
ICMP error massage will be delivered to originating node. [17] 
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Figure 19: ICMP connections entry 
 
 

ICMP protocol has only one timeout value. 
 
 

Table 9: ICMP state Timeout 
 

State Timeout value 
ICMP 30 seconds 

 

2.5.5 Default connection 
 

When the connection tracking system is unaware of any specific protocols, and then 
conntrack will handle these protocols state as the default connection. These connections 
are treated similarly to UDP connections. However, timeout values for these states are 
different. The default timeout value is 600 seconds. [10] 

 

2.5.6 Untracked connections 
 

The packets that are marked in the RAW tables as NOTRACK are considered as 
UNTRACKED and are not stored in the conntrack table. [10] 

 

2.5.7 Connection states timeout values on physical devices 
 

Below are some key default timeout values for different protocols. 
 
 

sysctl -a | grep nf | grep timeout 

net.netfilter.nf_conntrack_generic_timeout = 600 

net.netfilter.nf_conntrack_icmp_timeout = 30 
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net.netfilter.nf_conntrack_icmpv6_timeout = 30 

net.netfilter.nf_conntrack_tcp_timeout_close = 10 

net.netfilter.nf_conntrack_tcp_timeout_close_wait = 60 

net.netfilter.nf_conntrack_tcp_timeout_established = 432000 

net.netfilter.nf_conntrack_tcp_timeout_fin_wait = 120 

net.netfilter.nf_conntrack_tcp_timeout_last_ack = 30 

net.netfilter.nf_conntrack_tcp_timeout_max_retrans = 300 

net.netfilter.nf_conntrack_tcp_timeout_syn_recv = 60 

net.netfilter.nf_conntrack_tcp_timeout_syn_sent = 120 

net.netfilter.nf_conntrack_tcp_timeout_time_wait = 120 

net.netfilter.nf_conntrack_tcp_timeout_unacknowledged = 300 

net.netfilter.nf_conntrack_udp_timeout = 30  

net.netfilter.nf_conntrack_udp_timeout_stream = 180 
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3  Testbed setup 
 

This chapter gives an overview of the test setup for performance testing and all the 
different tools, applications, and scripts that are used to carry out the performance 
testing of PRGW. 

3.1   Environment setup 
 

The entire test for connection tracking, hash-table performance, and CPU performance 
has been evaluated under the single test environment which has been virtualized on the 
Linux machine. The physical details of the testing Linux machine are shown Table 10. 

 
Table 10: Hardware details of Physical server 

 
Architecture x86_64 

Kernel version 4.8.0-54-generic 
Physical memory 32G 
CPU op-mode(s) 32-bit, 64-bit 

CPU(s) 24 
Thread(s) per core 2 
Core(s) per socket 6 

NUMA node(s) 2 
Vendor ID 6 

CPU family Genuine Intel 
Model 45 

Model name Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz 
CPU MHz 1244.000 

CPU max MHz 2300.0000 
CPU min MHz 1200.0000 

 
 
 

Furthermore, the test environment has been configured by using the virtual Ethernet 
interfaces, which are always available in pairs. Two pairs of virtual Ethernets namely 
source0s and source0 as well as sink0s and sink0, have been created. Furthermore, the 
ARP broadcast has been disabled, to use the interface with its own MAC address as 
source and destination of Ethernet frames while sending the packets. In addition, 
interface source0 has been configured with IP address 10.0.0.1/8, making possible to use 
all available IP addresses of the class via source0s. Like-wise, sink0 has been 
configured with 100.64.0.1/8 IP addresses making possible to use the entire 100th range 
for addressing via sink0s. Therefore, using such a large address space in two networks 
allows 224 224 numbers of host-to-host IP communications. Figure 20 represents the test 
setup. 
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Figure 20: Test Setup for Connection tracking and IP tables 
 
 

Moreover, Linux by default does not route any IP packets. In order to make Linux 
machine to route the IP packets and act as a router, ip -forwarding has to be enabled in 
the Kernel. The IP forwarding mechanism has been configured by adding the command 
net.ipv4.ip_forward=1. The configuration setup has been made persistent even after 
boot, by editing the /etc/sysctl.conf file to add IP forwarding mechanism. 

3.2 Test tools 
 

To be able to carry out the testing processes, different types of network tools and 
applications have been used. For example, Ostinato to generate test traffic, tcpdump for 
capturing packets, tcprewrite for mangling with packets fields. And finally, tcpreplay for 
sending the IP traffic across the network. In addition, UDP protocol has been selected 
for testing because, UDP is a light-weight protocol, it is very fast, it has less overhead 
and finally, give more performance than connection oriented protocol.
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3.2.1 Tcpdump 
 

Tcpdump is a network traffic capturing tool widely used in the Linux system. It is used 
to capture or filter network traffic traversing through the network devices for analyzing 
the traffic. Further, tcpdump can be used to dump the IP packets capture to the console 
or writing to files.[20] During the testing phase, network traffic has been captured in 
different files. Later a capture file has been used to generate network traffic for 
performance testing. Following is the tcpdump command used to capture the traffic on 
interface source0 and writing capture to the file 1M_source0.2.pcap. 

 
tcpdump -nli source0 -w 1M_source0.2.pcap –B 65536 

 
Moreover, the mergecap command has been used to merge two or more pcap files to 

make single pcap file comprising a large number of packets. 
 

mergecap 1M_source0.2.pcap 1M-source0.3.pcap –w merged_file.pcap 
 

The above command was used to combine two pcap files containing 1M packets to 
create single pcap file with 2M packets. 

3.2.2 Ostinato 
 

Ostinato is an open-source and GUI network traffic generator for Windows and Linux 
system. It offers a robust python API for network test automation and load testing. 
Ostinato is composed of two components, the controller, and the drone. The controller 
could be a simple GUI running on a client machine or the client running a simple python 
script. The drone, however, is a primary component of Ostinato responsible for creating, 
sending and capturing traffic whereas, in the default mode of Ostinato, the controller 
together with the drone is merged into a single architecture. [19] And, this single 
architecture of Ostinato was used for generating the network traffic during the testing of 
PRGW. 

 
The Ostinato is capable of generating a high volume of network traffic approximate 

to the transmission speed of Ethernet adapter. In addition, it can create all kinds of 
packets with different protocols including the higher layer payload in packets as well. 
Ostinato was used to generate sample packets by randomizing IP addresses only, 
without having to worry about the upper layer protocols. Moreover, Ostinato can be 
used to send, receive and capture the traffic across the network at different rates. 

 
Figure 21 shows the GUI layout of Ostinato. Ostinato uses a port group for all the 

available interfaces that are controlled by the Ostinato. These port groups can be 
created, deleted and modified, including the remote network devices that can be added 
to the port group. In addition, particular interface have to be selected to be able to 
generate network traffic. [19]  
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Figure 21: Ostinato GUI interface 
 
 

Figure 22 shows the edit stream tab, where the IP packets are created. This section is 
used to select different data-link protocols like Ethernet II, 802.3Raw and, many 
more In addition, the network layer protocols, for example, ARP, IPv4 or IPv6 are 
also available Furthermore, not only TCP or UDP but also ICMP, and multicast 
messages are available as transport layer protocols. However, during this test, UDP 
has been the primary focus. Finally, the upper layer information could be selected as 
per the requirements of the packets.
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Figure 22: Ostinato crafting packet 
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Moreover, the UDP packets have been generated up to the transport layer for testing 

of PRWG. Also, the random source and destination UDP port have been configured, 
allowing more randomness in the IP packets. Finally, one million sample IP packets 
were created. Figure 23 shows simple packet structure designed by the Ostinato for 
testing purpose. Further, Table 11 illustrates the properties of the packet. 

 
Table 11: Test packet properties 

 
Field Value 

Frame length 64 bytes 
Source MAC 00:00:00:00:01:02 
Destination MAC 00:00:00:00:01:01 
Source IP 10.0.0.2-10.255.255.254 
Destination IP 100.64.0.2-100.255.255.254 
Source port 1-65535 
Destination port 1-65535 
UDP checksum 0x0000 

 
 

Finally, using Ostinato 1 million UDP sample packets were created, these packets 
were random IP source and destination along with random source and destination ports 
numbers. However, the randomness causes Ostinato to generate IP packets with a bad 
checksum. The IP packets with bad checksum would not create a connection state in 
connection tracking. The kernel will try to verify the checksum and the packets with bad 
checksum will be dropped. Further, the bad checksum was a bug in Ostinato, therefore, 
in order to overcome the problem; tcprewrite have been used to fix the bad checksum. 

 
tcprewrite --fixcsum --infile=64k_sample.pcap --outfile=64k_fix_csum.pcap 

 
Above command was used to fix the bad checksum from sample capture file, –

fixcsum is the argument which rewrites the checksum from the input file (–infile) and 
writes to a new file (–outfile) 
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Figure 23: Packet View in Ostinato 

3.2.3 Tcprewrite 
 

Tcprewrite is used to rewrite different IP packet fields, for instance, Layer 2 & Layer 3 
addresses, bad checksum, TCP/UDP port numbers from pcap files. Furthermore, 
tcprewrite can be used to create various pcap files with unique source IP and destination 
IP. This tool is used because of the problem caused by ostinato during packet 
generations. Tcprewrite is used primarily to fix IP checksum and to create a large 
number of IP packets with unique source and destinations. [23]. 

 
Using this tool 16M different IP packets were created. The following is an ex-ample 

of rewrite source and destination IP of sample 1M packets. 
 

tcprewrite –pnat=10.0.0.0/16:10.1.0.0/16,--pnat=100.64.0.0/16:100. 65.0.0/16 --infile 
= 1M_fixed_csum.pcap --outfile=1M_subnet_41.pcap 
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In the above command sample, the pcap (1M_fixed_csum.pcap) file has been 
rewritten with a different source, and destination IP addresses to a new pcap file: 
1M_subnet_1.pcap. The sample file contains packets with the source from 10.0.0.0/16 
network that has been changed to the 10.1.0.0/16 subnet. And the destination address 
from 100.64.0.0/16 network has been changed to 100.65.0.0/16 network by using the –
pnat flag. 

3.2.4 Tcpreplay 
 

Tcpreplay is the open source network utility for editing and replaying the previously 
captured network traffic. It is a handy tool for testing the performance of different 
network devices, for instance, router, firewalls, switches, network intrusion prevention 
system and intrusion detection system (IPS and IDS). Tcpreplay provides detailed 
network analysis, and the statistics for the network performance. For in-stances, the total 
number of packets, throughput in terms of PPS, as well as flows per second (FPS), the 
total number of bytes sent, packet loss during the transmission. [21] 

 
In addition to network statistics, tcpreplay can send the IP packets across the 

network at very high speed, using the previously captured pcap files. Further, large 
numbers of packets can be transmitted from a single or the multiple interface. In the 
default mode, tcpreplay can send network traffic at the same speed that tcpdump or 
Wireshark has captured the packets. However, the rate at which packets are transmitted 
can be manually configured. Tcpreplay provides a fully scalable and reputable means of 
replaying pcap files even at high-speed network such as the 10GigE network. 

 
 

tcpreplay --topspeed --intf1=source0s 1M-packet_cthashing.pcap 
 

The above command was used for replaying network traffic and following are the 
flags used: 

 
- - topspeed is used to send packets as fast as possible 

 
- - intf1 is used to indicate interface that traffic is being addressed and 

 
- - 1M_packet_cthashing.pcap is the pcap file that tcpreplay is transmitting onto the 

network. 
 

Other important flags/options: 
 

- - enable-file-cache this option allows to cache a pcap file to physical memory 
 

- - loop=num it loop pcap file for given amount of times. 
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- - limit = num manually sets the number of packets to be sent 
 

- - topspeed sends the packet as fast as possible. 
 

- - intf1= string interface from which traffic is sent 
 

- - pps-multi = num number of packets to send for each time interval. 
 

- - preload-pcap preloads packets into the RAM before sending.[22] 

3.2.5 Scripts 
 

A different script file has been created to ease out the tremendous amount of work for 
filtering the data and running various commands repeatedly. For each set of tests, 
separate script file has been made which has been included in the appendix sections. 
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4    Test and Evaluation 
 

This chapter describes an overview and the purpose of each test along with a 
comprehensive description. Altogether, there are three testing categories in this thesis, 
which is further divided into the respective smaller test cases. And finally, the results 
have been gathered from the different test cases, their corresponding graphs and analysis 
have been discussed. 

4.1 Connection tracking 
 

First and foremost, the connection tracking test has been carried out for evaluating the 
performance of conntrack module to store the connection state of the IP packets, and 
analyzing the impact of the conntrack module on the Linux machine. Further, the test 
has been conducted using the UDP protocol which has the default timeout value of 30 
seconds. 

Command used to view the UDP timeout value: 
 

sysct -a | grep conntrack_udp  
net.netfilter.nf_conntrack_udp_timeout = 30 

 
Because the default timeout value is very small for the UDP protocol and is not 

sufficient time for the testing purpose. The default timer has to be changed, to make sure 
that connection states will not expire while the test is running. For this reason, the UDP 
timeout value has been increased by 1000 times, i.e., (30000seconds), and the following 
command has been used to fix the timeout problem. 

 
sysctl -w net.netfilter.nf_conntrack_udp_timeout=30000 

 
Moreover, during the test of connection tracking, two primary variables in 

Netfilter system have been tuned namely, nf_conntrack_max and 
nf_conntrack_buckets. The nf_conntrack_max define the maximum number of 
connection entries that can be stored by the connection-tracking table. While the 
nf_conntrack_bucket, specify the size of the hash table for storing the list of 
connection entries. 

 
Commands used: 

 
sysct -a | grep conntrack_max 

 
net.netfilter.nf_conntrack_max = 262144 

 
sysct -a | grep conntrack_buckets 

 
net.netfilter.nf_conntrack_buckets = 65536 
 
In addition, these parameters will be tuned as per requirements of the test and its   
objective. 
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4.1.1 Scaling million connections 
 

The primary objective is to test the feasibility of scaling the number of connections on 
connection tracking to millions. 

 
Firstly, different values of the nf_conntrack_max and nf_conntrack_buckets were tuned 

to verify that Linux kernel would take the provided values or not. The following 
commands have been used to investigate the objectives of the test. 

 
sysctl -w net.netfilter.nf_conntrack_max = 65536  
sysctl -w net.netfilter.nf_conntrack_buckets = 65536 

 
Furthermore, both the nf_conntrack_max and nf_conntrack_buckets values were 

kept identical throughout the test period. Since the primary goal of this test was to verify 
if Linux kernel would accept the provided values. 

 
Table 12 illustrates the different values of the nf_conntrack_max and the 

nf_conntrack_buckets that were implemented on Linux kernel. 
 

Further, it can be visualized that kernel took almost all the assigned values, without 
any errors. However, after the threshold value for both the parameters, kernel starts to 
reject the given values. The maximum number of connections sup-ported by the Linux 
kernel is 536,870,912 and for the nf_conntrack_buckets is 268,435,456. Therefore, 
beyond these limits, the system did not accept any values, instead, give an error as the 
kernel cannot allocate memory. 

 
Hence, the maximum values that can be configured on Linux Kernel for both the 

nf_conntrack_max and the nf_conntrack_buckets have been determined to be 
536,870,912 and 268,435,456 respectively. Moreover, as the size of the hash table, i.e., 
nf_conntrack_buckets start to increase, so does the physical memory, even though no 
connections have been offered. 

 
Therefore, from the test, it could be concluded that as the size of buckets starts to 

increase, so is the physical memory used by buckets also increase. Furthermore, there is 
a hard-coded limit on both the number of maximum connections and the bucket size 
provided by the Linux kernel regardless of available physical memory. 
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Table 12: Netfilter values for nf_conntrack_max and nf_conntrack_buckets 
 

nf conntrack nf conntrack 
Status max buckets  

65,536 65,536 Kernel took value 
131,072 131,072 Kernel took value 
262,144 262,144 Kernel took value 
524,288 524,288 Kernel took value 

1,048,576 1,048,576 Kernel took value 
2,097,152 2,097,152 Kernel took value 
4,194,304 4,194,304 Kernel took value 
8,388,608 8,388,608 Kernel took value 

16,777,216 16,777,216 Kernel took value 
33,554,432 33,554,432 Kernel took value 
67,108,864 67,108,864 Kernel took value 

134,217,728 134,217,728 Kernel took value 
268,435,456 268,435,456 Kernel took value 

  Kernel throws an error as it cannot allocate 
536,870,912 536,870,912 memory for the nf_conntrack_buckets while 

  accepting nf_conntrack_max value 
  Kernel throws and error as it cannot allocate 

1,073,741,824 1,073,741,824 memory for the nf_conntrack_buckets and 
  invalid argument for nf_conntrack_max 
  Kernel throws an error as invalid argument 

2,147,483,648 2,147,483,648 for both the nf_conntrack_buckets and the 
  nf_conntrack_max 

 

4.1.2 Physical memory use by Connection tracking 
 

The objective is to test the physical memory consumed by the connection states, and 
the number of connections that could be offered to connection tracking. 

 
First and foremost, the test traffic has been sent from the interface sources0s 

destined to the interface sink0s as shown in Figure 24. The IP traffic is routed from 
source0 to sink0 and the connection state for IP packets will be created at the connection 
tracking. Therefore, sending the traffic with a different number of packets will create 
different number of states in connection tracking. And thus, the corresponding memory 
usage by connection tracking can be observed. 

 
Furthermore, the nf_conntrack_max value has been changed accordingly to support 

the number of connection that has been offered. For example, for the 1 million number 
of connections offered, the nf_conntrack_max value has been set to 1048576. In 
addition to nf_conntrack_max, the nf_conntrack_buckets has also been changed with 
the HT factors (i.e. 1,2,4,8,16,32,64,128 and 256) to see the memory usages. 
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Figure 24: Test Setup for Connection tracking 
 
 

sysctl -w net.netfilter.nf_conntrack_max = 1048576  
sysctl -w net.netfilter.nf_conntrack_buckets = 65536 

 
Table 13 details the different number of connection states that were created in 

connection tracking and the corresponding physical memory used by each number of 
connections. In the connection tracking, a single connection takes 320Bytes of memory, 
and 1M connections would take 320MB of physical memory as shown in Table 13. [18] 

 
Table 13: Connection tracking memory utillization 

 
Connection offered Memory used(MB) 

1 Millions 320 
2 Millions 640 
4 Millions 1280 
8 Millions 2560 
16 Millions 5120 

 
In addition, Table 14 demonstrates the change of nf_conntrack_buckets sizes, for the 

8M number of connections. In spite of changing the bucket size from small to the large 
value, the memory used by the connection tracking remains the same. 
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Table 14: Connection tracking memory utilization for 8M connections 
 

Connection nf conntrack HT load Memory used 
offered buckets factor (MB) 

8 Millions 8388608 1 2560 
8 Millions 4194304 2 2560 
8 Millions 2097152 4 2560 
8 Millions 1048576 8 2560 
8 Millions 524288 16 2560 
8 Millions 262144 32 2560 
8 Millions 131072 64 2560 
8 Millions 65536 128 2560 
8 Millions 32768 256 2560 

 
 
 

Finally, when the number of connections offered to connection tracking is larger 
than the nf_conntrack_max value, then the kernel would start to drop packet since there 
is no space left on the conntrack table to add the connection entry. Therefore, the 
threshold value of nf_conntrack_max should be a significantly larger value. Also, the 
physical memory of the system plays an essential part in storing the maximum number 
of connections. Therefore, the physical memory has to be sufficient enough to tolerate 
the larger amount of IP traffic. 
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4.1.3 Hash table load factor 
 

The objective is to test the performance impact of the HT load factor for the 
nf_conntrack_max and nf_conntrack_buckets. 

 
During the test, five different load factors (1, 2, 4, 8, and 16) were selected for 

analyzing the performance of the hash table. Also, load factor zero (i.e., without 
enabling connection tracking) has been tested for each millions connection, by enabling 
the NOTRACK in a prerouting RAW table. 

 
The number of buckets (nf_conntrack_buckets) has been changed according to the 

nf_conntrack_max value during the test. For example, to create 8 million connections in 
the connection tracking table, the nf_conntrack_max was set to 8388608, and the 
nf_conntrack_buckets was 524288, which is load factor of 16. 

 
Firstly, the connection states have been created by sending a particular number of IP 

packets, and the corresponding throughput is measured in packets per second (PPS). In 
addition to creating the connection, the created connection has been reused by sending 
the same IP traffic, and the corresponding throughput has been recorded as well. Each 
test has been run for 10 times in order to have more accuracy on the throughput value, 
and finally, the median value is drawn from these tests. 

 
Figure 25 shows the PPS to create connection states in the conntrack table along 

with the PPS to reuse the connection state on different HT load factors. 
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Figure 25: Millions of connections 
 
 

Table 16 illustrates the throughput values for 8M connections, and it can be seen that 
the performance is better with the smaller HT load factor. Because of the fact that, with 
the smaller load factor, the length of the linked list in a bucket is also small. And 
iteration cost to add or find the position of the connection state entry in the bucket list 
depends on the length of the list. Therefore, the performance with smaller load factor is 
better. 

 
Furthermore, without enabling connection tracking (NOTRACK) the performance is 

high for all number of IP packets as illustrated in Table 15. Because the connection 
states were not created and reused during the traffic flow. 
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Table 15: Connection tracking NOTRACK performance 
 

 Load factor(0) Connections offered Throughput(PPS)  
 NOTRACK  1M  225734  
 NOTRACK  2M  226244  
 NOTRACK  4M  227532  
 NOTRACK  8M  253452  
 NOTRACK  16M  254011  

  Table 16: Hash table load factor   
        
  

nf conntrack nf conntrack 
 Create Reuse 

Load Factor  throughput throughput 
  max buckets  (PPS) (PPS) 
      

1 8388608 8388608  143127 319298 
2 8388608 4194304  141408 315009 
4 8388608 2097152  122786 310210 
8 8388608 1048576  113265 297796 

16 8388608 524288  89405 281774 
 

In addition, as HT load factor starts to increase, performance starts to drop. This is 
because the connection entry is stored in only one direction in a linked list (bucket), and 
hash value had to be calculated based on the packet information and indexed in a hash 
table. Further, iteration is done over the linked list to find an appropriate entry. 
Therefore, as the load factor increase, the length of the linked list in the hash table also 
increases, so the iteration time to find the entry also increases, thus decreasing the 
performance for creating and reusing the connections. 

 
Finally, in conclusion, it is recommended to use the long hash table with a smaller 

linked list since the cost of hash calculation remains constant. 

4.1.4 Thread scheduling on CPU 
 

The primary objective is to observe the CPU performance on the different scenarios 
for thread scheduling in the CPU. 

 
For analyzing the CPU performance, the HT default load factor, i.e., 8 and the load 

factor 16 were used, while the connection offered was 1 million connections. Also, the 
nf_conntrack_max has been configured to 4 million connections, in order to, use 
roughly 25% of the hash table. This configuration gives a consistent result as more 
elements in the hash table lead to the hash collisions. 

 
To begin with, three test cases were identified for CPU performance test. Firstly, 

the normal OS handling for thread scheduling on the CPU, i.e., OS will decide which 
processes are executed on which core as well as managing the interrupts and the system 
calls. 
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The following command has been used during the normal CPU performance test. 
Secondly, the command taskset has been used for pinning the thread to a particular core 
of the CPU and the command used during the test is shown below. Finally, a specific 
core of the CPU has been reserved for the performance test. 

 
 

tcpreplay –topspeed –loop = 1 –enable-file-cache –intf1 = source0s 
1M_capture.pcap 

 
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1 = source0s 
1M_capture.pcap 

 
During the test, IP traffic has been offered to the connection tracking, and the 

corresponding throughput has been documented. Next, for each test case; the connection 
states were created, and they were reused. These tests have been carried out 10 times to 
estimate the performance approximately. And finally, the median value was drawn from 
these 10 tests, which is illustrated in Table 17. 

 
Table 17: Performance table for CPU scheduling   

Load factor 16 
Test Case nf conntrack nf conntrack create(pps) reuse(pps) 

 max buckets   
CPU normal 4194304 262144 120265 162899 
CPU pinning 4194304 262144 122850 199604 
CPU reserve 4194304 262144 121581 197262 

 Load factor 8   
CPU normal 4194304 524288 126104 169166 
CPU pinning 4194304 524288 135106 213130 
CPU reserve 4194304 524288 129534 205508 

 
It is observed that the CPU pinning and CPU reservation are giving more 

performance than the CPU normal because of the reason that the CPU was explicitly 
instructed to run a specified process on the particular core of CPU for both CPU pinning 
and CPU reservation. While, in the CPU normal, the OS has automatically handled the 
interrupt and system calls. However, the performance deviation was similar for all the 
three scenarios. 

 
In addition, the CPU performance is identical for both the HT load factors 16 and 8, 

with insignificant variation. Figure 26 depicts the CPU performance for all test cases, 
and it is quite difficult to conclude which test case is performing better. 
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Figure 26: CPU performance 

4.2 IPtables 
 

In the Netfilter, shortly after the states have been created in connection tracking for IP 
packets, the IP packets proceed their journey within various tables in PRE-ROUTING 
chain and as well as in POSTROUTING chain. In different chains, the IP packets pass 
through the different tables, where different rules for IP packets are applied. Hence the 
operating system acts as a stateful firewall. In this section, different rules will be 
implemented on different tables in both PREROUTING and POSTROUTING chain to 
examine the performance of stateful firewall mechanism on Linux machine. 

4.2.1 Iptables targets 
 

The objective is to compare the performance of different IPTABLES targets. 



 

 

48 

 
Firstly, the nf_conntrack_max was set to 4 million (4194304), while the 

nf_conntrack_buckets was configured as 1048576, in order to create 1M connections. 
Therefore, only 25% of the hash table is used, to avoid any hash collisions. The 
following commands have been used. 

 
sysctl -w net.netfilter.nf_conntrack_max = 4194304 

 
sysctl -w net.netfilter.nf_conntrack_buckets = 1048576 

 
Further, the performance test has been carried out by using five iptables targets, 

NOTRACK, FORWARD, DNAT, SNAT, and finally, SNAT/DNAT were carried out 
together. These targets were implemented mainly in the PREROUTING and the 
POSTROUTING chain. The NOTRACK, FORWARD, and DNAT were per-formed in 
PREROUTING chain, while SNAT in POSTROUTING chain and finally SNAT/DNAT 
in both PREROUTING and POSTROUTING chain. The command used to configure 
the different performance test scenarios are shown below. 

 
iptables -t raw -I PREROUTING -i source0 -j NOTRACK 

 
iptables -A FORWARD -i source0 -j ACCEPT 

 
iptables -t nat -A PREROUTING -i source0 -j DNAT --to 100.255.255.254 

 
iptables -t nat -A POSTROUTING -o sink0 -j SNAT --to 100.255.255.253 

 
Secondly, after configuring the appropriate test scenarios, 1M connection states 

were created. After connection state has been established, IP packets are processed 
through the appropriate table(s) either in PREROUTING or POSTROUTING chain. 
Likewise, another 10 million packets (the original 1M packets merged 10 times) were 
offered for reusing established connection states. More-over, the test has been carried 
out 10 times to get more accuracy on the throughput data, and the median value is 
calculated for easier visualization. 

 
In Figure 27, the performance of reusing the connection states is better than creating 

connection states. This is due to the fact that creating a new connection consume more 
time then reusing the same connection states. Further, NOTRACK is performing better 
than other iptables targets in terms of creating connections. Since the NOTRACK target 
will not add the state entry to the connection tracking. Therefore, the performance is 
much better than the other targets. While for the rest of iptables targets the performance 
remains overall similar. Although, SNAT performance is somewhat less as compared to 
other targets because SNAT is per-formed in the POSTROUTING chain. And the 
packets will be processed through each chain and tables within the chains before SNAT 
is carried out. Therefore, the performance is less than others targets. 
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Figure 27: IPTABLES targets performance 

4.2.2 Marking packets 
 

The objective is to compare the performance of the iptables rules placed at the 
different positions in the NAT table, and matching the IP rules with packets that are 
marked in the MANGLE table. 

 
Firstly, a separate chain named CIRCULAR_POOL has been added to the NAT 

table in the PREROUTING chain. Further, the 64K number of the IP rules have been 
attached to the CIRCULAR_POOL. And finally, the IP packets have been marked in the 
MANGLE table. And consequently, the IP packets traverse through the NAT table, 
which is performing DNAT to the marked IP packets. 

 
The performance is measured by marking the IP packets to match the first, the 

middle and the last rule (i.e., rule 1, rule 32768 and rule 65536) in the NAT table. Then, 
the 64K IP packets were sent through the network to test the performance of the IP 
packets traversing through a large number of rules in the NAT table. 
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iptables -t nat -N CIRCULAR_POOL 
 

iptables -t nat -I PREROUTING -m mark ! --mark 0 -j CIRCULAR_POOL 
 

iptables -t nat -I CIRCULAR_POOL -m mark --mark 1 -j DNAT --to-destination 100.66.0.1 
 

iptables -t mangle -A PREROUTING -p udp -j MARK --set-mark 1   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: Performance for first, middle and last positions of IP rules 
 

Figure 28, illustrates the vast performance difference between the different positions of the IP 
rules. The middle and the last position of the IP rule in the NAT table is giving the worst 
performance. Because each packet will traverse through all the rules in CIRCULAR_POOL 
until the match is found for the IP packet. Hence, the performance is very low for the middle 
and the last IP rule in the NAT table. Therefore, it is not appropriate to have a large number of 
rules in the NAT table.
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Furthermore, a second test has been carried out to measure the performance of the 
1st, 10th, 100th, 1000th and 10000th position of IP rule in NAT table, which can be 
seen in Figure 29. From the figure, it is understood that as the number of rules in the 
NAT table increases, the performance starts to degrade. There is significant 
performance degradation from the 100th position to the1000th position. Therefore, still 
having 1000 IP rules in the NAT table gives the worst performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29: Performance for different positions of IP rules 
 

Finally, to get an optimal number of IP rules in the NAT table, a third test has been 
carried out by testing the 1st, 10th, 100th 200th up to the 500th position in the NAT 
table and the result is shown in Figure 30. 
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Figure 30: Performance for positions of IP rules 
 
 

From Figure 30 it can be observed that in every 100 IP rule that is added; the 
performance is reduced by roughly 15%. Furthermore, the performance is quite 
acceptable until the 200th position of IP rule in the NAT table. Therefore, it will be best 
to configure iptables to have less than 200 rules in one table for getting the better 
performance. 
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4.2.3 Custom built iptables module 
 

The primary objective of this test is to measure the performance of custom build 
module in iptables against the default behavior of the iptables. 

 
During the test, a custom build iptables module named MARKDNAT has been 

installed. The custom module is the iptables extensions which requires the use of both a 
user and a kernel space module. Furthermore, the module can only be used in NAT table 
in the PREROUTING chain, which implements the standard action of the MARK and 
the DNAT target. Hence this module allows performing DNAT operation based on the 
packets mark. [5] 

 
First and foremost, the test was carried out by designing 2048 IP rules in the NAT 

table, for translating the destination IP address of the packet. Next, the IP packets are 
marked in the MANGLE table of the PREROUTING chain. Then, the 1M packets were 
sent through the network to test the impact of the marking of the IP packets and its 
implications of traversing the IP packets through a large number of rules in the NAT 
table. Furthermore, another test was carried out, where only one rule known as the 
MARKDNAT was implemented in the NAT table. And finally, the same number of IP 
packets were transferred through the network to measure the performance. 

 
iptables -t nat -N CIRCULAR_POOL 
iptables -t nat -I PREROUTING -m mark ! --mark 0 -j CIRCULAR_POOL 
iptables -t nat -I CIRCULAR_POOL -m mark --mark 1 -j DNAT --to-destination 
100.64.0.255 
iptables -t nat -I CIRCULAR_POOL -m mark --mark 2 -j DNAT --to-destination 
100.64.0.255 

Commands for custom build module of iptables: 
 

iptables -t nat -N CIRCULAR_POOL 

iptables -t nat -I PREROUTING -m mark ! --mark 0 -j CIRCULAR_POOL 
iptables -t nat -I CIRCULAR_POOL -j MARKDNAT --or-mark 1  -m comment 
--comment ’DNAT to packet mark’ 

 
Figure 31 illustrates the performance difference for the default behavior of iptables 
against the custom built module in iptables. From Figure 31, it is seen that as the position 
of rule increases, the performance starts to decline for the default behavior of the iptables. 
Further, the performance degradation is due to the time consumed by the iptables for 
finding the appropriate match on the IP rules in the NAT table. Therefore, performance is 
directly proportional to the number of IP rules in the NAT table. At the same time, the 
performance of the custom build module of the iptables remains constant across any 
number of the IP rules in the NAT table. Hence, implementing custom built iptables 
module eliminates the bottleneck and increases performance. And finally, simplify the 
implementation of IP rules in the NAT table. 
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Figure 31: performance of custom MARKDNAT 
 
 

In conclusion, it is not recommended to have a large number of IP rules in the 
iptables. Since a large number of rules significantly slows down the performance. And, 
in order to get the optimal performance, MARKDNAT module should be implemented. 

4.2.4 NFQUEUE target 
 

The objective is to test the performance of Netfilter kernel module to create multiple 
queues and finally, process the queued IP packets at user space. 
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The NFQUEUE target is mainly used for queuing the IP packets in the kernel space 
to be processed by user-land applications before sending the IP packets to the final 
destination. NFQUEUE provides a mechanism for passing the IP packets out of the 
stack for queuing to user space. And, then receiving the IP packets back into the kernel 
with a verdict specifying what to do with the IP packets (such as ACCEPT or DROP). 
Further, the IP packets may also be modified in user space before reinjection back to the 
kernel. 

 
In order to carry out the test, a custom builds Netfilter-nfqueue module has been 

compiled with source code from the git hub. [24] Next, using the source code, four and 
eight queues were created to test the performance for 1M packets. In addition, different 
test cases were proposed to test the performance of the NFQUEUE, for instances queue-
CPU-fanout, without using CPU-fanout, in the simple forwarding state and iptables 
performing DNAT. Following commands have been executed to create four and eight 
queues. 

 
iptables -t mangle -A PREROUTING -i source0 --src 10.3.0.1/18 -j NFQUEUE --
queue-num 0 

 
iptables -t mangle -A PREROUTING -i source0 --src 10.3.64.1/18 -j NFQUEUE --
queue-num 1 

 
iptables -t mangle -A PREROUTING -i source0 --src 10.3.128.1/18 -j NFQUEUE --
queue-num 2 

 
iptables -t mangle -A PREROUTING -i source0 -j NFQUEUE --queue-balance 0:3 -
-queue-cpu-fanout 

 
Figure 32 illustrates the performance of NFQUEUE for the different scenarios, for 

instance, simple forwarding, while using CPU fanout and no-CPU fanout options, and 
finally test with DNAT. It is seen that simple forwarding performance is better than 
DNAT because more processing is needed at prerouting chain after receiving packets 
from user space (i.e., modify destination address). Also, while using queue-CPU-fanout 
options, the load is spread across different queues. However, performance for using 
queue-CPU-fanout option and without using fanout options remains similar for all test 
cases. 

 
Moreover, the nfqueue source code is compiled to test for eight queues. As 

compared to the queues four test, the performance is somewhat lower because the new 
test case has a large number of queues and it takes time for processing all queues. 
Therefore, it could be concluded that lesser number of queues should be implemented 
for achieving higher performance. 
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Figure 32: Tcpreplay performance for nfqueue 

4.3 Designing optimal architecture for IP flows/rules 
 

The primary objective in this section of testing is to determine a model/design for 
arranging a large number of IP rules/flows in the different chains. The design will be 
identified as the best-performing model based on the hit-counts; lower the hit-counts, 
the better the design for arranging the IP rules/rules. Further, the development of a 
model includes developing a mathematical formula for determining the total hits-counts 
for all number of IP rules/flows. After developing a mathematical formula, a specific 
number of rules will be arranged in the different designs. During the testing phase, both 
the linear and the nested model will be tested mathematically and practically. 

4.3.1 Linear arrangement of flows/rules 
 

The objective of the test is to develop a mathematical formula for arranging the 
different number of IP rules/flows in the linear architecture and based on the 
formula, testing the performance of different linear architectures. 
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In the linear architecture, chains will be arranged linearly and IP rules/flows are 

added to corresponding chains, so that the matching of IP rules will be processed from 
top to down until a match is found. Therefore, for the 64000 number of IP rules, there 
could be a different number of linear architectures for arranging the rules. The 
mathematical model, equation 1, try to design different architectures based on the total 
hit counts for a particular design. The formula for determining a total hits as per the 
number of IP rules in a specific chain(s) on the iptables. 

                                                                                 (1) 
 

Where, S - is the number of selectors or chains. 
 

Ri - is numbers of IP rules/flows in ith selectors  

σi - is sum of numbers of IP rules in ith selectors, 

          (2) 
 

Equation 1 represents a formula for the linear arrangement of IP rules/flows in 
different chains. And, the total hits-count can be determined for all the number of 
rules/flows in a linear design. Based on equation 1, Table 18 illustrates different 
numbers of the linear model and the corresponding number of total hits. 

 
Table 18: Linear design   

Number of chain(s) Number of rules per chain(s) Total hit counts 
1 65536 2147581952 
2 32768 1073872896 
4 16384 537067520 
8 8192 268763136 

16 4096 134807552 
32 2048 68222976 
64 1024 35717120 

128 512 21037056 
256 256 16842752 

 
As seen from Table 18, there will be less hits, when both the number of IP rules and 

the number of chains are equal. The number of IP rules in chains determines the number 
of hits and larger the number of IP rules yields the larger numbers of hits so that 
performance will be lower and vice-versa. Therefore, for optimal performance, it is 
recommended to have both the number of chains and IP rules in a chain to be the same 
or nearly equal, as concluded from the mathematical model. 
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Figure 33: Tcpreplay performance or linear-design of IP flows/rules 
 
 

Figure 33 illustrates the performance of different linear design of IP rules/flows as 
per the mathematical model. It is seen that as the number of chains increases and the 
number of IP rules decreases, performance starts to increase, whereas the number of hit 
starts to drop. The best performance is yielded, when the number of chains and the 
number IP rules in a chain are equal, which has been confirmed by the mathematical 
model. Therefore, in conclusion, while implementing the IP rules in iptables it should be 
noted that the number of chains and the number of IP rules in a chain should be the 
same or nearly equal for better performance. 
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4.3.2 Multi-step selectors for arranging flows/rules 
 

The objective is to design a mathematical formula to minimize the hit-counts across 
multiple chains and finally, test the performance by arranging the IP flows in a 
nested multi-step chains architecture. 

 
In the nested design, the chains will be arranged in a tree-like nested arrangement as 

shown in Figure 34. Figure 34 illustrates the basic idea of how nested chains are 
designed and how the IP packets jump through different branches of the chain. Each 
chain will have a certain number of generic IP flows/rules which will be further divided 
into sub-chains with more specific IP flows/rules. For example, in Figure 34, the first 
chain/selector will have IP flow that will have a match for all the IP packets. Next, the 
second level selector will have IP flows that have a match for all the IP packets for that 
specific branch only. And finally, the third level will have only one IP flow that matches 
for the single IP packet flow only.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34: example of nested design of flows 
 

Therefore, the IP packets will hit the first selector and based on the IP flows in the 
first selector. The IP packets jump to the next level selector within the same branch until 
a match is found. 

 
Hence, for arranging the different numbers of rules, there could be many different 

arrangements. Equation 3 try to design the different mathematical model based on total 
hit-counts. The optimal design will be one with least hit-count. 
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The formula for determining the total hit-count per the number of IP rules in the 

chain(s). 

        (3) 
Where, Ft – is number of final selectors/chains. 

R – is the number of IP flows in that selector(s)/chain(s). 

β – is the sum of all possible combinations of selectors in different level. 

For example, in three level of selectors β would be the following: 

  

         (4)  
Where, 
 
S1 - is first level of selectors, 
 
S2 - is second level of selectors, and 
 
S3 - is third level of selectors. 

 
From the equation 3, nested arrangement of the IP flows can be determined along 

with the total hit-counts for all the IP flows in the particular design. Furthermore, based 
on the equations 1 and 3 the following four different architectures have been designed to 
test the performance of the 64000 number of IP flows. 

 
– Level_1_selectors: It has total 256 number of chains, and each chain has 256 rules. 

This architecture is designed based on equation 1, while rest of the other 
architectures are based on equation 3. 

 
– Level_2_selectors: This is arranged in two level of selectors; the first level has 16 

chains, and each chain is further divided into 16 sub-chains in the second level. 
Therefore, the final number of chains is 256, and each chain has 256 rules. 

 
– Level_3_selectors: It consists of three level of selectors. The first level has four 

chains, and each chain has further eight sub-chains in the second level. And 
finally, each chain in the second lever are further divided into eight chains at the 
level three. Therefore, the final number of chains is 256, and each has 256 rules. 

 
– Level_4_selectors: Four level of selectors form this architecture. The first level has 

four chains, and subsequently, each level of selectors also has 4 sub-chains and so 
on until the level of four. Therefore, the final number of chains is 256, and each 
chain has 256 rules. 
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In addition, Table 19 illustrates the different numbers of level of selectors and the 

corresponding total hit-counts. 

 
Table 19: Nested design of IP flows/rules  

Level of selectors Number of final chain and Total hit counts 
 rules  

1 [Linear] 256, 256 16842752 
2[s1=16, s2=16] 256, 256 9601024 

3 [s1=4, s2=8, s3=8] 256, 256 9240576 
4 [s1=4, s2=4, s3=4, s4=4] 256, 256 9142272 

 
Furthermore, from Table 19 it could be visualized that as the nesting of chains 

increases, the total hit-count decreases. The linear design is the worst architecture in 
terms of hit-counts since it has the highest of hit-counts (more than 80% of hit-counts) 
as compared to other designs. While other three models are quite similar to each other, 
only minor variation in terms of hit-counts. Among the four designs, the four-layered 
nested architecture has the least hit-count because when the number of nested 
steps/levels increases, the possibility of finding a match in the chains decreases, and the 
hit-counts is also reduced. Besides, the nesting of chains also provides more controlled 
management of IP flows in the chains. Since the IP flows with the more specific match 
could be arranged carefully, to have the least hit-counts. 

 
Finally, the test setup has been designed as per the mathematical model, where 

chain(s) and IP flows/rules are arranged accordingly to Table 19. Finally, the test has 
been carried out to measure the performance of different designs. Finally, with the 
performance data and the hit-counts, a graph has been plotted as shown in Figure 35. 

 
Figure 35 conforms to the mathematical model of nested design for arranging IP 

flows. It is seen that level-4 design is the best design as compared to others. However, 
the performance is not heavily different among nested designs, since the hit-counts are 
similar. Therefore, it can be concluded that the hit-counts can be reduced by arranging 
the IP flows in multi-step chains. As the number of steps/levels in design increase, so 
performance also increases. Consequently, nesting of selectors is more appropriate than 
a linear arrangement of IP rules/flows, since it gives more controlled management of 
rules and chains as well as better performance. 
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Figure 35: Tcpreplay performance for nested-design of IP flows 
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5    Conclusion and Discussion 
 

The primary objective of the thesis was to evaluate the forwarding performance of 
Linux Netfilter subsystem in order to deploy the PRGW on top of Linux architecture to 
ensuring that all components of PRGW would operate as designed. And finally, 
investigate the scalability issues of PWGW for provisioning a node for millions of 
subscribers. Furthermore, this thesis evaluates the performance of Netfilter by using 
different parameters for instance, how many simultaneous connections can be created, 
physical memory consumed by connections, overloading CPU process, IP packets 
filtering and packets mangling. 

 
At the beginning of thesis work, I was completely unaware of the networking stack, 

how it operates and how to test the performance of Netfilter subsystem. However, with 
the significant amount of studying and assistance from my advisor, my skills on testing 
of Netfilter systems grew. This thesis has been a skills learning experience for me as I 
was able to learn many new technologies and their implementations. 

 
During the performance testing, each test objectives and results were predicted 

based on the theoretical knowledge, which simplified the testing process. The results 
obtained were very close to the objectives that were set before starting the tests, which 
has been explained in the test and evaluation section. The outcome of this thesis has 
been accomplished as proposed in the objective section. In order to reach the goal, 
physical Linux server has been selected, for the accuracy of the testing and performance 
evaluations. The performance is evaluated based on the throughput, which is measured 
in packet per seconds (PPS). 

 
Firstly, in the connection tracking, the primary objective was to scale as many 

numbers of simultaneous connections as possible. In order to observe the behavior of 
Linux machine that is acting as a router. The behavior of a device includes the physical 
memory usages, system limitations or bottlenecks. 

 
In this thesis, we have observed that it is possible to scale millions of simultaneous 

connections in connection tracking. In fact, during the performance testing, 16M 
connection states were stored in connection tracking. Furthermore, we have concluded 
that it is possible to scale to as many simultaneous connections as the number supported 
by nf_conntrack_max and the nf_conntrack_buckets parameters in Linux kernel. Since 
there is a hard-coded limit on both the parameters and beyond these limits system would 
not accept any values. 

 
Apart from the system limits, physical memory is another major issue as we have 

observed that the different number of connection states occupy a certain amount of 
physical memory. For example, in the performance test, we have seen that 16M 
connection states occupy 5210MB of physical memory. And if the machine did not have 
enough memory space to store these connection states, the system would crash because 
the system would run out of the physical memory. 
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Secondly, the performance of different iptables targets has been measured, to 
visualize the stateful packet filtering/mangling mechanism in Linux machine. During 
the IP packets filtering/mangling tests, we have measured the performance of default 
behavior of different iptables targets, and compare with the performance of custom built 
module for IP packets filtering/mangling. Furthermore, we have concluded that the 
custom module provided the higher performance than the default iptables targets for 
packets filtering/mangling. In addition, we have also visualized the performance of 
adding a large number of IP flows/rules to the iptables in different chains and tables. We 
conclude that a large number of IP flows/rules in a single table degrade the 
performance. 

 
And finally, in this thesis, we have designed a mathematical formula as well as 

different system designs for arranging a large number of IP flows/rules for getting the 
higher performance. One of the system designs includes linearly arranging of IP flows 
in different iptables chains. While another design is to nest the chains in iptables and add 
the IP flows to these nested chains. Further, we have concluded that for getting the 
better performance we have to arrange IP flows/ rules in a nested chain design. 

 
In conclusion, this thesis has evaluated the viability of building PWGW a high-

performance IP router built on top of Linux operating system. The different 
experimental tests were carried out to measure different forwarding rates of Netfilter in 
different scenarios to conclude that PRGW can be deployed over the Linux architecture. 
Finally, this thesis has tried to give a contribution by reporting results obtained from the 
testing of Linux networking stack. 
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A Appendix 

 
Script for analysis of Connection tracking and hash table #!/bin/bash 

 
if [[ $UID != 0 ]]; then  

echo "Please run this script with sudo:"  
echo "sudo $0 $*"  

exit 1  
fi  
#this script is for testing the Conenction tracking and Hashtable load factor.  
#for finding optimal performance, only loadfactor from 1 through 64 has been selected if [ -z "$1" ]; 
then  

echo usage: $0 [nf_conntrack_max] [pcap-file to create connections] [pcap-file to reuse connections] echo 
 

echo e.g. $0 2097152 1M_capture.pcap 10M_merge_capture.pcap echo  
exit  
fi  
MAX_CONN=$1  
PCAP_CREATE=$2  
PCAP_REUSE=$3  
LOGFILE_CREATE="create.log"  
LOGFILE_REUSE="reuse.log"  
echo "Removing previous log files"  
rm $LOGFILE_CREATE  
rm $LOGFILE_REUSE  
echo "changing the connection tracking maximum value to be $1"  
echo "..."  
sysctl -w net.netfilter.nf_conntrack_max=$1  
sleep 2  
#The test is run 10 times each HT loadfactor  
for a in 1..10  
do  
echo "*** iteration #$a ***" » $LOGFILE_CREATE  
echo "*** iteration #$a ***" » $LOGFILE_REUSE  
echo "**********************"  
for i in 1 2 4 8 16 32 64  
do  

BUCKET=$(($MAX_CONN/$i))  
echo "*** Load factor #$i ***" » $LOGFILE_CREATE  
echo "1.Changing bucket size to $BUCKET" » $LOGFILE_CREATE  
echo "...................."  
sysctl -w net.netfilter.nf_conntrack_buckets=$BUCKET  
echo "2. Flushing conntrack"  
conntrack -F  
sleep 2  
echo "3. Creating new connections in conntrack"  
echo "...................."  
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s  

FILE_CREATE  
sleep 2  
echo "*** Load factor #$i ***" » $LOGFILE_REUSE  
echo "Bucket size is $BUCKET" » $LOGFILE_REUSE  
echo "4. Reusing connections in conntrack" 

 
 
 
 
 
 
 
 
 
$PCAP_CREATE » $LOG- 

 
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_REUSE » $LOGFILE_REUSE  
echo "**************************"  
done  

echo "**************************"  
done 

 
 

Script for testing the CPU performance  
#!/bin/bash  
# Add this at the beginning of the script to assure you run it with sudo if [[ $UID 
!= 0 ]]; then  

echo "Please run this script with sudo:" echo 
"sudo $0 $*" 



 

 

68 
 
 

exit 1  
fi  
if [ -z "$1" ]; then  

echo usage: $0[pcap-file to create connections] [pcap-file to reuse connections] echo  
echo e.g. $0 1M_capture.pcap 10M_merge_capture.pcap  
echo  

exit  
fi 

 
PCAP_CREATE=$1  
PCAP_REUSE=$2 

 
LOGFILE_CREATE="cpu_normal.create.log"  
LOGFILE_REUSE="cpu_normal.reuse.log"  
echo "Removing previous log files"  
rm $LOGFILE_CREATE  
rm $LOGFILE_REUSE 

 
for i in {1..10}  
do  

echo "*** Starting iteration #$i ***"  
echo "1. Flushing conntrack"  
conntrack -F  
echo "2. Creating new connections in conntrack"  
tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_CREATE »  
$LOGFILE_CREATE  
echo "3. Reusing connections in conntrack"  
echo "*** iteration #$i ***" » $LOGFILE_REUSE  
tcpreplay –topspeed –loop=1 –intf1=source0s $PCAP_REUSE » $LOGFILE_REUSE  

done 
 

Script for testing the iptables targets 

 
#!/bin/bash  
if [[ $UID != 0 ]]; then  

echo "Please run this script with sudo:"  
echo "sudo $0 $*"  
exit 1  

fi 
 

if [ -z "$1" ]; then  
echo usage: $0[pcap-file to create connections] [pcap-file to reuse connections][DNAT ip address] echo  
echo e.g. $0 1M_capture.pcap 10M_merge_capture.pcap 100.66.0.2-100.66.0.254  
echo  
exit  

fi  
PCAP_CREATE=$1  
PCAP_REUSE=$2  
IP_ADDRESS=$3 

 
LOGFILE_CREATE="DNAT_create.log"  
LOGFILE_REUSE="DNAT_reuse.log"  
echo "Removing previous log files"  
rm $LOGFILE_CREATE  
rm $LOGFILE_REUSE 

 
echo "Flushing all the iptables rules"  
echo "..................."  
iptables -F  
iptables -F -t raw  
iptables -F -t nat  
iptables -F -t mangle 

 
echo "Marking the DNAT in the PREROUTING chain of iptables..." 
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echo "Destination address will be changed to $IP_ADDRESS range."  
iptables -t nat -A PREROUTING -p udp -i source0 -j DNAT –to $IP_ADDRESS  
echo "Done!!!!!"  
sleep 2 

 
for i in {1..10}  
do  

echo "*** iteration #$i ***" » $LOGFILE_CREATE  
echo "1. Flushing conntrack"  
conntrack -F  
sleep 2  
echo "2. Creating new connections in conntrack"  
echo "...................."  
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_CREATE »  

$LOGFILE_CREATE  
sleep 2  
echo "*** iteration #$i ***" » $LOGFILE_REUSE  
echo "3. Reusing connections in conntrack"  
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_REUSE »  

$LOGFILE_REUSE  
echo "**************************"  

done 
 
 

Script for testing the Marking the packets 
 

#!/bin/bash  
if [[ $UID != 0 ]]; then  

echo "Please run this script with sudo:"  
echo "sudo $0 $*"  
exit 1  

fi  
if [ -z "$1" ]; then  

echo usage: $0[pcap-file to create connections] [Mark value]  
echo  
echo e.g. $0 1M_capture.pcap 2  
echo  
exit  

fi  
PCAP_CREATE=$1  
MARK=$2  
LOGFILE_CREATE="CONN_MARK_create.log"  
echo "Removing previous log files"  
rm $LOGFILE_CREATE  
echo "Setting the MARK $MARK in iptables...."  
iptables -t mangle -A PREROUTING -p udp -j MARK –set-mark $MARK sleep 2  
echo "Done!!"  
for i in {1..10}  
do  

echo "*** iteration #$i ***" » $LOGFILE_CREATE  
echo "1. Flushing conntrack"  
conntrack -F  
sleep 2  
echo "2. Creating new connections in conntrack"  
echo "...................."  
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cach $LOGFILE_CREATE sleep 2  

done 
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