

Ganesh Sharma

Evaluating the performance of Netfilter
architecture in Private Realm Gateway

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 13.08.2018

Thesis supervisor:

Prof. Raimo Kantola

Thesis advisor:

Jesús Llorente Santos

AALTO UNIVERSITY
SCHOOL OF ELECTRICAL ENGINEERING

Abstract of the
Master’s Thesis

Author: Ganesh Sharma

Title: Evaluating the performance of Netfilter architecture in Private Realm

Gateway

Date: 13.08.2018 Language: English Number of pages: 6+69

Department of Communications and Networking

Professorship: Networking Technology Code: COM.thes

Supervisor: Prof. Raimo Kantola

Advisor: Jesús Llorente Santos
Network address translation (NAT) was introduced to decelerate the IPv4 ad-dresses
depletion through separation of a network into the public and private realm. The hosts
in a private network connect to the public Internet by sharing a pool of public IP
addresses, and NAT acts as a gateway between the public and the private networks.
Although NAT alleviates the problem of addresses depletion, it leads to a reachability
problem as NAT would generally block any outside connections to the private
network from the Internet.

This thesis examines a new concept called Private Realm Gateway (PRGW) which is
developed to overcome the shortcoming of NAT. PRGW imitates the NAT
functionality and allows the inbound connections initiated from the public networks
towards a private realm via the Circular Pool of Public Addresses (CPPA). PRGW
provides interoperability between the legacy IP network and hosts in the private
networks and vice-versa, using pre-existing TCP/IP protocols and applications.

PRGW has been implemented on top of Linux operating system, and therefore, the
primary approach in this thesis is to evaluate the forwarding performance of Linux
kernel networking (Netfilter subsystem), as well as inspect the possible performance
tuning methods to achieve higher packets processing rates.

The performance of Netfilter is evaluated by offering heavy traffic load to measure
packet forwarding capability, memory usage by IP traffic as well as overloading the
CPU process. In addition, the stateful mechanism for packet filtering and NAT routing
was evaluated using appropriate iptables lookup and packets traversing through
different chains. When conducting the various tests, by adjusting different parameters
in Linux Netfilter subsystem revels that the PRGW can be deployed over the Linux
architecture.

Keywords: PRGW, CES, NAT, Connection tracking, Netfilter, iptable, IP

 iii

Preface

I would like to take this moment to express my sincere gratitude to Professor Raimo
Kantola for giving me an opportunity to work with him and his team.

I am grateful to Jesus Llorente Santos of his valuable advice and guidance he has

given me throughout the duration of this thesis work. His sincere guidance and support
for my research work and his suggestion has shaped my thesis and his critical comments
helped me improve the quality of my work.

I would also like to thanks my friends for their support and motivation during my

thesis work and during my difficult times.

Last but not the least, I would like to thank my parents and my brothers for their
immense love and encouragement during all these years.

Otaniemi, 13.08.2018

Ganesh Sharma

 iv

Contents

Abstract ii

Preface iii

Contents iv

1 Introduction 1

 1.1 Motivation . 2
 1.2 Objectives . 2
 1.3 Thesis Structure . 2
2 Background 3

 2.1 Network Address Translation (NAT) . 3
 2.2 Customer Edge Switching (CES) . 5
 2.3 Realm gateway . 7
 2.3.1 Realm Gateway Architecture . 8
 2.3.2 Inbound communication . 9
 2.3.3 Outbound Communication . 10
 2.4 Netfilter . 12
 2.4.1 Netfilter chains . 12
 2.4.2 Netfilter packet flow . 15
 2.4.3 IPTABLES . 18
 2.5 Connection Tracking . 19
 2.5.1 Connection states . 21
 2.5.2 TCP state . . 22
 2.5.3 UDP state . 24
 2.5.4 ICMP state . 26
 2.5.5 Default connections . 27
 2.5.6 Untracked connections . 27
 2.5.7 Connection states timeout values on physical devices 27
3 Testbed setup 29

 3.1 Environment setup . 29
 3.2 Test tools . 30
 3.2.1 Tcpdump . 31
 3.2.2 Ostinato . 31
 3.2.3 Tcprewrite . 35
 3.2.4 Tcpreplay . 36
 3.2.5 Scripts . 37
4 Test and Evaluation 38

 4.1 Connection tracking . 38
 4.1.1 Scaling million connections . 39
 4.1.2 Physical memory use by Connection tracking 40

 v

 4.1.3 Hash table load factor . 43
 4.1.4 Thread scheduling on CPU . 45

4.2 IPtables . 47
 4.2.1 iptables targets . 47
 4.2.2 Marking packets . 49
 4.2.3 Custom built iptables module . 53
 4.2.4 NFQUEUE target . 54

4.3 Designing optimal architecture for IP flows/rules . 56
 4.3.1 Linear arrangement of flows/rules . 56
 4.3.2 Multi-step selectors for arranging flows/rules 59

5 Conclusion and Discussion 63

A Appendix 67

vi

Abbreviations
AH
API
ARP
CES
CETP
CIDR
CPPA
CN
CPU
DNS
DNAT
FQDN
FTP
GUI
ICMP
IDS
IP
IPS
MAC
MB
MSL
NAT
NAPTR
NUMA
OS
OSI
PRGW
RAM
RFC
RLOC
SCTP
SPN
SNAT
SSH
SSL
TCP
TTL
TOS
UDP
UN

Authentication Header
Application Programming Interface
Address Resolution Protocol
Customer Edge Switching
Customer Edge Traversal Protocol
Classless Inter-Domain Routing
Circular Pool of IP Addresses
Customer Network
Central Processing Unit
Domain Name System
Destination Network Addresses Translation
Fully Qualified Domain Name
File Transfer Protocol
Graphical User Interface
Internet Control Message Protocol
Intrusion Detection System
Internet Protocol
Intrusion Prevention System
Media Access Control
MegaBytes
Maximum Segment Length
Network Address Translation
Name Authority Pointer
Non-uniform Memory Access
Operating System
Open Systems Interconnection
Private Realm Gateway
Random Access Memory
Request for Comments
Routing Locator
Stream Control Transmission Protocol
Service Provider Network
Source Network Address Translation
Secure Shell
Secure Sockets Layer
Transmission Control Protocol
Time To Live
Type Of Service
User Datagram Protocol
User Network

1

 1 Introduction

Since the dawn of the Internet, it is growing exponentially and transforming the means
of communication every day. The Internet has become the underlying communication
mechanism for information sharing, collaboration and interaction between individuals
regardless of the geographical location. Behind the massive structure of the Internet,
TCP/IP has played the most significant role for expansion of communications and
connecting the vast numbers of network devices on the Internet. Despite the tremendous
success of the Internet, today, the Internet is facing a problem of address exhaustion
after all the number of IP addresses is not unlimited. To resolve the address exhaustion
problem, long-term, as well as short-term solutions, are being developed.

IPv6 being the long-term solution has yet to be deployed across the Internet.

Therefore, until IPv6 is ready and take over the demand for IP addresses, short-term
solution, for instance, CIDR, RFC 1918 addresses and NAT have been compensating
for the problem. In order to address the issue of IP address depletion, NAT is being
extensively implemented across the Internet. A NAT is a device that translates the
private IP addresses to the public addresses and vice versa. In a NAT framework, a
single node acts as a midpoint between a private network and the public network. As a
result, an individual or a pool of unique IP addresses represent a larger group of hosts in
the global IP network.

Furthermore, the NAT device acts as a firewall, blocking the incoming connections

to the private network from the public realm. Consequently, a host from the public
Internet cannot initiate communication with a host in the private network. [1] Thus, the
deployment of NAT causes the loss of end-to-end IP reachability.

To overcome the reachability problems, Professor Raimo Kantola, at the De-

partment of Communications and Networking of Aalto University, proposed a new
technology called "Customer Edge Switching (CES)." CES is based on the transition
from the end-to-end principle to the trust-to-trust principle and replacement of NAT.
CES allows a private host to be globally reachable across the public Internet by
conducting trust and policy negotiation between the communicating edge nodes. In
order to establish trust, both sites should be running CES at their edge, and both the ends
have to be identified through globally unique domains names. [3]

Moreover, communication from the legacy IP networks to the private hosts can be

carried out via Realm Gateway also known as Private Realm Gateway (PRGW).
Furthermore, in order to be able to deploy CES one network at a time, the CES and the
PRGW functionality can be introduced in a single edge node. Alternatively, the PRGW
can be implemented as a standalone solution to overcome the weakness of the NAT
transversal that is needed at present. [2]

2

1.1 Motivation

Private Realm Gateway(PRGW) is developed to overcome the shortcomings of NAT.
PRGW depict the functionality of NAT solutions and allows unilaterally initiated
inbound connections from the public networks towards the private hosts via the Circular
Pool of Public Addresses (CPPA). The PRGW architecture has been implemented over
the Linux operating system. Therefore, the primary motive of this paper is to evaluate
the forwarding performance of Linux kernel networking (Netfilter subsystem) and
inspect the possible performance tuning methods to achieve higher packet processing
rates.

1.2 Objectives

The objective of this thesis is to find the possible bottlenecks of Linux kernel in terms
of packets processing and viability of deploying Private Realm Gateway (PRGW) in
terms of those bottlenecks.

In order to achieve the research objective, the following research questions were

identified:

– What tools and test frameworks can be used for testing Realm Gateway?

– How can the selected testing environment be implemented in end-to-end testing?

– How would the possible bottlenecks in packet processing in the Linux influence
the performance of PRGW?

– What could be proposed for optimization of possible bottlenecks and how?

1.3 Thesis Structure

The thesis has been sub-divided into five chapters; Chapter 2 provides a theoretical
background of the literature review associated with the topics of the thesis. In addition,
the test suite development process has been described in Chapter 3 and detailed
description of results, evaluation and discussion are outlined in Chapter 4, followed by
conclusions and discussion in Chapter 5.

3

2 Background

This chapter focuses on discussing some fundamental concepts and definitions to
understand the key notion of this thesis. The Section 2.1, describes the necessary
background information relevant to the Network Address Translation (NAT). In Section
2.2 and 2.3, the technology underlying the Customer Edge Switching (CES) and the
Private Realm Gateway (PRGW) are discussed. Moreover, the Section 2.4 and 2.5
discusses the Linux Netfilter architecture and Connection tracking on which this thesis
is primarily focused.

2.1 Network Address Translation (NAT)

Network address translation (NAT), was designed as a short-term solution for solving
the IPv4 address depletion until long-term solutions are operational. In a NAT
framework, a single node acts as a midpoint between the public and the private
networks. And consequently, NAT binds the private IP addresses with the globally
routable IP addresses and vice versa, to provide the forwarding functionality for IP
packets traversing between the private and the public networks. [8]

NAT uses RFC 1918 private addresses inside the private networks. These private IP

addresses are then translated to globally unique public IP addresses for connecting to an
outside network. In a NAT architecture, a single or a pool of IP addresses represent the
entire private network on the Internet. Therefore, a NAT device can connect two
networks and translate a private IP (not globally unique) addresses in the internal
network to globally unique routable IP addresses before IP packets are forwarded. [9]

NAT is classified into static and dynamic NAT translation. In static translation, a

single private IP address is mapped to a unique public IP address. The static translation
is not efficient as this solution cannot provide a mechanism for solving the IPv4 address
depletion problem. This solution can be used for servers and devices whose IP addresses
are fixed. In dynamic translation, however, NAT randomly translates the provided
addresses using its pool of public IP addresses. When the last session using an address
binding is terminated, NAT would free the binding so that the global address is recycled
for the later use. NAT devices maintain a table, called NAT table, for keeping track of
sent IP packets and incoming IP packets. NAT devices maintain a state for every
connection with outside networks and any outside connection that does not match any
state will be denied. [7]

A NAT device maintains a state for mapping the translated IP packets for every

connection. A mapping is dynamically allocated for the connection initiated internally
and potentially reused for the specific subsequent connections. A host from a private
network initiates a connection through NAT by sending the first packet. NAT allocates
(or reuses) mapping for a connection where the mapping holds a tuple of IP addresses
and the port used for translation of all the IP packets for that connection. [6]

4

Figure 1: NAT translation

The detail working mechanism of NAT is shown in Figure 1. The diagram illustrates
the working principle of NAT, where a host (IP: 10.0.0.100) in a private network is
communicating with the server (IP: 20.20.20.1) in the public domain. The host creates
an IP packet with the destination IP field to be the IP address of the server, i.e.,
20.20.20.1, while source address to be the host itself, i.e., 10.0.0.100. Then, the private
host sends the IP packet to the default gateway, i.e., the NAT router. When the default
gateway receives the IP packet, it would look into IP header and see a private address,
which cannot be routed in the Internet. Therefore, the private address is translated to the
outbound public address in this case 200.200.0.1, which is globally unique and can be
routed in the Internet.

Now a new packet is created with the source from the NAT router interface and the

destination to be the server (i.e., 200.200.0.1 > 20.20.20.1). The translation information
is stored in a NAT table, and when receiving response traffic from a server, the NAT
table is examined to find the matching entry. If found, the NAT router replaces the
destination again with the IP address of the private host (20.20.20.1 > 10.0.0.100) and
forwards the packet.

As the example (above) illustrate, NAT devices represents an entire private net-work

via only one or a pool of IP addresses in the global network. This ability provides
additional security by effectively hiding the entire internal network behind the one
address. However, a NAT device causes a reachability problem by hiding a private
network from the public Internet. [8] [9]

5

Although NAT allows the public IP addresses to be shared by a large number of
hosts in a private network, its deployment leads to the incoming reachability problem.
The reachability problem restricts an individual host from being reachable via the
Internet and from accepting connections via the public network or a different private
network.

2.2 Customer Edge Switching (CES)

Customer Edge Switching (CES) is a new technology developed in order to replace the
NAT. CES is a new type of firewall based on the principle of trust-to-trust be-tween the
public and the different private networks. CES connects two components namely:
Customer/User Network (CN/UN) that can use the provided IP addresses for the hosts,
while Service Provider Network (SPN) uses the globally unique IP addresses. This
separation of different networks provides complete isolation and transparency, by
creating the possibility to use new technologies and protocols in different network
domains. For example, a core network could be running IPv4, IPv6, IP/MPLS or
Ethernet independently from the technology used in a CN. In addition, the core network
provides Directory Services (DS) for domain resolution, such as DNS. [3]

Figure 2: CES Architecture

The architecture of CN consists of private end hosts while SPN consists of the core
networks that interconnects and routes traffic between the different customer networks.
CES at the edge of CN and SPN networks operates as the stateful firewall and allows or
denies the traffic based on the policy. Furthermore, CES allows a private host to be
globally reachable across the public Internet by establishing trust and policy
negotiations between communicating edge nodes. In order to establish the trust, both
sites should be running CES at the edge and all hosts should be identified through a

6

globally unique fully qualified domain name (FQDN). The CES architecture is deployed
on top of the existing legacy Internet framework using the current IP addresses scheme,
as well as extensively using DNS for global reachability. The hosts residing in a private
domain are identified by using their FQDN instead of unique IP addresses, while IP or
MAC addresses are used as routing locators(RLOCs).[1]

A DNS name resolution triggers every communication in the CES. A name res-

olution is the first step in creating a valid connection state in the CES. CES uses Name
Authority Pointer (NAPTR) queries in order to provide extensibility and better support
for abstract identifiers during communication with another CES. CES uses the circular
pool of private IP addresses for addressing the end-host and the public address to
identify a host uniquely in the public domain. Furthermore, CES implements both
inbound and the outbound policy negotiation for creating a state and allows the packets
to flow or be discarded based on the policy. Thus, the final ’allow’ or ’drop’ decision to
the inbound packets is determined only after a policy negotiation. Therefore, the policy
negotiation prevents unwanted traffic towards the private hosts. [1]

Figure 3: CES to CES Communication

7

 Table 1: Notations

Legends Definitions
A Private IP for Host-A
B Private IP for Host-B
R Public IP for Host-A
PA-B Proxy -address representing Host-B to Host-A
PB-A Proxy -address representing Host-A to Host-B
IDA ID of Host-A
IDB ID of Host-B
RLOCA Routing Locator of CES-A
RLOCB Routing Locator of CES-B
SSTA Session Tag for session initiated in CES-A
SSTB Session Tag for session initiated in CES-B
 Creation of waiting state on incoming DNS query

Figure 3 shows a CES to CES communication. The scenario consists of two different
CES networks: CES-A and CES-B, which are interconnected by a service provider
network (SPN). The Host-A performs a DNS name resolution for destination host, i.e.,
Host-B to establish a session. Then, the Host-A sends a DNS query for hostb.cesb to
CES-A, at this point the CES-A initiate a NAPTR resolution to DNS. In turn, DNS
response conveys the information about the host-B ID and a routing locator for the CES-
B. Next, CES-A initiates a policy negotiation with CES-B. When the policy match is
satisfied for the Host B, CES-A sends back DNS response to the Host A. The response
contains the allocated private IP address. As a result, the Host-A sends the data packets
to a given proxy-address where CES-A will process and forward them accordingly
towards the destination CES-B.

Similarly, the destination CES-B carries out a connection establishment procedure

by a host admission policy. A successful connection establishment creates a connection
state in each CES device, where CES represents a remote host locally using a proxy
address. Both hosts exchange data packets using the respective proxy address.

2.3 Realm gateway

Private Realm Gateway (PRGW) is designed to provide interoperability between the
legacy IP networks and the host in a private network and vice-versa, by using the
existing TCP/IP protocols and applications. Besides, PRGW is a component of CES that
can be implemented in standalone edge devices as well as integrated into CES. PRGW
provides inward reachability from legacy Internet towards a host that resides behind a
CES.

8

PRGW aims to replace the NAT devices at edge networks; in turn, reducing the

problem of IPv4 addresses depletion. PRGW use a pool of addresses at the public side
allowing the inbound connection towards the private networks. In addition, the
communication between the legacy IP host and a host in the private domain would be
carried out identically as NAT by sharing a single/pool of public addresses. [2][4]

2.3.1 Realm Gateway Architecture

PRGW proposed an architectural solution to overcome the drawbacks of the classical
NAT solution. PRGW mirrors the functionality of conventional NAT solution by
allowing the IP devices residing in a private realm to be able to communicate to the
public networks by sharing a single or pool of IP addresses. Contrary, to the NAT,
PRGW allows unilaterally initiated inbound connections from the public net-works
towards the private host via the circular pool of public addresses (CPPA). In addition,
PRGW, distinguishes networks into the public realm and a private realm as shown in the
Figure 4.

Figure 4: Realm Gateway

Figure 5 illustrates a typical PRGW communication between a host-A in private
realm and public host-B in public domain. The public host-B sends DNS query on the
FQDN of a private host-A, i.e., hosta.foo. Upon receiving the DNS query, PRGW
allocates a public IP address from its pool to represent the host-A on the Internet. At this
point, temporary half connections state has been created that allows inbound data
flow/initiation to private host-A.

9

Figure 5: PRGW Communication

2.3.2 Inbound communication

The host residing in the public network sends a DNS query for hosta.foo to its name
server. The DNS server relays the message to a PRGW and upon receiving the DNS
query, host-A reserves an address from the circular pool. The DNS response is sent back
to the public host containing the reserved IP address.

When public host-B receives the DNS response, it sends data packets to the reserved

address. Then the packet is forwarded to the private host after performing public-to-
private address translation. At this point, PRGW creates a full five-tuple connection
entry. Similarly, the response from the private host is sent back to the public host after
performing private-to-public address translation at PRGW. [4]

10

Figure 6: Inbound Communication

 Table 2: Notations

Legends Definitions
A Private IP for Host-A
B Private IP for Host-B
R1 Public IP for Host-A
iPA Local port of Host-A
oPB Local port of Host-B
 Creation of waiting state on incoming DNS query

 Creation of connection state
 Inbound translation modifies the destination IP address and port

with the private host information
 Outbound translation modifies the source IP address and port with

the public host information

2.3.3 Outbound Communication

The host from a private network initiates a connection to the public host as shown in the
Figure 7. The outbound connection to the public host would be translated into the public
address similar to classical NAT, and PRGW would maintain a connection

11
state. When the response from the public host is received PRGW will look up its
connection states, and if a connection is valid, inbound translation of packet would be
carried out, and the packet will be delivered to the private host. However, during the
inbound connection from the public host, the PRGW would use the circular pool of
public addresses (CPPA) for accepting the incoming connections. [2]

 Figure 7: PRGW Outbound communication

 Table 3: Notations

Legends Definitions
A Private IP for Host-A
R1 Public IP for Host-A
B Public IP for Host-B
iPA Local port of Host-A
oPA Public port of Host-A
oPb Public port of Host-B
 Inbound translation modifies the source IP address and port with the public

host information
 Outbound translation modifies the destination IP address and port with the

private host information

12

2.4 Netfilter

Netfilter is a network subsystem that offers user-space tools to control the packet
forwarding functionality in the Linux kernel. Netfilter provides a mechanism for packet
mangling, packet filtering, network address translation as well as port translation
implemented by the kernel networking stack. Furthermore, Netfilter is a set of different
intercepted function calls known as hooks inside Linux kernel. [10] These hooks will be
triggered/callback when an IP packet enters into the Linux networking stack and
depending on the packet property, one or the other hook is called. Netfilter hook
controls the traffic flow inside the kernel networking stack. There are five Netfilter
hooks that will be triggered/callback when the IP packet enters into the Linux
networking stack. Table 4 describes the different hooks and their functionality.[13]

Table 4: Netfilter Hooks

Hook Definations
NF_IP_PRE_ROUTING All the incoming IP packets will trigger this hook.

Further, this hook is processed before any routing
decisions take place regarding where to send the
packet.

NF_IP_LOCAL_IN When the incoming IP packets is destined for the
local system, this hook will be triggered after the
routing of IP packets has been done.

NF_IP_FORWARD This hook is triggered after an incoming packets has
been routed, and when IP packet is to be routed to
another host

NF_IP_LOCAL_OUT Any locally generated outbound IP packets triggered
this hook.

NF_IP_POST_ROUTING This hook is triggered by any outgoing or forwarded
IP packets after routing has taken place and just
before being put on the wire.

Therefore, all the IP packets, both the incoming and the outgoing through the
network device have to be processed through Netfilter network subsystem. [10]

2.4.1 Netfilter chains

Netfilter chains allow the administrative control of the IP packet delivery and the packet
flow within the networking stack. These chains will be triggered when IP packet
registers with netfilter hooks. Netfilter consist of five chains namely PREROUTING,
INPUT, FORWARD, OUTPUT and finally POSTROUTING. These chains will be
triggered sequentially throughout packet flow, for example, every

13

packet without any exceptions will first hit the PREROUTING chain. In the
PREROUTING chain, the packet will be processed through different tables, for
instance, RAW table, MANGLE table and then, NAT table.

Soon after the PREROUTING chain, the routing of the IP packet takes place, where

the packet is sent either to INPUT chain or FORWARD chain depending on the final
destination of the packet. The packet will hit the INPUT chain if the IP packet is
destined for the local system. And the packet will hit FORWARD chain if the packet is
destined for a remote system. In both situations, filtering as well mangling of the packet
is carried out. In addition, if the local system has generated the IP packet, the packet will
hit the OUTPUT chain. And finally, POSTROUTING chain is triggered, where mangle
and source NAT is carried out.

Figure 8 illustrates the packet flow inside the Netfilter subsystem. [17]

14

Figure 8: Packet flow in Netfilter and General networking in Linux

15

2.4.2 Netfilter packet flow

When the physical interface receives an IP packet, NIC driver passes the packet to the
kernel. Next, the packet goes through a series of different steps in the kernel networking
stack to be appropriately processed and delivered to the correct application/system. All
the IP packets traversing via networking stack firs register in PREROUTING chain and
its corresponding table. In the PREROUTING chain, firstly, the packet will hit the
RAW table. The RAW is primarily used for configuring exemptions from connection
tracking. Therefore, the IP packets that are marked as NOTRACK in RAW table will
not appear in connection tracking. [16] And then after the RAW table packets arrive at
the connection tracking, where the connection state is stored.

Soon after connection tracking, packets will go through the MANGLE table. The

MANGLE table is used for altering packet fields, for instances TOS (Type of services),
DSCP, ECN, MARK, IPMARK, and ROUTE. Next, to the MANGLE table, NAT table
is triggered, where the destination address of the IP packet is changed, i.e., DNAT
(Destination NAT) and REDIRECT, BALANCE is also carried out. On most IP
packets, only the destination address of IP packet will be modified. Finally, the IP
packet hits the routing table, in which a decision is made to send the IP packet either to
the INPUT chain or the FORWARD chain based on the destination of IP packets. [13]

– IP packets destined for the local process/applications.

The IP packet will register with the INPUT chain when the packet is destined for
the local system. The INPUT chain has further the MANGLE and then FILTER
table. Firstly, the packet goes through MANGLE table, where, TOS (Type of
services), DSCP, ECN, MARK, and ROUTE fields are modified as per the
requirements. Secondly, the packet travels to the FILTER table where filtering of
the IP packet is carried out for all incoming packets. Finally, after being passed
from all chains and tables, the packet will be delivered to the appropriate process.
Figure 9, details the overall packet flow, destined for the local system only.

16

Figure 9: Packets Destined for Local system

– IP packets destined for the remote system

Similarly, when the packet is destined for a remote system, then the packet will hit
the FORWARD chain. The FORWARD chain also consists of the MANGLE and
the FILTER table, where respective packet fields are modified in MANGLE table,
and further filtering of the packet is carried out. Moreover, now the IP packet
travels through the POSTROUTING chain, where the packet again goes through
MANGLE table and then to NAT table. In the NAT table MASQUERADE,
source NAT (SNAT), and NETMAP are carried out. Finally, after being passed
from all chains and tables, the packet will exit the output interface. Figure 10,
details overall packet flow, destined for a remote system only.

17

Figure 10: Packets Destined for remote system

– Locally generated IP packets

In addition, when a local process generates an IP packet, the packet will travel
through the RAW, the MANGLE and the NAT table in the OUTPUT chain,
where similar functionality is carried out as in the PREROUTING chain. For
instance, adding the connection state entry to the connection tracking, mangling
the packet fields and replacing the destination address (DNAT). Likewise, after
routing table, the packet reached the FILTER table in the OUTPUT chain where
filtering is carried out. Furthermore, the packet traverses through the
POSTROUTING chain, where the packet again goes through the MANGLE table
and then to the NAT table where MASQUERADE, SNAT, and NETMAP are
carried out. Finally, after being passed from all the chains and table packets will
exit the output interface. Figure 11, details overall packet flow, for locally
generated packets only.

18

Figure 11: Packet generated by local system

2.4.3 IPTABLES

IPTABLES is the packet selection mechanism at user-space implemented by the
Netfilter framework, which provides a transparent means for packet filtering and
mangling. All the IP packets that enter the networking stack have to traverse through the
different tables and chains. In these table and chain packets are filtered and mangled
through the different rule sets. To, determine what types of packets will be dropped and
which kinds of packets will be processed through iptables is based on the IP packet
header information. [14]

Furthermore, iptables has been organized into different rule sets by ordering the

different chains and tables. Netfilter chains are the sequential order of processing
different rules and making decisions based on the different criteria found in the packet
header. Netfilter has five different chains PREROUTING, INPUT, FORWARD,
OUTPUT, and POSTROUTING. These chains are classified based on the type of action
that needs to be performed during the packet processing. The tables are a functional
group of packet processing, for example, packet filtering, address translation or packet
mangling. The rules determine either the packet is forwarded to the upper layer for
processing or simply dropped.

In addition, iptables operates at the transport and the network layer of the OSI stack

for processing the IP packets and delivering to the appropriate destination of the packet.
When the kernel receives the packets, IP layer processes the packet and compares the

19

and compares the packet information with the first rule in the rule sets. After reviewing
the rule, the packet will be passed to a local process or sent to another host depending
upon the property of the IP packet. If the packet did not match the first rule, then the
next rule will be evaluated and so on until a matching rule is found. If no matching rule
is found the packet will be discarded, which is defined in the default table-chain
POLICY. Table 5 illustrates the different tables that are available in corresponding
chains in Netfilter.

Table 5: Netfilter iptables and chains

Table /
Chains PREROUTING INPUT FORWARD OUTPUT POSTROUTING
RAW * *
MANGLE * * * * *
NAT * * * *
FILTER * * *
SECURITY * * *

2.5 Connection Tracking

Connection tracking is a block of Netfilter framework that is responsible for storing the
information of all the network connections traversing through the network stack.
Connection tracking provides a mechanism for the kernel to act as a stateful packet
filtering firewall by keeping track of all the network connection states. Further-more, a
particular framework called conntrack module in the kernel is responsible for handling
all connection tracking. This module enables a stateful packet inspection for iptables as
well for the NAT routing. Moreover, connection tracking manage all the active sessions
traversing through the system and the state information is revoked/removed when a
session is closed or the timeout value expires. [14] [17]

Furthermore, the connection tracking is handled in the RAW table of the
PREROUTING chain for both the incoming and outgoing packets. For locally
generated IP packets it is handled by the OUTPUT chain.

The connection entry is stored as a five-tuple element, i.e., protocol, source IP,

source port, destination IP, and destination port for each unique entry. Figure 12, is an
example of a connection tracking entry, the connection entry is for TCP protocol
indicated by TCP keyword at the beginning of the connection state and by the protocol
number as 6. This connection state will expire in 299 seconds, and the communication is
in the ESTABLISHED state and will not be deleted from the table even if the table
becomes full, which is indicated by the ASSURED keyword.

The conntrack entry is stored into two separate nodes (one for each direction) in different

20

Figure 12: Connection tracking entry

linked lists as shown in Figure 13. The hash value is calculated based on the received
packet and used as an index in the hash table. Therefore, the connection states hash
value will be stored in the two nodes of a bucket for both directions, i.e., the incoming
and the outgoing IP packets. In addition, the linked list is known as buckets which are
an element in a hash table. [18]

Figure 13: Hash Table and linked list

21

Furthermore, iteration is done over the linked list (length of a bucket) of the nodes to
find an appropriate entry. The cost to find the distinct conntrack node depends on the
length of the list and the position of the node in the list. Therefore, increasing the
number of buckets decreases the number of nodes in the linked list and thus reduces the
cost of iteration over the linked list. However, with a large number of buckets, there is a
higher probability of buckets being empty and each bucket takes non-swappable
physical memory. [18]

Netfilter defines two essential parameters in Linux kernel for handling the

connection tracking namely, nf_conntrack_max and nf_conntrack_buckets. The
nf_conntrack_max is used for handling the maximum number of connection entries,
while the nf_conntrack_buckets define a maximum length of the hash-table or the
maximum number of buckets. These two parameters are tunable allowing the maximum
entries to be stored in the connection tracking. Furthermore, each connection entry takes
a certain amount of non-swappable memory, and increasing the maximum limit
consumes more memory resources.

In addition, both nf_conntrack_max and nf_conntrack_buckets are computed

automatically according to the amount of available RAM. The maximum connections is
equal to size of hash table multiplied by Hash Table (HT) load factor which is a
command standard. The HT load factor is an average length of linked-list per bucket in
hash table. For optimal performance maximum connections is equal to eight times the
bucket- size, which is a command standard in Ubuntu systems. In addition, in a standard
Linux system, which has 1GB RAM, the maximum number of connection is configured
as 65536, whereas bucket size is set to 8192 (nf_conntrack_max/8). This means the
system can store only 65536 number of entries in a table after that kernel starts to drop
packets since table if full and it cannot keep track of more connections. [18]

2.5.1 Connection states

The connection tracking is further classified into four valid states for determining the
connection status for a particular connection flow. These four states are NEW,
ESTABLISHED, RELATED and INVALID.

 22

 Table 6: Connection states

 State Details

NEW

When the connection tracking detects an IP packets that is not
associated with the existing connections states. The connection
tracking puts that IP packets flow into the NEW state. The NEW state
implies the first IP packet in the communications has been noticed.
The typical example in connection tracking is of TCP
communications, as soon as the conntrack sees the TCP SYN packet,
conntrack will put that packet flow into NEW state. In the case of
other protocols, the first packet might be different than the SYN
packet; still conntrack will consider the NEW state.

ESTABLISHED

The state is changed from NEW to ESTABLISHED when conntrack
has seen the traffic in both directions. For example, during TCP
connection when the conntrack identifies the SYN/ACK packet, the
state will be updated from NEW to ESTABLISHED. While a valid
response has to be received from the remote end in the case of UDP
protocol, and for the ICMP protocol, ICMP echo reply has to be seen.

RELATED

In the connection tracking, any IP flow that is not a part of an existing
connection, but related to another ESTABLISHED connection state,
then the IP flow will be marked as RELATED. For example, FTP-
connection is considered as RELATED.
INVALID & The IP packets that are not identified to be part of any
connection states are considered as INVALID.

INVALID
The IP packets that are not identified to be part of any connection
states are considered as INVALID.

UNTRACKED

The packets that are marked in the RAW tables as NOTRACK is
considered as the UNTRACKED state and these states are not stored
in a conntrack table.

2.5.2 TCP state

TCP communication has three stages called three-way handshake as illustrated in Figure
14.

The first packet in the TCP session is always the SYN packet sent to the destination

host and the destination host replies with the SYN/ACK packet. As soon as the
conntrack detects the SYN packet a NEW state is created with keyword SYN_SENT,
meaning only one direction traffic has been tracked. When replay traffic from the remote
end is seen, i.e., SYN/ACK packet, the state is updated to SYN_RECV, implying that
traffic in both directions has been identified. The SYN_RECV is an intermediate state
between NEW and ESTABLISHED, immediately upon receiving the SYN/ACK packet
the state is updated to ESTABLISHED as shown in Figure 15.

23

Figure 14: TCP connections establishing

During the ESTABLISHED state, actual data packets are transferred between the
hosts and the state is put into the ASSURED mode. The ASSURED mode implies that
the connection state information will not be removed from the conntrack table if the
table becomes full. [10]

At some point in time, the connection state will change from ESTABLISHED to

TIME_WAIT state before terminating the session. The TIME_WAIT state is considered
as a buffer time for any lost or delayed packets received after a connection is closed and
to avoid misunderstanding at the transport layer. [17]

The TCP connection has predefined timeout values for each connections state and

Table 7 shows the default timeout values for different TCP states.

24

Figure 15: TCP connection entry

Table 7: TCP state timeout

State Timeout value
NONE 30 minutes
ESTABLISHED 432000 seconds
SYN_SENT (NEW) 120 seconds
SYN_RECV 60 seconds
FIN-WAIT 120 seconds
TIME_WAIT 120 seconds
CLOSE 10 seconds
CLOSE-WAIT 12 hours
LAST_ACK 30 seconds
LISTEN 120 seconds

2.5.3 UDP state

UDP is a connection-less protocol, that is UDP does not try to establish a session first,
as TCP does before actual communication could begin. Therefore, when the connection
tracking sees the first UDP packet conntrack will create a NEW state

25

with the keyword UNREPLIED as shown in Figure 17. When the reply traffic from
destination end is observed, then the NEW state is updated to ESTABLISHED and the
state is moved to ASSURED mode. Figure 16 depicts UDP communication with
appropriate state. [17]

Figure 16: UDP connections establishing

Figure 17: UDP connection entry

Similar to TCP, UDP also has predefined timeout values. However, UDP has only
two timeout values, and they are relatively small and mostly suitable for all UDP
applications.

26

Table 8: UDP state Timeout

State Timeout value
NEW 30 seconds

ESTABLISHED 180 seconds

2.5.4 ICMP state

ICMP protocol will not establish any session during the ICMP communication.
However, ICMP packets are also stored in conntrack as valid states just like TCP or
UDP. All ICMP messages will have two states NEW and ESTABLISHED, and Figure
18 illustrates the ICMP connections state in connection tracking system.

Figure 18: ICMP connections state

The first packet in ICMP communication is the ICMP echo request message, which
is considered as a NEW state in conntrack. And upon receiving ICMP echo reply
message from the remote end, the state is updated to ESTABLISHED. In case of ICMP
protocol, ESTABLISHED state is not marked as ASSURED because ICMP doesn’t
establish a session. Figure 19 shows the ICMP connection entry in connection tracking.

Furthermore, if an ICMP packet is lost or denied by the remote host or the network

is unreachable, then, the initial state will be NEW in connection tracking. However, the
ICMP error message as network unreachable is recognized as the RELATED state, and
ICMP error massage will be delivered to originating node. [17]

27

Figure 19: ICMP connections entry

ICMP protocol has only one timeout value.

Table 9: ICMP state Timeout

State Timeout value
ICMP 30 seconds

2.5.5 Default connection

When the connection tracking system is unaware of any specific protocols, and then
conntrack will handle these protocols state as the default connection. These connections
are treated similarly to UDP connections. However, timeout values for these states are
different. The default timeout value is 600 seconds. [10]

2.5.6 Untracked connections

The packets that are marked in the RAW tables as NOTRACK are considered as
UNTRACKED and are not stored in the conntrack table. [10]

2.5.7 Connection states timeout values on physical devices

Below are some key default timeout values for different protocols.

sysctl -a | grep nf | grep timeout

net.netfilter.nf_conntrack_generic_timeout = 600

net.netfilter.nf_conntrack_icmp_timeout = 30

28

net.netfilter.nf_conntrack_icmpv6_timeout = 30

net.netfilter.nf_conntrack_tcp_timeout_close = 10

net.netfilter.nf_conntrack_tcp_timeout_close_wait = 60

net.netfilter.nf_conntrack_tcp_timeout_established = 432000

net.netfilter.nf_conntrack_tcp_timeout_fin_wait = 120

net.netfilter.nf_conntrack_tcp_timeout_last_ack = 30

net.netfilter.nf_conntrack_tcp_timeout_max_retrans = 300

net.netfilter.nf_conntrack_tcp_timeout_syn_recv = 60

net.netfilter.nf_conntrack_tcp_timeout_syn_sent = 120

net.netfilter.nf_conntrack_tcp_timeout_time_wait = 120

net.netfilter.nf_conntrack_tcp_timeout_unacknowledged = 300

net.netfilter.nf_conntrack_udp_timeout = 30

net.netfilter.nf_conntrack_udp_timeout_stream = 180

29

3 Testbed setup

This chapter gives an overview of the test setup for performance testing and all the
different tools, applications, and scripts that are used to carry out the performance
testing of PRGW.

3.1 Environment setup

The entire test for connection tracking, hash-table performance, and CPU performance
has been evaluated under the single test environment which has been virtualized on the
Linux machine. The physical details of the testing Linux machine are shown Table 10.

Table 10: Hardware details of Physical server

Architecture x86_64

Kernel version 4.8.0-54-generic
Physical memory 32G
CPU op-mode(s) 32-bit, 64-bit

CPU(s) 24
Thread(s) per core 2
Core(s) per socket 6

NUMA node(s) 2
Vendor ID 6

CPU family Genuine Intel
Model 45

Model name Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
CPU MHz 1244.000

CPU max MHz 2300.0000
CPU min MHz 1200.0000

Furthermore, the test environment has been configured by using the virtual Ethernet
interfaces, which are always available in pairs. Two pairs of virtual Ethernets namely
source0s and source0 as well as sink0s and sink0, have been created. Furthermore, the
ARP broadcast has been disabled, to use the interface with its own MAC address as
source and destination of Ethernet frames while sending the packets. In addition,
interface source0 has been configured with IP address 10.0.0.1/8, making possible to use
all available IP addresses of the class via source0s. Like-wise, sink0 has been
configured with 100.64.0.1/8 IP addresses making possible to use the entire 100th range
for addressing via sink0s. Therefore, using such a large address space in two networks
allows 224 224 numbers of host-to-host IP communications. Figure 20 represents the test
setup.

30

Figure 20: Test Setup for Connection tracking and IP tables

Moreover, Linux by default does not route any IP packets. In order to make Linux
machine to route the IP packets and act as a router, ip -forwarding has to be enabled in
the Kernel. The IP forwarding mechanism has been configured by adding the command
net.ipv4.ip_forward=1. The configuration setup has been made persistent even after
boot, by editing the /etc/sysctl.conf file to add IP forwarding mechanism.

3.2 Test tools

To be able to carry out the testing processes, different types of network tools and
applications have been used. For example, Ostinato to generate test traffic, tcpdump for
capturing packets, tcprewrite for mangling with packets fields. And finally, tcpreplay for
sending the IP traffic across the network. In addition, UDP protocol has been selected
for testing because, UDP is a light-weight protocol, it is very fast, it has less overhead
and finally, give more performance than connection oriented protocol.

31

3.2.1 Tcpdump

Tcpdump is a network traffic capturing tool widely used in the Linux system. It is used
to capture or filter network traffic traversing through the network devices for analyzing
the traffic. Further, tcpdump can be used to dump the IP packets capture to the console
or writing to files.[20] During the testing phase, network traffic has been captured in
different files. Later a capture file has been used to generate network traffic for
performance testing. Following is the tcpdump command used to capture the traffic on
interface source0 and writing capture to the file 1M_source0.2.pcap.

tcpdump -nli source0 -w 1M_source0.2.pcap –B 65536

Moreover, the mergecap command has been used to merge two or more pcap files to

make single pcap file comprising a large number of packets.

mergecap 1M_source0.2.pcap 1M-source0.3.pcap –w merged_file.pcap

The above command was used to combine two pcap files containing 1M packets to
create single pcap file with 2M packets.

3.2.2 Ostinato

Ostinato is an open-source and GUI network traffic generator for Windows and Linux
system. It offers a robust python API for network test automation and load testing.
Ostinato is composed of two components, the controller, and the drone. The controller
could be a simple GUI running on a client machine or the client running a simple python
script. The drone, however, is a primary component of Ostinato responsible for creating,
sending and capturing traffic whereas, in the default mode of Ostinato, the controller
together with the drone is merged into a single architecture. [19] And, this single
architecture of Ostinato was used for generating the network traffic during the testing of
PRGW.

The Ostinato is capable of generating a high volume of network traffic approximate

to the transmission speed of Ethernet adapter. In addition, it can create all kinds of
packets with different protocols including the higher layer payload in packets as well.
Ostinato was used to generate sample packets by randomizing IP addresses only,
without having to worry about the upper layer protocols. Moreover, Ostinato can be
used to send, receive and capture the traffic across the network at different rates.

Figure 21 shows the GUI layout of Ostinato. Ostinato uses a port group for all the

available interfaces that are controlled by the Ostinato. These port groups can be
created, deleted and modified, including the remote network devices that can be added
to the port group. In addition, particular interface have to be selected to be able to
generate network traffic. [19]

32

Figure 21: Ostinato GUI interface

Figure 22 shows the edit stream tab, where the IP packets are created. This section is
used to select different data-link protocols like Ethernet II, 802.3Raw and, many
more In addition, the network layer protocols, for example, ARP, IPv4 or IPv6 are
also available Furthermore, not only TCP or UDP but also ICMP, and multicast
messages are available as transport layer protocols. However, during this test, UDP
has been the primary focus. Finally, the upper layer information could be selected as
per the requirements of the packets.

33

Figure 22: Ostinato crafting packet

34
Moreover, the UDP packets have been generated up to the transport layer for testing

of PRWG. Also, the random source and destination UDP port have been configured,
allowing more randomness in the IP packets. Finally, one million sample IP packets
were created. Figure 23 shows simple packet structure designed by the Ostinato for
testing purpose. Further, Table 11 illustrates the properties of the packet.

Table 11: Test packet properties

Field Value

Frame length 64 bytes
Source MAC 00:00:00:00:01:02
Destination MAC 00:00:00:00:01:01
Source IP 10.0.0.2-10.255.255.254
Destination IP 100.64.0.2-100.255.255.254
Source port 1-65535
Destination port 1-65535
UDP checksum 0x0000

Finally, using Ostinato 1 million UDP sample packets were created, these packets
were random IP source and destination along with random source and destination ports
numbers. However, the randomness causes Ostinato to generate IP packets with a bad
checksum. The IP packets with bad checksum would not create a connection state in
connection tracking. The kernel will try to verify the checksum and the packets with bad
checksum will be dropped. Further, the bad checksum was a bug in Ostinato, therefore,
in order to overcome the problem; tcprewrite have been used to fix the bad checksum.

tcprewrite --fixcsum --infile=64k_sample.pcap --outfile=64k_fix_csum.pcap

Above command was used to fix the bad checksum from sample capture file, –

fixcsum is the argument which rewrites the checksum from the input file (–infile) and
writes to a new file (–outfile)

35

Figure 23: Packet View in Ostinato

3.2.3 Tcprewrite

Tcprewrite is used to rewrite different IP packet fields, for instance, Layer 2 & Layer 3
addresses, bad checksum, TCP/UDP port numbers from pcap files. Furthermore,
tcprewrite can be used to create various pcap files with unique source IP and destination
IP. This tool is used because of the problem caused by ostinato during packet
generations. Tcprewrite is used primarily to fix IP checksum and to create a large
number of IP packets with unique source and destinations. [23].

Using this tool 16M different IP packets were created. The following is an ex-ample

of rewrite source and destination IP of sample 1M packets.

tcprewrite –pnat=10.0.0.0/16:10.1.0.0/16,--pnat=100.64.0.0/16:100. 65.0.0/16 --infile
= 1M_fixed_csum.pcap --outfile=1M_subnet_41.pcap

36

In the above command sample, the pcap (1M_fixed_csum.pcap) file has been
rewritten with a different source, and destination IP addresses to a new pcap file:
1M_subnet_1.pcap. The sample file contains packets with the source from 10.0.0.0/16
network that has been changed to the 10.1.0.0/16 subnet. And the destination address
from 100.64.0.0/16 network has been changed to 100.65.0.0/16 network by using the –
pnat flag.

3.2.4 Tcpreplay

Tcpreplay is the open source network utility for editing and replaying the previously
captured network traffic. It is a handy tool for testing the performance of different
network devices, for instance, router, firewalls, switches, network intrusion prevention
system and intrusion detection system (IPS and IDS). Tcpreplay provides detailed
network analysis, and the statistics for the network performance. For in-stances, the total
number of packets, throughput in terms of PPS, as well as flows per second (FPS), the
total number of bytes sent, packet loss during the transmission. [21]

In addition to network statistics, tcpreplay can send the IP packets across the

network at very high speed, using the previously captured pcap files. Further, large
numbers of packets can be transmitted from a single or the multiple interface. In the
default mode, tcpreplay can send network traffic at the same speed that tcpdump or
Wireshark has captured the packets. However, the rate at which packets are transmitted
can be manually configured. Tcpreplay provides a fully scalable and reputable means of
replaying pcap files even at high-speed network such as the 10GigE network.

tcpreplay --topspeed --intf1=source0s 1M-packet_cthashing.pcap

The above command was used for replaying network traffic and following are the
flags used:

- - topspeed is used to send packets as fast as possible

- - intf1 is used to indicate interface that traffic is being addressed and

- - 1M_packet_cthashing.pcap is the pcap file that tcpreplay is transmitting onto the

network.

Other important flags/options:

- - enable-file-cache this option allows to cache a pcap file to physical memory

- - loop=num it loop pcap file for given amount of times.

37

- - limit = num manually sets the number of packets to be sent

- - topspeed sends the packet as fast as possible.

- - intf1= string interface from which traffic is sent

- - pps-multi = num number of packets to send for each time interval.

- - preload-pcap preloads packets into the RAM before sending.[22]

3.2.5 Scripts

A different script file has been created to ease out the tremendous amount of work for
filtering the data and running various commands repeatedly. For each set of tests,
separate script file has been made which has been included in the appendix sections.

38

4 Test and Evaluation

This chapter describes an overview and the purpose of each test along with a
comprehensive description. Altogether, there are three testing categories in this thesis,
which is further divided into the respective smaller test cases. And finally, the results
have been gathered from the different test cases, their corresponding graphs and analysis
have been discussed.

4.1 Connection tracking

First and foremost, the connection tracking test has been carried out for evaluating the
performance of conntrack module to store the connection state of the IP packets, and
analyzing the impact of the conntrack module on the Linux machine. Further, the test
has been conducted using the UDP protocol which has the default timeout value of 30
seconds.

Command used to view the UDP timeout value:

sysct -a | grep conntrack_udp
net.netfilter.nf_conntrack_udp_timeout = 30

Because the default timeout value is very small for the UDP protocol and is not

sufficient time for the testing purpose. The default timer has to be changed, to make sure
that connection states will not expire while the test is running. For this reason, the UDP
timeout value has been increased by 1000 times, i.e., (30000seconds), and the following
command has been used to fix the timeout problem.

sysctl -w net.netfilter.nf_conntrack_udp_timeout=30000

Moreover, during the test of connection tracking, two primary variables in

Netfilter system have been tuned namely, nf_conntrack_max and
nf_conntrack_buckets. The nf_conntrack_max define the maximum number of
connection entries that can be stored by the connection-tracking table. While the
nf_conntrack_bucket, specify the size of the hash table for storing the list of
connection entries.

Commands used:

sysct -a | grep conntrack_max

net.netfilter.nf_conntrack_max = 262144

sysct -a | grep conntrack_buckets

net.netfilter.nf_conntrack_buckets = 65536

In addition, these parameters will be tuned as per requirements of the test and its
objective.

39

4.1.1 Scaling million connections

The primary objective is to test the feasibility of scaling the number of connections on
connection tracking to millions.

Firstly, different values of the nf_conntrack_max and nf_conntrack_buckets were tuned

to verify that Linux kernel would take the provided values or not. The following
commands have been used to investigate the objectives of the test.

sysctl -w net.netfilter.nf_conntrack_max = 65536
sysctl -w net.netfilter.nf_conntrack_buckets = 65536

Furthermore, both the nf_conntrack_max and nf_conntrack_buckets values were

kept identical throughout the test period. Since the primary goal of this test was to verify
if Linux kernel would accept the provided values.

Table 12 illustrates the different values of the nf_conntrack_max and the

nf_conntrack_buckets that were implemented on Linux kernel.

Further, it can be visualized that kernel took almost all the assigned values, without
any errors. However, after the threshold value for both the parameters, kernel starts to
reject the given values. The maximum number of connections sup-ported by the Linux
kernel is 536,870,912 and for the nf_conntrack_buckets is 268,435,456. Therefore,
beyond these limits, the system did not accept any values, instead, give an error as the
kernel cannot allocate memory.

Hence, the maximum values that can be configured on Linux Kernel for both the

nf_conntrack_max and the nf_conntrack_buckets have been determined to be
536,870,912 and 268,435,456 respectively. Moreover, as the size of the hash table, i.e.,
nf_conntrack_buckets start to increase, so does the physical memory, even though no
connections have been offered.

Therefore, from the test, it could be concluded that as the size of buckets starts to

increase, so is the physical memory used by buckets also increase. Furthermore, there is
a hard-coded limit on both the number of maximum connections and the bucket size
provided by the Linux kernel regardless of available physical memory.

40

Table 12: Netfilter values for nf_conntrack_max and nf_conntrack_buckets

nf conntrack nf conntrack
Status max buckets

65,536 65,536 Kernel took value
131,072 131,072 Kernel took value
262,144 262,144 Kernel took value
524,288 524,288 Kernel took value

1,048,576 1,048,576 Kernel took value
2,097,152 2,097,152 Kernel took value
4,194,304 4,194,304 Kernel took value
8,388,608 8,388,608 Kernel took value

16,777,216 16,777,216 Kernel took value
33,554,432 33,554,432 Kernel took value
67,108,864 67,108,864 Kernel took value

134,217,728 134,217,728 Kernel took value
268,435,456 268,435,456 Kernel took value

 Kernel throws an error as it cannot allocate
536,870,912 536,870,912 memory for the nf_conntrack_buckets while

 accepting nf_conntrack_max value
 Kernel throws and error as it cannot allocate

1,073,741,824 1,073,741,824 memory for the nf_conntrack_buckets and
 invalid argument for nf_conntrack_max
 Kernel throws an error as invalid argument

2,147,483,648 2,147,483,648 for both the nf_conntrack_buckets and the
 nf_conntrack_max

4.1.2 Physical memory use by Connection tracking

The objective is to test the physical memory consumed by the connection states, and
the number of connections that could be offered to connection tracking.

First and foremost, the test traffic has been sent from the interface sources0s

destined to the interface sink0s as shown in Figure 24. The IP traffic is routed from
source0 to sink0 and the connection state for IP packets will be created at the connection
tracking. Therefore, sending the traffic with a different number of packets will create
different number of states in connection tracking. And thus, the corresponding memory
usage by connection tracking can be observed.

Furthermore, the nf_conntrack_max value has been changed accordingly to support

the number of connection that has been offered. For example, for the 1 million number
of connections offered, the nf_conntrack_max value has been set to 1048576. In
addition to nf_conntrack_max, the nf_conntrack_buckets has also been changed with
the HT factors (i.e. 1,2,4,8,16,32,64,128 and 256) to see the memory usages.

41

Figure 24: Test Setup for Connection tracking

sysctl -w net.netfilter.nf_conntrack_max = 1048576
sysctl -w net.netfilter.nf_conntrack_buckets = 65536

Table 13 details the different number of connection states that were created in

connection tracking and the corresponding physical memory used by each number of
connections. In the connection tracking, a single connection takes 320Bytes of memory,
and 1M connections would take 320MB of physical memory as shown in Table 13. [18]

Table 13: Connection tracking memory utillization

Connection offered Memory used(MB)

1 Millions 320
2 Millions 640
4 Millions 1280
8 Millions 2560
16 Millions 5120

In addition, Table 14 demonstrates the change of nf_conntrack_buckets sizes, for the

8M number of connections. In spite of changing the bucket size from small to the large
value, the memory used by the connection tracking remains the same.

42

Table 14: Connection tracking memory utilization for 8M connections

Connection nf conntrack HT load Memory used
offered buckets factor (MB)

8 Millions 8388608 1 2560
8 Millions 4194304 2 2560
8 Millions 2097152 4 2560
8 Millions 1048576 8 2560
8 Millions 524288 16 2560
8 Millions 262144 32 2560
8 Millions 131072 64 2560
8 Millions 65536 128 2560
8 Millions 32768 256 2560

Finally, when the number of connections offered to connection tracking is larger
than the nf_conntrack_max value, then the kernel would start to drop packet since there
is no space left on the conntrack table to add the connection entry. Therefore, the
threshold value of nf_conntrack_max should be a significantly larger value. Also, the
physical memory of the system plays an essential part in storing the maximum number
of connections. Therefore, the physical memory has to be sufficient enough to tolerate
the larger amount of IP traffic.

43

4.1.3 Hash table load factor

The objective is to test the performance impact of the HT load factor for the
nf_conntrack_max and nf_conntrack_buckets.

During the test, five different load factors (1, 2, 4, 8, and 16) were selected for

analyzing the performance of the hash table. Also, load factor zero (i.e., without
enabling connection tracking) has been tested for each millions connection, by enabling
the NOTRACK in a prerouting RAW table.

The number of buckets (nf_conntrack_buckets) has been changed according to the

nf_conntrack_max value during the test. For example, to create 8 million connections in
the connection tracking table, the nf_conntrack_max was set to 8388608, and the
nf_conntrack_buckets was 524288, which is load factor of 16.

Firstly, the connection states have been created by sending a particular number of IP

packets, and the corresponding throughput is measured in packets per second (PPS). In
addition to creating the connection, the created connection has been reused by sending
the same IP traffic, and the corresponding throughput has been recorded as well. Each
test has been run for 10 times in order to have more accuracy on the throughput value,
and finally, the median value is drawn from these tests.

Figure 25 shows the PPS to create connection states in the conntrack table along

with the PPS to reuse the connection state on different HT load factors.

44

Figure 25: Millions of connections

Table 16 illustrates the throughput values for 8M connections, and it can be seen that
the performance is better with the smaller HT load factor. Because of the fact that, with
the smaller load factor, the length of the linked list in a bucket is also small. And
iteration cost to add or find the position of the connection state entry in the bucket list
depends on the length of the list. Therefore, the performance with smaller load factor is
better.

Furthermore, without enabling connection tracking (NOTRACK) the performance is

high for all number of IP packets as illustrated in Table 15. Because the connection
states were not created and reused during the traffic flow.

45

Table 15: Connection tracking NOTRACK performance

 Load factor(0) Connections offered Throughput(PPS)
 NOTRACK 1M 225734
 NOTRACK 2M 226244
 NOTRACK 4M 227532
 NOTRACK 8M 253452
 NOTRACK 16M 254011

 Table 16: Hash table load factor

nf conntrack nf conntrack
 Create Reuse

Load Factor throughput throughput
 max buckets (PPS) (PPS)

1 8388608 8388608 143127 319298
2 8388608 4194304 141408 315009
4 8388608 2097152 122786 310210
8 8388608 1048576 113265 297796

16 8388608 524288 89405 281774

In addition, as HT load factor starts to increase, performance starts to drop. This is
because the connection entry is stored in only one direction in a linked list (bucket), and
hash value had to be calculated based on the packet information and indexed in a hash
table. Further, iteration is done over the linked list to find an appropriate entry.
Therefore, as the load factor increase, the length of the linked list in the hash table also
increases, so the iteration time to find the entry also increases, thus decreasing the
performance for creating and reusing the connections.

Finally, in conclusion, it is recommended to use the long hash table with a smaller

linked list since the cost of hash calculation remains constant.

4.1.4 Thread scheduling on CPU

The primary objective is to observe the CPU performance on the different scenarios
for thread scheduling in the CPU.

For analyzing the CPU performance, the HT default load factor, i.e., 8 and the load

factor 16 were used, while the connection offered was 1 million connections. Also, the
nf_conntrack_max has been configured to 4 million connections, in order to, use
roughly 25% of the hash table. This configuration gives a consistent result as more
elements in the hash table lead to the hash collisions.

To begin with, three test cases were identified for CPU performance test. Firstly,

the normal OS handling for thread scheduling on the CPU, i.e., OS will decide which
processes are executed on which core as well as managing the interrupts and the system
calls.

46

The following command has been used during the normal CPU performance test.
Secondly, the command taskset has been used for pinning the thread to a particular core
of the CPU and the command used during the test is shown below. Finally, a specific
core of the CPU has been reserved for the performance test.

tcpreplay –topspeed –loop = 1 –enable-file-cache –intf1 = source0s
1M_capture.pcap

taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1 = source0s
1M_capture.pcap

During the test, IP traffic has been offered to the connection tracking, and the

corresponding throughput has been documented. Next, for each test case; the connection
states were created, and they were reused. These tests have been carried out 10 times to
estimate the performance approximately. And finally, the median value was drawn from
these 10 tests, which is illustrated in Table 17.

Table 17: Performance table for CPU scheduling

Load factor 16
Test Case nf conntrack nf conntrack create(pps) reuse(pps)

 max buckets
CPU normal 4194304 262144 120265 162899
CPU pinning 4194304 262144 122850 199604
CPU reserve 4194304 262144 121581 197262

 Load factor 8
CPU normal 4194304 524288 126104 169166
CPU pinning 4194304 524288 135106 213130
CPU reserve 4194304 524288 129534 205508

It is observed that the CPU pinning and CPU reservation are giving more

performance than the CPU normal because of the reason that the CPU was explicitly
instructed to run a specified process on the particular core of CPU for both CPU pinning
and CPU reservation. While, in the CPU normal, the OS has automatically handled the
interrupt and system calls. However, the performance deviation was similar for all the
three scenarios.

In addition, the CPU performance is identical for both the HT load factors 16 and 8,

with insignificant variation. Figure 26 depicts the CPU performance for all test cases,
and it is quite difficult to conclude which test case is performing better.

47

Figure 26: CPU performance

4.2 IPtables

In the Netfilter, shortly after the states have been created in connection tracking for IP
packets, the IP packets proceed their journey within various tables in PRE-ROUTING
chain and as well as in POSTROUTING chain. In different chains, the IP packets pass
through the different tables, where different rules for IP packets are applied. Hence the
operating system acts as a stateful firewall. In this section, different rules will be
implemented on different tables in both PREROUTING and POSTROUTING chain to
examine the performance of stateful firewall mechanism on Linux machine.

4.2.1 Iptables targets

The objective is to compare the performance of different IPTABLES targets.

48

Firstly, the nf_conntrack_max was set to 4 million (4194304), while the

nf_conntrack_buckets was configured as 1048576, in order to create 1M connections.
Therefore, only 25% of the hash table is used, to avoid any hash collisions. The
following commands have been used.

sysctl -w net.netfilter.nf_conntrack_max = 4194304

sysctl -w net.netfilter.nf_conntrack_buckets = 1048576

Further, the performance test has been carried out by using five iptables targets,

NOTRACK, FORWARD, DNAT, SNAT, and finally, SNAT/DNAT were carried out
together. These targets were implemented mainly in the PREROUTING and the
POSTROUTING chain. The NOTRACK, FORWARD, and DNAT were per-formed in
PREROUTING chain, while SNAT in POSTROUTING chain and finally SNAT/DNAT
in both PREROUTING and POSTROUTING chain. The command used to configure
the different performance test scenarios are shown below.

iptables -t raw -I PREROUTING -i source0 -j NOTRACK

iptables -A FORWARD -i source0 -j ACCEPT

iptables -t nat -A PREROUTING -i source0 -j DNAT --to 100.255.255.254

iptables -t nat -A POSTROUTING -o sink0 -j SNAT --to 100.255.255.253

Secondly, after configuring the appropriate test scenarios, 1M connection states

were created. After connection state has been established, IP packets are processed
through the appropriate table(s) either in PREROUTING or POSTROUTING chain.
Likewise, another 10 million packets (the original 1M packets merged 10 times) were
offered for reusing established connection states. More-over, the test has been carried
out 10 times to get more accuracy on the throughput data, and the median value is
calculated for easier visualization.

In Figure 27, the performance of reusing the connection states is better than creating

connection states. This is due to the fact that creating a new connection consume more
time then reusing the same connection states. Further, NOTRACK is performing better
than other iptables targets in terms of creating connections. Since the NOTRACK target
will not add the state entry to the connection tracking. Therefore, the performance is
much better than the other targets. While for the rest of iptables targets the performance
remains overall similar. Although, SNAT performance is somewhat less as compared to
other targets because SNAT is per-formed in the POSTROUTING chain. And the
packets will be processed through each chain and tables within the chains before SNAT
is carried out. Therefore, the performance is less than others targets.

49

Figure 27: IPTABLES targets performance

4.2.2 Marking packets

The objective is to compare the performance of the iptables rules placed at the
different positions in the NAT table, and matching the IP rules with packets that are
marked in the MANGLE table.

Firstly, a separate chain named CIRCULAR_POOL has been added to the NAT

table in the PREROUTING chain. Further, the 64K number of the IP rules have been
attached to the CIRCULAR_POOL. And finally, the IP packets have been marked in the
MANGLE table. And consequently, the IP packets traverse through the NAT table,
which is performing DNAT to the marked IP packets.

The performance is measured by marking the IP packets to match the first, the

middle and the last rule (i.e., rule 1, rule 32768 and rule 65536) in the NAT table. Then,
the 64K IP packets were sent through the network to test the performance of the IP
packets traversing through a large number of rules in the NAT table.

50

iptables -t nat -N CIRCULAR_POOL

iptables -t nat -I PREROUTING -m mark ! --mark 0 -j CIRCULAR_POOL

iptables -t nat -I CIRCULAR_POOL -m mark --mark 1 -j DNAT --to-destination 100.66.0.1

iptables -t mangle -A PREROUTING -p udp -j MARK --set-mark 1

Figure 28: Performance for first, middle and last positions of IP rules

Figure 28, illustrates the vast performance difference between the different positions of the IP
rules. The middle and the last position of the IP rule in the NAT table is giving the worst
performance. Because each packet will traverse through all the rules in CIRCULAR_POOL
until the match is found for the IP packet. Hence, the performance is very low for the middle
and the last IP rule in the NAT table. Therefore, it is not appropriate to have a large number of
rules in the NAT table.

51

Furthermore, a second test has been carried out to measure the performance of the
1st, 10th, 100th, 1000th and 10000th position of IP rule in NAT table, which can be
seen in Figure 29. From the figure, it is understood that as the number of rules in the
NAT table increases, the performance starts to degrade. There is significant
performance degradation from the 100th position to the1000th position. Therefore, still
having 1000 IP rules in the NAT table gives the worst performance.

Figure 29: Performance for different positions of IP rules

Finally, to get an optimal number of IP rules in the NAT table, a third test has been
carried out by testing the 1st, 10th, 100th 200th up to the 500th position in the NAT
table and the result is shown in Figure 30.

52

Figure 30: Performance for positions of IP rules

From Figure 30 it can be observed that in every 100 IP rule that is added; the
performance is reduced by roughly 15%. Furthermore, the performance is quite
acceptable until the 200th position of IP rule in the NAT table. Therefore, it will be best
to configure iptables to have less than 200 rules in one table for getting the better
performance.

53

4.2.3 Custom built iptables module

The primary objective of this test is to measure the performance of custom build
module in iptables against the default behavior of the iptables.

During the test, a custom build iptables module named MARKDNAT has been

installed. The custom module is the iptables extensions which requires the use of both a
user and a kernel space module. Furthermore, the module can only be used in NAT table
in the PREROUTING chain, which implements the standard action of the MARK and
the DNAT target. Hence this module allows performing DNAT operation based on the
packets mark. [5]

First and foremost, the test was carried out by designing 2048 IP rules in the NAT

table, for translating the destination IP address of the packet. Next, the IP packets are
marked in the MANGLE table of the PREROUTING chain. Then, the 1M packets were
sent through the network to test the impact of the marking of the IP packets and its
implications of traversing the IP packets through a large number of rules in the NAT
table. Furthermore, another test was carried out, where only one rule known as the
MARKDNAT was implemented in the NAT table. And finally, the same number of IP
packets were transferred through the network to measure the performance.

iptables -t nat -N CIRCULAR_POOL
iptables -t nat -I PREROUTING -m mark ! --mark 0 -j CIRCULAR_POOL
iptables -t nat -I CIRCULAR_POOL -m mark --mark 1 -j DNAT --to-destination
100.64.0.255
iptables -t nat -I CIRCULAR_POOL -m mark --mark 2 -j DNAT --to-destination
100.64.0.255

Commands for custom build module of iptables:

iptables -t nat -N CIRCULAR_POOL

iptables -t nat -I PREROUTING -m mark ! --mark 0 -j CIRCULAR_POOL
iptables -t nat -I CIRCULAR_POOL -j MARKDNAT --or-mark 1 -m comment
--comment ’DNAT to packet mark’

Figure 31 illustrates the performance difference for the default behavior of iptables
against the custom built module in iptables. From Figure 31, it is seen that as the position
of rule increases, the performance starts to decline for the default behavior of the iptables.
Further, the performance degradation is due to the time consumed by the iptables for
finding the appropriate match on the IP rules in the NAT table. Therefore, performance is
directly proportional to the number of IP rules in the NAT table. At the same time, the
performance of the custom build module of the iptables remains constant across any
number of the IP rules in the NAT table. Hence, implementing custom built iptables
module eliminates the bottleneck and increases performance. And finally, simplify the
implementation of IP rules in the NAT table.

54

Figure 31: performance of custom MARKDNAT

In conclusion, it is not recommended to have a large number of IP rules in the
iptables. Since a large number of rules significantly slows down the performance. And,
in order to get the optimal performance, MARKDNAT module should be implemented.

4.2.4 NFQUEUE target

The objective is to test the performance of Netfilter kernel module to create multiple
queues and finally, process the queued IP packets at user space.

55

The NFQUEUE target is mainly used for queuing the IP packets in the kernel space
to be processed by user-land applications before sending the IP packets to the final
destination. NFQUEUE provides a mechanism for passing the IP packets out of the
stack for queuing to user space. And, then receiving the IP packets back into the kernel
with a verdict specifying what to do with the IP packets (such as ACCEPT or DROP).
Further, the IP packets may also be modified in user space before reinjection back to the
kernel.

In order to carry out the test, a custom builds Netfilter-nfqueue module has been

compiled with source code from the git hub. [24] Next, using the source code, four and
eight queues were created to test the performance for 1M packets. In addition, different
test cases were proposed to test the performance of the NFQUEUE, for instances queue-
CPU-fanout, without using CPU-fanout, in the simple forwarding state and iptables
performing DNAT. Following commands have been executed to create four and eight
queues.

iptables -t mangle -A PREROUTING -i source0 --src 10.3.0.1/18 -j NFQUEUE --
queue-num 0

iptables -t mangle -A PREROUTING -i source0 --src 10.3.64.1/18 -j NFQUEUE --
queue-num 1

iptables -t mangle -A PREROUTING -i source0 --src 10.3.128.1/18 -j NFQUEUE --
queue-num 2

iptables -t mangle -A PREROUTING -i source0 -j NFQUEUE --queue-balance 0:3 -
-queue-cpu-fanout

Figure 32 illustrates the performance of NFQUEUE for the different scenarios, for

instance, simple forwarding, while using CPU fanout and no-CPU fanout options, and
finally test with DNAT. It is seen that simple forwarding performance is better than
DNAT because more processing is needed at prerouting chain after receiving packets
from user space (i.e., modify destination address). Also, while using queue-CPU-fanout
options, the load is spread across different queues. However, performance for using
queue-CPU-fanout option and without using fanout options remains similar for all test
cases.

Moreover, the nfqueue source code is compiled to test for eight queues. As

compared to the queues four test, the performance is somewhat lower because the new
test case has a large number of queues and it takes time for processing all queues.
Therefore, it could be concluded that lesser number of queues should be implemented
for achieving higher performance.

56

Figure 32: Tcpreplay performance for nfqueue

4.3 Designing optimal architecture for IP flows/rules

The primary objective in this section of testing is to determine a model/design for
arranging a large number of IP rules/flows in the different chains. The design will be
identified as the best-performing model based on the hit-counts; lower the hit-counts,
the better the design for arranging the IP rules/rules. Further, the development of a
model includes developing a mathematical formula for determining the total hits-counts
for all number of IP rules/flows. After developing a mathematical formula, a specific
number of rules will be arranged in the different designs. During the testing phase, both
the linear and the nested model will be tested mathematically and practically.

4.3.1 Linear arrangement of flows/rules

The objective of the test is to develop a mathematical formula for arranging the
different number of IP rules/flows in the linear architecture and based on the
formula, testing the performance of different linear architectures.

57

In the linear architecture, chains will be arranged linearly and IP rules/flows are

added to corresponding chains, so that the matching of IP rules will be processed from
top to down until a match is found. Therefore, for the 64000 number of IP rules, there
could be a different number of linear architectures for arranging the rules. The
mathematical model, equation 1, try to design different architectures based on the total
hit counts for a particular design. The formula for determining a total hits as per the
number of IP rules in a specific chain(s) on the iptables.

 (1)

Where, S - is the number of selectors or chains.

Ri - is numbers of IP rules/flows in ith selectors

σi - is sum of numbers of IP rules in ith selectors,

 (2)

Equation 1 represents a formula for the linear arrangement of IP rules/flows in
different chains. And, the total hits-count can be determined for all the number of
rules/flows in a linear design. Based on equation 1, Table 18 illustrates different
numbers of the linear model and the corresponding number of total hits.

Table 18: Linear design

Number of chain(s) Number of rules per chain(s) Total hit counts
1 65536 2147581952
2 32768 1073872896
4 16384 537067520
8 8192 268763136

16 4096 134807552
32 2048 68222976
64 1024 35717120

128 512 21037056
256 256 16842752

As seen from Table 18, there will be less hits, when both the number of IP rules and

the number of chains are equal. The number of IP rules in chains determines the number
of hits and larger the number of IP rules yields the larger numbers of hits so that
performance will be lower and vice-versa. Therefore, for optimal performance, it is
recommended to have both the number of chains and IP rules in a chain to be the same
or nearly equal, as concluded from the mathematical model.

58

Figure 33: Tcpreplay performance or linear-design of IP flows/rules

Figure 33 illustrates the performance of different linear design of IP rules/flows as
per the mathematical model. It is seen that as the number of chains increases and the
number of IP rules decreases, performance starts to increase, whereas the number of hit
starts to drop. The best performance is yielded, when the number of chains and the
number IP rules in a chain are equal, which has been confirmed by the mathematical
model. Therefore, in conclusion, while implementing the IP rules in iptables it should be
noted that the number of chains and the number of IP rules in a chain should be the
same or nearly equal for better performance.

59

4.3.2 Multi-step selectors for arranging flows/rules

The objective is to design a mathematical formula to minimize the hit-counts across
multiple chains and finally, test the performance by arranging the IP flows in a
nested multi-step chains architecture.

In the nested design, the chains will be arranged in a tree-like nested arrangement as

shown in Figure 34. Figure 34 illustrates the basic idea of how nested chains are
designed and how the IP packets jump through different branches of the chain. Each
chain will have a certain number of generic IP flows/rules which will be further divided
into sub-chains with more specific IP flows/rules. For example, in Figure 34, the first
chain/selector will have IP flow that will have a match for all the IP packets. Next, the
second level selector will have IP flows that have a match for all the IP packets for that
specific branch only. And finally, the third level will have only one IP flow that matches
for the single IP packet flow only.

Figure 34: example of nested design of flows

Therefore, the IP packets will hit the first selector and based on the IP flows in the
first selector. The IP packets jump to the next level selector within the same branch until
a match is found.

Hence, for arranging the different numbers of rules, there could be many different

arrangements. Equation 3 try to design the different mathematical model based on total
hit-counts. The optimal design will be one with least hit-count.

60

The formula for determining the total hit-count per the number of IP rules in the

chain(s).

 (3)
Where, Ft – is number of final selectors/chains.

R – is the number of IP flows in that selector(s)/chain(s).

β – is the sum of all possible combinations of selectors in different level.

For example, in three level of selectors β would be the following:

 (4)
Where,

S1 - is first level of selectors,

S2 - is second level of selectors, and

S3 - is third level of selectors.

From the equation 3, nested arrangement of the IP flows can be determined along

with the total hit-counts for all the IP flows in the particular design. Furthermore, based
on the equations 1 and 3 the following four different architectures have been designed to
test the performance of the 64000 number of IP flows.

– Level_1_selectors: It has total 256 number of chains, and each chain has 256 rules.

This architecture is designed based on equation 1, while rest of the other
architectures are based on equation 3.

– Level_2_selectors: This is arranged in two level of selectors; the first level has 16

chains, and each chain is further divided into 16 sub-chains in the second level.
Therefore, the final number of chains is 256, and each chain has 256 rules.

– Level_3_selectors: It consists of three level of selectors. The first level has four

chains, and each chain has further eight sub-chains in the second level. And
finally, each chain in the second lever are further divided into eight chains at the
level three. Therefore, the final number of chains is 256, and each has 256 rules.

– Level_4_selectors: Four level of selectors form this architecture. The first level has

four chains, and subsequently, each level of selectors also has 4 sub-chains and so
on until the level of four. Therefore, the final number of chains is 256, and each
chain has 256 rules.

61

In addition, Table 19 illustrates the different numbers of level of selectors and the

corresponding total hit-counts.

Table 19: Nested design of IP flows/rules

Level of selectors Number of final chain and Total hit counts
 rules

1 [Linear] 256, 256 16842752
2[s1=16, s2=16] 256, 256 9601024

3 [s1=4, s2=8, s3=8] 256, 256 9240576
4 [s1=4, s2=4, s3=4, s4=4] 256, 256 9142272

Furthermore, from Table 19 it could be visualized that as the nesting of chains

increases, the total hit-count decreases. The linear design is the worst architecture in
terms of hit-counts since it has the highest of hit-counts (more than 80% of hit-counts)
as compared to other designs. While other three models are quite similar to each other,
only minor variation in terms of hit-counts. Among the four designs, the four-layered
nested architecture has the least hit-count because when the number of nested
steps/levels increases, the possibility of finding a match in the chains decreases, and the
hit-counts is also reduced. Besides, the nesting of chains also provides more controlled
management of IP flows in the chains. Since the IP flows with the more specific match
could be arranged carefully, to have the least hit-counts.

Finally, the test setup has been designed as per the mathematical model, where

chain(s) and IP flows/rules are arranged accordingly to Table 19. Finally, the test has
been carried out to measure the performance of different designs. Finally, with the
performance data and the hit-counts, a graph has been plotted as shown in Figure 35.

Figure 35 conforms to the mathematical model of nested design for arranging IP

flows. It is seen that level-4 design is the best design as compared to others. However,
the performance is not heavily different among nested designs, since the hit-counts are
similar. Therefore, it can be concluded that the hit-counts can be reduced by arranging
the IP flows in multi-step chains. As the number of steps/levels in design increase, so
performance also increases. Consequently, nesting of selectors is more appropriate than
a linear arrangement of IP rules/flows, since it gives more controlled management of
rules and chains as well as better performance.

62

Figure 35: Tcpreplay performance for nested-design of IP flows

63

5 Conclusion and Discussion

The primary objective of the thesis was to evaluate the forwarding performance of
Linux Netfilter subsystem in order to deploy the PRGW on top of Linux architecture to
ensuring that all components of PRGW would operate as designed. And finally,
investigate the scalability issues of PWGW for provisioning a node for millions of
subscribers. Furthermore, this thesis evaluates the performance of Netfilter by using
different parameters for instance, how many simultaneous connections can be created,
physical memory consumed by connections, overloading CPU process, IP packets
filtering and packets mangling.

At the beginning of thesis work, I was completely unaware of the networking stack,

how it operates and how to test the performance of Netfilter subsystem. However, with
the significant amount of studying and assistance from my advisor, my skills on testing
of Netfilter systems grew. This thesis has been a skills learning experience for me as I
was able to learn many new technologies and their implementations.

During the performance testing, each test objectives and results were predicted

based on the theoretical knowledge, which simplified the testing process. The results
obtained were very close to the objectives that were set before starting the tests, which
has been explained in the test and evaluation section. The outcome of this thesis has
been accomplished as proposed in the objective section. In order to reach the goal,
physical Linux server has been selected, for the accuracy of the testing and performance
evaluations. The performance is evaluated based on the throughput, which is measured
in packet per seconds (PPS).

Firstly, in the connection tracking, the primary objective was to scale as many

numbers of simultaneous connections as possible. In order to observe the behavior of
Linux machine that is acting as a router. The behavior of a device includes the physical
memory usages, system limitations or bottlenecks.

In this thesis, we have observed that it is possible to scale millions of simultaneous

connections in connection tracking. In fact, during the performance testing, 16M
connection states were stored in connection tracking. Furthermore, we have concluded
that it is possible to scale to as many simultaneous connections as the number supported
by nf_conntrack_max and the nf_conntrack_buckets parameters in Linux kernel. Since
there is a hard-coded limit on both the parameters and beyond these limits system would
not accept any values.

Apart from the system limits, physical memory is another major issue as we have

observed that the different number of connection states occupy a certain amount of
physical memory. For example, in the performance test, we have seen that 16M
connection states occupy 5210MB of physical memory. And if the machine did not have
enough memory space to store these connection states, the system would crash because
the system would run out of the physical memory.

64

Secondly, the performance of different iptables targets has been measured, to
visualize the stateful packet filtering/mangling mechanism in Linux machine. During
the IP packets filtering/mangling tests, we have measured the performance of default
behavior of different iptables targets, and compare with the performance of custom built
module for IP packets filtering/mangling. Furthermore, we have concluded that the
custom module provided the higher performance than the default iptables targets for
packets filtering/mangling. In addition, we have also visualized the performance of
adding a large number of IP flows/rules to the iptables in different chains and tables. We
conclude that a large number of IP flows/rules in a single table degrade the
performance.

And finally, in this thesis, we have designed a mathematical formula as well as

different system designs for arranging a large number of IP flows/rules for getting the
higher performance. One of the system designs includes linearly arranging of IP flows
in different iptables chains. While another design is to nest the chains in iptables and add
the IP flows to these nested chains. Further, we have concluded that for getting the
better performance we have to arrange IP flows/ rules in a nested chain design.

In conclusion, this thesis has evaluated the viability of building PWGW a high-

performance IP router built on top of Linux operating system. The different
experimental tests were carried out to measure different forwarding rates of Netfilter in
different scenarios to conclude that PRGW can be deployed over the Linux architecture.
Finally, this thesis has tried to give a contribution by reporting results obtained from the
testing of Linux networking stack.

65

References

[1] J. L. Santos. Private realm gateway. Master’s Thesis, Department of Commu-
nications and Networking, Aalto University,Espoo, 2012.

[2] R. Kantola, J. L. Santos, N. Beijar Policy-based communications for 5g mobile with

customer edge switching. Security and Communication Networks, Depart-ment of
Communications and Networking, Aalto University,Espoo, 2015.

[3] Routing Edge-to-Edge and Through Ethernets. http://www.re2ee.org/

[4] R. Kantola, J. L. Santos, N. Beijar and P. Leppäaho. Implementing NAT Traversal

with Realm Gateway. IEEE Int’l Conference on Communications, 2013.

[5] J. L. Santos. customer_edge_switching_v2. https://gitlab.cloud.
mobilesdn.org/CES/customer_edge_switching_v2

[6] S. Guha, K. Biswas, B. Ford, S. Sivakumar and P. Srisuresh. NAT Behavioral

Requirements for TCP. https://tools.ietf.org/html/rfc5382

[7] Cisco Inc. IP addressing: NAT configuration Guide, IOS relese 15M&T.
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/ configuration/15-
mt/nat-15-mt-book/iadnat-addr-consv.html

[8] K. Egevang and P. Francis, The IP Network Addresses Translator (NAT).

https://www.ietf.org/rfc/rfc1631.txt

[9] P. Ellingwood, IP Network Address Translator (NAT) Terminology and Con-
siderations. https://tools.ietf.org/html/rfc2663

[10] J. Srisuresh, A Deep dive into Iptables and Netfilter Architecture.

https://www.digitalocean.com/community/tutorials/a-deep-dive-into-
iptables-and-netfilter-architecture

[11] P. N. AYUSO, Netfilter’s connection tracking system https://people.
 netfilter.org/pablo/docs/login.pdf

[12] Wikipedia, Flow of network packets through the Netfilter https://en.

wikipedia.org/wiki/Netfilter#/media/File:Netfilter-packet-flow. svg

[13] R. Russel and H. Welte, Linux Netfilter hacking HOWTO. https:
//www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.
html#toc3

[14] M. Bonola, L. Bracciale, Packet filtering with Linux, Netfilter and IP tables.

http://www.grep.it/RMD/05-Netfilter.pdf

http://www.re2ee.org/
https://gitlab.cloud.mobilesdn.org/CES/customer_edge_switching_v2
https://gitlab.cloud.mobilesdn.org/CES/customer_edge_switching_v2
https://tools.ietf.org/html/rfc5382
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/15-mt/nat-15-mt-book/iadnat-addr-consv.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/15-mt/nat-15-mt-book/iadnat-addr-consv.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/15-mt/nat-15-mt-book/iadnat-addr-consv.html
https://www.ietf.org/rfc/rfc1631.txt
https://tools.ietf.org/html/rfc2663
https://people.netfilter.org/pablo/docs/login.pdf
https://people.netfilter.org/pablo/docs/login.pdf
https://en.wikipedia.org/wiki/Netfilter#/media/File:Netfilter-packet-flow.svg
https://en.wikipedia.org/wiki/Netfilter#/media/File:Netfilter-packet-flow.svg
https://en.wikipedia.org/wiki/Netfilter#/media/File:Netfilter-packet-flow.svg
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html#toc3
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html#toc3
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html#toc3
http://www.grep.it/RMD/05-Netfilter.pdf

66

[15] M. Boye, Netfilter Connection Tracking and NAT Implementations. https:

//wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf

[16] Man page of IPTABLES Man page of IPTABLES. http://ipset.netfilter.
org/iptables.man.html

[17] Iptables info. Iptables. http://www.iptables.info/en/iptables-contents. html

[18] VOIP magazine. Tuning the Linux connection tracking system.

https://voipmagazine.wordpress.com/2015/02/27/tuning-the-linux-connection-
tracking-system/

[19] Ostinato org. Ostinato User manual https://userguide.ostinato.org/

[20] TCPDUMP. tcpdump(8) - Linux man page https://linux.die.net/man/8/ tcpdump

[21] TCPREPLAY. tcpreplay http://tcpreplay.synfin.net/wiki/tcpreplay

[22] tcpreplay(1) - Linux man page. tcpreplay https://linux.die.net/man/1/ tcpreplay

[23] TCPREWRITE. tcprewrite(1) - Linux man page https://linux.die.net/
man/1/tcprewrite

[24] NFQUEUE Source Code. netfilter-nfqueue-samples https://github.com/

irontec/netfilter-nfqueue-samples

https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf
http://ipset.netfilter.org/iptables.man.html
http://ipset.netfilter.org/iptables.man.html
http://www.iptables.info/en/iptables-contents.html
http://www.iptables.info/en/iptables-contents.html
https://voipmagazine.wordpress.com/2015/02/27/tuning-the-linux-connection-tracking-system/
https://voipmagazine.wordpress.com/2015/02/27/tuning-the-linux-connection-tracking-system/
https://voipmagazine.wordpress.com/2015/02/27/tuning-the-linux-connection-tracking-system/
https://userguide.ostinato.org/
https://linux.die.net/man/8/tcpdump
https://linux.die.net/man/8/tcpdump
http://tcpreplay.synfin.net/wiki/tcpreplay
https://linux.die.net/man/1/tcpreplay
https://linux.die.net/man/1/tcpreplay
https://linux.die.net/man/1/tcprewrite
https://linux.die.net/man/1/tcprewrite
https://github.com/irontec/netfilter-nfqueue-samples
https://github.com/irontec/netfilter-nfqueue-samples

67

A Appendix

Script for analysis of Connection tracking and hash table #!/bin/bash

if [[$UID != 0]]; then

echo "Please run this script with sudo:"
echo "sudo $0 $*"

exit 1
fi
#this script is for testing the Conenction tracking and Hashtable load factor.
#for finding optimal performance, only loadfactor from 1 through 64 has been selected if [-z "$1"];
then

echo usage: $0 [nf_conntrack_max] [pcap-file to create connections] [pcap-file to reuse connections] echo

echo e.g. $0 2097152 1M_capture.pcap 10M_merge_capture.pcap echo
exit
fi
MAX_CONN=$1
PCAP_CREATE=$2
PCAP_REUSE=$3
LOGFILE_CREATE="create.log"
LOGFILE_REUSE="reuse.log"
echo "Removing previous log files"
rm $LOGFILE_CREATE
rm $LOGFILE_REUSE
echo "changing the connection tracking maximum value to be $1"
echo "..."
sysctl -w net.netfilter.nf_conntrack_max=$1
sleep 2
#The test is run 10 times each HT loadfactor
for a in 1..10
do
echo "*** iteration #$a ***" » $LOGFILE_CREATE
echo "*** iteration #$a ***" » $LOGFILE_REUSE
echo "**********************"
for i in 1 2 4 8 16 32 64
do

BUCKET=$(($MAX_CONN/$i))
echo "*** Load factor #$i ***" » $LOGFILE_CREATE
echo "1.Changing bucket size to $BUCKET" » $LOGFILE_CREATE
echo "...................."
sysctl -w net.netfilter.nf_conntrack_buckets=$BUCKET
echo "2. Flushing conntrack"
conntrack -F
sleep 2
echo "3. Creating new connections in conntrack"
echo "...................."
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s

FILE_CREATE
sleep 2
echo "*** Load factor #$i ***" » $LOGFILE_REUSE
echo "Bucket size is $BUCKET" » $LOGFILE_REUSE
echo "4. Reusing connections in conntrack"

$PCAP_CREATE » $LOG-

taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_REUSE » $LOGFILE_REUSE
echo "**************************"
done

echo "**************************"
done

Script for testing the CPU performance
#!/bin/bash
Add this at the beginning of the script to assure you run it with sudo if [[$UID
!= 0]]; then

echo "Please run this script with sudo:" echo
"sudo $0 $*"

68

exit 1
fi
if [-z "$1"]; then

echo usage: $0[pcap-file to create connections] [pcap-file to reuse connections] echo
echo e.g. $0 1M_capture.pcap 10M_merge_capture.pcap
echo

exit
fi

PCAP_CREATE=$1
PCAP_REUSE=$2

LOGFILE_CREATE="cpu_normal.create.log"
LOGFILE_REUSE="cpu_normal.reuse.log"
echo "Removing previous log files"
rm $LOGFILE_CREATE
rm $LOGFILE_REUSE

for i in {1..10}
do

echo "*** Starting iteration #$i ***"
echo "1. Flushing conntrack"
conntrack -F
echo "2. Creating new connections in conntrack"
tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_CREATE »
$LOGFILE_CREATE
echo "3. Reusing connections in conntrack"
echo "*** iteration #$i ***" » $LOGFILE_REUSE
tcpreplay –topspeed –loop=1 –intf1=source0s $PCAP_REUSE » $LOGFILE_REUSE

done

Script for testing the iptables targets

#!/bin/bash
if [[$UID != 0]]; then

echo "Please run this script with sudo:"
echo "sudo $0 $*"
exit 1

fi

if [-z "$1"]; then
echo usage: $0[pcap-file to create connections] [pcap-file to reuse connections][DNAT ip address] echo
echo e.g. $0 1M_capture.pcap 10M_merge_capture.pcap 100.66.0.2-100.66.0.254
echo
exit

fi
PCAP_CREATE=$1
PCAP_REUSE=$2
IP_ADDRESS=$3

LOGFILE_CREATE="DNAT_create.log"
LOGFILE_REUSE="DNAT_reuse.log"
echo "Removing previous log files"
rm $LOGFILE_CREATE
rm $LOGFILE_REUSE

echo "Flushing all the iptables rules"
echo "..................."
iptables -F
iptables -F -t raw
iptables -F -t nat
iptables -F -t mangle

echo "Marking the DNAT in the PREROUTING chain of iptables..."

69

echo "Destination address will be changed to $IP_ADDRESS range."
iptables -t nat -A PREROUTING -p udp -i source0 -j DNAT –to $IP_ADDRESS
echo "Done!!!!!"
sleep 2

for i in {1..10}
do

echo "*** iteration #$i ***" » $LOGFILE_CREATE
echo "1. Flushing conntrack"
conntrack -F
sleep 2
echo "2. Creating new connections in conntrack"
echo "...................."
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_CREATE »

$LOGFILE_CREATE
sleep 2
echo "*** iteration #$i ***" » $LOGFILE_REUSE
echo "3. Reusing connections in conntrack"
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cache –intf1=source0s $PCAP_REUSE »

$LOGFILE_REUSE
echo "**************************"

done

Script for testing the Marking the packets

#!/bin/bash
if [[$UID != 0]]; then

echo "Please run this script with sudo:"
echo "sudo $0 $*"
exit 1

fi
if [-z "$1"]; then

echo usage: $0[pcap-file to create connections] [Mark value]
echo
echo e.g. $0 1M_capture.pcap 2
echo
exit

fi
PCAP_CREATE=$1
MARK=$2
LOGFILE_CREATE="CONN_MARK_create.log"
echo "Removing previous log files"
rm $LOGFILE_CREATE
echo "Setting the MARK $MARK in iptables...."
iptables -t mangle -A PREROUTING -p udp -j MARK –set-mark $MARK sleep 2
echo "Done!!"
for i in {1..10}
do

echo "*** iteration #$i ***" » $LOGFILE_CREATE
echo "1. Flushing conntrack"
conntrack -F
sleep 2
echo "2. Creating new connections in conntrack"
echo "...................."
taskset -c 16 tcpreplay –topspeed –loop=1 –enable-file-cach $LOGFILE_CREATE sleep 2

done

	Preface
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Structure

	2 Background
	2.1 Network Address Translation (NAT)
	2.2 Customer Edge Switching (CES)
	2.3 Realm gateway
	2.3.1 Realm Gateway Architecture
	2.3.2 Inbound communication
	2.3.3 Outbound Communication

	2.4 Netfilter
	2.4.1 Netfilter chains
	2.4.2 Netfilter packet flow
	2.4.3 IPTABLES

	2.5 Connection Tracking
	2.5.1 Connection states
	2.5.2 TCP state
	2.5.3 UDP state
	2.5.4 ICMP state
	2.5.5 Default connection
	2.5.6 Untracked connections
	2.5.7 Connection states timeout values on physical devices

	3 Testbed setup
	3.1 Environment setup
	3.2 Test tools
	3.2.1 Tcpdump
	3.2.2 Ostinato
	3.2.3 Tcprewrite
	3.2.4 Tcpreplay
	3.2.5 Scripts

	4 Test and Evaluation
	4.1 Connection tracking
	4.1.1 Scaling million connections
	4.1.2 Physical memory use by Connection tracking
	4.1.3 Hash table load factor
	4.1.4 Thread scheduling on CPU

	4.2 IPtables
	4.2.1 Iptables targets
	4.2.2 Marking packets
	4.2.3 Custom built iptables module
	4.2.4 NFQUEUE target

	4.3 Designing optimal architecture for IP flows/rules
	4.3.1 Linear arrangement of flows/rules
	4.3.2 Multi-step selectors for arranging flows/rules

	5 Conclusion and Discussion

