
Optimizing Heating Patterns in Thermal
Tomography

Juha-Pekka Puska

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 17.9.2018

Thesis supervisor:

Prof. Nuutti Hyvönen

Thesis advisor:

D.Sc. (Tech.) Lauri Mustonen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/162136433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto university
school of science

abstract of the
master’s thesis

Author: Juha-Pekka Puska

Title: Optimizing Heating Patterns in Thermal Tomography

Date: 17.9.2018 Language: English Number of pages: 6+50

Department of Mathematics and Systems Analysis

Code of major: SCI3053

Supervisor: Prof. Nuutti Hyvönen

Advisor: D.Sc. (Tech.) Lauri Mustonen

Thermal tomography is a promising method for non-destructive testing of materials
based on measuring the boundary temperature of an object that is exposed to
a known heat flux. The estimation of the internal structure, i.e. the spatially
varying heat capacity and thermal conductivity, is an inverse problem, to which
the statistical inversion approach is applied.
The question of optimal experiment design is how to conduct an experiment so
that the maximum amount of information is gained. In this thesis, the goal is to
optimize the time-dependent heating patterns in thermal tomography.
The actual measurements were numerically simulated using finite element modeling.
The resulting parameter reconstructions with the optimized heating patterns were
compared to a reference pattern to see if, on average, the optimized patterns
resulted in smaller reconstruction errors.
The results indicate that on average the reconstruction error was mostly dependent
on the rate of increase in the heating and the total amount of heat transferred.
The optimization procedure also consistently resulted in patterns with maximum
heating within the given constraints.
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Lämpötomografia on lupaava menetelmä materiaalien rikkomattomaan aineen-
koetukseen. Siinä kappaleeseen kohdistetaan tunnettu lämpövuo, ja mitataan
kappaleen lämpötilaa sen reunoilla. Kappaleen sisäisen rakenteen estimointi on
erääntyyppinen inversio-ongelma, johon käytetään tilastollista lähestymistapaa.
Optimaalisessa koesuunnittelussa tavoitteena on suunnittella suoritettava koe siten,
että se tuottaa mahdollisimman paljon informaatiota. Tässä työssä tavoitteena on
optimoida lämmityskuvioita.
Työssä mittausta simuloitiin numeerisesti käyttäen elementtimenetelmää. Optimoi-
duilla lämmityskuvioilla saatuja parametrirekonstruktioita verrattiin verrokkiku-
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Symbols and abbreviations

Symbols
Ω measurement domain
∂Ω boundary of measurement domain
u temperature
u|∂Ω temperature on the boundary
T end time of measurement
I time interval of measurement, [0, T ]
Hj heater element
sj measurement sensor
a thermal conductivity
b heat capacity
c surface heat conductance
ν unit exterior normal of measurement domain
f external heating
χj characteristic function of heater
g heating function
χ̃j characteristic function of pixel
ϕk(t) basis functions for heating
M Measurement points in time
a parameter vector of thermal conductivity
b parameter vector of heat capacity
y measurement vector
π() probability distribution
Γpost covariance matrix of posterior distribution
Γpr covariance matrix of prior distribution
Γnoise covariance matrix of noise



1 Introduction
The question of determining the internal structure of an object from values measured
on its boundary belongs to the class of so called inverse problems. Inverse problems
are defined as the complement of forward, or well-defined problems [1]. This roughly
means a solution might not exist, the solution might not be unique, and the solution
does not necessarily depend continuously on the data. The characterizing features of
inverse problems are that they are often nonlinear and highly unstable with regards
to noise and errors in modeling and measurement. Therefore they require special
solution techniques to ensure the solutions make sense, and numerical errors can also
easily have a large impact. When solving inverse problems, it is important to use all
available prior information about the problem.

Thermal tomography is a method whose goal is to reconstruct the internal structure
of an object by applying a known heat flux at certain locations on the boundary
of the object and measuring the effect of the heating on the temperature of the
object on its boundary [2]. It is similar to the more established electrical impendance
tomography [3][4] and optical tomography [5]. The reconstruction is possible since the
equations governing heat conduction are well known and can be modeled accurately
by numerical methods such as finite elements. The most probable application of
thermal tomography is the non-destructive testing of objects and materials that can
withstand moderate temperature changes.

In the statistical approach to inverse problems, the unknown parameters are
modeled as random variables with an assumed probability distribution, and the
measurement data as additional information about those variables. Using Bayesian
reasoning, assumptions about the probability distributions of the unknowns, known
also as the prior probability, can be combined with the data into a posterior probability.
The posterior probability summarizes all information about the unknowns, given the
observations. Unlike conventional inversion techniques, which only produce a single
estimate, the posterior probability distribution provided by statistical inversion also
includes information about the variance and possible error of the result. In this
thesis, the unknown random variables are the thermal conductivity and heat capacity
inside the object. In a real world application a region of lower thermal conductivity
and heat capacity could be interpreted as a crack or a hole in the object, which could
lead to the object fracturing or otherwise failing in its intended use.

Optimal experimental design considers how to design an experiment so that it
yields the maximum amount of information given some case-dependent constraints [6].
Design in this context means choosing the control variables, such as sampling times
or sample sizes. This is important since in real world applications there are usually
limitations on how the measurement can be conducted. We might for example
only have a limited number of samples available, or limitations might originate
from the physical design of the experimental apparatus. In the case of thermal
tomography, possible optimization targets are the shapes, sizes and positions of
the heaters and sensors, the measurement times, and the heating patterns. In this
thesis, the focus is on the heating patterns. The question that this thesis ultimately
aims to answer is whether there is an optimal pattern of heating the object with
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regards to information gained about the unknown parameters. Intuitively one could
think of several optimal solution candidates such as heating with maximal heat flux
throughout the experiment, heating initially with maximal intensity and stopping
abruptly, or perhaps even periodic heating. Obviously there are real world limitations
on how the heating can be conducted. It is not possible to have infinitely high
temperatures, discontinuities in the temperature, or active cooling.

In mathematical terms, the goal of the optimization is to make the posterior
distribution of the parameters as localized as possible, effectively reducing the
posterior uncertainty of the unknown parameters. The degree of localization is
encoded in the covariance matrix of the posterior distribution, so the optimization
target is to minimize either the trace or the determinant of the said matrix. These
targets correspond to well known concepts of A-optimality and D-optimality.

To test the results of the optimization procedure, we simulate measurement
using the optimized heating patterns, solve the inverse problem, and compare the
reconstruction to the actual target parameter values. If the optimized patterns do
yield more information about the object, the reconstruction errors should be lower
than if the measurement were conducted using a standard reference pattern. To
account for random variability, this procedure is repeated multiple times, each time
drawing a sample parametrization from the given prior distribution.

The layout of this thesis is as follows. In Section 2 thermal tomography is
described in more detail, the exact mathematical formulation is presented, and a
measurement setup is fixed. The chosen setup roughly corresponds to a known
experimental setup [11]. In Section 3 the problem is discretized and the parameters
are defined for the numerical simulation. The section also provides a brief overview of
the finite element method used to solve the forward problem. Section 4 explains the
principles of statistical inversion techniques and how they are used in this context.
Then the optimization goal and method is explained in more detail. Section 5 shows
the results and analysis of the numerical experiments. Finally, Section 6 contains
concluding remarks and analysis of the results in a wider context.
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2 Thermal tomography

2.1 Background
Thermal tomography is a nondestructive imaging method where the aim is to recover
information about the inner structure of an object using temperature measurements
on the boundary of the object [7]. It could provide an inexpensive way to test
materials and structures for cracks, air bubbles or other deformations that could
alter the structural properties of the object.

In thermal tomography, temperature sensors are placed at multiple locations
on the boundary, and then the object is heated from specific source location. As
the heat diffuses in the object, the evolution of the temperature is observed at the
measurement locations. Since the equations governing heat transfer are well known,
the measurements bring information about the material parameters affecting the
phenomena, namely the thermal conductivity and heat capacity of the object. Higher
thermal conductivity will cause the heat to diffuse faster, whereas a higher heat
capacity will mean that the object will take longer to heat up. Finally, the process
can be repeated for multiple source locations.

The forward problem of solving the diffusion equation is well-posed and stable.
Conversely, the inverse problem, that is, reconstructing the internal structure, is
ill-posed and non-linear. Solving the (discretized) forward problem is discussed
in Section 3 and the inverse problem in Section 4. As can be expected, more
measurement points result in more information and therefore better reconstructions.
However, the cost of adding more data is higher computational complexity and/or a
need for a more complicated measurement device. This serves as the motivation for
this thesis: getting better reconstructions without increasing the amount of data.

The foundations for performing thermal tomography using the diffusion equation
were laid out in [8]. Bayesian inversion techniques for performing the inversion were
introduced in [9]. Since then, it has been shown numerically that the heat capacity,
thermal conductivity, and surface heat transfer coefficient can all be estimated
simultaneously [10]. However, in this thesis the surface heat transfer coefficient is
assumed to be known. Also, a “proof of concept” experimental device has been
manufactured [11].

2.2 Mathematical model
Let Ω ⊂ R2 be the imaged body and let

u : Ω× I → R

be the function describing its temperature over the time interval I = [0, T ], for some
T > 0. There are J ∈ N heaters and sensors attached to the boundary, denoted by
Hj and sj , respectively. The heaters are identified with open subsets of ∂Ω, whereas
the sensors are interpreted as points on the boundary. The model for conductive
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heat transfer is described by the following parabolic initial boundary value problem

b
∂u

∂t
−∇ · (a∇u) = 0 in Ω× I,

ν · a∇u = c(f − u) on ∂Ω× I, (1)
u = 0 in Ω× {0},

where a : Ω → R+, b : Ω → R+, c : ∂Ω → R+, are the thermal conductivity, heat
capacity and surface heat conductance, respectively. Moreover ν : ∂Ω→ R2 is the
unit exterior normal of Ω and f : Ω × I → R describes the external heating of Ω.
It is also assumed that the object is at constant temperature to start with and the
exterior temperature is zero. The object is not assumed to be insulated from the
environment, but the surface heat conductance is assumed to be known.

The measurements are values of the boundary temperature u|∂Ω : ∂Ω× I → R
at the measurement points sj on the boundary and at predetermined measurement
times on the interval I. The measurements start at the same time as the heating
and end at the same time, i.e., at time T (although this is not necessarily an optimal
choice).

Only one of the heaters is active at a time, so the heating function f is described
by

fj(x, t) = gj(t)χj(x),

where j is the index of the active heater Hj and χj is its characteristic function:

χj(x) =
{

1 if x ∈ Hj,

0 otherwise.

2.3 Measurement setup
For simplicity, the object is chosen to be a two-dimensional unit disk centered
around the origin. On the boundary of the disk, there are eight heater elements
labeled as Hj, j = 1, . . . , 8, and eight equally spaced measurement sensors labeled
sj, j = 1, . . . , 8. The heater elements are attached to the boundary of the object
(Hj ⊂ ∂Ω) and have angular width π/8. The point-like measurement sensors are
located at the mid-points between the heater elements. The measurement setup is
illustrated in Figure 1.
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Figure 1: Measurement setup. Hj, j = 1, . . . , 8, are the heaters and sj, j = 1, . . . , 8,
the sensors on the boundary of the imaged disk.

In the measurement process, one of the heaters is turned on and it applies a
heat flux according to the chosen heating function g. The temperatures are then
measured simultaneously at all the measurement points at the chosen measurement
times. The process can then be repeated for the rest of the heaters. Between the
measurements the setup is allowed to cool down so that the initial conditions for
each measurement are identical.
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3 Discretization

3.1 Parametrization
To discretize the heat capacity and thermal conductivity, the domain is divided into
non-overlapping pixels that cover the entire domain, as shown in Figure 2. The pixels
are chosen so that they all have roughly the same area. Increasing the number of
pixels (and thus making each pixel smaller) would in principle make it possible to
see smaller features in the object, although the ill-posedness of the inverse problem
of thermal tomography sets a lower limit for the reachable resolution. This would
also make the inverse problem more demanding computationally.

The parameters a and b are assumed to be constant on each pixel so that

a(x) = a0 +
L∑

l=1

alχ̃l(x), b(x) = b0 +
L∑

l=1

blχ̃l(x),

where χ̃l is the characteristic function of a pixel in Ω, and a0 and b0 the respective
base levels around which the parameters vary. In a real world setting, the base level
would be set according to the presumed material of the object. Our simulation uses
40 pixels, so the parameter vector is [aT ,bT ]T ∈ R80, where aT = [a1, . . . , aL] and
bT = [b1, . . . , bL].

25
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36 37
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40
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3 4

Figure 2: Discretization of heat capacity and thermal conductivity in the unit disk.

The heating pattern is parametrized as

g(t) =
K∑

k=1

gkϕk(t),
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where ϕk, k = 1, . . . , K are piecewise linear basis functions defined by

ϕk(t) =


(t− tk−1)/∆t tk−1 ≤ t ≤ tk,

(1− (t− tk))/∆t tk ≤ t ≤ tk+1,

0 otherwise,
(2)

where tk are equally spaced on the interval [0, T ] and ∆t is the corresponding offset.
This means that our heating function is a piecewise linear function specified by the
coefficient vector g ∈ RK . The first heating basis function ϕ1 is shown in Figure 3.

In theory, it would be possible that with the multiple heatings, the optimal
solution would be different for each heater. However, since the measurement setup
has rotational symmetry, this effect is unlikely to be very significant. Also, our
numerical experiments support this belief. Therefore, it is assumed that the same
heating pattern gj = g is used for all the heaters.

g

t

1

0.04

ϕ1

Figure 3: First basis function in (2).

Each sensor measures the boundary temperature at discrete times

ti = T

M
i, i = 1, . . . ,M.

The total number of measurements for one iteration of the heating process is thus
8M , and for all eight heaters we get a measurement vector y ∈ R64M .

With this measurement setup, we can model the forward problem by the function

F : (a,b; g) 7→ y

that maps the material parameter vectors a and b, and the chosen heating function
described by g, to the temperature measurements on the boundary of the object.

3.2 Solution by FEM and time-stepping
The finite element method (FEM) is a technique for numerically approximating the
solution of a partial differential equation. It is favored especially for its ability to
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handle complex domains and boundary conditions and it is therefore well suited
for various engineering applications [12]. Originally designed mainly for structural
engineering, FEM has since been developed by mathematicians into a general purpose
framework for partial differential equation problems in various fields. In this thesis,
the finite element method is used to solve the forward problem of heat diffusion in
the measurement object.

The steps of the finite element method are:

1. Deriving the variational formulation for the given problem.

2. Discretizing the domain.

3. Considering the problem separately in each element.

4. Assembling the elements to form a global system of equations for the problem.

5. Solving the equations to obtain the global solution.

For parabolic problems such as the diffusion equation (1), the most common approach
is to use the finite element method to first discretize the problem in the spatial
domain. This is called semi-discretization, and it results in a system of ordinary
differential equations. Then, the problem is solved forward in time using a finite
difference method. The other option, using finite elements to discretize the system
in both the spatial and time domains, is also possible but not used here.

The variational or the weak formulation is a way of relaxing the smoothness
requirements of the solution and it is central in developing the eventual discrete
model for the finite element method. To derive the variational formulation, multiply
the first equation of (1) by a test function v ∈ H(Ω) and integrate by parts to obtain

0 =
∫

Ω
b
∂u

∂t
v dx−

∫
Ω
∇ · (a∇u)v dx

=
∫

Ω
b
∂u

∂t
v dx+

∫
Ω
a∇u · ∇v dx−

∫
∂Ω
c(f − u)v ds.

Here we first used integration by parts on the second term to get

−
∫

Ω
∇ · (a∇u)v dx =

∫
Ω
a∇u · ∇v dx−

∫
Ω
∇ · (a∇uv) dx,

and then using the divergence theorem, deduced∫
Ω
∇ · (a∇uv) dx =

∫
∂Ω
a∇u · ν dx.

Inserting the boundary condition of (1), one gets the final result, which can be
written also as

∂t(bu, v)Ω + (a∇u,∇v)Ω + (cu, v)∂Ω = (cf, v)∂Ω for all v ∈ H1(Ω), (3)
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where the brackets denote (real) L2-inner products over respective sets. The weak
formulation is accompanied by the initial condition from (1), interpreted in the
appropriate weak sense. For (almost) all t ∈ [0, T ], the solution of the problem (3)
belongs to the space H1(Ω). The question of unique solvability of (3) is discussed
for example in [13].

The idea of the spatial discretization is to construct a finite dimensional space Vh

that is a subspace of the original solution space V = H1(Ω). The solution uh ∈ Vh is
then defined as a certain best approximation of the original solution. This can be
expressed by the Galerkin orthogonality property:

B(u− uh, v) = 0 for all v ∈ Vh,

where B(·, ·) is the bilinear form defined by the left-hand side of (3). In other words,

B(uh, v) = (cf, v) for all v ∈ Vh.

If we define φi, i = 1, . . . , N to be a basis for the space Vh, then the solution uh can
be expressed as

uh(t) =
N∑

i=1

αi(t)φi, (4)

where αi are time-dependent coefficients that account for the time evolution of the
solution.

The finite element method provides a systematic way of constructing the finite
dimensional subspace Vh [14]. The domain is first split into triangular elements
(though other shapes could be used as well). This triangularization is denoted by
Th, and its single element is denoted by K. In total the mesh contains Ne elements
(triangles) and Np nodes. In practice, to improve the convergence of the method,
one should use a finer mesh near irregularities in the shape of the boundary or in
the boundary conditions. Conversely, in places where the solution is expected to
be smooth, one can use a coarser mesh to save computational resources without
affecting the solution considerably. In our problem, the mesh is finer near the heater
edges, since at those points the boundary condition is discontinuous. This is shown
in Figure 4.
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Figure 4: Mesh used for the finite element method in the numerical studies of
Section 5.

There are several possible choices for the shapes of the basis functions. The
simplest and most common is to set the functions to be piecewise linear:

Vh := {v ∈ H1(Ω) | v ∈ P1(K) ∀K ∈ Th},

where P1(K) is the space of first order polynomials over K. The actual basis is
constructed so that there is a basis function associated with each node in the domain,
having the value 1 at that node, and 0 at all the other nodes, i.e.,

φj(xi) =
{

1 if i = j,

0 if i 6= j,

where xi is the i:th node. The finite dimensional weak problem can then be expressed
as

∂t(buh, φj)Ω + (a∇uh,∇φj)Ω + (cuh, φj)∂Ω = (cf, φj)∂Ω for all j and t ∈ I. (5)

It is now possible to insert (4) into (5) to form the equations separately on each
element. This results in a system of ordinary differential equations that can be
expressed in a matrix form as

∂tBα + (A+ C)α = f̂ , (6)
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where α : I → RN contains the time-dependent coefficients from (4).
In finite element terminology, the matrix B is called the mass matrix and A+ C

the stiffness matrix. Moreover f̂ is a vector containing the coefficients of cf in the
chosen finite element discretization. The equation (6) is called the semidiscrete form
since so far, the discretization has only been carried out in the spatial domain.

The next step is to use a finite difference method to discretize in the time domain
and to solve the equation forward in time. For this, we discretize the interval [0, T ]
into equally spaced points tn and let αn denote α(tn) and f̂n denote f̂(tn). For heat
equations the most common time integration technique is the Crank–Nicolson (CN)
method since it is of second order and unconditionally stable [15]. In the CN method,
the time derivative is replaced by a difference quotient and other function evaluations
are approximated by interpolated values at the midpoint of the considered time
interval

B

(
αn+1 − αn

δt

)
+ 1

2
(
(A+ C)αn+1 + (A+ C)αn

)
= 1

2(f̂n+1 + f̂n).

Here δt > 0 denotes the used time step. From this, we can approximate the coefficient
vector defining the solution at the next time step as

αn+1 =
(
I + δt

2 B
−1(A+ C)

)−1(
δt

2 B
−1
(
f̂n+1 + f̂n − (A+ C)αn

)
+ αn

)
.

where α0 = 0.
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4 Bayesian inversion and optimal experimental
design

4.1 Bayesian inversion
Bayesian inversion is a statistical paradigm for solving inverse problems. For linear
problems where the forward problem is defined by the linear mapping, or matrix,

x 7→ Ax,

solving the inverse problem means finding x that solves the equation Ax = y (in
an appropriate sense). In a deterministic approach this roughly means inverting
the matrix A using a regularization method to ensure the solution “makes sense”.
This produces a single estimate for x based on the data available. Popular determin-
istic inversion methods include truncated singular value decomposition, Tikhonov
regularization, and Landweber iteration [16].

In the Bayesian framework [1], the unknown parameters are modeled as random
variables, and the measurements as additional information about the distribution
of those parameters. The result of Bayesian inversion is a probability distribution
of the unknowns that incorporates both the prior knowledge and the measurement
data. From this posterior distribution we can then deduce information about the
unknown parameters, such as their posterior mean and variance.

To perform the inversion, initial knowledge about the unknowns is first encoded
into a prior distribution:

πpr(a,b).
Into this distribution we can incorporate knowledge about complex relationships, such
as discontinuities and correlations. Forming the prior model can be the most difficult
step in the inversion, since the prior knowledge is often qualitative, and transforming
it into a probability distribution is typically nontrivial. For more information about
prior distributions in tomography methods, see [17] and the references therein.

The next step is forming the likelihood function that is the conditional probability
of encountering a measurement for given parameters,

π(y | a,b; g).

The likelihood function implicitly contains both the forward model as well as infor-
mation about measurement noise and other uncertainties. To construct it, we need
to specify a noise model, which includes possible dependence of the noise on the
unknowns.

Using these definitions and the famous Bayes’ formula

π(A|B) = π(B|A)π(A)
π(B) ,

for random events A and B, we can write the posterior distribution of the parameters
given the measurement data as

π(a,b |y; g) = π(y | a,b; g)πpr(a,b)
π(y; g) .
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The denominator corresponds to the probability of the measurement. However, it
only acts as a normalization constant and is usually not important in practice.

Bayesian inversion has several advantages compared to traditional deterministic
inversion methods. Firstly, it is easier to incorporate prior information about the
unknown quantities in the inversion process, since this information is specified in
the prior distribution. A vast amount of research has been devoted to constructing
distributions corresponding to many real world phenomena, such as gaps or disconti-
nuities in the object. Secondly, the posterior probability distribution provided by
Bayesian inversion gives more information about the unknown than a single point
estimate. This makes it possible to analyze reliability of the result and compute error
estimates. The downside of Bayesian inversion is its dependence on the accurate
modeling of the prior distribution.

In our case, the measurement is modeled by an additive noise model,

y = F (a,b; g) + E,

where
E ∼ N(0,Γnoise).

This means that the measurement y is contaminated with additive, zero-mean
Gaussian noise with a positive definite covariance matrix Γnoise ∈ R64M×64M . Since
the noise is assumed to be independent of the unknowns, fixing a and b does not
affect the distribution of E. This means that the conditional density of y conditioned
on a and b has the distribution of E shifted by F (a,b; g), that is,

π(y | a,b; g) = πnoise
(
F (a,b; g)− y

)
∝ exp

(
−1

2
(
F (a,b; g)− y

)T Γ−1
noise
(
F (a,b; g)− y

))
, (7)

where the constant of proportionality does not depend on the variables of interest.
The mutually independent priors for a and b are also chosen to be zero-mean

with covariances Γa,Γb ∈ RL×L, respectively. This corresponds to the prior density

πpr(a,b) ∝ exp
(
−1

2(aT Γ−1
a a + bT Γ−1

b b)
)
. (8)

In this work, the covariance matrices of the material parameters are chosen to be of
the form

Γi,j = σ2 exp
(
−‖x̂i − x̂j‖2

2
2l2

)
, i, j = 1, . . . , L, (9)

where x̂i ∈ Ω is the coordinate of the center of the pixel with index i, σ is the
pointwise standard deviation parameter and l is the correlation length. This type of
covariance assigns a higher correlation to pixels that are close to each other and is a
fairly natural choice for a physical material; see, e.g., [18] for usage of such a prior
in real-world imaging. Naturally, the values of σ and l depend on the considered
application/material.
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Now (7) and (8) can be combined to form the posterior distribution:

π(a,b |y; g) (10)
∝ πnoise(F (a,b; g)− y)πpr(a,b)

∝ exp
(
−1

2
(
F (a,b; g)− y

)T Γ−1
noise
(
F (a,b; g)− y

))
× exp

(
−1

2(aT Γ−1
a a + bT Γ−1

b b)
)

= exp
(
−1

2
(
F (a,b; g)− y

)T Γ−1
noise
(
F (a,b; g)− y

)
− 1

2(aT Γ−1
a a + bT Γ−1

b b)
)
,

where the constants of proportionality are independent of a, b and g.

4.2 Optimal experimental design
When performing experiments, in addition to the unknown parameters to be inferred,
we often also have a number of control variables, or design variables, the values of
which can be selected beforehand. The design variables do not influence the process
of phenomenon being modeled, but have an effect on the outcome of the experiment.
In the context of tomography methods, these can include decisions on the spatial and
temporal locations of the data points, i.e. where and when we measure. Also, we can
appropriately select the input, i.e. the heating in the case of thermal tomography or,
e.g., the electrical currents in the case of electrical impendance tomography.

Since different values of the decision variables result in different output distri-
butions of the data, it is natural to assume that some designs are preferable to
others by providing more information about the experiment. The goal of optimal
experimental design is therefore to improve the statistical inference of the unknown
random variables by appropriately selecting the values of these control variables [19].

As its name suggests, finding an optimal design involves solving an optimization
problem by finding a design that maximizes a chosen utility function. It is of course
possible to improve the inference by simply using more measurement points, but this
results in a larger computational load. This can be especially restrictive in the case
of complex physical models. Also, sometimes the constraints of the experiment might
limit the amount of available data. Therefore it is important to get as informative
data as possible.

In related works, optimal experimental design has been applied to electrical
impendance tomography to optimize current patterns [20] and electrode positions
[21]. Here, the goal is choosing the heating function in a way that will give as
much information about the unknown material parameters as possible under certain
constraints. These constraints should be chosen so as to roughly correspond to the
limitations of the actual physical heating devices.

Formulated using a decision theoretic approach as suggested in [6], finding an
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optimal design is equal to maximizing the expected utility

U(g) =
∫
Y

∫
B

∫
A
u(g,y, a,b) π(a,b,y |g) da db dy

=
∫
Y

∫
B

∫
A
u(g,y, a,b) π(a,b |y,g)π(y |g) da db dy, (11)

where u is a chosen utility function that reflects the usefulness of the experiment
performed with the decision variables g, given the values of the parameters a and b
and the resulting outcome y. Since the specific values of the material parameters and
the outcome vector are unknown, they must be marginalized to find the expected
outcome. Hence one needs to integrate over Y, the support of π(y |g) and A× B,
that contains the support of π(a,b |y,g). This is equal to finding the expectation of
u over the joint distribution of a,b, and y.

Literature suggests several possible utility functions, each yielding a unique
optimization target. An information theoretic approach is maximizing the expected
gain in Shannon information. The difference between the information contained in
two distributions is measured by the Kullback–Leibler (KL) divergence

DKL(A‖B) =
∫
πA(θ) log

[
πA(θ)
πB(θ)

]
dθ = EA

[
log πA(θ)

πB(θ)

]
.

For the inverse problem in question, we set the utility function to measure the KL
divergence between the posterior and the prior

u(g,y, a,b) = DKL
(
π(a,b |y; g) ||πpr(a,b)

)
=
∫
π(a,b |y; g) log

[
π(a,b |y; g)
πpr(a,b)

]
da db

= u(g,y), (12)

which does not depend on a or b. A large change in information would mean that
the data has provided a high amount of information.

Now we write (11) in the form

U(g) =
∫
Y

∫
B

∫
A
u(g,y, a,b) π(a,b |y,g)π(y |g) da db dy

=
∫
Y

∫
B

∫
A
u(g,y) π(y, a,b |g)da db dy

=
∫
Y
u(g,y) π(y|g)dy. (13)

By inserting the utility function (12) into (13) and noting that by the Fubini’s
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theorem and Bayes’s formula the term∫
Y

∫
B

∫
A

log(πpr(a,b))π(a,b; y,g)da db dy

=
∫
B

∫
A

(∫
Y
π(y|a,b; g)dy

)
log(πpr(a,b))πpr(a,b)da db

=
∫
B

∫
A

log(πpr(a,b))πpr(a,b)da db,

does not depend on g, we can drop the prior term from the denominator and get an
equivalent expected utility of the form

U(g) =
∫
Y

∫
B

∫
A

log(π(a,b |y,g))π(y, a,b |g)da db dg. (14)

Maximizing this functional results in the D-optimality criterion.
Another option is the so called Bayesian A-optimality that uses a quadratic loss

function that minimizes the mean squared error between the unknown parameters
and their estimates:

u(g,y, a,b) =
∥∥∥∥[a

b

]
−
[
â(y; g)
b̂(y; g)

]∥∥∥∥2

. (15)

Inserting this into expression (11), one gets another expected utility

U(g) =
∫
Y

∫
B

∫
A

∥∥∥∥[a
b

]
−
[
â(y; g)
b̂(y; g)

]∥∥∥∥2

π(a,b |y,g) da db π(y |g)dy. (16)

This condition is appropriate when one wishes to obtain a point estimate of the
parameters.

Both of the utility functions (14) and (16) will be used for the optimization, and
the designs produced by them will be used for the eventual reconstructions in Section
5. In should be noted that (14) and (16) take considerably simpler forms if the
posterior distribution is of the form (10) and the forward map F is linear.

4.3 Linearization of the forward model
The challenge with maximizing (14) or (16) is that each iteration of the employed
optimization algorithm requires solving forward problems as well as evaluating high-
dimensional integrals (cf. (11)). This is computationally unfeasible even for a fairly
simple problem as is considered in this thesis. Therefore we perform a linearization
to turn the nonlinear forward problem into a far more tractable linear one:

F (a,b; g) ≈ F (a0,b0; g) + Ja,b(a0,b0; g)
[
a
b

]
. (17)

Here Ja,b denotes the Jacobian matrix of F with respect to a and b evaluated at
a = a0 and b = b0. An entry of a Jacobian matrix tells us the effect that a small
change in a pixel value of the parameter would have on an individual measurement.
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It follows from the linearity of (1) with respect to f that

Ja,b =
K∑

k=1

gkJϕk
,

where Jϕk
is the Jacobian for the heating basis function ϕk, i.e., Jϕk

= Ja,b(a0,b0;ϕk),
with slight abuse of notation. For multiple active heaters, the Jacobians have to be
calculated separately for each heater,

(Ja,b)n =
K∑

k=1

gk(Jϕk
)n,

although the symmetry of the measurement setup could be used to ease the compu-
tational load. The result is a set of matrices (Jϕk

)n ∈ RJM×80 where k is the index
of the heating function and 1 ≤ n ≤ 8 the index of the heater.

We can precalculate the Jacobians for each of the heating basis functions, and then
form the Jacobian for any chosen heating pattern by calculating a linear combination.
This linearization means that only one forward problem has to be solved for each
combination of a heating basis function ϕk and a heater element n.

The actual Jacobians are computed by perturbing a single element in one of the
two material parameter vectors and using a difference approximation to compute
the numerical derivative. In other words, we solve the forward problem for the
parameters a0 and b0 for a single heating basis function, add a small perturbance of
size ε > 0 to one of the components, recompute the forward solution, and compute
the difference of these two matrices. In total, 8(K + 1) · 80 forward problems must
be solved. Approximating the Jacobians is computationally a fairly intensive task
but it only has to be performed once as long as the background material parameters
are not changed.

Inserting the linearization (17) into the posterior distribution (10), it can be
straightforwardly shown that the covariance matrix of the posterior for a single active
heater is of the form [1]:

Γpost =

Γ−1
pr +

(
K∑

k=1

gkJϕk

)T

Γ−1
noise

(
K∑

k=1

gkJϕk

)−1

=
(
Γ−1

pr + GT Γ−1
noiseG

)−1
,

where G =
∑K

k=1 gk(Jϕk
). For multiple heaters the inverse posterior becomes

Γ−1
post = Γ−1

pr +
[
GT

1 · · · GT
8
] Γ−1

noise 0
. . .

0 Γ−1
noise


G1

...
G8


= Γ−1

pr +
8∑

n=1

GT
n Γ−1

noiseGn. (18)
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Here

Gn =
K∑

k=1

gk(Jϕk
)n,

where n is the index of the active heater.
Inserting the linearized likelihood function into the expected utility (14), the

D-optimality condition can be simplified into the form (see, e.g., [21])

Minimize : det(Γpost(g)), (19)

where Γpost is the posterior covariance. For the A-optimality (16), we similarly get a
computationally feasible optimization target

Minimize : tr(Γpost(g)), (20)

if the considered point estimate [â(y; g), b̂(y; g)] in (16) is chosen to be the mean or
the maximal value of the “linearized posterior density”.

However, due to numerical stability reasons the determinant of the posterior cannot
be computed directly, but instead we compute the logarithm of the determinant,
since it will have the same extreme points. By resorting to the logarithm, we are
able to exploit the fact that the positive definite and symmetric (inverse) posterior
covariance has a Cholesky factorization, i.e., Γ−1

post = CTC with C being (upper)
triangular. The minimization target is then

log
(

det(Γpost(g))
)

=− log
(

det(CTC)
)

=− 2 log
(

det(C)
)

=− 2 log
(∏

i

cii

)
=− 2

∑
i

log(cii), (21)

where cii are the diagonal elements of the aforementioned Cholesky factor. As a
consequence, the D-optimality criterion reduces to optimizing the log-sum of the
diagonal elements of C.

The actual optimization algorithm in Section 5 is a gradient-based one, so we
need to compute the partial derivatives of the target functions given in (19) and (20).
For this, we need the following matrix formulas [22]:

d

dτ
det(B(τ)) = det(B(τ))tr

(
B−1 d

dτ
B(τ)

)
,

d

dτ
tr
(
B(τ)

)
= tr

( d
dτ
B(τ)

)
,

d

dτ
(B(τ))−1 = −B(τ)−1∂B(τ)B(τ)−1.

To simplify the notation, we also set

A = Γ−1
post =

(
Γ−1

pr + GT Γ−1
noiseG

)
,
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and denote
∂i = ∂

∂gi

.

Let us first consider the A-optimality, i.e., minimizing (20). The derivative of the
trace of the posterior for a single active heater is

∂i

(
tr(Γpost)

)
= tr(∂iΓpost)
= tr

(
− Γpost

(
∂iA)Γpost

)
= tr

(
− Γpost

(
∂iΓ−1

pr︸ ︷︷ ︸
=0

+∂i(GT Γ−1
noiseG)

)
Γpost

)

= tr
(
− Γpost

(
(∂iGT )Γ−1

noiseG + GT∂i(Γ−1
noiseG)

)
Γpost

)
= tr

(
− Γpost

(
(∂iG)T Γ−1

noiseG + GT (∂iΓ−1
noise︸ ︷︷ ︸

=0

G + Γ−1
noise∂iG)

)
Γpost

)

= tr
(
− Γpost

(
(∂iG)T Γ−1

noiseG + GT Γ−1
noise∂iG

)
Γpost

)
.

The derivative of the sum-matrix G is simply:

∂iG = ∂i

( K∑
k=1

gkJϕk

)
= Jϕi

.

In consequence, we finally get

∂i

(
tr(Γpost)

)
= tr

(
− Γpost

(
(Jϕi

)T Γ−1
noiseG + GT Γ−1

noiseJϕi

)
Γpost

)
.

For multiple active heaters the expression is only slightly more complicated:

∂i

(
tr(Γpost)

)
= tr

(
− Γpost

8∑
n

(
(Jϕi

)T
n Γ−1

noiseGn + GT
n Γ−1

noise(Jϕi
)n

)
Γpost

)
. (22)

In a similar manner, the derivative of the logarithm of the determinant for a
single heater can be written as (cf. (21))

∂i

(
log(det(Γpost)

)
= tr(A∂iA−1)
= tr

(
A(−A−1(∂iA)A−1)

)
= −tr

(
(∂iA)Γpost

)
= −tr

(
((Jϕi

)T Γ−1
noiseG + GT Γ−1

noiseJϕi
)Γpost

)
.

For multiple heaters, the corresponding formula becomes

∂i

(
log
(

det(Γpost)
))

= tr
(
−

8∑
n

(
(Jϕi

)T
n Γ−1

noiseGn + GT
n Γ−1

noise(Jϕi
)n

)
Γpost

)
. (23)
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4.4 Alternative noise model
Thus far, it has been assumed that the measurement noise is independent of the
measurements and the level of noise was controlled only by a fixed parameter. An
alternative approach would be to define the noise level to be dependent on the
magnitude of the measurement, i.e., for example,

Γnoise =
(
diag

(
F (a0,b0; g)

)2 + ε2
noiseI

)
σ2, (24)

where σ > 0 is a positive variance parameter and F (a0,b0; g) is the measurement
produced by the heating g =

∑K
k=1 gkϕk when the parameters a and b are set to

their expected values a0 and b0. This approach would mean that heating with a
larger intensity increases the amount of noise and correspondingly decreases the
amount of information provided by the measurement, effectively penalizing larger
values of g. Again, due to the linearity of (1) with respect to f

F (a0,b0; g) =
K∑

k=1

gkF (a0,b0;ϕk).

Since we have introduced a dependence on g for the noise model (Γnoise = Γnoise(g)),
the assumption ∂iΓ−1

noise = 0 employed in the previous section no longer holds. Instead,
∂iΓnoise = 2σ2diag

(
F (a0,b0; g)

)
diag

(
F (a0,b0;ϕi)

)
and
∂iΓ−1

noise = −Γ−1
noise∂iΓnoiseΓ−1

noise

= −2σ−2diag(F (a0,b0;ϕi)
)
diag

(
F (a0,b0; g)

)(
diag(F (a0,b0; g)

)2 + ε2
noiseI

)−2
.

Also, since the heating depends on the heater, for multiple heaters the submatrices of
the noise covariance matrix depend on the heater index and the posterior covariance
matrix introduced in (18) turns into

Γ−1
post = Γ−1

pr +
[
GT

1 · · · GT
8
] Γ−1

noise,1 0
. . .

0 Γ−1
noise,8


G1

...
G8

 .
Now we can calculate the derivatives of the optimization target functions for the

new additive Gaussian noise model defined by (24):
∂i

(
tr(Γpost)

)
= tr

(
− Γpost

(
∂iΓ−1

pr︸ ︷︷ ︸
=0

+∂i(GT Γ−1
noiseG)

)
Γpost

)

= tr
(
− Γpost

(
(∂iG)T Γ−1

noiseG + GT (∂iΓ−1
noiseG + Γ−1

noise∂iG)
)
Γpost

)
= tr

(
− Γpost

(
(∂iG)T Γ−1

noiseG + GT (∂iΓ−1
noise)G + GT Γ−1

noise∂iG
)
Γpost

)
,
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and

∂i

(
log(det(Γpost)

)
= −tr

(
((Jϕi

)T Γ−1
noiseG + GT (∂iΓ−1

noise)G + GT Γ−1
noiseJϕi

)Γpost
)
.

For multiple heaters, these become

∂i

(
tr(Γpost)

)
= tr

(
− Γpost

8∑
n

(
(Jϕi

)T
n Γ−1

noiseGn + GT
n (∂iΓ−1

noise,n)Gn + GT
n Γ−1

noise,n(Jϕi
)n

)
Γpost

)
,

and

∂i

(
log
(

det(Γpost)
))

= tr
(
−

8∑
n

(
(Jϕi

)T
n Γ−1

noiseGn + GT
n (∂iΓ−1

noise,n)Gn + GT
n Γ−1

noise,n(Jϕi
)n

)
Γpost

)
,

respectively.

4.5 Reconstruction of parameters
The last step in Bayesian inversion is exploring the posterior probability distribution
to gain information about the unknowns. Since the result of Bayesian inversion is
a probability distribution, if we wish to obtain a single estimate for the unknown
parameters, we must compute a point estimate. In the case of thermal tomography, a
point estimate is obviously required, since that corresponds to the desired visualizable
reconstruction of the physical parameters.

The most popular point estimate is arguably the maximum a posteriori (MAP)
estimate due to its simplicity. It is the value of the parameters that maximizes the
posterior probability and it is defined as

xMAP = arg max
x∈Rn

π(x | y),

if y is the data and x the unknown. For our problem, the MAP estimate is of the
form (cf. (10))

(a∗,b∗) = arg min
a,b∈RL

(
‖Cnoise(F (a,b; g)− y)‖2 +

‖Cprior,a(a − a0)‖2 + ‖Cprior,b(b− b0)‖2), (25)

where Cprior and Cnoise are the Cholesky factors of the inverse covariance matrices,
i.e.,

Γ−1
prior = CT

priorCprior,

Γ−1
noise = CT

noiseCnoise.
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Finding the MAP estimate involves solving an optimization problem. This is
most commonly approached using some gradient based minimization algorithm, such
as the Gauss–Newton method [23]. However, for simplicity, we only consider in this
work solving (25) approximately via one-step linearization. Therefore we once again
need to perform a linearization of the dependence of F on a and b. The minimization
problem then becomes,

(a∗,b∗) = arg min
a,b∈RL

(∥∥∥∥Cnoise
(
Ja,b(a0,b0; g)

[
a − a0
b− b0

]
+ F(a0, a0; g)− y

)∥∥∥∥2

+

‖Cprior,a(a − a0)‖2 + ‖Cprior,b(b− b0)‖2).
This is now a linear least squares problem that can be rearranged as

(a∗,b∗) = arg min
a,b∈RL

∥∥∥∥∥∥∥∥
Cnoise

(
Ja,b

[
a − a0
b− b0

]
− ỹ

)
Cprior

[
a − a0
b− b0

]

∥∥∥∥∥∥∥∥

2

.

where ỹ = F (a0,b0; g)− y. If we write

A =
[
CnoiseJa,b

Cprior

]
, z =

[
Cnoiseỹ

0

]
,

the optimization problem can be written in the simple form

d∗ = arg min
d∈R2L

‖Ad− z‖2 . (26)

This linear least-squares problem can be solved efficiently using, e.g., the built-in
MATLAB backslash operator.
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5 Numerical experiments
The parameter values used in the numerical experiments are listed in Table 1.

5.1 Optimizing heating patterns
The first step in the numerical experiments is forming the Jacobian matrices for
the linearization as explained in Section 4.2. Solving the 8(K + 1) × 80 forward
problems required in total for building the Jacobians took roughly 30 minutes on a
consumer-grade computer with a four core processor. The finite element mesh used in
the forward solver (shown in Figure 4) has Np = 4189 nodes, Nt = 7992 elements and
Ne = 12180 edges. The mesh size used for the time stepping was δt = T/60 = 1/30.
The magnitude of the perturbance was ε = 0.01.

An example of the Jacobian matrix (Ja,b)j for one of the heaters Hj is shown in
Figure 5. The rows correspond to the measurement sensors and measurement times:
the first eight rows correspond to the first measurement time, rows 9 to 16 to the
second measurement time, and so on. The columns indicate the pixel values for the
parameters: the first 40 columns are the thermal conductivities a and the next 40
are the heat capacities b. The Jacobian gives insight to how changing parameter
vectors affect the measurements. The change is smaller in later measurements, which
is intuitively reasonable since for them the heat has more time to dissipate evenly.
Also, the largest changes are caused by changes in the pixels directly on the heaters,
whereas those close to the center of the object have a smaller effect.
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Figure 5: Absolute values and logarithm of absolute values of the Jacobian elements.

Next, we form the functions to be minimized/maximized, that is, the trace of the
posterior covariance and the logarithm of the determinant of its inverse. Also the
gradients given by formulas (22) and (23) must be computed. The initial guess for
the optimization algorithm is the same that is eventually used as a reference solution
when comparing the reconstructions. It is a simple linear heating from 0 at time
t = 0 to 1 at time t = T shown in Figure 6. The presented results correspond to the
case of simultaneous optimization of all 8 heating patterns.
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Figure 6: Reference heating pattern.

The initial objective function values accounting only for the prior information
are:

log
(

det(Γprior)
)

= −329.4867,
tr
(
Γprior

)
= 80.

After incorporating the measurement data corresponding to the reference heating
pattern shown in Figure 6, the values become:

log
(

det(Γpost(g(0)))
)

= −365.1262,
tr
(
Γpost(g(0))

)
= 16.8010. (27)

Here g(0) denotes the reference heating pattern. Correspondingly we will use gA

and gD for the heating patterns optimized using the A- and D-optimality criteria
respectively. As expected, the values of the targets improve, that is, decrease, since
the measurement with the reference heating gives information about the parameters.

The actual optimization is performed using MATLAB’s fmincon function using
the sequential quadratic programming algorithm and with the gradient of the objective
function specified by the user. MATLAB also provides other optimization algorithms
but they resulted in almost the same patterns.

As an initial condition, the heating pattern is set to be zero at time t = 0. Upper
and lower bounds are set such that the heating stays in the interval [−3, 3]. The
first and second derivatives are also given maximum and minimum values to prevent
sharp, jagged patterns and fast oscillations, which can be considered nonphysical.
All the values of the parameters for these constraints, as well as other parameters
used for the simulations, are shown in Table 1.
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Table 1: Values of parameters used.

a0 4 Base level of thermal conductivity
b0 4 Base level of heat capacity
cheater 20 Surface heat conductance at the heaters
cnonheater 0.05 Surface heat conductance between the heaters
H 8 Number of heaters
s 8 Number of sensors
T 2 End time of measurement
M 10 Measurement points in time
K 50 Heating basis functions
σ 1 Standard deviation of unknown parameters
γ 0.01 Standard deviation of noise
l 0.5 Correlation length
max ∂tg 1
min ∂tg -1
max ∂ttg 5 Constraints for heating
min ∂ttg -5
max g 3
min g -3
N 1000 Number of samples
Np 4189 Points in FEM mesh
Ne 12180 Edges in FEM mesh
Nt 7992 Elements in FEM mesh

The optimization itself is very fast, taking only seconds to complete. Without the
gradient specified, the optimization process takes slighly longer, but is still completed
in under a minute. After running the optimization algorithm, the values of the
objective function are

log
(

det(Γpost(gD))
)

= −387.4964,

tr
(
Γpost(gA)

)
= 9.4027. (28)

Comparing these to corresponding values for the unoptimized patterns in (27), we
can see that there is a clear difference. This suggests that the optimization should
provide clear benefits for the inference of the unknown parameters. The patterns
can also be cross evaluated with regards to the objective functions:

log
(

det(Γpost(gA))
)

= −384.5229,

tr
(
Γpost(gD)

)
= 10.0304. (29)

While the values are slightly worse than in (28), they are still significantly better
than the unoptimized values of (27).

The heating patterns corresponding to the two optimization criteria are shown
in Figure 7. Initially both of the patterns increase linearly, with the A-optimal
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solution decreasing near the end of the time interval [0, 1]. It seems that the optimal
strategy is to increase the temperature of the heater as quickly as possible given the
constraints. There is a slight difference in the heating patterns resulting from the
two optimality criteria. However, since at the later times the heat does not anymore
have much time to dissipate through the object, the effect on the actual result, i.e.
the values of the target functions, is small; see (28) and (29).
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Figure 7: Optimized heating patterns. Blue curve corresponds to D-optimality and
red to A-optimality.

5.2 Reconstruction of parameters
To evaluate the accuracy of reconstructions corresponding to different heating pat-
terns, the first step is to draw samples from the prior distributions for the material
parameters. The number of samples is N = 1000 as also listed in Table 1. As
indicated by (8), the parameters are distributed according to a normal distribution,
with the means a0 and b0, and the covariance defined by (9). The covariance matrix
is computed using parameters σ = 1 and l = 0.5, which are the same as in Section
5.1 where the heating patterns were optimized. Figure 8 shows a visualization of the
covariance matrix revealing its structure.
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Figure 8: Prior covariance of parameter vector [aT ,bT ]T . The axes correspond to
the numbering of pixels in Figure 2.

Drawing the N = 1000 samples is performed with the built-in MATLAB function
mvnrnd. Since negative parameter values would be nonphysical, all values smaller
than 0.01 are rounded up to 0.01. A visualization of a random sample is shown in
Figure 9. Independently and identically distributed Gaussian noise with zero mean
and standard deviation γ = 0.01 is added to the measurements; note that this noise
model is also the same as in Section 5.1.
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Figure 9: Sample parameters drawn from the prior distribution.

For each sample, a forward solution is computed using both of the optimized
heating patterns, as well as the reference pattern. Solving the forward problems
took roughly 20 minutes on a consumer grade computer. Figure 10 shows a set of
simulated (non-noisy) measurement data corresponding to one of the samples and
the reference heating pattern.
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Figure 10: Example of simulated measurement data. The indices for the horizontal
axis are obtained by concatenating together the measurement vectors for all 8 heaters.

The reconstruction for each of the N = 1000 data sets is computed according to
(26). Finally, the last step is to calculate the average squared error for each of the
heating patterns,

E = 1
N

N∑
j=1

‖(â(j), b̂(j))− (a(j),b(j))‖2, (30)

where â, b̂ are the reconstructed parameters. Note that this approximately cor-
responds to the squared L2(Ω)-error because the pixels shown in Figure 2 are
approximately of the same size.

The resulting squared average errors for the chosen parameters are given in
Table 2.

Table 2: Average reconstruction errors.

Pattern E
Reference pattern 18.7067
Optimized pattern using trace condition (A-optimality) 12.0336
Optimized pattern using determinant condition (D-optimality) 12.2064
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The results show that the optimized patterns do indeed perform better than
the reference pattern with a significant improvement on the average reconstruction
error. The superior performance of A-optimality was to be expected since the utility
function of A-optimality, as shown in (15), is the same squared error that was used
to evaluate the reconstructions.

Figure 11 shows the vectorized reconstructions for a single sample for the different
heating patterns. Since we have a large number of measurements, the reconstructions
are all fairly good. The reconstructions corresponding to the sample in Figure 9 are
visualized for the base pattern in Figure 12 and for the optimized patterns in Figures
13 and 14, and their squared errors are listed in Table 3. All the reconstructions
clearly identify the region of lower thermal conductance in the upper right quadrant
of the object, as well as the areas with higher heat capacity in the upper right and
lower left quadrants.

Table 3: Squared error for the example reconstructions in Figure 11.

Pattern E
Reference pattern 14.1233
Optimized pattern using trace condition (A-optimality) 8.9279
Optimized pattern using determinant condition (D-optimality) 10.4938
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Figure 11: Reconstructions for a sample using each of the heating patterns. The first
40 values correspond to a and the last 40 to b. The numbering of pixel values is as
in Figure 2.
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Figure 12: Reconstruction for the samples in Figure 9 using the reference heating
pattern.
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Figure 13: Reconstruction for the samples in Figure 9 using the optimized heating
pattern (trace condition).
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Figure 14: Reconstruction for the samples in Figure 9 using the optimized heating
pattern (determinant condition).

The reconstruction errors (30) for the first 50 samples are shown in Figure 15.
The reconstructions seem to be fairly consistent with no huge outliers. However,
even in this figure we can clearly see that all the largest reconstruction errors are
produced by the reference pattern.
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Figure 15: Reconstruction errors for the first 50 samples.

Figure 16 shows the pixelwise mean values over all samples and reconstructions.
There seems to be a tendency for the reconstruction algorithm to underestimate
the thermal conductivity, especially near the edges of the object, and conversely
overestimate the heat capacity, especially near the center. It is worth noting that
deviation of the sample average (the plus signs) from a0 = b0 = 4 is a random property
of the drawn sample and is expected to be of the order 1/

√
N ≈ 0.03. The figures

17, 18 and 19 show the same data in the measurement geometry, further illustrating
these findings. Since all the parameters have the same average, ideally these images
should be of uniform color, with deviation resulting from the randomness of the
samples. Note here the different scaling of the colorbar compared to the previous
reconstructions.
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Figure 16: Average reconstruction. The numbering of the parameters is as in
Figure 11.
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Figure 17: Average reconstruction with the reference heating pattern, shown in the
measurement geometry.
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Figure 18: Average reconstruction with the optimized heating heating pattern (trace
condition), shown in the measurement geometry.
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Figure 19: Average reconstruction with the optimized heating pattern (determinant
condition), shown in the measurement geometry.

5.3 Optimization with alternate parameters
Since the optimized heating patterns from Section 5.2 were essentially maximal
heating constrained by the first derivative, the improvements in reconstructions were
probably mostly due to the greater heat flux providing a better signal-to-noise ratio
(especially since the noise level is independent of the measurements). To test this
hypothesis, the optimization and following reconstructions should be carried out
with stricter constraints on the heating pattern.

Figure 20 shows the results of the optimization with the upper and lower bounds
for the temperature of the heater set to 1, i.e., the same as the upper limit of the
reference pattern. Both of the optimized patterns initially increase linearly, but with
a steeper slope than the reference pattern. The results in Table 5 show that the
optimized patterns still produce better reconstructions, but with the trace condition,
i.e., A-optimality performing significantly worse than before. This would suggest
that the optimality criteria favor designs with a large temperature gradient and not
only maximal heat flux.



35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2t
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

g(t)

A-optimalD-optimal

Figure 20: Optimized heating patterns with max |g| = 1.

Table 4: Reconstruction errors for heating patterns with upper bound for the absolute
value of g set to 1 instead of 3.

Pattern E
Reference pattern 19.3493
Optimized pattern using trace condition 16.4756
Optimized patterns using determinant condition 13.8064

If the first derivative constraint is set to be 0.5, i.e. the same as the first derivative
of the reference pattern, the optimization with either of the two objective functions
results in the same pattern as the reference in Figure 6. Lowering the upper bound to
0.5 for the heating results in the heating patterns shown in Figure 21 and the mean
reconstruction errors in Table 5. Now the total heating for the optimized patterns
is less than that of the reference pattern. This time the optimized patterns also
perform worse than the reference pattern, which is in accordance with our hypothesis
about maximal heating gradient leading to the lowest reconstruction error.
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Figure 21: Optimized heating patterns with maximum values of |g| and |gt| set to
0.5.

Table 5: Reconstructions errors for heating patterns with maximum values for |g|
and |gt| set to 0.5.

Pattern E
Reference pattern 19.7499
Optimized pattern using trace condition 22.0242
Optimized patterns using determinant condition 23.4989

5.4 Optimization using alternate noise model
In the previous sections, the noise level was fixed beforehand and did not depend
on the magnitude of the corresponding measurement. As could be expected, this
resulted in optimized heating patterns that tend to the maximal values permitted by
the constraints as quickly as possible. In this section, the optimization is performed
using the noise model defined in Section 4.3. As shown in equation (24), the noise
level is now set (almost) relative to the measurement. Since the magnitude of the
measurements is typically less than 0.5, the variance parameter σ is set to 0.05 to
make the level of noise similar to the component of noise that is independent of
measurements considerd in previous subsections. The parameter controlling the
component of noise that is independent of the measurements is set to εnoise = 10e−6,
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i.e. to an extremely low value. The constraints for the heating are the same as in the
original experiment (cf. Table 1), with the first derivative being in the interval [−1, 1],
and the second derivative in the interval [−5, 5]. The initial guess, i.e. the reference
pattern, is also the same as before (see Figure 6). With these initial parameters, the
target function values are

log
(

det
(
Γpost(g(0))

))
= −447.9602,

tr
(
Γpost(g(0))

)
= 2.1570.

With the new noise model, evaluating the target function is computationally
more intensive. Performing the optimization with the gradient specified by the user
takes now roughly a minute for each condition. The target function values are

log
(

det
(
Γpost(gD)

))
= −450.4670,

tr
(
Γpost(gA)

)
= 1.9752.

The optimized heating patterns cross-evaluated with regards to their respective target
functions values result in

log
(

det
(
Γpost(g(A))

))
= −450.5318,

tr
(
Γpost(g(D))

)
= 2.0093.

The resulting patterns are shown in Figure 21. Both of the patterns initially increase
linearly, with the A-optimal solution leveling out at around time t = 0.8. The slight
oscillation in the pattern is likely caused by numerical errors. Unlike for the noise
model in Section 5.1, this time also the D-optimal heating pattern starts to decrease
but only at time t = 1.4.
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Figure 22: Optimized heating patterns with the alternative noise model.

Experimenting with the constraints yields similar results as previously. Setting
the upper bound to 1 causes the D-optimal solution to first increase linearly until the
upper bound is reached, and then stay there (almost) until the end of the heating
(Figure 23). This is different from the designs of the previous section, where the
optimal solutions seemed to favor large gradients in the heating and not just maximal
heat flux. The A-optimal solution was not constrained by the bound so it does not
change from the previous test. The target function values for these parameters are

log
(

det
(
Γpost(gD)

))
= −450.5383,

tr
(
Γpost(gA)

)
= 1.9752.
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Figure 23: Optimized heating patterns with the alternative noise model and upper
bound 1 for |g|.

Setting the bound for the absolute value of the first derivative to be the same
as in the reference pattern, that is 0.5, yields nearly identical patterns for both of
the conditions with both initially increasing linearly (Figure 24). Near the end of
the time interval, the A-optimal solution decreases but as previously mentioned, this
has very little impact on the measurements. The target function values for these
parameters are

log
(

det
(
Γpost(gD)

))
= −447.9602,

tr
(
Γpost(gA)

)
= 2.1531.
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Figure 24: Optimized heating patterns with the alternative noise model and bound
0.5 for |gt|.

With the upper bound for |g| set to 0.5 and for |gt| to 0.5, both solutions increase
linearly until the upper bound is reached, and stay there almost until the end of the
heating (Figure 25). The target function values are

log
(

det
(
Γpost(gD)

))
= −448.2688,

tr
(
Γpost(gA)

)
= 2.0822.
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Figure 25: Optimized heating patterns with the alternative noise model and bound
0.5 for both |g| and |gt|.

In contrast to computing reconstructions with the independent noise model,
computing reconstructions with the alternate noise model suffers from huge variability
in the quality of the reconstructions. As can be seen in Figure 26, a small fraction of
the reconstructions are significant outliers with regards to the squared error, and
therefore throw off the average error for the samples. The average errors, listed in
Table 6, are an order of magnitude larger than with the independent noise model.
Also, this time the reference pattern performed on average better than the optimized
patterns, possibly due to the smaller magnitude of heating.

Table 6: Reconstruction errors for heating patterns of Figure 22 with εnoise = 10e−6.

Pattern E
Reference pattern 206.2594
Optimized pattern using trace condition 265.4402
Optimized patterns using determinant condition 294.5021
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Figure 26: Errors for first 100 reconstructions with heating patterns of Figure 22,
with εnoise = 10e−6.

This variability is most likely caused by numerical errors within the computation.
For measurement times and locations where the magnitude of the measurement is
small, the small value chosen for the independent noise results in small values in
the noise covariance matrix, and conversely large values in the inverse. This could
lead to under- and overflow problems. Figures 27 and 28 show an example of a
reconstruction with a large error. In this example, the reconstruction of the thermal
conductivity has roughly correct form, i.e., the areas with lower thermal conductivity
correspond to those in the sample, but the values are off by a constant factor. The
values of the heat capacity seemingly bear no resemblance to the sample.
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Figure 27: Sample of parameters from the prior distribution.
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Figure 28: Reconstruction corresponding to sample in Figure 27 with reference
heating pattern.

Also the average reconstructions, shown in Figures 29, 30, and 31, are very
different from those in Figures 17, 18, and 19. It can be seen that the reconstruction
algorithm now has a tendency to dramatically underestimate the thermal conductivity
in the center of the object, as well as the heat capacity near, but not on the boundary.
The ring structure seen here is also a lot unlike the samples drawn from the prior,
which have smoothly varying areas of higher and lower thermal conductivity and
heat capacity.

a

100 200 300 400 500

100

200

300

400

500

3

3.5

4

4.5

5
b

100 200 300 400 500

100

200

300

400

500

3

3.5

4

4.5

5

Figure 29: Average reconstruction with reference pattern and measurement dependent
noise model.
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Figure 30: Average reconstruction with the A-optimal pattern in Figure 22 and
measurement dependent noise model.
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Figure 31: Average reconstruction with the D-optimal pattern in Figure 22 and
measurement dependent noise model.

To test the hypothesis that the errors are caused by the small level of background
noise, we increase the value of the parameter controlling the independent component of
the noise to εnoise = 0.01 and rerun the optimization and inversion computations. The
errors, listed in Table 7, are reduced to a similar magnitude as with the measurement-
independent noise model.

Table 7: Reconstruction errors for heating patterns of Figure 22 with εnoise = 0.01.

Pattern E
Reference pattern 10.6091
Optimized pattern using trace condition 11.8048
Optimized patterns using determinant condition 11.8674

Figure 32 shows that there are still outliers with significantly higher than average
reconstruction errors, but they are less frequent and the errors are also smaller in
magnitude.
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It is quite unexpected that this time the reference pattern produces the lowest
average reconstruction error. Investigation into the cause of this phenomenon should
be included in any further work on the subject.
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Figure 32: Reconstruction errors for heating patterns of Figure 22 with εnoise = 0.01.
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6 Concluding remarks
This thesis investigated the feasibility of applying optimal experimental design
techniques to thermal tomography, and more specifically to the selection of the heating
patterns. Optimizing the heating patterns requires no change to the experiment
apparatus and therefore could provide better results with very little additional effort
and no additional cost, with the only constraints being the physical limitations of
the heaters.

The experiment was modeled as a heat diffusion problem in two dimensions, with
heaters and sensors attached to the boundary of the object. The object itself was a
unit disk with the thermal conductivity and heat capacity discretized into a finite
number of pixels. The measurement data was obtained by numerically simulating
the experiment using the finite element method. The inverse problem was solved
using Bayesian techniques with a single linearization step to make the problem
computationally feasible.

Two optimization criteria were considered, corresponding to Bayesian A- and
D-optimality. The goal was to make the posterior distribution as localized as possible,
with the degree of localization measured by the trace or the determinant of the
covariance matrix of the posterior distribution. If heating with the optimized pattern
does provide more information about the object, this should result in better recon-
structions of the unknown parameters. This was tested by drawing random samples
from the prior, simulating the measurement data, computing the reconstructions by
solving the inverse problem, and finally computing the average errors for each of the
reconstructions.

The results of the optimization showed that the optimized designs mostly tended
to first increase the heating within the constraint on the first derivative. If the
highest allowable temperature were reached, the heating would not stay at this upper
bound, but began decreasing. Relaxing the constraints for the first and second
derivative of the heating pattern tended to result in designs with more oscillations.
Both optimization targets resulted in same or similar designs.

Performing the reconstructions using the optimized heating patterns did indeed
initially result in better reconstructions as theory would predict. The improvements
were significant, with the average error decreasing over 30% relative to a reference
pattern. This means that optimizing the heating patterns does indeed provide a
benefit and could improve the performance of the method in a real world setting.
However, when the experiment was repeated with stricter constraints for the heating,
the optimized designs performed worse. It seems that the time derivative and the
total amount of heat transferred are important factors in determining the amount of
information gained by thermal tomography: better reconstructions can presumably
be obtained by simply increasing the heat flux applied to the object.

With a fixed noise level it is not surprising that the optimized designs favoured
maximal heating since it would provide the best possible signal-to-noise ratio. How-
ever, setting the noise level to be (linearly) dependent on the magnitude of the
measurements still resulted in similar optimized patterns as with fixed noise, which
is not an obvious outcome.
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To progress further towards an actual application of thermal tomography, this
study should be extended into three dimensions and one should also consider physically
realistic parameters. Especially investigation into what are the physically realistic
constraints for actual heaters would be an important further question, since the
constraints of the optimization problem have a significant effect on the optimal
heating designs. Another possibility would be to use optimal experimental design
principles on other optimization targets, such as the positions of the heaters. In
addition, one should investigate how the optimal designs affect nonlinear, iterative
reconstruction algorithms that can be considered the state-of-the-art reconstruction
methods for thermal tomography.
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