
Aalto University
School of Science
Master’s Programme in Security and Mobile Computing (NordSecMob)

Manoj Kumar

Serverless computing for the Internet of
Things

Master’s Thesis
Espoo, Aug 10, 2018

Supervisors: Mario Di Francesco, PhD, Aalto University
Satish Narayana Srirama, PhD, University of Tartu

Advisor: Mario Di Francesco, PhD, Aalto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/162136549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Security and Mobile Computing
(NordSecMob)

ABSTRACT OF
MASTER’S THESIS

Author: Manoj Kumar
Title:
Serverless computing for the Internet of Things
Date: Aug 10, 2018 Pages: 64
Major: Security and Mobile Computing Code: T3011
Supervisors: Mario Di Francesco, PhD

Satish Narayana Srirama, PhD
Advisor: Mario Di Francesco, PhD
Cloud-based services have evolved significantly over the years. Cloud computing
models such as IaaS, PaaS and SaaS are serving as an alternative to traditional
in-house infrastructure-based approach. Furthermore, serverless computing is a
cloud computing model for ephemeral, stateless and event-driven applications
that scale up and down instantly. In contrast to the infinite resources of cloud
computing, the Internet of Things is the network of resource-constrained, hetero-
geneous and intelligent devices that generate a significant amount of data. Due to
the resource-constrained nature of IoT devices, cloud resources are used to pro-
cess data generated by IoT devices. However, data processing in the cloud also
has few limitations such as latency and privacy concerns. These limitations arise
a requirement of local processing of data generated by IoT devices. A serverless
platform can be deployed on a cluster of IoT devices using software containers to
enable local processing of the sensor data. This work proposes a hybrid multi-
layered architecture that not only establishes the possibility of local processing of
sensor data but also considers the issues such as heterogeneity, resource constraint
nature of IoT devices. We use software containers, and multi-layered architecture
to provide the high availability and fault tolerance in our proposed solution.
Keywords: IoT, Serverless computing, Fog computing, Docker
Language: English

2

Acknowledgements

I wish to express my gratitude to my supervisors Mario Di Francesco and
Satish Narayana Srirama for their valuable inputs, feedbacks and engagement
throughout this master thesis.

Thank you!

Espoo, Aug 10, 2018

Manoj Kumar

3

Abbreviations and Acronyms

API Application Programming Interface
ARM Advanced RISC Machine
CLI Command-line Interface
CISC Complex Instruction Set Computing
DBaaS Database as a Service
DNSRR DNS Round Robin
DNS Domain Name System
IoT Internet of Things
IBM International Business Machines Corporation
ISA Instruction Set Architecture
JSON JavaScript Object Notations
REST Representational State Transfer
RISC Reduced Instruction Set Computing
SDK Software Development Kit
STDIN Standard Input
STDOUT Standard Output
STDERR Standard Error
TLS Transport Layer Security
WWW World Wide Web

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Problem statement . 8
1.2 Scope and Goal . 8
1.3 Structure of the Thesis . 9

2 Background 10
2.1 Internet of Things . 10
2.2 Hardware platforms . 11

2.2.1 Advanced RISC machine 11
2.2.2 x86 platform . 12
2.2.3 x64 platform . 13

2.3 Software containers and Docker 14
2.3.1 Container-based virtualization 14
2.3.2 Docker containers . 15
2.3.3 Dockerfile . 16
2.3.4 Container orchestration 18

3 Serverless Computing 23
3.1 Evolution of Cloud Computing 23
3.2 Apache OpenWhisk . 26

3.2.1 OpenWhisk internal architecture 28
3.2.2 Setup and Triggers . 29

3.3 OpenFaaS . 31
3.3.1 Architectural Overview 31
3.3.2 OpenFaaS Setup . 32

3.4 IronFunctions . 34
3.5 Kubeless . 36
3.6 Fission . 39

5

4 Design and Implementation 42
4.1 System Architecture . 42
4.2 Function execution offloading 45

4.2.1 Terminology . 45
4.2.2 Communication for the offloading decision 46
4.2.3 Offloading algorithm explanation 48

4.3 Implementation . 51

5 Evaluation 52
5.1 Methodology . 52

5.1.1 Evaluation criteria . 52
5.2 Analysis . 53

5.2.1 Offloading Analysis . 56

6 Conclusion 59

6

Chapter 1

Introduction

The history of the Internet begins with the development of ARPANET in
the 1960s by the US Department of defence [1]. A standardized protocol
suite for the Internet was introduced in the 1970s in the form of TCP/IP
which was followed by the world wide web (WWW) in 1980s [2]. By the
end of 1990s, it became accessible to the common population. With over 7.5
billion user’s across the globe and a growth rate of over 1000 percent from
2000 to 2018, the Internet is now in use more than ever [3]. The Internet
has revolutionised the involvement of technology in day to day life. From
smart-phones to smart-watches, weather to agriculture, smart cars to smart
homes, the Internet is visibly influencing our way of life.

In addition to ordinary users, Internet accessibility has also significantly
changed information technology industry and services. Cloud computing
is one of such services which is gaining wide popularity. Cloud computing
is a model where computing services such as storage, compute servers and
database are provided to end users over the Internet by cloud providers.
Users are charged per usage for availing these services. This billing model is
similar to utilities such as electricity, gas, and water. Cloud computing not
only significantly reduced the potential investment for the users but has also
reduced the time to access infrastructure and services [4]. As a consequences,
businesses of different sizes are moving from traditional in-house data centres
to cloud-based services. Netflix is a prime example of the migration of an
overgrowing business to the cloud. They moved all of their in-house services
to Amazon Web Services in January 2016 to overcome the problem of ver-
tical scaling of their vast databases at their static data centres [5]. Indeed,
features such as auto-scaling, redundancy, low initial investment and oper-
ational cost metered service make cloud-based models a leading option for
organisations with large and increasing data volumes.

Similar to cloud-based services, Internet of Things (IoT) and related ap-

7

CHAPTER 1. INTRODUCTION 8

plications have gained massive popularity in recent times. IoT network com-
prises smart and connected objects called “things”. Things communicate with
each other without any human intervention and generate a significant amount
of data. Things are heterogeneous and build a dynamic infrastructure. IoT
devices have already outreached the human population and are expected to
cross the number of 500 billion by 2030[6]. IoT devices differ in architec-
ture, sensing capabilities and other aspects such as memory and power. IoT
network is dynamic as devices are deployed in a frequently changing environ-
ment. Furthermore, IoT devices are resources constrained as they are often
deployed with limited memory, power and processing capability [7].

1.1 Problem statement

Cloud computing and IoT devices are characterized by contrasting charac-
teristics. For instance, IoT devices work with limited capabilities whereas
the cloud provides an illusion of infinite resources. Cloud computing pro-
vides the required resources to the IoT network. Due to the limitations of
IoT devices, generated data is offloaded to cloud-based resources for further
processing, and the cloud sends the results back upon processing the data
[7]. IoT devices in conjunction with cloud resources perform efficient data
processing. However, such solution has the following limitations:

• High latency: Offloading [8] a small task to the cloud takes relatively
more time than processing it locally at the IoT device.

• Privacy concerns: Some tasks need more privacy, which makes it infea-
sible to offload their processing to the cloud.

• Support for mobility: In case of non-stationary sensing devices, it might
not be possible to offload processing data to the cloud. In such a sce-
nario, a sensor should be able to process it locally.

1.2 Scope and Goal

This work addresses the issues mentioned above and aims at developing a
solution that employs serverless computing in the context of IoT. We expect
our solution to satisfy some significant characteristics such as easy deploy-
ment, fault tolerance and high availability. We also aim at designing our
solution’s architecture considering a heterogeneous IoT network. As part of

CHAPTER 1. INTRODUCTION 9

this work, we deploy an IoT compatible serverless platform using a multilayer
architecture across the edge, fog and cloud computing layers.
We target the following research goals in this work.

• High availability of the architecture: The architecture should be highly
available as there should be a secondary node available in case of the
failure of the primary node.

• Easy of deployment: Users should be able to deploy the architecture
Heterogeneous IoT devices with sufficient ease.

• Support for heterogeneity: Heterogeneity is an essential property of
any IoT network. Our solution should allow users to deploy it across
IoT devices irrespective of the differences in their hardware platforms.

• Fault-tolerant architecture: We aim to develop a fault-tolerant archi-
tecture to defend it against unexpected failures.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 explains the basics of
IoT network, system architecture and Docker container-based virtualisation
along with Docker swarm. Chapter 3 introduces serverless computing and
compares different open source serverless platform. Chapter 4 describes a
multi-layer architecture for serverless computing in IoT and introduces a
function execution offloading algorithm. Chapter 5 evaluates the proposed
solution of various defined criteria such as ease of deployment, fault tolerance,
device heterogeneity, scalability, function runtime heterogeneity, security and
privacy, . Finally, chapter 6 concludes this work along with future research
directions.

Chapter 2

Background

2.1 Internet of Things

The Internet of Things (IoT) is a network of smart, physical devices such
as home appliances, vehicles, wearable devices and sensors. These devices
are called Things and use the Internet to communicate with each other.
Iot devices are smart, interconnected and resource-constrained in nature [9].
IoT devices are heavily populated and expected to reach 26 billion by 2020
[6]. Smart home, agriculture, healthcare, intelligent transportation system
are some applications scenario relying on IoT devices [10]. For instance,
smart cars perform vehicle to vehicle communication for traffic analysis. In
another example, doctors monitor the health of patients by IoT devices.
Communications mentioned above require connectivity among devices and
results in the generation of a large amount of data. Figure 2.1 shows the
communication between an IoT node and a gateway. IoT devices have many
characteristics that make them different from traditional computing devices.
We discuss these properties in the remaining part of this section.

Heterogeneity: IoT devices vary in the hardware and capabilities. As a
result, an IoT network contains various IoT devices to interact with
each other.

Resource constraints: IoT devices have limited processing power and mem-
ory. They are designed to carry out limited computation.

Power constraints: IoT devices can have either continuous or limited power
resources. In case of continuous power, a device is continuously plugged
into the power resource. Alternatively, In the mobile environment, IoT
devices are non-stationary and have limited batteries as their source of
power.

10

CHAPTER 2. BACKGROUND 11

Figure 2.1: IoT network

Dynamic network: IoT devices are mobile, which makes IoT network dy-
namic and frequently changing.

2.2 Hardware platforms

The central processing unit (CPU) is responsible for the execution of com-
puting tasks. It is also responsible for assigning tasks to other components.
Computing devices such as laptops, desktops mobile phones, smart watches
and IoT devices use a variety of processors. These processors differ concern-
ing processing power, power consumption, memory availability, instruction
sets and many other features. Rest of this section discusses some popular
processors such as the ARM, x86 and x64.

2.2.1 Advanced RISC machine

ARM (Advanced RISC machine) processors belong to the family of RISC
(Reduced instruction set computers). RISC-based processors are developed
to output high processing speed with less number of instruction sets [11]. In
contrary to CISC (complex instruction set computers), RISC machines con-
sume less power as they remove unnecessary instructions from the instruction

CHAPTER 2. BACKGROUND 12

Figure 2.2: ARM simplified block diagram system on chip

set.
ARM processor before version 8 supports 32 bits architecture whereas

version 8 and later supports both 32 and 64-bit architecture. ARM pro-
cessors are ideal for smaller devices such as mobile phones, IoT and other
smart devices as they require fewer transistors. ARM processors also support
single-cycle process execution and hardware-based virtualisation.

2.2.2 x86 platform

X86 processors are based on CISC which allows them to maintain more spe-
cial purpose registers instead of general purpose registers. X86 processors
support 32-bit instruction set registers in addition to the backward compat-
ibility with 16 and 8-bit registers. X86 processors were initially developed
using 16-bit Intel 8086 and 8088 microprocessors later upgraded to the 32-bit,
80386 processors.

CHAPTER 2. BACKGROUND 13

Figure 2.3: Intel 80386 internal architecture

2.2.3 x64 platform

x64 is the upgraded 64-bit version of x86 32 bit instruction set architecture
(ISA). AMD initially developed a 64-bit architecture called x86_64 later
renamed to AMD64. Similarly, Intel named its implementation IA-32e and
later renamed it to EMT64. x64 processors offer larger memory space than
32-bit processors and allow computer programs to store more in-memory
data. Table 2.2.3 demonstrate key differences between ARM and x64/86
processors.

ARM x86/64
Speed Slower than x86/64 Fast
Power consumption Low High
Instruction set RISC CISC
Architecture support 32 and 64-bit 32 and 64-bit
Devices Raspberry Pi, Mobile phones Intel/AMD computers

Table 2.1: ARM vs x86/64

CHAPTER 2. BACKGROUND 14

Figure 2.4: x64 architecture

2.3 Software containers and Docker

Docker is a container management platform that allows developers to create,
run and deploy their applications easily using Linux containers1.

2.3.1 Container-based virtualization

A container is a runtime instance of an image that shares the kernel of the
host machine and runs natively on the operating system [12]. In contrast, a
virtual machine uses a hypervisor to run a complete guest operating system
on top of the host operating system. Containers are more flexible, scalable,
lightweight and portable in comparison to the traditional virtual machines.
One machine can run more than one containers. Linux namespaces ensure the
isolation of containers’ resources from each other. For instance, files, ports
and memory allocated to one container are kept isolated from the rest of the
containers. It is also possible to define a limit on the resource allocation to
the container. Isolation within multiple containers provides security and effi-
ciency. Figure 2.5 displays the architectural differences between a container

1https://linuxcontainers.org/lxc/introduction/

CHAPTER 2. BACKGROUND 15

and a virtual machine. A container is initiated using an executable image
that contains the necessary code, runtime environment, files, environment
variables and other dependencies.

Figure 2.5: Architecture: container vs virtual machine

Software containers help developers deploying the desired execution en-
vironment swiftly at any scale as they run on the host kernel as an isolated
process and can start almost instantly by using low system resources.

2.3.2 Docker containers

Docker containers are open standard Linux-based containers that can be
deployed over a majority of operating systems [13]. Docker containers are
initialized from images and allocated system resources. A container is in-
stantiated using writable layers over original images. Similarly, changes to
the containers are also added in the form of another layer without disturbing
existing layers. Docker image files are read-only and allow other images to
use them without any conflicts. Each of the Docker containers maintains

CHAPTER 2. BACKGROUND 16

its resources such as memory, processes, ports, namespaces and filesystem.
They use exposed ports to communicate to external hosts. Docker Engine
API provides users with CLI commands to deploy and manage Docker con-
tainers.

2.3.3 Dockerfile

Dockerfile is a text file containing a set of commands used to generate a
Docker container image. Listing 2.1 shows a sample Dockerfile.
#Base Image
FROM ubuntu:16.04

MAINTAINER Manoj Kumar

LABEL version="1.0"

prerquisites
RUN apt-get update && apt-get install -y apt-utils && apt-get

install -y curl

ENV DEBIAN_FRONTEND=noninteractive

COPY application.apk /go/src/project/application.apk

WORKDIR WORKDIR /go/src/project/

#Java8 installation
ARG JAVA_URL=http://download.oracle.com/otn-pub/java/jdk/8u131-

b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.
gz

ARG JAVA_DIR=/usr/local/java
ARG JAVA_VER=jdk1.8.0_131

RUN mkdir -p $JAVA_DIR && cd $JAVA_DIR \
&& (curl -Lsb "oraclelicense=accept-securebackup-cookie"

$JAVA_URL | tar zx) \
&& update-alternatives --install "/usr/bin/java" "java" "

$JAVA_DIR/$JAVA_VER/bin/java" 1 \
&& update-alternatives --install "/usr/bin/javac" "javac" "

$JAVA_DIR/$JAVA_VER/bin/javac" 1

EXPOSE 4723

COPY --from=build /bin/project /bin/project
ENTRYPOINT ["/bin/project"]
CMD ["--help"]

CHAPTER 2. BACKGROUND 17

Listing 2.1: Sample Dockerfile

The commands in the dockerfile are explained below.

• FROM is used to set a base image for the Docker container image. It
is also possible to specify through its release tag. Dockerfiles can also
be initiated using a scratch image. Scratch is the minimal image that
serve as starting point for building containers.

• LABEL is responsible for appending extra description to the image. La-
bels are specified in the metadata of the image.

• RUN executes the commands for the installation of software and scripts
execution.

• COPY copies the file from one folder to another by overwriting the file
in the second folder if already exists.

• ADD automatically uploads, uncompresses and places the obtained file
to the specified path.

• EXPOSE allows inbound traffic to the container over the specifies ports.
This command enables outside users to access services on container
over the exposed ports.

• ENTRYPOINT and CMD are often used in conjunction. Use of EN-
TRYPOINT alone makes the container executable. However, using
CMD allows users to execute a command on the environment defined
in ENTRYPOINT. The listing shows commands demonstrating afore-
mentioned.

• USER allows to specify a username at the time of the execution of a
command. Using the username with correct permissions is important.

• WORKDIR sets the working directory for the defined instructions’ exe-
cution.

• ENV command is used to define environment variables while building and
executing the image.

It is recommended to have one Dockerfile per folder for the better organ-
isation. Docker images can be made more efficient by avoiding unnecessary

CHAPTER 2. BACKGROUND 18

packages. One of the ideal practices is to run only one application per con-
tainer. Docker container allows us to run more than one applications per
container at the cost of simplicity. Docker images can be stored and dis-
tributed using online registry services such as Docker Hub2, Docker store3,
quay4, Amazon EC2 container registry. It is also possible to have a registry
hosted locally.

2.3.4 Container orchestration

Orchestration is the set of techniques to automate the deployment, manage-
ment and scaling of containers. Orchestration allows developers to provision
and instantiates new containers. It is also responsible for maintaining the
expected state of the system by initiating a new container upon discovering
a failure. Finally, it maintains connectivity among containers and exposes
the running services to external hosts. One of the main responsibilities of
the orchestration framework is to scale up or down the containers [14]. Some
of the available orchestration frameworks are Docker swarm, Kubernetes,
Google container engine, Cloud Foundry’s Diego and Amazon ECS. How-
ever, this work only focuses on the Docker swarm as we use only Docker
swarm to our proposed solution.

Docker swarm

Docker swarm is an orchestration platform that allows users to manage a
cluster of the system running Docker platform. These containers are referred
to as nodes and can either be physical or virtual. The Docker engine CLI is
used to initiate and manage swarms that eliminate the need for any external
orchestration software. Docker swarm supports auto-scaling as Docker man-
ager allocate/remove tasks to/from worker nodes. It provides redundancy
and performs failover in case of a node failure. A swarm can contain two
kinds of nodes, managers and workers. Docker uses features of Linux kernel
such as namespaces and cgroups. Namespaces make sure that processes run-
ning inside one container do not see the processes running inside the host or
other containers running inside the same host. None of the containers can
access the network ports or sockets used by another container. Containers
use their network ports to communicate with external hosts and other con-
tainers. Similar to the physical hosts, containers are connected using a bridge
interface. In addition to namespaces-based security, Docker also uses cgroups

2https://hub.docker.com
3https://store.docker.com
4https://quay.io

CHAPTER 2. BACKGROUND 19

(control groups) to enforce security features of Linux kernel. cgroups ensure
the fair allocation of resources among containers. cgroups provide security
against the denial of service attacks stopping the ill distribution of host re-
sources among containers. cgroups offer effective resource management in a
multi-tenant environment such as Docker.

Nodes in a Docker swarm uses TLS for authentication and authorization
with swarm manager. The communication among nodes is also encrypted.
Docker has a built-in public key infrastructure to enforce security in the
swarm [15]. Swarm manager generates a self-sign certificate along with a key
pair to initiate secure communication with other nodes. Docker also provides
users with an option of using external certificate authority. Manager nodes
generate manager token and worker token. The token includes a random
secret and digest of root CA’s certificate. Every joining node validate the
root CA certificate using the digest. Similarly, swarm manager ensures the
authenticity of joining node using the random secret.

• Swarm Manager is responsible for allocating tasks to the other nodes. It
maintains the cluster state, schedule services and serves as an endpoint
API for swarm users [16]. Users execute Docker management com-
mands on swarm manager only. Swarm manager also keeps track of
the resources of other nodes and allocate tasks accordingly. The man-
ager follows many strategies to allocate resources to the nodes. The
emptiest node strategy allows swarm manager to fill the least utilised
node first whereas using Global, manager allocates one instance of the
container at least once. There can be more than one manager within a
Docker swarm. It is ideal to have an odd number of swarm managers to
take advantage of the fault-tolerant nature of the Docker swarm. The
maximum number of swarm manager allowed per swarm by Docker is
seven. However, only one of the manager can act as the swarm leader.
The leader is elected from manager nodes using the Raft consensus
algorithm(described later). Adding more manager nodes does not nec-
essarily mean high scalability and better performance. Manager node
can have one of three below-mentioned status.

• The Leader status indicates that the manager node is looking after
all swarm management and orchestration decisions.

• The reachable nodes(including manager) remain available for the
selection process and take part in Raft consensus quorum. Reach-
able manager nodes can be elected as the new leader if the original
leader is unavailable.

CHAPTER 2. BACKGROUND 20

• The unavailable status shows that the manager node is isolated
and can not interact with other manager nodes. This node can not
take part in the Raft consensus quorum. Once the only available
manager node is unresponsive, worker nodes should either join a
new manager, or one of the worker nodes should be promoted as
the new manager.

• Worker nodes are authorised by the manager to join the swarm. It is
not possible to perform any Docker CLI actions on worker nodes indi-
vidually. In a Docker swarm environment, worker nodes require at least
one manager node to function. Swarm manager nodes are also worker
nodes by default. For instance, a manager node in a single node swarm
also acts as a worker. Worker nodes provide resources to swarm and
take no part in decision making. The Docker agent running on worker
nodes reports the status of the tasks assigned to them by swarm man-
ager. It is also possible to promote a worker node as a swarm manager
and vice versa. Worker nodes maintain three availability status based
on the availability of the resources.

• Active indicates that a manager node can assign more tasks to
it.

• Pause means that it can not accept any more tasks from the
manager. However, it continues executing already assigned tasks.

• Drain shows that the manager can not assign anymore task to
this worker node. Furthermore, Scheduler needs to shift already
running tasks to some other working node with active status as
this node can not process any ongoing tasks as well.

Raft consensus algorithm for Docker swarm

The Raft consensus algorithm is used to implement fault tolerance within the
network. A consensus is achieved in a multi-host system when all available
hosts agree on specific values. A consensus decision is performed based on
the accepted value. In case of Docker swarm, the manager maintains a con-
sistent internal state using the Raft algorithm. It also ensures that managers
are performing orchestration tasks [17]. Raft consensus decision elects a new
leader from available managers in case the current leader becomes unavail-
able. For an N manager node system, Raft allows the system to function
until (N-1)/2 failures occur and decides to receive the majority or quorum
of (N/2)+1 manager nodes on absolute value. For instance, in a five node
robust system, it is critical to have three available nodes for the system to

CHAPTER 2. BACKGROUND 21

process new tasks. Swarm leader logs all changes and activities of the swarm.
These logs are then replicated to other managers. It ensures that all man-
agers are always ready to fill the leader’s position. Each manager has the
similar but encrypted logs.

Docker swarm Traffic management

Network traffic in the Docker swarms consists of control and management
plane traffic and application data plane traffic. control and management
plane traffic is always encrypted and includes swarm management messages.
Whereas, application data plane traffic is the traffic coming from external
hosts [18]. It also includes traffic generated by existing containers in the
swarm. Both, the Control and management plane and application data plane
traffic use the same interface. However, it is also possible in Docker version
17.06 onwards to use separate interfaces for each kind of traffic. Furthermore,
Docker swarm utilizes the network concepts below to handle the network
traffic of the system.

• Overlay networks use Docker overlay network driver. It manages the in-
teraction among the swarm nodes. Users can attach services to overlay
networks for service to service communication. Overlay network defines
the scopes named as the swarm, local, host and global. For instance,
an overlay network with a scope of swarm allows connections from all
nodes participating in the swarm. It is also possible to customize over-
lay networks such as a setting user-defined subnet and gateway. Service
discovery in the overlay network allows Docker to manage the communi-
cation between the external service client and individual Docker swarm
nodes. Service discovery enables the abstraction of swarm nodes details
from the external client. Service discovery can be performed by using
virtual IP (VIP) or customised request-based load-balancing at Layer
7 using DNS round robin (DNSRR). Docker allows users to configure
those as mentioned above for each service individually.

• Docker assigns a virtual IP to the services as it is attached over
the network. External clients then use the assigned virtual IP to
communicate to the service. Docker maintains the information of
workers running the service along with their interaction with the
external client.

• In DNS round robin (DNSRR), Docker creates DNS entries for
the services. The client connects to one of the obtained IP ad-
dresses upon the resolving DNS query. It allows users to use the
customised load balancer.

CHAPTER 2. BACKGROUND 22

• Ingress network is also an overlay network. It is used to handle internal
load balancing for the deployed services. It is created automatically
at the time of initialisation of a Docker swarm. It is also possible to
customise it for Docker version 17.06 onwards.

• docker_gwbridge connects the overlay networks to the individual docker’s
private network. It is also created automatically when a node joins the
swarm.

Chapter 3

Serverless Computing

3.1 Evolution of Cloud Computing

Cloud computing is a paradigm where computing services such as storage,
compute servers and databases are provided to end users over the Internet
by cloud providers. The providers charge users per usages for availing the
services. This billing model is similar to the day to day services such as
electricity, gas, and water. Cloud computing environment consists of a cloud
provider that provides on-demand, highly scalable resources over the Internet
to the customers. These resources can be an application, a database or simple
virtual machine with no operating system installed. The provider is responsi-
ble for the most of the infrastructure management. However, end-user is still
responsible for few tasks such as selection of operating system, capacity, and
program execution. The provider can swiftly deploy and scale the resources
while achieving multi-tenancy. Whereas, the end-user can achieve signifi-
cantly reduced setup cost with fewer management efforts. The evolutions of
cloud computing can be divided into following models.

• Infrastructure as a Service (IaaS) is the model of cloud computing,
where providers provide the infrastructure such as servers, database,
and data centre space by usage. Providers of this model mostly use
commodity hardware distributed across the Internet. Using this model,
an end user does not have to worry about setup, time-consuming pro-
curements, and scaling of infrastructure. Amazon EC21, RackSpace2,
and GoGrid3 are some example of the IaaS model of cloud computing.

1https://aws.amazon.com/ec2/
2https://www.rackspace.com/
3https://www.datapipe.com/gogrid

23

CHAPTER 3. SERVERLESS COMPUTING 24

• Platform as a Service (PaaS) consists of the provider that provides
ready computing platform along with the solution stack to the end-user
and saves setup time. The customer gets the benefit of fast develop-
ment and deployment of the applications with less interaction with the
middleware. The customer also does not have to worry about software,
provisioning, and hosting. Google app Engine4, Hadoop5, and Heroku6

are the examples of PaaS where end users can directly deploy their
applications and instantly make them available for users.

• Software as a Service (SaaS) is a cloud computing model where end
users avail the web-based applications deployed on the cloud servers
without any deployment and management worries. These cloud-hosted
applications are accessed using a web browser. End users get the benefit
of a fast start, on demand and location independent access and dynamic
scaling. However, this approach also comes with the downside of less
control available to the end-user. Facebook and Gmail are some of the
popular SaaS-based services.

Figure 3.1: Docker architecture

• Container is a lightweight solution where virtualisation is achieved us-
ing the host kernel without needing a hypervisor. Containers give an
advantage of reduced runtime and memory overhead as they run as a

4https://cloud.google.com/appengine/
5http://hadoop.apache.org/
6https://devcenter.heroku.com/

CHAPTER 3. SERVERLESS COMPUTING 25

process in the host operating system. Containers are typically stateless
and ephemeral. They take less time in starting the service and often
give the near-native performance. Docker7 and Kubernetes8 are the
examples of current container-based solutions. In Docker-container en-
vironment, Dockerfile contains the sequence of commands responsible
for building the container image and executes these commands in the
sequence. It is also feasible to use multiple containers as a cluster. We
have discussed Docker containers in detail in Chapter 2. Figure 3.1
shows the architecture of the Docker engine containing a client, Docker
host, Docker engine and image registry.

• Serverless computing Serverless computing is the latest cloud comput-
ing model specifically built for ephemeral, stateless and event-driven
applications. The serverless computing model is based on on-demand
horizontal scaling approach as hosted applications are required to scale
up and down instantly. It also assimilates the "pay as you go ap-
proach" of cloud computing since users are billed for the actual usage
at a millisecond granularity. A more formal definition of the serverless
computing is “Serverless architectures refer to applications that signif-
icantly depend on third-party services (knows as Backend as a Service
or ‘BaaS’) or on custom code that’s run in ephemeral containers (Func-
tion as a Service or ‘FaaS’.)” [19]
Serverless computing addresses present issues in cloud computing mod-
els such as relatively high setup cost, user-end management, inefficient
use of system resources and auto-scaling. The model is designed to
support minimum user management efforts and event-driven architec-
ture. The serverless logic is also known as function. Most of the avail-
able serverless projects use ephemeral containers to run these functions
as a stateless service based on defined triggers and rules. Serverless
functions are not limited to any specific programing language or li-
braries and provide flexibility of using multiple programming languages
to write a function. It is also possible to wrap the function inside a con-
tainer which allows the use of any possible programming language even
if the serverless framework does not directly support it. A developer
is only required for deploying the code to the provider’s infrastructure
whereas the provider is responsible for the management, auto-scaling
and execution of the function. Auto-scaling is horizontal and allows
developers to handle a large burst of requests without any manual in-
tervention.

7https://www.docker.com/
8https://kubernetes.io/

CHAPTER 3. SERVERLESS COMPUTING 26

Apache OpenWhisk, OpenFaaS, Kubeless, iron.io, AWS Lambda and
Fission are some available serverless project [20]. AWS Lambda is
part of Amazon Web Services whereas Apache OpenWhisk, OpenFaaS,
Kubeless, iron.io and Fission are available as open-source projects. The
rest of the chapter reviews the aforementioned open-source projects in
detail.

3.2 Apache OpenWhisk

Apache OpenWhisk is an open-source cloud platform which supports dis-
tributed and event-driven execution model of serverless computing [21]. IBM
originally initiated the project and later continued as an open-source project
under Apache license. The user writes a function which triggers in response to
certain requests such as an HTTP request or feed based on predefined rules.
It supports JavaScript, Swift, Python, PHP, Java and Golang as runtime
programming languages. Additionally, programmers are allowed to develop
in any language and run it inside a Docker container.

Figure 3.2 explains the high-level architecture of Apache OpenWhisk and
related components are explained below.

• Action is the execution logic written in any available programming lan-
guage or binary code embedded inside the docker container. An action
can be invoked manually from OpenWhisk API, CLI, or iOS SDK.
OpenWhisk supports chaining of multiple actions where the output of
the first action in sequence serves as input to the next action. Actions
take input in JSON format and produce output in the same format.

• Event is a change in OpenWhisk environment, which may or may not lead
to trigger an action. For instance, smoke detector reading, a commit
to Git repository, writing data to the database are some examples of
OpenWhisk events.

• Rule defines the conditions required to deploy and execute an action.
They establish the relationship between an action and a trigger by
defining which action is executed in response to a certain trigger.

• Triggers are the events generated by some event sources such as IoT
devices or web application. Triggers are designed as the channel for
events. These events are responsible for the deployment and execution
of functions based on certain rules.

CHAPTER 3. SERVERLESS COMPUTING 27

• Packages are a shared collection of actions and triggers. They help pro-
grammers in integrating additional services to the event source code.

Figure 3.2: OpenWhisk high-level overview

import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
def main(dict):

fromaddr = ‘sender@gmail.com’
toaddr = ‘receiver@outlook.com’
msg = MIMEMultipart()
msg[‘From’] = fromaddr
msg[‘To’] = toaddr
msg[‘Subject’] = ‘Apache OpenWhisk’
body = ‘TEST’
msg.attach(MIMEText(body, ‘plain’))
server = smtplib.SMTP(‘smtp.gmail.com’, 587)
server.ehlo()
server.starttls()
server.login(fromaddr, ‘password’)
text = msg.as_string()
server.sendmail(fromaddr, toaddr, text)
return {"Status", "Success"}

Listing 3.1: OpenWhisk python function example

CHAPTER 3. SERVERLESS COMPUTING 28

Listing 3.1 shows OpenWhisk function written in python triggering an email
in response. The code returns success once after successful delivery of the
email.

3.2.1 OpenWhisk internal architecture

The internal architecture of OpenWhisk shown in Figure 3.3, includes compo-
nents such as ngnix, CouchDB, controller, Kafka and Docker container-based
invoker. We discuss the roles of components as mentioned earlier next.

• Nginx is an HTTP-based reverse proxy server that receives commands
coming from OpenWhisk API. The API is RESTful in design and sends
HTTP requests to nginx server. It can be considered as the entry point
of OpenWhisk architecture. The nginx server forwards the received
valid HTTP request to the controller.

• Kafka is an open-source Apache framework responsible for providing high
throughput and low latency reliable communication for real-time data
feeds. It uses messages buses to communicate to controller and in-
vokers. Kafka buffers the communication between controller and in-
vokers to make sure the availability of the communication messages in
the possibility of a system crash. The controller shares the messages
and required parameters with Kafka. Upon getting confirmation from
Kafka, the user is sent a notification. Invokers then pick a task from
the Kafka placed via the message bus.

• CouchDB9 is an Apache open-source non-relational database which stores
data in JSON format. It responds to the authentication and authorisa-
tion request of the controller by verifying the privileges of the user. It
also stores the result from invokers before returning it to the controller.
CouchDB contains whisks database which contains actions and their
meta-data.

• Controller is a REST API implemented in scala. The controller receives
requests from nginx and serves as an interface for user’s actions. The
controller API uses Akka10 and Spray11. Akka is used to build con-
current and distributed event-driven applications for scala and java
whereas, Spray provides REST and HTTP support to Akka-based ap-
plications. The controller analyses the user’s requests and contacts
CouchDB to authenticate and authorise the request. Upon getting a

10https://akka.io/
11http://spray.io/introduction/what-is-spray/

CHAPTER 3. SERVERLESS COMPUTING 29

positive response from CouchDB, the controller loads task from the
Whisks database and fetch the information about invokers. It then
places the task on Kafka addressing to the selected invoker.

• Invokers are responsible for executing the function after fetching the
Kafka message from message bus. Invokers execute actions in an iso-
lated environment inside a Docker container. The container is destroyed
after publishing the result to the database.

Figure 3.3: OpenWhisk: flow of processing

3.2.2 Setup and Triggers

OpenWhisk can be set up and use in two ways.

• Local setup requires users to clone the OpenWhisk’s Github repository[21]
to the local server. Upon cloning, users can install the project lo-
cally and requires Docker as a pre-requisite. Local installation supports

CHAPTER 3. SERVERLESS COMPUTING 30

CouchDB and cloudant as databases. Cloudant is an IBM proprietary
NoSQL database and provided as a database as a service(DBaaS) by
IBM cloud. In contrast, CouchDB is an open-source NoSQL databased
and can be installed locally. OpenWhisk components are available to
install in both centralised and distributed manner. In a centralised in-
stallation, all components are installed on the same machine, whereas
distributed installation allows components to be installed on different
machines.

• IBM cloud-based setup is a paid service provided by IBM cloud as IBM
functions. IBM cloud function uses the only cloudant as a database.

Furthermore, a command line utility is available for users to deploy, modify
and execute functions. The utility for the local setup can be cloned and
installed form the Github project[22]. IBM cloud’s command line utility
also provide similar functionality and can be download from IBM cloud web-
page12.
OpenWhisk supports the following triggers in the IBM cloud [23] environ-
ment.

• Cloudant-based Trigger :- This trigger can be defined based on any
modifications made to the cloudant database.

• Customized Trigger :- OpenWhisk allows developers to customise the
defined triggers. An example of a customised trigger is a trigger based
on a POST request.

• GitHub Trigger:- Any changes to the Git repository can also generate
an action trigger.

• MessageHub Trigger:- These triggers invoke an action when a new mes-
sage is written to the queue.

• Mobile Push Trigger:- A push notification to the mobile application
defines this trigger.

• Periodic Trigger:- Using this trigger, one can define desired date and
time to execute an action.

12https://console.bluemix.net/docs/cli

CHAPTER 3. SERVERLESS COMPUTING 31

3.3 OpenFaaS

OpenFaaS is an open-source project based on the function as a service (FaaS)
model of the serverless framework. It runs containers in the background. In
addition to Docker containers, OpenFaaS also supports Kubernetes.

Figure 3.4: OpenFaaS components

3.3.1 Architectural Overview

Figure 3.4 shows next mentioned components of OpenFaaS architecture [24].

• Function WatchDog is an HTTP server written in Go programming lan-
guage. It converts Dockerfiles into serverless functions. It serves as an
entry point for the HTTP requests. Additionally, it interacts with the
processes and caller by sending and receiving standard input and out-
put. Standard input(STDIN), output(STDOUT) and error(STDERR)
are three major data streams in Linux-based operating systems. STDIN
helps the process to read information from user whereas STDOUT al-
lows a process to write the information back to the user. STDERR
helps a process to write error information.

CHAPTER 3. SERVERLESS COMPUTING 32

• API Gateway is responsible for the auto-scaling by contacting Docker
Swarm or kubernetes13 components. It also has a user interface which
allows a user to invoke their functions from the browsers. Developers
use an API gateway to push and deploy the functions.

• Prometheus14 keeps track of cloud-native metrics and monitors the envi-
ronment. The cloud-native approach focuses on designing, building and
deploying highly scalable and fast application by using the advantages
of cloud computing model such as infrastructure as a service(IaaS).
Prometheus reports the cloud-native metrics to API gateway.

• Swarm and Kubernetes are container orchestration solution for deployed
functions and used for auto-scaling in the OpenFaaS environment.

OpenFaaS deploys its components using the Docker container. It is evi-
dent from the listing 3.2 that critical components such as function watchdog,
Prometheus, and API gateway run as a container-based service using Docker.

CONTAINER ID COMMAND
265d8d765ada "/bin/alertmanager..."
740ed1f0cecf "fwatchdog"
5aa428c77b35 "fwatchdog"
9f5022f23ceb "fwatchdog"
0292d506b5f1 "fwatchdog"
33bec77614db "fwatchdog"
be894bf951df "fwatchdog"
de3aaa490ad2 "fwatchdog"
7d4d2593f036 "/usr/bin/fwatchdog"
9124556b624c "/bin/prometheus -..."
832e8ebeb17b "./gateway"

Listing 3.2: OpenFaaS deployement using Docker swarm

3.3.2 OpenFaaS Setup

Running OpenFaaS functions requires Docker community edition 17.05 as
pre-requisite. OpenFaaS can be cloned from the project’s git repository [24].
Docker is required to be initialized in the swarm mode. The user can deploy
functions using both the CLI and the user interface on localhost over port
8080. However, CLI requires a separate installation and can be installed
from the github15. OpenFaaS support multiple languages such as Go, Ruby,

13https://kubernetes.io
15https://github.com/openfaas/faas-cli

CHAPTER 3. SERVERLESS COMPUTING 33

Python, and Node.js as it’s function runtime environments. Additionally,
the user can write a function in a different language and wrap it inside the
Dockerfile. FaaS CLI creates three files named as handler.py, requirement.txt
and <function-name>.yml.

Handler.py contains the actual code, whereas requirements.txt consists re-
quired external modules to run the function. <function-name>.yml includes
metadata about the function. It includes details of the remote gateway,
function and function’s language, path of the handler, timeouts and Docker
image. Detailed setup and installation process can be referred from [25].
Listing 3.3 is an example of an OpenFaaS function to check if a word exists
in a given webpage.
import requests
import json

def handle(req):
result = {"found": False}
json_req = json.loads(req)
r = requests.get(json_req["url"])
if json_req["term"] in r.text:

result = {"found": True}
print json.dumps(result)

Listing 3.3: OpenFaaS python function

We can pass the arguments in JSON format and fetch the result using
curl command. For listing 3.3, we can use command mentioned in listing 3.4
to return the result. As we can see, the term "Botanical Gardens" is present
at the University of Tartu’s webpage on Wikipedia.
curl localhost:8080/function/hello-python--data-binary
’{"url": "https://en.wikipedia.org/wiki
/University_of_Tartu","term": "Botanical fGardens"}’
{"found": true}

Listing 3.4: OpenFaaS python function execution

OpenFaaS auto-scaling

The openfaas architecture includes function auto-scaling by scaling up or
down the function deployment on-demand. OpenFaaS accomplishes the auto-
scaling using Prometheus matrices. The AlertManager generates an alert to
API Gateway once Prometheus trigger a defined usage alert matric. The
communication between alert manager and API gateway takes place using
/system/alert route. Listing 3.5 shows the alert manager rule for Docker
swarm [26]. OpenFaaS has a defined value of min and max replicas. By

CHAPTER 3. SERVERLESS COMPUTING 34

default, the minimum possible number of replicas is 1 whereas, one can
launch maximum 20 replicas while scaling up. It is also possible to dis-
able auto-scaling by setting same value for min and max replicas or setting
com.openfaas.scale.factor=0. The scaling factor defines the number of repli-
cas initiated upon the alarm is generated and is set to 20% by default.

groups:
- name: prometheus/alert.rules

rules:
- alert: service_down

expr: up == 0
- alert: APIHighInvocationRate

expr: sum(rate(gateway_function_invocation_total
{code="200"}[10s])) BY (function_name) > 5
for: 5s
labels:

service: gateway
severity: major
value: ’{{$value}}’

annotations:
description: High invocation total on
{{ $labels.instance }}
summary: High invocation total on
{{ $labels.instance }}

Listing 3.5: Alert manager for Docker swarm

3.4 IronFunctions

IronFunctions16 is an open source platform for serverless computing initiated
by iron.io17. The project is written in Go, whereas users can define functions
in any programming language. Additionally, IronFunctions also supports
AWS lambda functions. It is feasible to use both Docker and Kubernetes to
deploy IronFunctions’ components. A command line interface is also avail-
able to build and deploy functions using the command line. Listing 3.6 is an
example of IronFunctions’ serverless function written in Go.

Functions are written in order to parse the standard input, perform an ac-
tion and respond/update. Developers are responsible to define environment
variables such as REQUEST_URL, ROUTE, METHOD, HEADER_X, X.
REQUEST_URL is the full URL of the request. ROUTE is the matched

16https://github.com/iron-io/functions
17https://www.iron.io/

CHAPTER 3. SERVERLESS COMPUTING 35

route of the deployed function. A method can be any method such as GET,
POST called for an HTTP request. HEADER_X is used for the HTTP
header of the request where X denotes the header name. X can be any
variable or configuration value.
package main
import (

"encoding/json"
"fmt"
"os"

)
type Person struct {

Name string
}
func main() {

p := &Person{Name: "Bob"}
json.NewDecoder(os.Stdin).Decode(p)
fmt.Printf("Hey%v!", p.Name)

}

Listing 3.6: IronFuntions example

IronFunctions platform function also supports logging. Logs can be con-
figured using the programming language used to write function and viewed as
standard errors(STDERR). Serverless functions can be created and managed
using following commands.

• Init takes the written function file as an input and generates a func.yaml
file in the project folder. Init is also used to create the function using
Dockerfile as an input.

• Bump perform an increment to the version number of a configuration file.

• Build is used to build an image from your function/Dockerfile.

• Run tests the function before creating an image.

• Push writes the function’s image to DockerHub.

• App creates an API for the deployed function. Moreover, a route can be
created for the function API to make the deployed function reachable.
A route allows a user to define a path in the application that maps to
a function.

• Deploy IronFunctions also supports bulk deploy using deploy command
where are all function present in the directory are scanned. Upon
scanning, functions are rebuilt and pushed to the Docker Hub registry.

CHAPTER 3. SERVERLESS COMPUTING 36

Commands mentioned in listing 3.7 shows the usages of different CLI
commands.
Mention Docker hub Username while creating func.yaml
fn init USERNAME/myfunc
Build created function
fn build
Test the function
- in, eg: ‘cat myfunc.payload.json | fn run‘
fn run
Build and push upon successful testing
fn build && fn push
Create app for your deployed function
fn apps create funcapp
Create a route for deployed function
fn routes create funcapp /myfunc
Update the function
fn bump && fn build && fn push
Update the route
fn routes update myfunc /myfunc

Listing 3.7: IronFuntions CLI commands

IronFunctions support two type of authentication.

• Service level authentication authenticates requests coming from clients.
JWT_AUTH_KEY variable is responsible for enforcing service level
authentication.

• Route level authentication is responsible for performing authentica-
tion for a request made to a specific route.

3.5 Kubeless

Kubeless is a serverless platform built on the top of Kubernetes. Kubeless
supports multiple runtime environments including Python, Node.js, Ruby
and PHP. It also provides users with a CLI to execute and manage serverless
functions. The CLI handles HTTP requests and Kubernetes kubectl18 com-
mands. Kubeless is written in Go and uses Kubernetes features such as auto-
scaling, monitoring and API routing. The executable piece of code is called
function, which also contains dependencies and runtime environment’s meta-
data. Functions are represented using a custom resource definition (CRD)

18https://kubernetes.io/docs/reference/kubectl/overview/

CHAPTER 3. SERVERLESS COMPUTING 37

feature of Kubernetes. The platform uses Kubernetes pods to run different
runtime environments. A Kubernetes pod is a group of one or more contain-
ers that share system resources. A pod also includes the specifications about
the execution of containers. The dependencies are loaded using init contain-
ers. The function is exposed to an external network using the ingress route.
Using different CDRs for different functions allows Kubeless to maintain the
disjunction among deployed functions.

def func(event, context):
print event
return event[’data’]

Listing 3.8: Kubeless function example

Listing 3.8 is an example of the kubeless function with HTTP trigger.
Event parameters have the information about the event source whereas the
context parameter contains information about the function itself. Kubeless
provides different methods to support the life cycle of a function.

• Deploy is used to deploy the function over the runtime framework. Func-
tions can be invoked directly or using triggers.

• Execute provides us with the feasibility of invoking a function directly.

• Get command is used to extract the function’s metadata.

• Update is used to update the changes to the function and its metadata.

• Delete allows developers to remove the deployed function along with its
metadata.

Kubeless also provides some helping functions such as List and Logs.
An example of function deployment using CLI is given in Listing 3.9.
kubeless function deploy get-python --runtime \

python2.7 --from-file \
func.py --handler func.foobar

Listing 3.9: Kubeless function deployment

Triggers are used to execute the deployed function as soon as a certain
event arises. Any single trigger can be used for multiple functions and man-
aged using methods such as Create, Update, Delete and List. Kubeless allows
developers to define HTTP triggers, Cronjob triggers and Kafka triggers for
their functions.

CHAPTER 3. SERVERLESS COMPUTING 38

• HTTP triggers include a function name that is to be executed upon
HTTP request. Hostname option is used for the virtual hostname. A
route to the function is defined using a path variable. HTTP triggers
also have an option to enable TLS. Listing 3.10 is an example of an
HTTP based trigger.
apiVersion: kubeless.io/v1beta1
kind: HTTPTrigger
metadata:

labels:
created-by: kubeless

name: get-python
namespace: default

spec:
function-name: get-python
host-name: get-python.192.168.99.100.nip.io
ingress-enabled: true
path: func
tls: false

Listing 3.10: Kubeless HTTP trigger

• Cronjob triggers Cronjob triggers are schedule-based triggers and need
a cronjob in order to execute the function. Cronjobs are based on linux
utility cron which allows a piece of code to run at a specific time and
date. The configuration includes a function name and schedule field.
An example of cronjob trigger is given in listing 3.11.
apiVersion: kubeless.io/v1beta1
kind: CronJobTrigger
metadata:

labels:
created-by: kubeless
function: scheduled-get-python

name: scheduled-get-python
namespace: default

spec:
function-name: scheduled-get-python
schedule: ’* * * * *’

Listing 3.11: Kubeless cronjob trigger

• Kafka triggers use Kafka topics to invoke a function. Their configuration
includes functionSelector and topic fields. Topic includes Kafka topics
whereas functionSelector fetches the list of functions upon matching
the topic condition.

CHAPTER 3. SERVERLESS COMPUTING 39

apiVersion: kubeless.io/v1beta1
kind: KafkaTrigger
metadata:

labels:
created-by: kubeless

name: s3-python-kafka-trigger
namespace: default

spec:
functionSelector:

matchLabels:
created-by: kubeless
topic: s3-python

topic: s3-python

Listing 3.12: Kubeless Kafka trigger

Kubeless uses Prometheus to monitor the function and to generate met-
rics. Function utilization metrics are gathered and can be displayed using
Prometheus user interface. Additionally, Kubeless also supports Grafana19

to visualize the metrics. In order to support auto-scaling of deployed func-
tions, Kubesless take advantage of HorizontalPodAutoscaler of Kubernetes.
It is also feasible to auto-scale functions depending upon CPU usage using
–cpu command. –cpu command allows developer to define a CPU usage limit
at the time of deployment of the function. Functions can also be build and
deployed from Docker registries such as Dockerhub. However, the user can
pull an image only from a single registry.

3.6 Fission

Fission is another open-source serverless framework. As a developer, one can
use Fission with both Docker and Kubernetes. Fission is developed in Go
and supports multiple function deployment environments such as Node.js,
Python, Ruby, Go, PHP, Bash and .net. Fission function are deployed upon
creating the environment in the desired programming language. The platform
supports both synchronous and asynchronous functions. In order to access
the deployed function using HTTP requests, a route has to be created for
the deployed function. Listing 3.13 is an example of a basic fission function
written in Node.js.
module.exports = async function(context) {

return {

19https://grafana.com/

CHAPTER 3. SERVERLESS COMPUTING 40

status: 200,
body: "Hello world!\n"

};
}

Listing 3.13: Fission function example

Fission supports different methods to support the lifecycle of a function.

• Create generates the function and its metadata. The executor type and
scaling in case of Newdeploy executor is defined at the time of creation
of the function.

• Get is used to retrieve the function code.

• Update allows developers to modify the function’s code.

• Test is used to check the expecting behaviour of a function before deploy-
ing it.

• Log returns function’s log and is used for further troubleshooting.

Fission supports pool-based executers (Poolmgr) and new-deployment ex-
ecutor (Newdeploy). These executors are defined within the deployment en-
vironment and establish the creation of Kubernetes Pods to deploy functions
and their capabilities. Pool-based executers create environment pods at the
time of creation of the environment. These pods can be generic or specialised
at the time of allocation to a particular function. These pods are warm or
ready to use, hence accelerate the pod allocation and function execution
process. If the function execution is finished and allocated pod is idle, the
pod is removed after a certain interval of idle duration. This executor type
is favourable for the functions with low latency requirement. However, it
does not provide the privilege of auto-scaling. The solution to the auto-
scaling issue with Poolmgr is second executor type termed as Newdeploy. It
creates pods along with the service execution and takes leverage of Horizon-
talPodAutoscaler feature of Kubernetes to perform horizontal scaling. The
requirements are specified while writing the function and are given prior-
ity over the general requirement mentioned in the execution environment.
Newdeploy is ideal for asynchronous functions where minimising the latency
is not a primary requirement. It is also feasible to keep the idle pods available
so that they can be used to minimise the latency and execution time. How-
ever, there is always a trade-off between latency and resource consumption
in this scenario.
Fission’s serverless functions can be executed using triggers. Fission frame-
work provides three categories of triggers.

CHAPTER 3. SERVERLESS COMPUTING 41

• HTTP Trigger are used to trigger a function in response to an HTTP
request method.

• Time Trigger enables developers to use custom periodic triggers to in-
voke their function.

• MQ Trigger MQ triggers are topic based triggers similar to Kafka-based
triggers in Kubeless. This trigger uses messages queue topics to exe-
cute the function. Fission supports nats-streaming and azure-storage
-queue message queues for MQ triggers. It also allows developers to
add dependency packages/libraries with the code. The platform allows
developers to customise the horizontal scaling based on the minimum
and a maximum number of allowed CPU, scale and memory.

Features/projects OpenWhisk OpenFaaS iron.io Kubeless Fission
Docker support yes yes yes no no
Kubernetes support yes yes yes yes yes
Arm deployment no yes no no no

Default timeouts 60 sec
read - 25 sec
write - 25 sec
upstream - 20 sec

60 sec maximum 180 sec user-defined

Support for async functions yes yes yes yes yes

Table 3.1: Comparison of serverless platforms

Table 3.1 shows the comparison of discussed serverless platforms. Avail-
able platforms are compatible with i386, x86 and x64 architecture. Further-
more, it has been demonstrated the deploy Docker swarm [27] and kubernetes
[28] over arm based devices such as Raspberry Pi. From the discussed server-
less platforms, only OpenFaaS has expressly provided the possibility with the
arm based deployment using Docker swarm [29].

Chapter 4

Design and Implementation

Resource-intensive processes in IoT are offloaded to cloud-based resources
for further processing. However, there is always a trade-off between resource
and time consumption in such offloading mechanisms. In the case of small
computations, it is wise to perform the job locally at the IoT-gateway itself.
Local execution of serverless computing functions saves not only computa-
tion time but also the network bandwidth. Privacy-sensitive tasks also apply
restrictions on the computational offloading. For instance, computation at
the public cloud is not an option for some Military Grid Reference Sys-
tem (MGRS)1 coordinate-based applications. Some computations are both
resource-intensive and time-sensitive. It is critical to formulating a solution
that provides efficient resource utilisation with minimum possible latency.

This chapter explains the design and implementation of the deployment
of OpenFaaS for IoT devices. We present and describe the system archi-
tecture which follows by an explanation of a function execution offloading
algorithm.

4.1 System Architecture

The designed architecture spans across IoT-gateway, edge layer, fog layer,
and cloud layer. The solution is designed by considering requirements that
are critical for the deployment of the FaaS-based framework, as follows :

1. The developer knows the structure of the information generated by the
IoT device. It is an essential condition as the function written by the
developer uses the data as input. For instance, based on the smoke
sensor reading, a function can display a warning to command-centre or
even contact the nearest fire station.

1https://mappingsupport.com/p/coordinates-mgrs-google-maps.html

42

CHAPTER 4. DESIGN AND IMPLEMENTATION 43

2. Developers write ephemeral functions or micro-services for the deployed
platform. It is essential to respect the resource-constrained nature of
IoT devices while writing such functions. Furthermore, the concept of
serverless computing is entirely based on small functions that can be
executed within a very short span of time.

3. The edge and fog layers have connectivity to the local IoT-gateway.
This assumption is crucial for the function execution offloading.

Figure 4.1: Multi-layered architecture

The architecture presented in Figure 4.1 can be divided into four layers
named as IoT-gateway, edge layer, fog Layer, and cloud layer. Structure and
functioning of each of the layers as mentioned earlier are discussed below.

CHAPTER 4. DESIGN AND IMPLEMENTATION 44

• IoT-gateway is directly connected to the IoT devices and receive the data
from them. OpenFaaS is deployed on the IoT-gateway with the help
of Docker. We selected OpenFaaS due to the ease of deployment on
arm architecture-based devices. Docker is initiated in swarm mode on
the gateway to meet the pre-requisites of deploying OpenFaaS platform.
Upon successful installation of the OpenFaaS, the required function can
be built, pushed and deployed to the gateway. Function runtime envi-
ronments are already installed with the OpenFaaS deployment in the
form of Docker containers. These environments allow us to execute the
function without installing the required runtime environments explic-
itly. The deployed function can be triggered by using both OpenFaaS
user interface and the command line interface. However, additional
runtime environment’s installation is required to trigger the function
programmatically.

• Edge layer executes the function in case IoT-gateway is not capable of
the execution. This situation arises due to insufficient system resources
such as power, CPU, and memory. Moreover, certain conditions asso-
ciated with the function (asynchronous function type) can also result
in function execution offloading to upper layers. The fog layer con-
sists of available edge devices in the network offering their resources
collectively for the computation of serverless functions. These devices
are grouped in clusters using Docker swarm. Swarms not only serve
as pre-requisites to the installation of OpenFaaS but also incorporate
other features such as fault tolerance and high-availability.

• Fog layer receives the function execution when

1. IoT-gateway and edge layer cannot handle the function execution.

2. Edge layer is unavailable, or IoT-gateway does not get any re-
sponse from the edge layer.

We install docker on available IoT devices at the fog layer and initiates
it in swarm mode to deploy OpenFaaS.

• Cloud layer is responsible for the function execution in below-mentioned
conditions.

• IoT-gateway, edge and fog layer devices do not have sufficient
resources.

• Edge and fog layer’s devices are not available.

CHAPTER 4. DESIGN AND IMPLEMENTATION 45

• The function is asynchronous as asynchronous functions consume
more time and resources

Unlike lower layers, deploying OpenFaaS on the cloud layer does not
give us the same benefits. For instance, employing Amazon EC2 in-
stance to deploy OpenFaaS is expensive than using AWS lambda for
serverless functions. We use IBM cloud functions to execute our server-
less function in the cloud.

4.2 Function execution offloading

IoT-gateway initiates function execution of any synchronous function. There
could be situations where IoT-gateway is unable to perform the function
execution due to the lack of system resources. It is important to devise an
offloading mechanism among the layers as explained in Section 4.1.

Offloading solution

The existing computational offloading solutions are not fitting to our require-
ment as we do not need to shift the computation but the function execution
trigger. Functions are already deployed at each layer of our architecture.
Hence, we propose a solution where serverless function execution is offloaded
based on the availability of system resources. Our offloading mechanism from
Figure 4.3 considers factors such as memory utilisation, remaining power,
CPU utilisation and availability of active nodes in Docker swarm.

4.2.1 Terminology

This subsection addresses the terminology used in the Section 4.2.3. We
define and explain the terms individually in the rest of this subsection.

• exec timeout is defined both in the OpenFaaS function meta-data and
the OpenFaaS gateway configuration. It represents the function execu-
tion timeout value in seconds. The exec timeout value differs for each of
the layers in our architecture considering their system resources. Table
4.1 shows the exec timeout values for all four layers of our architecture.

• Function bucket stores function name and current date-time value in
key-value pair format. The IoT-gateway, edge and fog layers maintain
this data structure. OpenFaaS checks the entry of a function in the
bucket before executing the function. It does not proceed with the

CHAPTER 4. DESIGN AND IMPLEMENTATION 46

Layer Platform exec timeout
IoT Gateway OpenFaaS 20 seconds
Edge Layer OpenFaaS 30 seconds
Fog Layer OpenFaaS 45 seconds
Cloud Layer Apache OpenWhisk 60 seconds

Table 4.1: exec timeout values

execution if the function name exists in the respective bucket. The
bucket is flushed every 120 minutes. An example of the function bucket
is shown in Listing 4.1.

1 { "id": "func1", "time": "2018-05-27 11:58:48..." },
2 { "id": "func2", "time": "2018-05-27 11:22:28..." },
3 { "id": "func3", "time": "2018-05-27 11:59:48..." },
4 { "id": "func4", "time": "2018-05-27 12:00:34..." }

Listing 4.1: An example of a function bucket

• System resources include available system memory, available CPU and,
remaining power. In context of fog and edge nodes, system resources
are simply determined by active nodes in the deployed Docker swarm.
Docker determines the active nodes in swarms by tracking actual sys-
tem resources of all participating nodes.

4.2.2 Communication for the offloading decision

The function execution offloading allows the layers to move the OpenFaaS
function execution to the upper layer. Offloading takes place when a partic-
ular layer runs low on system resources. The communication among layers
is illustrated in Figure 4.2 and works as follows.

1. The lower layer sends a multicast request to the defined address when
it realizes about not having sufficient system resources to execute the
OpenFaaS function.

1 { "ip": "10.10.10.*", "active_nodes": "2" },
2 { "ip": "10.10.10.*", "active_nodes": "0" },
3 { "ip": "10.10.10.*", "active_nodes": "1" },
4 { "ip": "10.10.10.*", "active_nodes": "1" }

Listing 4.2: Multicast response from upper layer

CHAPTER 4. DESIGN AND IMPLEMENTATION 47

Figure 4.2: Communication for the function execution offloading

2. Docker swarms deployed at the upper layers listen to the multicast re-
quest. They respond with their respective IP addresses and the number
of available active nodes in the particular swarm as shown in Listing
4.2.

3. Upon getting the multicast response from an upper layer, the lower
layer takes following steps.

• If it does not get any response from upper layers in the defined
time limit, the lower layer moves the function to the next layer.
For instance, If IoT-gateway does not get a reply from the edge
layer, it sends the function execution to the fog layer.

• When the lower layer gets the multicast reply from the upper
layer, it checks the number of active nodes per swarm.

CHAPTER 4. DESIGN AND IMPLEMENTATION 48

– Function execution is offloaded to layer next to the upper
layer if there is no active node available at next upper layer.

– If the number of active nodes is same for all swarms, one of the
available swarm is randomly selected, and function execution
is delivered to that swarm.

– If none of the above two conditions exists, the execution is of-
floaded to the swarm with the highest number of active nodes.

4.2.3 Offloading algorithm explanation

Figure 4.3: Function execution offloading flow diagram

We divide the function execution offloading flow at each layer for the ease

CHAPTER 4. DESIGN AND IMPLEMENTATION 49

of understanding.

Offloading flow at IoT-gateway

1. The IoT-gateway receives the data from the IoT device and triggers
the function.

2. Asynchronous functions run longer than synchronous functions. IoT-
gateway offload function to cloud layer when one of the following con-
ditions exists:

(a) If the function is asynchronous.

(b) If function name exists in Function bucket at each layer.

3. IoT-gateway probes function to edge layer upon encountering following
scenarios:

(a) If function name exists in the Function bucket at IoT-gateway
layer.

(b) If IoT-gateway does not have enough System resources.

4. In the case of the synchronous function and IoT-gateway has adequate
system resources; it starts the execution.

5. When an OpenFaaS function execution outlives the exec timeout with-
out giving the output, the function name is stored in the function
bucket with the current date-time stamp. Upon making the entry,
IoT-gateway probes the next layer.

6. If function finishes processing within the defined value of exec timeout,
gateway finished the function processing.

Offloading flow at edge layer

1. IoT gateway offloads the function execution to edge layer if the edge
layer sends a multicast response in answer to the probe multicast re-
quest.

2. The function is offloaded to the next layer if:

(a) current layer remains unresponsive for a defined time limit.

(b) there is an entry of function name in Function bucket at edge
layer.

CHAPTER 4. DESIGN AND IMPLEMENTATION 50

(c) If the metric value is lower than the threshold.

3. In case of more than one Docker swarm:

(a) if obtained metrics are equal (equal number of active nodes), the
function is randomly offloaded to one of the available nodes.

(b) else, we offload the function to the swarm with highest metric.

4. If function exceeds layer’s exec timeout, a Function bucket entry is
made, and function execution is offloaded to the next layer

5. else, the function is processed at the edge layer successfully.

Offloading flow at fog layer

1. Function is offloaded to the fog layer if it sends a valid multicast reply.

2. The function is offloaded to the next layer if:

(a) current layer remains unresponsive for a defined time limit.

(b) there is an entry of function name in Function bucket at fog layer.

(c) If the metric value is lower than the threshold.

3. In case of more than one Docker swarm:

(a) if obtained metrics are equal (equal number of active nodes), the
function is randomly offloaded to one of the available nodes.

(b) else, we offload the function to the swarm with highest metric.

4. If function exceeds layer’s exec timeout, a Function bucket entry is
made, and function execution is offloaded to the next layer

5. else, the function is processed at the fog layer successfully.

Offloading flow at cloud layer

1. Upon receiving the function execution offloading, cloud layer processes
the function and returns the result.

CHAPTER 4. DESIGN AND IMPLEMENTATION 51

4.3 Implementation

We are using Raspberry Pi 3 Model B as the IoT gateway connected to dth
11 2 temperature and humidity sensor in our implementation. The fog layer
is constructed using three docker swarms with three Raspberry Pi 3 Model B
in each swarm. All Raspberry Pi devices are build using raspbian3 operating
system. We are using ubuntu 16.04 LTS as our edge layer device whereas
IBM cloud functions is used as the cloud layer. For the database specific
to our demonstration, we are using MongoDB 3.6 in high-availability. Our
serverless function is collecting temperature and humidity values from the
dth 11 sensor and writing the data to the database. In a realistic scenario,
the function is writing data in milliseconds to the database. However, we
successfully tested function offloading mechanism by changing the defined
threshold values. We use python 3.5 to implement the design explained in
Section 4.2.3. A few of the supporting functions are explained in the rest
of this section. These functions are essential for the implementation of the
proposed architecture.

• threshold_values() defines the threshold value for system resources. We
use python psutil4 package to determine the current CPU, memory and
power utilisation at IoT, fog and edge devices. Our threshold value for
memory and CPU consumption is 80% each and 30% for remaining
battery.

• multicast_sender() sends multicast requests over a defined multicast IP
and port.

• whitelister() function takes a Function bucket in form python dictionary
as with an input and removes a function name if condition satisfies.

• serverless_executor() function is responsible for triggering the server-
less function at each layer. It can be achieved by accessing an Open-
FaaS function using the URL. This function also takes care of metrics
evaluation, function offloading from one layer to another.

Our approach gives end-users flexibility of writing custom functions suitable
to their requirements.

2https://learn.adafruit.com/dht/overview
3https://www.raspberrypi.org/downloads/raspbian/
4https://pypi.org/project/psutil/3.3.0/

Chapter 5

Evaluation

This chapter evaluates and analyses the proposed solution based on different
evaluation criteria. In this chapter, We describe the evaluation criteria and
their applicability to our solution.

5.1 Methodology

The architecture introduced in Section 4.1 is evaluated based on seven desired
characteristics. We defined these characteristics considering several aspects
of an ideal solution such as secure communication, work with limited system
resources and heterogeneous devices. Additionally, we also evaluate func-
tion execution offloading by comparing the execution timeout in different
conditions. The characteristics considered in this work are as detailed next:

5.1.1 Evaluation criteria

• Ease of deployment: The deployment of the proposed architecture should
be smooth and easy. An ideal deployment minimizes manual installa-
tion efforts by automating the related procedure.

• High availability: The solution is expected to deploy across the number
of IoT devices and multiple cloud computing layers such as fog, edge
and cloud. It is extremely critical for the desired solution to guarantee
essential services with minimum downtime.

• Fault tolerance: Fault tolerance is one of the key properties considering
the vulnerable nature of IoT devices. IoT devices are more susceptible
to component failure. The solution should trigger immediate recovery
from any failure.

52

CHAPTER 5. EVALUATION 53

• Device Heterogeneity: The solution should effectively abstract the het-
erogeneity of IoT devices. Developers often like to use multiple pro-
gramming languages depends on the scenario. Our solution should
provide function runtime heterogeneity by allowing the development in
desired programing language to developers.

• Scalability: We can not predict the rate of function execution in advance
which leads to the requirement of a highly scalable solution that can
scale up and down instantly based on the requirement.

• Security and Privacy: Security and privacy are arguably one the most
critical requirement of any solution. An ideal architecture should ex-
tend the secure function execution environment to developers along
with secure internal communication among internal components.

5.2 Analysis

This section presents the detailed analysis of the proposed solution from
criteria defined in Section 5.1.1:

Ease of deployment

OpenFaaS is an easy platform to deploy in IoT networks. The only pre-
requite for OpenFaaS is Docker. It is feasible to deploy Docker on many
devices such as Raspberry Pi and Arduino. A framework such as resin.io1

make it simple to deploy docker across the heterogeneous IoT networks [30].
Any device with Docker and Internet connection can be used to deploy the
OpenFaaS framework [27]. The platform has specific installation instruction
for ARM-based devices. The whole OpenFaaS installation at Raspberry Pi
3 takes approximately 55MB on the device’s memory.

High availability

Devices at the fog and edge layers are divided into more than one Docker
swarms. Docker swarm based deployment provides two levels of high avail-
ability. The first level of high-availability comes from the multiple nodes in
the Docker swarms. More than one number of swarms are responsible for the
second level of high- availability. For instance, if one node is not responding
within a swarm, the manager delegates the task to another node. Similarly, if

1https://docs.resin.io/introduction/

CHAPTER 5. EVALUATION 54

one of the swarm is not responding, the offloading mechanism will forward the
task to another available swarm. Figure 5.1 shows the high availability of the
proposed architecture. In addition to the above mentioned high-availability

Figure 5.1: High availability within the layer

scenarios, our architecture has the capability of offloading the function ex-
ecution to the next layer of the current layer is not available. Figure 5.2
shows the high available multi-layered architecture. High availability at the
IoT-gateway entirely depends upon the presence of the redundant gateway.
Cloud providers implement the cloud layer’s high-availability.

Fault tolerance

The proposed architecture is susceptible to failure like any other system.
However, Docker swarm-based deployment makes sure to initiate new con-
tainer upon failure to maintain the desired state. Docker recommends using
an odd number of swarm managers to handle the failure of one or more man-
ager nodes. An odd number of swarm manager nodes allows a Docker swarm
to remain functional in case of the failure. Moreover, fault tolerance can be
increased by distributing swarm manager nodes to different IoT devices. In
such scenario, Failure of an IoT device does not fail multiple manager nodes,
i.e. swarm failure.

CHAPTER 5. EVALUATION 55

Figure 5.2: High availability across layers

Device Heterogeneity

The architecture supports heterogenous IoT devices that have different char-
acteristics such as processor architecture, resources, memory and physical
location. However, Distributed computing framework can be deployed for
heterogeneous devices using Docker containers [31]. It is also feasible to
create a Docker swarm over multiple IoT devices to deploy OpenFaaS. The
proposed solution uses OpenFaaS as the underlying serverless platform that
supports many runtime environments such as Python, Javascript, Nodejs
and Docker. Furthermore, the solution supports both synchronous and asyn-
chronous functions.

CHAPTER 5. EVALUATION 56

Scalability

The proposed architecture uses the auto-scaling feature implemented in Open-
FaaS. The openfaas architecture includes function auto-scaling by scaling up
or down the function deployment on-demand. OpenFaaS accomplishes the
auto-scaling using Prometheus matrices. OpenFaaS has a defined value of
min and max replicas. By default, the minimum possible number of replicas
is 1 whereas, one can launch maximum 20 replicas while scaling up. It is
also possible to disable auto-scaling by setting same value for min and max
replicas or setting com.openfaas.scale.factor=0. The scaling factor defines
the number of replicas initiated upon the alarm is generated and is set to
20% by default. We have explained auto-scaling in detail in Section 3.3.2.

Security and Privacy

OpenFaaS allows us to implement basic authentication (username/password
authentication) while deploying functions. Furthermore, a certificate-based
HTTP authentication can also be enabled for the functions [32]. However,
the security mechanism also depends upon the capability of the IoT device.
The proposed solution also incorporates the built-in security features of the
Docker implementation.

5.2.1 Offloading Analysis

from pymongo import MongoClient
from datetime import datetime
import json
import time

def handle(req):
client = MongoClient("mongodb://10.10.10.10:27017")
db = client.test
json_req = json.loads(req)
db_entry = {"Humidity": json_req["Humidity"],

"Temperature_farenheit":json_req["
Temperature_farenheit"],

"Temperature_celsius": json_req["
Temperature_celsius"],

"Latitude": json_req["Latitude"],
"Longitude": json_req["Longitude"],
"Time": datetime.now()}

db.sensordata.insert(db_entry)
return {"statusCode": "200"}

CHAPTER 5. EVALUATION 57

Listing 5.1: Mongowriter OpenFaaS function

We evaluated our proposed solution by analysing the function execution of-
floading at the different layers. The exec_timeout for each layer are presented
in the Table 4.1. We used the setup described in section 4.3 that consisted of
Raspberry Pi 3 as part of Docker swarm at IoT-Gateway and edge layer. We
used dth 11, Ubuntu 16.04 LTS machine and IBM cloud functions for sen-
sor, fog and cloud layers respectively. Listing 5.1 consists of a synchronous
OpenFaaS function that takes values from the sensor and writes them to
the MongoDB database. This function was deployed across all layers. We
performed 10 iterations for each of the cases mentioned in Table 5.2 and 5.3
to calculate the average value and the standard deviation.

Case Executed at 1st execution(time taken in seconds) 2nd execution(time taken in seconds)
IoT-Gateway timeout Edge Layer 22.1764 2.1617
IoT-Gateway and Edge timeout Fog Layer 58.3487 1.8188
IoT-Gateway, Edge and Fog Timeout Cloud Layer 99.8052 1.8126

Table 5.1: Function execution time in case of threshold timeout

Table 5.2 shows the function execution time in case of threshold timeout
at different layers. The function takes higher time for the first execution as it
runs for whole exec_timeout at each layer. Our solution also creates a bucket
entry at each layer that allows the function to skip exec_timeout and results
in low function execution time values during second execution. we have a
low value of standard deviation in each case as he time taken during each
iteration does not differ significantly. Figure 5.3 demonstrates the difference
in the time taken for the first and second execution in each layer.

Case Executed at First execution(standard deviation in seconds) Second execution(standard deviation in seconds)
IoT-Gateway timeout Edge Layer 0.0449 0.0469
IoT-Gateway and Edge timeout Fog Layer 0.2801 0.0755
IoT-Gateway, Edge and Fog Timeout Cloud Layer 0.1179 0.1341

Table 5.2: standard deviation in case of threshold timeout

Case Executed at Execution time (in seconds) Standard deviation (in seconds)
All layers are functional IoT-Gateway 4.5269 0.0575
IoT gateway is unavailable Edge layer 2.1860 0.0417
IoT-Gateway and Edge are unavailable Fog layer 12.3600 0.2232
IoT-Gateway, Edge and Fog are unavailable Cloud layer 7.3726 0.2833

Table 5.3: Function execution time in case of unavailability of the layers

Table 5.3 contains the time taken for the function execution and standard
deviation when lower layers are unavailable. Our solution checks the avail-
ability of the devices at each layer before offloading function execution to the

CHAPTER 5. EVALUATION 58

Figure 5.3: Comparison of time taken during first and second execution on
timeout

Figure 5.4: Function execution time in case of unavailability of the layers

layer above. As previously discussed, the primary reason for comparatively
higher values of execution time is due to the time taken in the second execu-
tion in case of timeout. Figure 5.4 shows the time taken at different layers
upon function execution offloading. Our proposed solution demonstrate the
successful deployment of a serverless platform for the Internet of Things.

Chapter 6

Conclusion

This work demonstrated an implementation of serverless computing in an IoT
network. We considered the resource constrained nature and heterogeneity
of IoT devices in our solution. Devices with different attributes such as pro-
cessing capability, memory, battery, sensors were set up in a cluster using a
Docker-based orchestration mechanism called Docker swarm. Our work also
inherits some beneficial properties of Docker swarm such as fault-tolerance
and high availability.

In particular, we constructed a multi-layered architecture for our solution
with layers such as IoT-Gateway, fog, edge and cloud layer. Available open-
source serverless platforms such as Apache OpenWhisk, OpenFaaS, Kube-
less and Fission were surveyed. Upon careful evaluation, we selected Open-
FaaS at IoT-Gateway, fog, edge layers due to its ease of deployment on arm
architecture-based devices and flexibility. OpenFaaS was also preferred over
Kubeless as latter can only be deployed using kubernetes. The architecture
used IBM cloud functions as cloud layer due to its cost-effectiveness. IBM
cloud functions is an IBM proprietary version of Apache OpenWhisk.

An algorithm was designed for the function execution offloading among
different layers of our architecture. The maximum function execution time
was defined at each layer depending upon the resources availability. The
offloading decision was made based on the availability of active nodes in the
Docker swarm. Functions were written in python and deployed at each layer
by using the OpenFaaS command line interface.

The solution later evaluated on various factors such as ease of deployment,
high availability, fault-tolerance, device and function heterogeneity, security
and privacy. We also compare the function execution time at various layers
of proposed solution. We showed that it is possible to successfully deploy a
serverless platform on IoT devices and use it to perform various tasks with
the help of serverless functions. The concepts presented in this work can

59

CHAPTER 6. CONCLUSION 60

be expanded, and further research can be conducted. In this context, some
interesting directions for future work are the following:

1. Defining the trigger alarms for function execution offloading specific to
our architecture. At the moment, the architecture uses features built
into to offload a function from one layer to another.

2. An implementation using kubernetes as this solution heavily relies on
the Docker swarm.

3. Implementing a logging server along with monitoring functionality for
the proposed architecture. This solution relies on the OpenFaaS func-
tionalities that do not take offloading mechanism into account.

4. An authentication mechanism for function deployment and execution
separated from OpenFaaS authentication.

5. Implementation of secure offloading of function execution from one
layer to another.

Bibliography

[1] Janet Ellen Abbate. From arpanet to internet: A his-
tory of arpa -sponsored computer networks, 1966–1988, 1994.
https://repository.upenn.edu/dissertations/AAI9503730/.
Accessed 31 July 2018.

[2] A. L. Russell. The internet that wasn’t. IEEE Spectrum, 50(8):39–43,
August 2013.

[3] Cisco. Cisco visual networking index, 2017. https:

//www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/

complete-white-paper-c11-481360.html. Accessed 31 July
2018.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010.

[5] Yury Izrailevsky. Completing the netflix cloud migration, 2016. Com-
pleting the Netflix Cloud Migration : https://media.netflix.com/
en/company-blog/completing-the-netflix-cloud-migration.
Accessed 31 July 2018.

[6] Cisco. Internet of things, 2016. Internet of Things - CISCO :
https://www.cisco.com/c/dam/en/us/products/collateral/

se/internet-of-things/at-a-glance-c45-731471.pdf. Ac-
cessed 24 June 2018.

[7] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of things (iot): A vision, architectural
elements, and future directions. Future Generation Computer Systems,
29(7):1645 – 1660, 2013.

61

https://repository.upenn.edu/dissertations/AAI9503730/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf

BIBLIOGRAPHY 62

[8] S. Deshmukh and R. Shah. Computation offloading frameworks in mo-
bile cloud computing : a survey. In 2016 IEEE International Confer-
ence on Current Trends in Advanced Computing (ICCTAC), pages 1–5,
March 2016.

[9] S. Singh and N. Singh. Internet of things (iot): Security challenges, busi-
ness opportunities amp; reference architecture for e-commerce. In 2015
International Conference on Green Computing and Internet of Things
(ICGCIoT), pages 1577–1581, Oct 2015.

[10] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking. A review on internet
of things (iot), internet of everything (ioe) and internet of nano things
(iont). In 2015 Internet Technologies and Applications (ITA), pages
219–224, Sept 2015.

[11] University of Maryland website. Don’t we all need arms, 2016.
WWW page of the cs.umd.edu: https://www.cs.umd.edu/~meesh/
cmsc411/website/proj01/arm/. Accessed 04 Aug 2018.

[12] A. B. S., H. M.J., J. P. Martin, S. Cherian, and Y. Sastri. System
performance evaluation of para virtualization, container virtualization,
and full virtualization using xen, openvz, and xenserver. In 2014 Fourth
International Conference on Advances in Computing and Communica-
tions, pages 247–250, Aug 2014.

[13] Docker.com. What is docker. WWW page of the www.docker.com:
https://www.docker.com/what-docker.

[14] A. Tosatto, P. Ruiu, and A. Attanasio. Container-based orchestration
in cloud: State of the art and challenges. In 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems,
pages 70–75, July 2015.

[15] Docker.com. Manage swarm security with public key infrastructure
(pki). WWW page of the www.Docker.com: https://docs.docker.
com/engine/swarm/how-swarm-mode-works/pki/. Accessed 11
May 2018.

[16] Docker.com. Administer and maintain a swarm of docker engines.
WWW page of the www.Docker.com: https://docs.docker.com/

engine/swarm/admin_guide/. Accessed 11 May 2018.

https://www.cs.umd.edu/~meesh/cmsc411/website/proj01/arm/
https://www.cs.umd.edu/~meesh/cmsc411/website/proj01/arm/
https://www.docker.com/what-docker
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/
https://docs.docker.com/engine/swarm/admin_guide/
https://docs.docker.com/engine/swarm/admin_guide/

BIBLIOGRAPHY 63

[17] Docker.com. Raft consensus in swarm mode. WWW page of
the www.Docker.com: https://docs.docker.com/engine/swarm/

raft/. Accessed 11 May 2018.

[18] Docker.com. Manage swarm service networks. WWW page of
the www.Docker.com: https://docs.docker.com/v17.09/engine/
swarm/networking/. Accessed 11 May 2018.

[19] Mike Roberts. Serverless architectures, 2016. WWW page of the martin-
fowler.com: https://martinfowler.com/articles/serverless.

html. Accessed 14 May 2018.

[20] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha. A preliminary
review of enterprise serverless cloud computing (function-as-a-service)
platforms. In 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pages 162–169, Dec 2017.

[21] Openwhisk. Git repository of Apache OpenWhisk project: https://

github.com/apache/incubator-openwhisk. Accessed 11 May 2018.

[22] Openwhisk cli. Git repository of Apache OpenWhisk CLI: https://
github.com/apache/incubator-openwhisk-cli. Accessed 21 May
2018.

[23] Michael Mendenhall and Buell Duncan. Bluemix is now ibm cloud, 2017.
WWW page of the IBM cloud blogs: https://www.ibm.com/blogs/
bluemix/2017/10/bluemix-is-now-ibm-cloud/. Accessed 11 May
2018.

[24] Openfaas. Git repository of OpenFaaS: https://github.com/

openfaas/faas. Accessed 11 May 2018.

[25] Deployment guide for docker swarm. Git repository of Open-
FaaS: https://docs.openfaas.com/deployment/docker-swarm/.
Accessed 11 May 2018.

[26] Alex Ellis. Alert rules, 2017. Git repository of Open-
FaaS: https://github.com/openfaas/faas/blob/master/

prometheus/alert.rules.yml. Accessed 22 June 2018.

[27] Docker comes to raspberry pi. WWW Raspberrypi blog: https://

www.raspberrypi.org/blog/docker-comes-to-raspberry-pi/.
Accessed 14 May 2018.

https://docs.docker.com/engine/swarm/raft/
https://docs.docker.com/engine/swarm/raft/
https://docs.docker.com/v17.09/engine/swarm/networking/
https://docs.docker.com/v17.09/engine/swarm/networking/
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://github.com/apache/incubator-openwhisk
https://github.com/apache/incubator-openwhisk
https://github.com/apache/incubator-openwhisk-cli
https://github.com/apache/incubator-openwhisk-cli
https://www.ibm.com/blogs/bluemix/2017/10/bluemix-is-now-ibm-cloud/
https://www.ibm.com/blogs/bluemix/2017/10/bluemix-is-now-ibm-cloud/
https://github.com/openfaas/faas
https://github.com/openfaas/faas
https://docs.openfaas.com/deployment/docker-swarm/
https://github.com/openfaas/faas/blob/master/prometheus/alert.rules.yml
https://github.com/openfaas/faas/blob/master/prometheus/alert.rules.yml
https://www.raspberrypi.org/blog/docker-comes-to-raspberry-pi/
https://www.raspberrypi.org/blog/docker-comes-to-raspberry-pi/

BIBLIOGRAPHY 64

[28] Kubernetes on (vanilla) raspbian lite. Git repository
of alexellis: https://gist.github.com/alexellis/

fdbc90de7691a1b9edb545c17da2d975. Accessed 14 May 2018.

[29] Alex Ellis. Your serverless raspberry pi cluster with docker,
2017. WWW Alex Ellis’ Blog: https://blog.alexellis.io/

your-serverless-raspberry-pi-cluster/. Accessed 14 May 2018.

[30] Y. Gao, H. Wang, and X. Huang. Applying docker swarm cluster into
software defined internet of things. In 2016 8th International Conference
on Information Technology in Medicine and Education (ITME), pages
445–449, Dec 2016.

[31] Daniel JosÃ© Bruzual Balzan. Distributed computing framework based
on software containers for heterogeneous embedded devices. Master’s
thesis, Department of Computer Science and Engineering, Aalto Uni-
versity School of Science and Technology, Espoo, Finland, 2017. https:
//aaltodoc.aalto.fi/handle/123456789/28568?show=full.

[32] Alex Ellis. Lock-down openfaas for the public internet, 2017.
WWW Alex Ellis’ Blog: https://blog.alexellis.io/

lock-down-openfaas/. Accessed 29 May 2018.

https://gist.github.com/alexellis/fdbc90de7691a1b9edb545c17da2d975
https://gist.github.com/alexellis/fdbc90de7691a1b9edb545c17da2d975
https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/
https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/
https://aaltodoc.aalto.fi/handle/123456789/28568?show=full
https://aaltodoc.aalto.fi/handle/123456789/28568?show=full
https://blog.alexellis.io/lock-down-openfaas/
https://blog.alexellis.io/lock-down-openfaas/

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Scope and Goal
	1.3 Structure of the Thesis

	2 Background
	2.1 Internet of Things
	2.2 Hardware platforms
	2.2.1 Advanced RISC machine
	2.2.2 x86 platform
	2.2.3 x64 platform

	2.3 Software containers and Docker
	2.3.1 Container-based virtualization
	2.3.2 Docker containers
	2.3.3 Dockerfile
	2.3.4 Container orchestration

	3 Serverless Computing
	3.1 Evolution of Cloud Computing
	3.2 Apache OpenWhisk
	3.2.1 OpenWhisk internal architecture
	3.2.2 Setup and Triggers

	3.3 OpenFaaS
	3.3.1 Architectural Overview
	3.3.2 OpenFaaS Setup

	3.4 IronFunctions
	3.5 Kubeless
	3.6 Fission

	4 Design and Implementation
	4.1 System Architecture
	4.2 Function execution offloading
	4.2.1 Terminology
	4.2.2 Communication for the offloading decision
	4.2.3 Offloading algorithm explanation

	4.3 Implementation

	5 Evaluation
	5.1 Methodology
	5.1.1 Evaluation criteria

	5.2 Analysis
	5.2.1 Offloading Analysis

	6 Conclusion

