
Master’s Programme in Electronics and Nanotechnology

Invisible Cavity Resonators

Francisco Cuesta

MASTER’S
THESIS



Aalto University
MASTER’S THESIS 2018

Invisible Cavity Resonators

Francisco Cuesta

Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Electronics and
Nanotechnology.
Otaniemi, 17th Sep 2018

Supervisor: Prof. Sergei Tretyakov
Advisor: D. Sc. Viktar Asadchy

Aalto University
School of Electrical Engineering
Master’s Programme in Electronics
and Nanotechnology



Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Francisco Cuesta

Title
Invisible Cavity Resonators

School School of Electrical Engineering

Master’s programme Electronics and Nanotechnology

Major Radio Science and Engineering Code ELEC3038

Supervisor Prof. Sergei Tretyakov

Advisor D. Sc. Viktar Asadchy

Level Master’s thesis Date 17 Sep 2018 Pages 89 Language English

Abstract

This thesis studies one-dimensional structures based on a volume bounded by two
metasurfaces. The main objective is to determine the properties of the metasurfaces such
that under illumination by a normally incident plane wave the whole structure does not
scatter; while the electromagnetic fields inside the bounded volume are not zero and can
be tailored. Such invisible resonators are analysed from different perspectives: standing
wave ratio, convergence, bandwidth, impact of dissipation losses, reciprocity, and effect of
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these resonators include cloaking and enhancing of low-power sensors.
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1. Introduction

Flatland is a book written by Edwin A. Abbott in 1885 [1]. In that literature

work, the main character “A Square” tries to understand and to explain the

complexities of lower and higher dimensions (the book also comments about

Victorian hierarchical society). The relation between Flatland and Spaceland,

or between “A Square” and “Sphere”, is used by Rudy Rucker as an analogy to

understand the complexities related with the fourth dimension [2]. At some point,

Rucker starts discussing about the form of the space, and the case when a region

of the space could be “pinched-off” and disconnected from the rest. This scenario

implies that there is a part of the space that cannot be seen by the rest, in other

words, a hidden region. Unfortunately, we cannot take apart regions of space; but

the idea of making them invisible (and hiding them) is still fascinating.

Figure 1.1. A Square, as seen in [2].

Expanding this concept, we can imagine how an object (like a box) could be

invisible. We can think that an invisible box could be like a piece of “solid”

air: we can see through it, without seeing the box, we can interact with it (e.g.,

mechanically) but not observe it. Let us consider the case when another visible

object is inside the box. Thanks to the properties of the box, we are able to see

“through” both objects, the box and the object. At this point, two scenarios could

occur if the object inside the box is moved: first, the box and the object are still

not visible; second, we can see a distorted version of the box and the object. In

the first scenario, we say that the box is a “cloaking device” [3–6], because it can

make the whole region inside it invisible. But, in the second case, the box is called

an “invisibility device”, because it operates only under some specific conditions
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Introduction

(like the position or the shape of the objects inside and their interaction with the

box). To summarize, a cloaking device is able to create an electromagnetically

void region, remaining invisible regardless of the object inside the region. On the

other hand, an invisibility device cannot create this void, producing internal fields

inside it, but invisible from the outside. This thesis will be focused on the second

case, where the box is an invisibility device.

Linked with the previous example, it is convinient to think about different

phenomena happening outside and inside an invisibility device. Outside of the

device, there are no scattered fields and the incident waves remain unchanged,

as if the device was not there. To realize this scenario, the device not only re-

quires total transparency to become invisible, but also that the phases of the

transmitted waves remain unchanged. For most applications, this phase constrain

is not even considered, but from the formal point of view, it is compulsory that

there is no change in magnitude nor in phase. Therefore, this invisibility device

can be considered as nonscattering. There are examples of how these structures

can be realized in the optical range for a fixed incident wave, as shown in [7],

and extending the concept to obtain a non-radiating scatterer supporting mul-

tiple incident directions [8]; unfortunately, it has been shown that there are no

isotropic scatters [9]. This thesis will consider only one incident wave with an

one-dimensional invisibility device (which bounds an invisible region). Opposite

to the cloaking device (which creates an electromagnetic void), it is reasonable

to think that there are fields inside the invisibility device. Because the device

does not produce any scattering, the energy of the inner fields cannot flow away

and it remains confined inside. In that case, the region inside the device can be

also considered as a bound state in the continuum (BIC) [10]. The first proposal

of BICs was published in von Neumann and Wigner’s work [11]; which has been

used as a starting point for following studies, covering different physics branches:

photonics, quantum, acoustics and others [10,12–18]. In each field, the research

of BICs is promising but it also deals with the disadvantages of each technology.

For example, acoustic-wave devices are sensitive to a large number of physical

parameters (temperature, pressure, stress) [19]; or, like in the case of photonic

crystals, to the internal losses produced by multiple reflections [20]. In this respect,

it is convenient to think of optical devices which can be modified to become a BIC.

In optics, a well-known device is the laser (light amplification by stimulated

emission of radiation), which uses two mirrors to increase the number of photons

excited in the active medium by an external source [21]. The generated light can

go outside the gain medium through one of the mirrors, which is semitranspar-

ent. If we take only the mirrors, and we make both semitransparent, we can
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Introduction

obtain a structure that can support a BIC. This structure is known as a Fabry-

Perot resonator (FPR), which was developed by Charles Fabry and Alfred Perot in

1899 [22,23]. There are at least three different kinds of FPRs: two parallel plates

placed at a given distance in a homogeneous medium (e.g. free space), two parallel

plates separated by a dielectric spacer, and a single dielectric slab (interferences

are produced by the difference of the refraction index between the slab and the

surrounding medium) [24]. Due to their high quality factor, the most common

use of FPRs is in spectroscopy, in particular for interferometers [25]. Due to that,

analysis of FPRs was mostly focussed on the transmitted and reflected powers

(transmittance and reflectance, respectively), without considering the phase of the

transmitted wave, in other words, scattering. It can be shown that FPRs based

on dielectric slab can achieve zero-phase transmission. A disadvantage of the

dielectric slab is the need of a trade-off between obtaining high internal reflection

(by using dielectrics with high permittivity [13]) and the propagation through

the slab, as it cannot be used to enhance the magnitude of the internal fields. In

that case, it is necessary to use low-loss metal coating layers (or metallic plates

in the free-space case) to increase the reflection coefficient without compromis-

ing the propagation through the resonator. It is a common practice to use two

identical metallic layers. However, a FPR without a dielectric slab cannot achieve

zero-phase transmission. Considering that the presence or absence of metallic

layers and dielectric slab can be interpreted as extreme cases of their physical

properties, it is reasonable to think that achieving zero-phase transmission with

a dielectric-based FPR is possible. In that case, it could be possible that the

resonator characteristics (dimensions, metallic layers) differ to a slab-based res-

onator. Therefore, it is compulsory to analyse the general case where a resonator

formed by two plates with well-defined properties, with or without a dielectric

slab, can achieve an invisibility state with zero-phase transmission. But, what

kind of plates should be used for this purpose? Due to the limited properties of

conventional materials, probably the best candidates are metamaterials.

X, the mathematical variable which represents limitless possibilities [26]; used

to represent something that can be definded or changed at will. In science and

engineering, metamaterials have become this variable to achieve new and fasci-

nating applications. Defined as “an arrangement of artificial structural elements,

called meta-atoms, designed to achieve advantageous and unusual electromagnetic

properties” [27], metamaterials can be the adequate approach for designing an

invisibility device. More specifically, metasurfaces (optically thin two-dimensional

analogues of metamaterials) can be used to create such “open” cavity resonators,

or invisible cavity resonators (ICRs). There are interesting applications for ICRs,
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as using them to reduce the scattering cross section of a given object or to increase

the captured power of a small sensor. In order to explore the possibilities of this

kind of structures, the objective of this thesis is to determine the conditions to

create an invisible cavity resonator, with zero-phase transmission, while tailoring

the fields inside it. For simplicity, this study will consider an one-dimensional

scenario, where a region is bounded by two metasurfaces; and a normal-incidence

wave illuminates the structure.

This thesis is structured as follows. After this introductory section, a theoretical

analysis of metasurfaces will be performed. The main purpose of Chapter 2 is to

develop a basic model of isotropic metasurfaces (in the plane), which considers

the interactions of meta-atoms with the fields around them. Additionally, this

section will define the primary conditions of the three kinds of metasurfaces used

in this study: Electrically Polarizable Metasurfaces, Magnetically Polarizable

Metasurfaces, and Electrically and Magnetically Porlarizable Metasurfaces. In

Chapter 3, the invisibility conditions are found for ICRs for two cases: when the

region is bounded by two electrically polarizable metasurfaces, and also when this

region is bounded by a magnetically polarizable metasurface and an electrically

polarizable metasurface. In order to have a deeper understanding of its invisibility

properties, Chapters 4 and 5 evaluate the structure performance under different

scenarios through a detailed theoretical analysis. Chapter 4 considers some basic

aspects related with these structures, focused on developing design criteria related

with its properties. Finally, Chapters 5 considers the effects of placing objects

with different properties inside the resonator: active, lossy and reactive objects.

These analyses will help us to determine the capabilities of this invisible structure

related to sensing enhancement and cloaking.
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2. Scattered fields produced by thin
surfaces

2.1 Generalized sheet transition conditions

The properties of a periodic mesurface are defined by the composition and arrange-

ment of its meta-atoms over the host material. The meta-atoms can be modelled

as electrically and magentically polarizable entitites, making possible to define

electric and magnetic surface polarization densities P and M, respectively [28].

These polarization densities depend on the surrounding electromagnetic fileds, as

shown in Figure 2.1, and on metasurface properties:

P = ε ¯̄χee · Ê+ ¯̄χem · √εµĤ, (2.1a)

M = ¯̄χmm · Ĥ+ ¯̄χme ·
√

ε

µ
Ê, (2.1b)

where ¯̄χ are the metasurface transverse susceptiblity polarization responses

written in dyadic form: for the electric/electric ‘ee’, electric/magnetic ‘em’, mag-

netic/magnetic ‘mm’, and magnetic/electric ‘mm’ couplings [29]. Ê and Ĥ are the

average electric and magnetic fields, respectively, around the metasurface:

Ê =
E+ +E−

2
, Ĥ =

H+ +H−
2

, (2.2)

where E− is the total tangential electrical field “before” the metasurface (z = −0 if

the metasurface is placed at origin), and E+ is the total electrical field “after” the

metasurface (z = +0).

Since the metasurface thickness is assumed to be negligible, it must be consid-

ered as an electromagentic discontinuity in space [28], and because metasurfaces

can be polarized also in the normal direction, conventional boundary conditions

cannot be used. Instead, the generalized sheet transition conditions (GSTCs) (for
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Scattered fields produced by thin surfaces

Figure 2.1. Electromagnetic fields around a metasurface placed in free space

time harmonic fields with exp(jωt)) [28] must be applied:

n× (E+ −E−) = −
(
jωµM∥ − n×∇∥

Pn

ε

)
, (2.3a)

n× (H+ −H.) = jωP∥ + n×∇∥Mn, (2.3b)

n · (D+ −D−) = ∇ ·P∥, (2.3c)

n · (B+ −B−) = µ∇ ·M∥, (2.3d)

where n is the unitary vector orthogonal to the metasurface, ∥ denotes the com-

ponents parallel to the metasurface (in the u-v plane), ∇ by itself denotes the

gradient function and ∇· correspond to the divergence. ε and µ correspond to the

permittivity and permeability of the supporting medium where the meta-atoms

are placed.

The use of the GSTCs is a straight-forward method to define the field jumps if

the polarization vectors are known. One method to simplify the GSTCs is by using

Huygens equivalent principle and the duality theorem [30–36], and characterize

the metasurface by its effective electric and magnetic charges and currents (Je,

Jm, ρe and ρm, respectively):

Jm = −
(
jωµM∥ − n×∇∥

Pn

ε

)
, Je = jωP∥ + n×∇∥Mn, (2.4a)

ρe = ∇ ·P∥, ρm = µ∇ ·M∥. (2.4b)

Then, the GSTCs can be written as conventional boundary conditions:

n× (E+ −E−) = Jm, n× (H+ −H−) = −Je, (2.5a)

n · (D+ −D−) = ρe, n · (B+ −B−) = ρm. (2.5b)

In general, as the effective charges (Equation (2.4b)) are already considered in
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Scattered fields produced by thin surfaces

the analysis of the GSTCs (as done in [37,38]), the relations shown in (2.5b) are

not considered in some problems.

2.2 Anisotropic metasurfaces supporting electric and magnetic currents

The simplified approach of the GSTCs, shown in Equation (2.4), shows that it is

possible to define the metasurface properties using equivalent induced electric and

magnetic surface current densities. But the relationship between these currents

and the electromagnetic fields around the metasurface is not so straightforward.

Because of that, it is more convient to relate these currents to the fields:

Je =
¯̄Ye · Ê+ ¯̄κ · Ĥ, (2.6a)

Jm = ¯̄ξ · Ê+ ¯̄Zm · Ĥ, (2.6b)

where ¯̄Ye is the electric sheet admittance dyadic, ¯̄Zm is the magnetic sheet impedance

dyadic, ¯̄κ and ¯̄ξ corresponds to the dimentionless magnetoelectric and electro-

magnetic coupling dyadics, respectively [29]. This thesis will be focused on a

specific kind of metasurfaces, reffered to as anisotropic, whose meta-atoms does

not produce any electromangetic coupling (¯̄κ = ¯̄ξ = 0) [39]. From this group of

metasurfaces, it is still possible to classify them according to their polarization’s

nature: Electrically Polarizable Metasurfaces (EPMs), Magnetically Polarizable

Metasurfaces (MPMs), and Electrically and Magnetically Polarizable Metasurfaces

(EMPMs). EPMs are characterized for the presence of only superficial electric

currents densities, produced by meta-atoms which are not effective-loops, such

as metal patches or strips of different shapes [39]. On the other hand, MPMs

have only superficial magnetic current densities, produced by the antisymetric

component of the induced electric-current distribution, which can be obtained

using effective loops [39], such two layers of patch array sheets with different

induced electrical currents. In both cases, the GSTCs can be simplified even more;

unlike EMPMs, which preserve both kind of superficial current densities. In the

next part, we’ll consider the properties these different kind of metasurfaces.
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Scattered fields produced by thin surfaces

2.2.1 Electrically polarizable metasurfaces

Figure 2.2. Normal-incidence scenario for an EMP.

If we consider the case where a metasurface can be modelled only by electric

current densities, the GSTCs can be simplified:

E+ −E− = 0, (2.7a)

n× (H+ −H−) = −Je. (2.7b)

From the definition of the electric and magnetic currents of (2.6), EPMs are the

ones which is characterized by only the electric sheet admittance dyadic. Because

of that, the electric induced current density is proportional to the average electrical

field, expressed in Equation (2.2), as shown in Equation (2.8), where ¯̄Ze is the

metasurface grid impedance (equivalent to the inverse dyadic of the electric sheet

admittance dyadic). Also, because of the conditions of Equation (2.7a), the electric

surface current density can be defined by the electric field located at one side of

the metasurface:
¯̄Ze · Je = Ê = E+ = E−. (2.8)

Let us consider the scenario shown in Figure 2.2, where an infinite EPM, placed

at the origin, is illuminated by an incident plane wave with the wavevector

normal to the metasurface. Based on the general case, we can assume different

media before and after the metasurface, characterized by their wavenumber k and

characteristic impedance η. The medium before the metasurface is denoted by the

minus “−” subindex, and the plus “+” is used for the medium after the metasurface.

The interaction between the metasurface and the incident wave produces two

scattering waves: one with the same direction as the incident wave and another

one with the opposite direction. We will call the first one the transmitted wave,

and the second one as the reflected wave. The mathematical expressions for these
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Scattered fields produced by thin surfaces

three waves are written as

EI = EIe
−jk−zax, HI = HIe

−jk−zay, (2.9a)

ER = ERe
jk−zax, HR = −HRe

jk−zay, (2.9b)

ET = ETe
−jk+zax, HT = HTe

−jk+zay. (2.9c)

We can consider the grid impedance as isotropic in the x-y plane, so the dyadic

form ¯̄Ze can be replaced by the scalar form Ze. Under this conditions, the GSTCs

can be written as

EI + ER = ET, (2.10a)

ET

(
1

η+
+

1

Ze

)
=

1

η−
(EI − ER) . (2.10b)

Then, this equation system is solved by defining two transfer functions:

τ̃ =
ET

EI
=

2

1 + η−

(
1

Ze
+

1

η+

) , (2.11a)

Γ̃ =
ER

EI
=

1− η−

(
1

Ze
+

1

η+

)
1 + η−

(
1

Ze
+

1

η+

) , (2.11b)

J̃e =
Je
EI

=
2

Ze + η−

(
1 +

Ze

η+

) , (2.11c)

1 = τ̃ − Γ̃ (2.11d)

where Γ̃ is the transfer function for the reflected wave and τ̃ is the transfer function

for the transmitted wave. Additionally, Equation (2.11c) gives the induced current

J̃e at the metasurface. By comparing both scattering coefficients, the primal

relation of Equation (2.11d) is achieved; independent of the grid impedance and

the surrounding media.

If we consider the case when the metasurface is placed in free space (η− = η+ =

η0), the expressions of Equation (2.11) can be reduced even more. For ease of use,

we can denote by Z̃e the normalized version of the grid impedance with respect to

the free-space characteristic impedance η0

Ze = Z̃eη0. (2.12)
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Thanks to that, the transfer functions can be reduced to

τ̃ =
2Z̃e

2Z̃e + 1
, (2.13a)

Γ̃ = − 1

2Z̃e + 1
, (2.13b)

J̃e =
2

η0

(
2Z̃e + 1

) . (2.13c)

To understand the properties of the metasurface, it is convenient to split the

grid impedance into its resistive and reactive components: Ze = Re + jXe. A

figure of merit is the scattered power, characterized by the transmittance and

reflectance. These parameters are defined as the squared values of the magnitude

of the transmission and reflection coefficient, respectively:

|τ̃ |2 =
4
(
R̃2

e + X̃2
e

)
(
2R̃e + 1

)2
+ 4X̃2

e

, (2.14a)

|Γ̃ |2 = 1(
2R̃e + 1

)2
+ 4X̃2

e

. (2.14b)

Absorbance |Ã|2 measures the power which was not reflected nor transmitted by

the metasurface. In the case of EPMs, the analytical expression for the combined

reflected and transmitted powers and the absorbance are written as:

|τ̃ |2 + |Γ̃ |2 =
4
(
R̃2

e + X̃2
e

)
+ 1(

2R̃e + 1
)2

+ 4X̃2
e

, (2.15a)

|Ã|2 = 1−
(
|τ̃ |2 + |Γ̃ |2

)
=

4R̃e(
2R̃e + 1

)2
+ 4X̃2

e

. (2.15b)

Analysing Equation (2.15), allows us to extract certain properties of EPMs,

based on the grid resistance Re. The metasurface is called “active” when the grid

resistance has a negative value, because the absorbance has a negative value,

corresponding to a radiating surface. On the other hand, the metasurface is called

“lossy” when the grid resistance has a positive value, as the absorbance has a

positive value. It is only at the absence of grid resistance that the metasurface is

“lossless”, and the total scattered power is equal to the incident power, meaning

that the metasurface has zero absorbance. In the previous cases, the metasurface

properties are not defined by the grid reactance. From (2.15b), it can be extracted

another scenario where absorbance could reach values close to zero, when the

grid impedance has high values. This particular result is achieved because the

10
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meta-atoms are difficult to excite and, considering this scenario in Equation (2.13),

the metasurface becomes transparent.

2.2.2 Magnetically polarizable metasurfaces

Figure 2.3. Normal-incidence scenario for an MPM.

Based on a similar analysis, the GSTCs for an MPM, where there is only induced

magnetic current density

n× (E+ −E−) = Jm, (2.16a)

H+ −H− = 0. (2.16b)

Similarly to the EPM case, the induced magnetic current density Jm can be

expressed as proportional to the average magnetic field around the metasurface

¯̄Ym · Jm = Ĥ = H+ = H−, (2.17)

where ¯̄Ym represents the magnetic grid admittance (equivalent to the inverse

dyadic of the magnetic sheet impedance dyadic). Due to the continuity of the

magnetic field across the metasurface, as shown in (2.16b), the induced magnetic

current density can be also defined as proportional to the net magnetic field located

at one side of the metasurface. Let us consider the scenario shown in Figure 2.3,

with similar conditions used with an infinite size EPM, hence the scattered fields,

shown in Equation (2.9), with an isotropic grid impedance remain valid for this

analysis. Under these conditions, the GSTCs can be written as

EI + ER = ET

(
1 +

Zm

η+

)
, (2.18a)

1

η−
(EI − ER) =

ET

η+
. (2.18b)

11
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This equation system can be solved by defining the transfer function correspond-

ing to the reflected wave Γ̃, the transmitted wave τ̃ , and the induced current

density J̃m:

τ̃ =
ET

EI
=

2η+
η+ + η− + Zm

, (2.19a)

Γ̃ =
ER

EI
=

η+ − η− + Zm

η+ + η− + Zm
, (2.19b)

J̃m =
Jm
HI

=
2Zmη−

η+ + η− + Zm
, (2.19c)

1 = τ̃ + Γ̃. (2.19d)

Similarly to an EPM, the relation between the metasurface transmission and

reflection coefficient is shown in Equation (2.19d). As the EPM case, a normalized

grid impedance Z̃m can be defined as

Zm = Z̃mη0. (2.20)

Then, the transfer functions for free space can be developed into

τ̃ =
2

2 + Z̃m

, (2.21a)

Γ̃ =
Z̃m

2 + Z̃m

, (2.21b)

J̃m =
2Z̃mη0

2 + Z̃m

. (2.21c)

To understand the properties of the metasurface, it is convenient to split the

grid impedance into its resistive and reactive components: Zm = Rm + jXm. Like

in the EPM case, it is possible to find the transmittance and reflectance:

|τ̃ |2 = 4(
R̃m + 2

)2
+ X̃2

m

, (2.22a)

|Γ̃ |2 = R̃2
m + X̃2

m(
R̃m + 2

)2
+ X̃2

m

. (2.22b)

Both values are used to determine the total power and the absorbance, which can

be reduced to

|τ̃ |2 + |Γ̃ |2 = 4 + R̃2
m + X̃2

m(
R̃m + 2

)2
+ X̃2

m

, (2.23a)

|Ã|2 = 4R̃m(
R̃m + 2

)2
+ X̃2

m

. (2.23b)

12
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By analysing the metasurface absorbance, it is possible to reach the same con-

clusions related to the metasurface properties in terms of the grid resistance. The

metasurface is active when the grid resistance has a negative value, lossy when it

has a positive value, and lossless when there the value of the grid resistance is

zero. In all cases, this property is independent of the value of the grid reactance.

2.2.3 Electrically and magnetically polarizable metasurfaces

Figure 2.4. Normal-incidence scenario for an EMPM.

In a more general approach, the GSTCs for a generic metasurface can be written

as

n× (E+ −E−) = Jm, (2.24a)

n× (H+ −H−) = −Je. (2.24b)

The induced electric and magnetic current densities can be defined as shown in

Equations (2.8) and (2.17); but given the GSTCs, it is not possible to consider the

fields from only one side, and the averaged fields must be used. Using similar

conditions as in the previous analysis, based on Figure 2.4, the GSTCs can be

reduced to

EI

(
1− Zm

2η−

)
= ET

(
1 +

Zm

2η+

)
− ER

(
1 +

Zm

2η−

)
, (2.25a)

EI

(
2Ze

η−
− 1

)
= ET

(
2Ze

η+
+ 1

)
+ ER

(
2Ze

η−
+ 1

)
. (2.25b)

This equation system is solved, as in the previous cases, by defining the trans-

mission coefficient τ̃ , the reflection coefficient Γ̃, the electric J̃e and the magnetic

13
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normalized surface current J̃m:

∆ =

(
1 +

Zm

2η−

)(
2Ze

η+
+ 1

)
+

(
1 +

Zm

2η+

)(
2Ze

η−
+ 1

)
, (2.26a)

τ̃ = ∆−1

[(
1 +

Zm

2η−

)(
2Ze

η−
− 1

)
+

(
1− Zm

2η−

)(
2Ze

η−
+ 1

)]
, (2.26b)

Γ̃ = ∆−1

[(
1 +

Zm

2η+

)(
2Ze

η−
− 1

)
−
(
1− Zm

2η−

)(
2Ze

η+
+ 1

)]
, (2.26c)

J̃e =
1

2Ze

[
1 + Γ̃ + τ̃

]
(2.26d)

J̃m =
Zmη−

2

[
1

η−
− Γ̃

η−
+

τ̃

η+

]
. (2.26e)

Because of the number of degrees of freedom, given by the electric and magnetic

grid resistance and reactance, the analysis through the total power and absorbance

is not useful to characterize properly a generic metasurface. Instead, it is more

convenient to find out the dependency of the grid impedance for given transfer

functions τ̃ and Γ̃. In that case, the GSTCs of Equation (2.24) can be written as

1 + Γ̃− τ̃ =
Zm

2

(
1

η−
− Γ̃

η−
+

τ̃

η+

)
, (2.27a)

1

η−
− Γ̃

η−
− τ̃

η+
=

1

2Ze

(
1 + Γ̃ + τ̃

)
. (2.27b)

Then, the values of Ze and Zm are obtained directly:

Ze =
η−
2

1 + τ̃ + Γ̃

1− η−
η+

τ̃ − Γ̃
, (2.28a)

Zm = 2η−
1− τ̃ + Γ̃

1 +
η−
η+

τ̃ − Γ̃
. (2.28b)

In free-space conditions, the transfer functions for scattered waves and induced

currents can be reduced to

τ̃ =
1

2

[
2Z̃e − 1

2Z̃e + 1
+

2− Z̃m

2 + Z̃m

]
, (2.29a)

Γ̃ =
1

2

[
2Z̃e − 1

2Z̃e + 1
− 2− Z̃m

2 + Z̃m

]
, (2.29b)

J̃e =
2

η0

(
2Z̃e + 1

) , (2.29c)

J̃m =
2Z̃mη0

2 + Z̃m

. (2.29d)

Also, values of normalized grid impedances can be obtained based of the transfer
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Surface τ̃ Γ̃ |Ã|2 Z̃e Z̃m

Invisible 1 0 0 ∞ 0

PEC 0 -1 0 0 0

PMC 0 1 0 ∞ ∞
Absorbing 0 0 1 1/2 2

Partially Transmitting α 0 1− α2 1

2

α+ 1

1− α
2
1− α

1 + α

Partially Reflecting 0 α 1− α2 1

2

α+ 1

1− α
2
1 + α

1− α

Table 2.1. Grid impedances for certain types of surfaces

coefficients:

Z̃e =
1

2

1 + τ̃ + Γ̃

1− τ̃ − Γ̃
, (2.30a)

Z̃m = 2
1− τ̃ + Γ̃

1 + τ̃ − Γ̃
. (2.30b)

Table 2.1 shows the equivalent grid impedances for some surfaces placed in a

free-space environment.

If equations (2.15b) and (2.23b) are analysed, it is possible to conclude that it

is not possible to obtain total absorption (|Ã|2 = 1) by inducing only electric or

only magnetic currents, because that would contradict to the results of (2.11d)

and (2.19d). Instead, it is required both types of induced currents to create an

absorbing surface, obtained by inducing electrical and magnetic coupling [40].

2.3 Metasurface as a two-port device

In the previous section it was shown that different kinds of metasurfaces can be

characterized by their grid impedances and scattering coefficients, without the

use of GSTCs. Because of that, it is really useful to perform a general extension

of this abstraction level, based on scattering coeffients, such that more complex

scenarios can be solved using the same approach. Some of these new possible

scenarios assume that the metasurface could be illuminated from both sides, such

as the presence of a second radiating source or when a reflective object is placed

behind the metasurface. For that cases, it is appropriate to model the metasurface

as a two-port device, as show in Figure 2.5.

In this approach, the outgoing waves EOUT− and EOUT+ and incoming waves

15
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Figure 2.5. Equivalent model for a two-side illumimated metasurface.

EIN− and EIN+ are represented by parameters a−, a+, b− and b+ written as

a− =
EN− + η−HN−

2
√
η−

, b− =
EN− − η−HN−

2
√
η−

, (2.31a)

a+ =
EN+ − η+HN+

2
√
η+

, b+ =
EN+ + η+HN+

2
√
η+

, (2.31b)

where EN−, EN+, HN−and HN+ are the net electric and magnetic fields before and

after the metasurface [35,41,42]. Both net fields are written as

EN− = EIN− + EOUT−, HN− =
EIN− − EOUT−

η−
, (2.32a)

EN+ = EIN+ + EOUT+, HN+ =
EOUT+ − EIN+

η+
. (2.32b)

If the net fields are replaced into the parameters of (2.31), they can be simplified

as

a− =
EIN−√
η−

, b− =
EOUT−√

η−
, (2.33a)

a+ =
EIN+√
η+

, b+ =
EOUT+√

η+
. (2.33b)

In terms of the power waves, the scattering matrix is written as⎡⎣b−
b+

⎤⎦ =

⎡⎣S11 S12

S21 S22

⎤⎦⎡⎣a−
a+

⎤⎦ . (2.34)

By replacing the values of the power waves, it is possible to establish the relation

between the outgoing waves with respect to the incoming waves:⎡⎢⎢⎣
EOUT−√

η−
EOUT+√

η+

⎤⎥⎥⎦ =

⎡⎣S11 S12

S21 S22

⎤⎦
⎡⎢⎢⎣
EIN−√
η−

EIN+√
η+

⎤⎥⎥⎦ . (2.35)

Because the GSTCs of Equation (2.5) consider the fields around the metasurfaces

regardless of their propagation direction, it is possible to expand the results

obtained for single-source metasurfaces analysis using the superposition principle.
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In that case, the relations between the incoming fields and outgoing fields can be

written using the scattering coefficients:⎡⎣EOUT−

EOUT+

⎤⎦ =

⎡⎣Γ̃− τ̃+

τ̃− Γ̃+

⎤⎦⎡⎣EIN−

EIN+

⎤⎦ , (2.36)

where the scattering coefficient subindex is defined so that the “−” corresponds

to the scattering coefficients for the illuminating source EIN−, which propagates

from the −z half-space with az propagation direction. Likewise, “+” subindex cor-

responds to the illuminating source EIN+ of the +z half-space and the propagation

direction −az. Hence, the relationship between the scattering matrix and the

metasurface scattering coefficients can be written as

⎡⎣S11 S12

S21 S22

⎤⎦ =

⎡⎢⎢⎣ Γ̃−

√
η+
η−

τ̃+√
η−
η+

τ̃− Γ̃+

⎤⎥⎥⎦ . (2.37)

It can be shown (doing the same analysis using Equation 2.24 with illumination

from +z half-space) that for an EMPM placed between two different media, the

reflection and transmission coefficients corresponding to EIN− (Γ̃− and Γ̃+) are

not equal to their counterparts obtained from EIN+ (Γ̃+ and τ̃+); but this result

does not imply that reciprocity is broken, since the components S12 and S21 of the

scattering matrix are equal due the additional factors of Equation (2.37). Now

consider the scenario where the EMPM is placed in an homogeneous medium (like

free space), the transmission and reflection coefficients from both sides become

equal. This result can be extended to EPMs and MPMs (forcing the adequate grid

impedances values); or for any other anisotropic metasurface. Notice that the

scattering coefficients symmetry in homogeneous medium is not true when the

magnetoelectric coupling coefficients of Equation (2.6) are not zero, meaning that

the analysed metasurface is bianisotropic.

2.4 Impedance matrix and equivalent circuit of a metasurface

Consider an EMPM in free space, as shown in Figure 2.4, with scattering coeffi-

cients of Equation (2.29). The scattering matrix can be reduced to⎡⎣S11 S12

S21 S22

⎤⎦ =
1

2

⎛⎝2Z̃e − 1

2Z̃e + 1

⎡⎣1 1

1 1

⎤⎦+
Z̃m − 2

Z̃m + 2

⎡⎣ 1 −1

−1 1

⎤⎦⎞⎠ . (2.38)
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Based on the scattering matrix, it is possible to find the impedance matrix [Z] as

shown in [42], obtaining⎡⎣Z11 Z12

Z21 Z22

⎤⎦ = η0

⎛⎝Z̃e

⎡⎣1 1

1 1

⎤⎦+
Z̃m

4

⎡⎣ 1 −1

−1 1

⎤⎦⎞⎠ . (2.39)

A good electric-circuit analogy for the Z-matrix is the T equivalent circuit shown

in [42], which can be implemented for an EMPM as shown in Figure 2.6. As

mentioned previously, if the analysed metasurface has bianisotropic properties,

it is possible that matrix elements Z11 and Z22 of Equation (2.39) have different

values.

Figure 2.6. Equivalent T-circuit for an EMPM.

If we force the conditions for an EPM (Z̃m = 0) in the Z-matrix of (2.39), the

equivalent circuit is a load Ze in a parallel connection with the transmission line.

Likewise, forcing the conditions for an MPM (Z̃e → ∞), the equivalent circuit is a

load Zm in a shunt connection with the transmission line. Both representations

are shown in Figure 2.7.

This approach is useful to relate the properties of these kinds of metasurfaces

with the conventional circuit theory. An extensive analysis of slabs and infinites-

(a) EPM (b) MPM

Figure 2.7. Equivalent circuits for EPMs and MPMs.
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imally thin sheets of bulk materials using this approach can be found in [38];

these results can also be extended for metasurfaces because of the small size of

the meta-atoms with respect to the wavelength. Because the objective of this

thesis is to study the scattered fields produced by multiple metasurfaces, this level

of abstraction, which uses an approach based on the conventional circuit theory,

cannot be used, and the equivalent model based on the scattering matrix will be

considered.
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3. Invisible cavity resonators based on
metasurfaces

3.1 Wave propagation through a double-metasurface resonator

Until this moment, we considered scenarios where only one metasurface was

illuminated at normal incidence. Based on the results summarized in Table 2.1,

the only possible way to obtain an invisible metasurface is forcing a high-value of

electrical grid impedance and zero magnetic grid impedance, implying the absence

of the metasurface. In other words, the conditions for invisibility based on a

single uniform metasurface, under the assumptions of the previous chapter, are

limited. The main objective of this study is to “hide” (in terms of visibility) two

parallel metasurfaces, with some control of the fields inside the bounded-volume

between them. In order to accomplish this objective, this study will consider the

interactions between two metasurfaces, as shown in Figure 3.1.

Both metasurfaces, ideally of infinite area, are separated by an isotropic lossless

Figure 3.1. Electromagnetic fields across two generic metasurfaces
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material slab of thickness d. Because of that, the whole space can be separated

into two regions: a bounded volume between the metasurfaces, and the space

outside of the volume. If the structure is illuminated by an electromagnetic wave

with electric field ER, with the propagation vector orthogonal to both metasurfaces,

the discontinuities introduced by the metasurfaces create scattered waves. These

waves can be classified according to their location in space: a reflected wave ER

and a transmitted wave ET allocated outside the structure. Meanwhile, like a

resonator, a forward EF and a backward EB waves are excited inside the bounded-

volume. The definitions for the incident, reflected and transmitted waves of (2.9)

remains usable in this analysis and, in the same way, the forward and backward

waves can be defined as

EF(z) = EFe
−jkzax, HF(z) =

EF

η
e−jkzay, (3.1a)

EB(z) = EBe
jkzax, HB(z) = −EB

η
ejkzay. (3.1b)

In the general case, it is not necessary true that the bounded-volume has the

same electromagnetic properties as the space outside the resonator. For simplicity,

we can assume that the resonator is located in free space, with η0 and k0 as

its characteristic impedance and wavenumber, respectively; while the bounded-

volume slab is formed by a medium with η and k parameters. Then, using Equation

(2.34), it is possible to relate the magnitude of the different electric fields for the

first metasurface

EF = S21,1

√
η

η0
EI + S22,1EB, (3.2a)√

η

η0
ER = S11,1

√
η

η0
EI + S12,1EB; (3.2b)

and for the second one √
η

η0
E′

T = S21,2E
′
F, (3.3a)

E′
B = S11,2E

′
F. (3.3b)

In the above equations, the scattering matrix coefficients are written as Sij,1 and

Sij,2 for the first and second metasurface, respectively. Also, E′
T, E′

F and E′
B are the

different electric fields when the coordinates reference is located at z = d. Notice

that the magnitudes of the electric fields in Equation (3.3) are not the same as in

Equation (3.2), as the reference is moved to the position of the second metasurface.

The previous analysis determines the scattering matrix for a metasurface, which

is independent from the position where the metasurface is located. Because of
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that, the scattering matrix remains invariable if the metasurface is displaced

to position z = d. In that case, new definitions for the forward, backward and

transmitted waves must be introduced:

E′
F = E′

Fe
−jk(z−d)ax, H′

F = H ′
Fe

−jk(z−d)ay, (3.4a)

E′
B = E′

Be
jk(z−d)ax, H′

B = −H ′
Be

jk(z−d)ay, (3.4b)

E′
T = E′

Te
−jk0(z−d)ax, H′

T = H ′
Te

−jk0(z−d)ay. (3.4c)

Because the displaced fields of (3.4) are the same as the fields of (3.1) and (2.9c), it

is possible to find the relation between the magnitude of the displaced fields and

their original counterparts:

E′
F = EFe

−jkd, (3.5a)

E′
B = EBe

jkd, (3.5b)

E′
T = ETe

−jk0d. (3.5c)

In fact, these results can be extended for the general case, where all the electro-

magnetic waves that propagate in the +az direction, like the forward wave, must

be corrected by adding the factor e−jkd ; likewise, the backward wave result can

be extended to all the electromangetic waves that propagate in the −az direction,

by adding the factor ejkd. Thanks to that, the equations of (3.3) can be written in

terms of the origin-defined electromagnetic waves as√
η

η0
ET = S21,2EFe

−j(k−k0)d, (3.6a)

EB = S11,2EFe
−2jkd. (3.6b)

After defining the relation between the different electromagnetic fields across

the structure, while considering the displacement of the second metasurface, it is

possible to find the values of each field as functions of the incident wave and the

metasurfaces scattering matrices. The magnitudes of each wave can be solved by

defining different transfer function, which involve the use of the resonance factor
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Ψ:

Ψ =
1

1− e−2jkdS22,1S11,2
, (3.7a)

Γ =
ER

EI
= S11,1 + S11,2S12,1S21,1e

−2jkdΨ, (3.7b)

τ =
ET

EI
= S21,1S21,2e

−j(k−k0)dΨ, (3.7c)

F =
EF

EI
= S21,1

√
η

η0
Ψ, (3.7d)

B =
EB

EI
= S11,2S21,1

√
η

η0
e−2jkdΨ. (3.7e)

Thanks to the use of the scattering matrices, the results shown in Equation (3.7)

can be used to characterize the fields produced by two sheets. For the metasurface

family considered in this work, it is possible to consider them as reciprocal (imply-

ing that S21,i = S12,i). In the specific case when the bounded volume has the same

electromagnetic properties as the medium outside the resonator (free space during

this analysis), some simplifications can be performed, and the transfer functions

of (3.7) can be reduced even more:

Ψfs =
1

1− e−2jk0dΓ̃1Γ̃2

, (3.8a)

Γfs =
ER

EI
= Γ̃1 + Γ̃2τ̃

2
1 e

−2jk0dΨfs, (3.8b)

τfs =
ET

EI
= τ̃1τ̃2Ψfs, (3.8c)

Ffs =
EF

EI
= τ̃1Ψfs, (3.8d)

Bfs =
EB

EI
= Γ̃2τ̃1e

−2jk0dΨfs. (3.8e)

3.2 Wave propagation through conventional Fabry-Perot resonators

Before developing the conditions for an ICR, it is convenient to review the transmit-

ted and reflected fields produced by conventional Fabry-Perot resonators (FPRs).

There are three different types of FPRs: with two metallic plates, with two metallic

plates and a dielectric slab in between; and with only a dielectric slab. First, we

can consider the more general case with a dielectric slab covered by two identical

high conductive plates.

Fabry-Perot resonators with dielectric slab and two conductive plates

In this case, the inner volume can be bounded by two identical metallic plates made

of a good conductor (to obtain high-reflection). Both metallic plates are electrically
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thin, meaning that the tangential electric field across each plate is continuous.

On the other hand, the induced currents at each plate produce discontinuities

in the magnetic field. By combining these two phenomena, it is reasonable to

model a metallic plate (based on a good conductor) as an EPM, and reuse the

formulations made in Chapter 2. The only condition is that both metallic plates

have the same electrical properties, with the consequence that both plates can be

defined using the same electrical grid impedance Ze,p. Therefore, the scattering

matrix for both metallic plates can be written substituting the transmission and

reflection coefficients of Equation (2.11) substituted into the scattering matrix of

Equation (2.37), as shown in Equations (3.9) for the first plate and (3.10) for the

second one.

S11,1 =
Ze,p (η − η0)− ηη0
Ze,p (η + η0) + ηη0

S12,1 =
2Ze,p

√
ηη0

Ze,p (η + η0) + ηη0
(3.9a)

S21,1 =
2Ze,p

√
ηη0

Ze,p (η + η0) + ηη0
S22,1 =

Ze,p (η0 − η)− ηη0
Ze,p (η + η0) + ηη0

(3.9b)

S11,2 =
Ze,p (η0 − η)− ηη0
Ze,p (η + η0) + ηη0

S12,2 =
2Ze,p

√
ηη0

Ze,p (η + η0) + ηη0
(3.10a)

S21,2 =
2Ze,p

√
ηη0

Ze,p (η + η0) + ηη0
S22,2 =

Ze,p (η − η0)− ηη0
Ze,p (η + η0) + ηη0

(3.10b)

The next step is to determine the FPR transmission and reflection coefficients.

By inserting the plates scattering matrices into Equation (3.7), both coefficients

can be obtained:

ΓFPR =
2ηZe,p

[
ηη0 + Ze,p(η + η0)− e2jkd(ηη0 + Ze,p(η − η0))

]
(ηη0 + Ze,p(η + η0))2 − e−2jkd(ηη0 + Ze,p(η − η0))2

− 1, (3.11a)

τFPR =
4ηη0Z

2
e,pe

−j(k−k0)d

(ηη0 + Ze,p(η + η0))2 − e−2jkd(ηη0 + Ze,p(η − η0))2
. (3.11b)

These general FPRs can be designed for interferometers with total transmission.

As it will be shown in Section 3.2, zero phase transmission can be achieved using

these FPRs. These results can be used to analyse the other two kinds of resonators.
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Fabry-Perot resonators with two conductive plates

For the second kind of FPRs, where the dielectric spacer is removed (η = η0 and

k = k0), the transmission and reflection coefficients can be simplified into

Γws = −
η0
[
η0 + 2Ze,p + e−2jk0d(2Ze,p − η0)

]
(η0 + 2Ze,p)2 − η20e

−2jk0d
, (3.12a)

τws =
4Z2

e,p

(η0 + 2Ze,p)
2 − η20e

−2jk0d
, (3.12b)

where the subindex “ws” denotes “without slab”. Based on these equations, it

is possible to conclude that FPRs without spacer can be invisible (Γws = 0 and

τws = 1) only when the metallic plates have infinite grid impedance. This result

corresponds to the trivial solution when there are no metallic plates.

If the conditions are relaxed, and only zero-phase unitary transmission is applied

(τws = 1),then the required grid impedance and the produced reflection coefficient

are written as

Ze,p =
η0
4

(
e−2jk0d − 1

)
(3.13a)

Γws = −2 (3.13b)

If Equation (3.13a) is analysed, it is possible to notice that the grid impedance of

the metallic plates require active response (except when Ze,p = 0). Also, Equation

(3.13b) shows that there is a constant backscattering produced due to the negative

grid impedance. Therefore, by combining both analysis, the conclusion is that

it is not possible to achieve invisibility with zero-phase transmission using a

conventional FPR in a homogeneous medium and with identical metallic plates.

Fabry-Perot resonators with a dielectric slab

The next step is to consider the scenario of an FPR with single dielectric slab (with-

out metallic plates). The expressions of transmission and reflection coefficients

can be obtained from Equation (3.11) by forcing Ze,p → ∞. Then, the scattering

coefficients for a dielectric slab are written as

Γds =
2η
[
η + η0 − e2jkd(η − η0)

]
(η + η0)2 − e−2jkd(η − η0)2

− 1, (3.14a)

τds =
4ηη0e

−j(k−k0)d

(η + η0)2 − e−2jkd(η − η0)2
, (3.14b)

where “ds” denotes “dielectric slab”. In this case, zero reflection is obtained when

the thickness of the dielectric slab dds fulfils the condition

dds =
nλ0

2
√
εr
, (3.15)
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where n is a positive integer, λ0 is the free-space wavelength and εr is the rela-

tive permittivity of the slab medium. Under these conditions, the transmission

coefficient can be simplified into

τds = exp

[
jnπ

(
1

√
εr

− 1

)]
. (3.16)

This result shows that a dielectric slab resonator can have total transmission, but

zero-phase transmission can be achieved only for specific slab permittivities:

εr =

(
n

2m+ n

)2

, (3.17)

where m is another integer value.

For this case, the fields inside the dielectric slab (represented by EF,ds and EB,ds)

can be simplified into

EF,ds =
1

2

(
1 +

1
√
εr

)
EI, (3.18a)

EB,ds =
1

2

(
1− 1

√
εr

)
EI. (3.18b)

Therefore, the net field inside the dielectric slab Eds is defined as the sum of the

forward and backward waves:

Eds = EF +EB =

(
cos(kz)− j

sin(kz)
√
εr

)
EIax. (3.19)

By analysing the net field, it is possible to find out that, for FPRs with εr > 0,

the electrical field varies in the range between [EI;EI/
√
εr]. According to Equation

(3.17), the dielectric slab only offers strong fields inside when 0 < εr < 1 materials

are used which are not so common in nature. In summary, it is possible to obtain

invisibility conditions using a dielectric slab, but this regime requires εr < 1

dielectrics to achieve zero-phase transmission with strong fields inside.

3.3 Wave propagation through a resonator based on two electrically
polarizable metasurfaces

In order to simplify the analysis of a volume bounded by two metasurfaces, it

is convenient to define some cases when the used metasurfaces have specific

properties: when both metasurfaces are EPM (Double-Electric Resonator - DER),

and when one metasurface is EPM and the other is MPM (Magnetic-Electric

Resonator - MER). In both cases, at first we will assume that the volume has

different electrical properties as outside the resonator. Moreover, the free-space
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scenarios will be considered for each case.

Dielectric-filled metasurface resonators

The first case is when the resonator is composed by two EPM under general

conditions, when the bounded volume has not necessarily the same properties as

the medium outside the resonator, like in Figure 3.2.

Based on these conditions, the scattering matrices for both metasurfaces are

obtained from the transmission and reflection coefficients given by Equation (2.11),

for the first metasurface:

S11,1 =
Ze1 (η − η0)− ηη0
Ze1 (η + η0) + ηη0

, S12,1 =
2Ze1

√
ηη0

Ze1 (η + η0) + ηη0
, (3.20a)

S21,1 =
2Ze1

√
ηη0

Ze1 (η + η0) + ηη0
, S22,1 =

Ze1 (η0 − η)− ηη0
Ze1 (η + η0) + ηη0

; (3.20b)

and for the second one:

S11,2 =
Ze2 (η0 − η)− ηη0
Ze2 (η + η0) + ηη0

, S12,2 =
2Ze2

√
ηη0

Ze2 (η + η0) + ηη0
, (3.21a)

S21,2 =
2Ze2

√
ηη0

Ze2 (η + η0) + ηη0
, S22,2 =

Ze2 (η − η0)− ηη0
Ze2 (η + η0) + ηη0

. (3.21b)

Before substituting the metasurfaces scattering matrices into the transfer func-

tions, it is convenient to perform some simplifications related to the bounded

volume medium. Similarly to the case of the metasurfaces grid impedances in

free-space scenarios, the characteristic impedance η and the wavenumber k can be

normalized with respect to their free-space counterparts. Also, the value k0d can

be combined into a phase factor φ. All these notations are introduced in Equation

Figure 3.2. Electromagnetic fields across two generic metasurfaces
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(3.22).

η = η̃η0 (3.22a)

k = k̃k0 (3.22b)

φ = k0d (3.22c)

Using the scattering matrices with the normalized values, the transfer functions

for each produced wave can be obtained as functions of the grid impedances and

the bounded volume parameters:

∆ =e2jk̃φ(Z̃e1(1 + η̃) + η̃)(Z̃e2(1 + η̃) + η̃)

− (Z̃e1(1− η̃)− η̃)(Z̃e2(1− η̃)− η̃), (3.23a)

Γ =
ER

EI
=∆−1

[
e2jk̃φ(Z̃e1(η̃ − 1)− η̃)(Z̃e2(1 + η̃) + η̃)

+ (Z̃e1(1 + η̃)− η̃)(Z̃e2(1− η̃)− η̃)
]
, (3.23b)

τ =
ET

EI
=∆−1

[
4ej(1+k̃)φZ̃e1Z̃e2η̃

]
, (3.23c)

F =
EF

EI
=∆−1

[
2e2jk̃φZ̃e1η̃(Z̃e2(1 + η̃) + η̃)

]
, (3.23d)

B =
EB

EI
=∆−1

[
2Z̃e1η̃(Z̃e2(1− η̃)− η̃)

]
. (3.23e)

The structure of Figure 3.1 can be considered invisible if the transfer function

of (3.23) fulfils the conditions: Γ = 0 and τ = 1. To achieve these conditions,

the corresponding values of the grid impedances can be obtained from Equations

(3.23b) and (3.23c) to obtain

Z̃e1 =
ej(k̃+1)φ

(
e2jk̃φ − 1

)
η̃

e2jk̃φ
(
2 + ej(k̃+1)φ(η̃ − 1)

)
− ej(k̃+1)φ(η̃ + 1)

, (3.24a)

Z̃e2 =
e−j(k̃+1)φ

(
1− e−2jk̃φ

)
η̃

e−2jk̃φ
(
2 + e−j(k̃+1)φ(η̃ − 1)

)
− e−j(k̃+1)φ(η̃ + 1)

, (3.24b)

Z̃e1 = −Z̃∗
e2. (3.24c)

It is important to remark that the grid impedance of the first metasurface is equal

to the negative and complex conjugate (where ∗ denotes the complex conjugate

operator) of the second metasurface grid impedance. Figure 3.3 shows the normal-

ized grid impedances for the case when the bounded volume is filled by a dielectric

slab (with εr = 2 and µr = 1, chosen arbitrary).

For our case (considering possible realistic implementations), of special interest

is the family of points where both metasurfaces are pure-reactive (R̃e1 = R̃e2 = 0),
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Figure 3.3. Normalized impedances for a DER using a slab of εr = 2 and µr = 1. Notice that the
imaginary parts of both grid impedances are overlapped. The dotted lines show some
values of φ where both metasurfaces are pure-reactive.

as in the case when φ = 11.89 [rad] and the metasurfaces have pure-capacitive

grid impedances (X̃e1 = X̃e2 = −0.5126). As it is seen from (3.24), in this lossless

case Zel = Ze2 and both metasurfaces become identical. Thus, the invisible regime

can be achieved also with conventional FPRs consisting of a dielectric slab whose

both sides are covered by metal films. It should be noted that usually the regime

of invisibility is not desired in FPRs. Nevertheless, this regime is the subject of

this thesis. The transfer functions for the forward and backward waves under

invisibility conditions are written as

F =
ej(k̃−1)φ

(
ej(k̃+1)φ − 1

)
e2jk̃φ − 1

, (3.25a)

B =
ej(k̃−1)φ − 1

e2jk̃φ − 1
; (3.25b)

which can be used to find the electromagnetic fields across the structure, as shown

in Figure 3.4 for the case when φ = 11.89 [rad].

Dielectric-free metasurface resonator

In the particular case when the bounded volume is free space, the transfer func-

tions can be obtained by using Equation (3.8) with the metasurfaces scattering

coefficients; or by using the values k̃, η̃ = 1 in the transfer function of the gen-

eral case of Equation (3.23). In both cases, the simplified transfer function for
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Figure 3.4. Electromagnetic fields across the two electrical sheets structure using a slab of εr = 2
and µr = 1: top - Magnitude, bottom - Phase.

free-space case are written as

∆fs =e2jφ(1 + 2Z̃e1)(1 + 2Z̃e2)− 1, (3.26a)

Γfs =∆fs
−1
[
1− 2Z̃e1 − e2jφ(1 + 2Z̃e2)

]
, (3.26b)

τfs =∆fs
−1
[
4e2jφZ̃e1Z̃e2

]
, (3.26c)

Ffs =∆fs
−1
[
2e2jφZ̃e1(1 + 2Z̃e2)

]
, (3.26d)

Bfs =∆fs
−1
[
−2Z̃e1

]
. (3.26e)

Because of the media difference between the bounded-volume and the outer

space, the invisibility conditions for this case are not the same. The invisibility

conditions are achieved when

e2jφ = 1, (3.27a)

d =
nλ0

2
, (3.27b)

Z̃e1 = −Z̃e2, (3.27c)

where n is an integer. Under this condition, the relationship between both grid

impedances, shown in Equation (3.27c), is similar to the general case of Equation

(3.24c); with the key difference that both grid impedances do not depend directly

of the distance between metasurfaces. As a consequence, both grid impedances

may be chosen to simplify the structure implementation, like using purely reactive

surfaces without requiring active or lossy metasurfaces.
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Induced currents in the metasurfaces

The use of the scattering matrix, combined with the metasurfaces transmission

and reflection coefficients significantly simplify calculations of the transfer func-

tions of the DER. Unfortunately, a disadvantage of using this method is that some

analysis is omitted due the used abstraction level. Because of that, it is convenient

to remember that each resonator metasurface has its own induced electric surface

current density Je1 and Je2 for the first and the second metasurface, respectively:

Je1 =
EI(0) +ER(0)

Ze1
, (3.28a)

Je2 =
ET(d)

Ze2
. (3.28b)

Because of the relation between the induced currents and the electromagnetic

waves across the resonator, it is reasonable to determine the collective admittance

for each metasurface, which can be written as

J̃e1 =
Je1 · ax
EI(0) · ax

=
4e2jφZ̃e2 + 2

(
e2jφ − 1

)
η0∆fs

, (3.29a)

J̃e2 =
Je2 · ax
EI(0) · ax

=
4e2jφZ̃e1

η0∆fs
e−jφ. (3.29b)

If also the invisibility conditions of Equation (3.27) are considered, the collective

admittances can be simplified into

J̃e1 = (−1)n+1J̃e2 =
1

Ze1
. (3.30)

These results can be seen as the scenario where two current sheets with equal

phases are separated at a distance of λ0/2. In that case, the fields radiated by

both current sheets cancel each others and no radiated field is seen in front and

behind the current sheets. This conclusion means that the radiated fields produced

outside the bounded volume by one metasurface is cancelled by the other one.

Therefore, when the invisibility conditions of Equation (3.27) are applied, the ICR

acts as a non-scattering system.

3.4 Wave propagation through a resonator based on mangetically
polarizable and electrically polarizable metasurfaces

Dielectric-filled metasurface resonators

In previous analyses, the invisibility conditions for a DER were found. The next

step is to analyse a Magnetic-Electic Resonator (MER), obtained by replacing the

31



Invisible cavity resonators based on metasurfaces

Figure 3.5. Electromagnetic fields, produced by an external incident wave, across a MER.

first metasurface with a MPM, as shown in Figure 3.5.

Therefore, the scattering matrix for the first metasurface must be based on the

transmission and reflection coefficients of Equation (2.19):

S11,1 =
η − η0 + Zm1

η + η0 + Zm1
, S12,1 =

2
√
ηη0

η + η0 + Zm1
, (3.31a)

S21,1 =
2
√
ηη0

η + η0 + Zm1
, S22,1 =

η0 − η + Zm1

η + η0 + Zm1
. (3.31b)

On the other hand, the second metasurface remains the same, so that the scatter-

ing matrix showed in Equation (3.21), based on EPM model of Equation (2.11), is

still usable for this case.

Using the same normalization as shown in Equation (3.22), the transfer functions

for this case can be achieved by substituting both scattering matrices into the

general transfer function expressions of Equation (3.7). Then, a simplified version

can be obtained for the general case:

∆ =e2jk̃φ(1 + Z̃m1 + η̃)(Z̃e2(η̃ + 1) + η̃)

+ (1 + Z̃m1 − η̃)(Z̃e2(η̃ − 1) + η̃), (3.32a)

Γ =∆−1
[
(−1 + Z̃m1 − η̃)(Z̃e2(η̃ − 1) + η̃)

+ e2jk̃φ(−1 + Z̃m1 + η̃)(Z̃e2(η̃ + 1) + η̃)
]
, (3.32b)

τ =∆−1
[
4ej(1+k̃)φη̃Z̃e2

]
, (3.32c)

F =∆−1
[
2e2jk̃φη̃(Z̃e2(η̃ + 1) + η̃)

]
, (3.32d)

B =∆−1
[
−2η̃(Z̃e2(η̃ − 1) + η̃)

]
. (3.32e)
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Then, it is possible to find an analytical expression for the grid impedances

required to grant invisibility (Γ = 0, τ = 1):

Z̃m1 =
1 + η̃ + (1− η̃)e2jk̃φ − 2ej(k̃−1)φ

1 + e2jk̃φ
, (3.33a)

Z̃e2 =
η̃
(
1 + e2jk̃φ

)
1− η̃ − (1 + η̃)e2jk̃φ + 2η̃ej(k̃+1)φ

, (3.33b)

where both grid impedances are quite similar (especially when the grid admittance

of the MPM Ỹm1 is compared to the grid impedance of the EPM Z̃e2). Figure

3.6 shows the required grid impedances as a function of the distance between

metasurfaces, as done previously, considering a bounded volume composed by a

dielectric slab (using arbitrarily taken values of εr = 2 and µr = 1).

While the DER of Figure 3.3 shows a symmetric relation between the grid

resistances, this case has some more complex relations between them. In order to

improve the readability, Figure 3.6 depicts the normalized grid admittance for the

MPM. Due to that, it is possible to notice that MPM grid suceptance follows closely

the EPM grid reactance for values of φ greater than 2. In the case of resistance

and conductance, they show a similar behaviour as observed in DER case, showing

a quasi-mirror pattern. Also, it should be noted that both metasurfaces become

purely reactive at some discrete points, and like in the previous case, they are

interesting for possible future implementations. One example of this family of

solutions is found at φ = 10.41 [rad] where X̃m1 = 2.5761 and X̃e2 = −0.2745, Figure

3.7 shows the fields across this resonator under this condition.

As a complementary information, the transfer functions of the inner fields can
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Figure 3.6. Normalized electric impedance and magnetic admittance for the resonator based on
one MPM and one EPM using a slab of εr = 2 and µr = 1. The dotted lines show some
values of φ where both metasurfaces are pure-reactive.
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Figure 3.7. Electromagnetic fields across the magnetic and electric sheets structure using a slab of
εr = 2 and µr = 1: top - Magnitude, bottom - Phase

be derived for invisible conditions:

F =
e2jk̃φ

(
e−j(k̃+1)φ + η̃

)
e2jk̃φ + 1

, (3.34a)

B =
ej(k̃−1)φ − η̃

e2jk̃φ + 1
. (3.34b)

Dielectric-free metasurface resonator

As found previously, by forcing free-space conditions in (3.32) or by using the

free-space scattering coefficients in the transfer functions of (3.8), the transfer

functions for each electromagnetic field component is simplified:

∆fs =Z̃m1 + e2jφ(2 + Z̃m1)(1 + 2Z̃e2), (3.35a)

Γfs =∆fs
−1
[
Z̃m1 − 2 + e2jφZ̃m1(1 + 2Z̃e2)

]
, (3.35b)

τfs =∆fs
−1
[
4e2jφZ̃e2

]
, (3.35c)

Ffs =∆fs
−1
[
2e2jφ(1 + 2Z̃e2)

]
(3.35d)

Bfs =− 2∆fs
−1. (3.35e)

To find the invisibility conditions, Γ = 0 and τ = 1, two conditions must be

obtained from Equation (3.35):

e2jφ = −1 (3.36a)

d = λ

(
1

4
+

n

2

)
, (3.36b)

Z̃m1 = − 1

Z̃e2

. (3.36c)
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Induced currents in the metasurfaces

As mentioned in description of the DER case, the induced currents can be related

to the fields at metasurface planes. In the case of the MPM, magnetic current

density Jm1 is due to the magnetic fields; while the EPM has an electric current

density Je2, due to the electric fields. The relations between the induced currents

and the fields are written as

Jm1 = Zm1 (HI(0) +HR(0)) , (3.37a)

Je2 =
ET(d)

Ze2
. (3.37b)

Similarly to the previous case, the collective impedance for the MPM and the

collective admitance for the EPM can be calculated for the free space scenario as

J̃m1 =
Jm1 · ay
HI(0) · ay

= η0
Z̃m1

∆fs

[
2(e2jφ + 1) + 4Z̃e2e

2jφ
]
, (3.38a)

J̃e2 =
Je2 · ax
EI(0) · ax

=
4e2jφ

η0∆fs
e−jφ. (3.38b)

Under the invisibility conditions of (3.36), both collective impedance/admitance

can be simplified even more:

J̃m1 = Zm1, (3.39a)

J̃e2 = (−1)n
1

Ze2
, (3.39b)

J̃m1 = (−1)n+1η20J̃e2. (3.39c)

It is possible to show that this pair of surface currents act as a non-radiating

source (showing that this resonator is a non-scattering system), but this must be

demostrated by solving the radiated fields of each current sheet; unlike the DER

which current transfer functions can be compared directly.
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4. General properties of invisible cavity
resonators

Until now, transfer functions for two different resonators were developed. In this

chapter, some analyses will be performed in order to understand their general

properties. Most of the analysis will be done so that the conclusions can be

applied for both cases, choosing the first case based on DER just for results

interpretation. All the analysis will assume that the bounded volume has the

same electromagnetic properties as the space outside the resonator, because of

that, most of the free-space subindexes “fs” will be omitted.

4.1 Standing waves inside the structure

Previously, two conditions were found to grant invisibility: one related with

the distance between the metasurfaces and the second related with the grid

impedances. The first condition is achieved at discrete distance values (see (3.27b)),

where the phase shift is fixed (see (3.27a)). Therefore, these discrete distance

values do not change the magnitude nor the phase of the fields inside the resonator.

On the other hand, the grid impedances can modify the amplitude and phase of the

scattered waves, with the only restriction shown in equations (3.27c) or (3.36c). As

mentioned previously, these kinds of structures produces inner fields (see Equation

(3.1)), which combines into a standing wave ES

ES = EF(z) +EB(z) = EI(z)
(
F +Be2jk0 z

)
, (4.1)

where the definition given in Equations (2.9a) and (3.1) were used. One important

parameter of a standing wave is the Standing Wave Ratio (SWR), which is the

ratio between the maximum and the minimum values of the field amplitude in

the standing wave [35,42,43]. Therefore, the SWR can be defined as

SWR =
1 + |Γint|
1− |Γint|

, (4.2)
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where Γint corresponds to the internal reflection coefficient:

Γint =
EB · ax
EF · ax

. (4.3)

It is possible to express the SWR based on the transfer functions defined for both

structures, by combining the equations (4.2), (4.3), and (3.1):

SWR =
|F|+ |B|
|F| − |B|

. (4.4)

Resonator formed by two electrically polarizable metasurfaces

First, let us consider a DER. Its transfer functions corresponding to the inner

fields of Equation (3.26) can be reduced to

F =1− 1

2Z̃e1

= 1 +
j

2X̃e1

, (4.5a)

B =
1

2Z̃e1

= − j

2X̃e1

. (4.5b)

Thanks to Equations (4.4), it is possible to determine the SWR of a given DER:

SWR =
|2Z̃e1 − 1|+ 1

|2Z̃e1 − 1| − 1
. (4.6)

Figure 4.1 shows how the SWR can be increased by reducing the magnitude of

metasurfaces grid reactances. A theoretically infinite SWR can be obtained in the

limit when the impedances of both metasurfaces tend to zero (from the positive

and negative sides). If both impedances reach zero, the standing wave inside the

10-1 100 101100

101

102

103

Figure 4.1. SWR as a function of the first metasurface reactance for a DER with pure reactive
metasurfaces.
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Figure 4.2. Standing waves across a DER for different SWR values, using a distance d = λ and
X̃e1 > 0: top - Magnitude, bottom - Phase.

resonator cannot be excited and it behaves as a PEC wall. In the opposite limit,

when the metasurfaces have infinite grid impedance, no standing wave is produced

and the SWR becomes equal to 1.

Likewise, it is also possible to determine the grid reactance required to achieve

a specific SWR:

X̃e1 =
1

2

√(
SWR+ 1

SWR− 1

)2

− 1. (4.7)

Figure 4.2 provides a view of the electromagnetic fields inside a structure with

d = λ0 for different values of SWR, considering the case when the first metasurface

has inductive properties (X̃e1 > 0).

An additional characteristic of standing waves is the position of the field critical

points, maxima and minima, which can be found using the first and second

derivatives of the magnitude of the amplitude of the standing field ES, shown in

(4.1). It is convenient to define z0 as the location of maxima/minima, written for

lossless metasurfaces as

z0 =
λ0

4

(
p− arctan(2X̃e1)

π

)
, (4.8a)

(−1)p
?
>
<
0. (4.8b)

Notice that z0 are a set of points (denoted by the integer p) separated by λ0/4.

The exact locations of these points also depend on the grid reactance, as shown

in Figure 4.3. For low grid reactance values, the offset produced by the resonator

becomes equal to zero, placing the locations for maxima and minima as multiples

of λ0/4, like the standing waves inside a conventional cavity resonator. In the

opposite case, infinite grid impedances will create an offset of λ0/8 but without
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Figure 4.3. Location of first z0 (p = 1) as a function of the grid reactance.

any significance since both metasurfaces become transparent.

The criteria which determines if a certain z0 is a local maximum/minimum

is shown in (4.8b), based on concavity; where a negative value means a local

maximum, and a positive value corresponds to a local minimum (showed as ?
>
<

).

Additionally, the sequence of maxima/minima is determined by the reactance

type of the first metasurface: If the first metasurface has an inductive reactance,

then the first critical point will be a local maximum; and, on the other hand, if

the metasurface has a capacitive reactance, the first critical point will be a local

minimum. Given the condition shown in (3.27c), inverting the grid reactance signs

implies that the standing waves profile is also inverted.

In order to understand the relation between the electric field of the standing wave

ES and the incident field EI, it is convenient to define the normalized standing

wave function Se:

Se(z) =
ES · ax
EI

= Fe−jk0z +Bejk0z (4.9)

By substituting the transfer functions of Equations (4.5), and considering pure-

reactive metasurfaces, the absolute value of Se can be reduced to

|Se(z)| =
1

|X̃e1|

√
X̃2

e1 + X̃e1sin(2k0z) + sin2(k0z). (4.10)

The magnitudes of field’s maxima and minima are found at the values of z = z0

specified in Equation (4.8), such that the field maxima and minima are written,

respectively, as

|Se|max =
√
SWR, |Se|min =

1√
SWR

. (4.11)
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Resonator formed by a magnetically polarizable and an electrically polarizable
metasurfaces

In the case of an MER, Equation (4.4) can be reused, but considering the transfer

function of the inner fields for this resonator:

F =1 +
1

2Z̃e2

= 1− j

2X̃e2

, (4.12a)

B =
1

2Z̃e2

= − j

2X̃e2

. (4.12b)

Similar SWR equations can be obtained for this case:

SWR =
|2Z̃e2 + 1|+ 1

|2Z̃e2 + 1| − 1
, (4.13)

X̃e2 =
1

2

√(
SWR+ 1

SWR− 1

)2

− 1, (4.14)

where the first one corresponds to the SWR as a function of the EMP grid

impedance and the second equation gives us the required reactance for the sec-

ond metasurface when the lossless/passive case is considered. Figure 4.4 shows

electromagnetic fields across the two metasurfaces when they are separated by

the distance d = 3λ0/4, for different values of SWR, and considering the EPM as

purely inductive (X̃e2 > 0).

As in the scenario where a DER was considered, it is possible to find the critical

points of the standing wave of Equation (4.1) using the first and second derivatives.

The location of the critical points z0 and its maxima/minima criteria are written
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Figure 4.4. Standing waves across the magnetic and electric sheet structure for different SWR
values for a distance d = 3λ0/4 and X̃e2 > 0: top - Magnitude, bottom - Phase.
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as

z0 =
λ

4

(
q +

arctan(2X̃e2)

π

)
, (4.15a)

(−1)q+1 ?
>
<
0, (4.15b)

using the integer q as an analogue of p in (4.8). An important difference between

the DER case and this case is that the maxima/minima sequence is not altered by

the nature of the second metasurface grid impedance; as the first point will always

be a maximum. As mentioned in the previous case, inverting the metasurfaces

order (the EMP before the MPM) will produce a mirror image of the standing

waves for the original case.

The amplitude of the standing wave can be obtained by substituting the free-

space transfer functions of (4.12) into Equation (4.9), considering pure reactive

metasurfaces. The simplified expression for the standing wave’s magnitude is

written as

|Se(z)| =
1

|X̃e2|

√
X̃2

e2 + X̃e2sin(2k0z) + cos2(k0z), (4.16)

which peak values at z = z0 of (4.15) lead us to the same expressions of (4.11).

Until now, we analysed each resonator separately, but since their properties and

performance are quite similar, it is better to focus on one kind of structure in order

to reduce redundancy in the following analysis. Due to its simplicity, the selected

resonator is DER.

4.2 Multiple-reflection analysis

The analysis which lead us to the transfer functions corresponding to each scat-

tered field was performed considering the total value of each scattered field. This

kind of analysis is useful to understand the structure performance under nominal

conditions, but the structure behaviour as a function of each contributors is hid-

den. Because of that, it is useful to perform a multiple reflection analysis, which

considers the scattered fields produced by the incidence of a single plane wave.

Consider the scattered fields of Figure 4.5, where the reflections produced by

a plane wave inside the structure are decomposed. Each metasurface is charac-

terized by its transmission coefficient τ̃ and reflection coefficient Γ̃, as defined in

(2.13), (2.21) and (2.29) for EPM, MPM and EMPM, respectively. As mentioned

earlier, the use of the scattering coefficients in the second metasurface is neccesary

to consider the effect of displacement shown in Equation (3.5). This analysis
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Figure 4.5. Decomposed scattered fields produced in a volume bounded by two arbitrary metasur-
faces. The scattered waves are show as oblique only for visual clarify.

considers that the metasurfaces grid impedances are frequency-invariant, and

the results of this analysis cannot be considered directly as a transient analysis.

On the other hand, there are some concepts that can be related to a transient

analysis.

Due to the multiple reflected and transmitted waves, the net scattered fields

are the sums of all reflected/transmitted components. Hence, each resonator’s

transfer function (F , B, τ and Γ) can be determined for the m-th cycle. A cycle is

defined as the period of time between the generation of two consecutive scattered

components of the same scattered wave, or as the round-trip time between the two

metasurfaces. Under these considerations, the transfer functions after the m-th

cycle:

Fm = τ̃1

[
1 + Γ̃1Γ̃2e

−2jk0d + ...+
(
Γ̃1Γ̃2e

−2jk0d
)m]

, (4.17a)

Bm = τ̃1Γ̃2e
−2jk0d

[
1 + Γ̃1Γ̃2e

−2jk0d + ...+
(
Γ̃1Γ̃2e

−2jk0d
)m]

, (4.17b)

τm = τ̃1τ̃2

[
1 + Γ̃1Γ̃2e

−2jk0d + ...+
(
Γ̃1Γ̃2e

−2jk0d
)m]

, (4.17c)

Γm = Γ̃1 + τ̃21 Γ̃2e
−2jk0d

[
1 + Γ̃1Γ̃2e

−2jk0d + ...+
(
Γ̃1Γ̃2e

−2jk0d
)m]

, (4.17d)

where τ̃1 and Γ̃1 correspond to the transmission and reflection coefficients of the

first metasurface, while τ̃2 and Γ̃2 correspond to the second metasurface.
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All the transfer functions of Equation (4.17) contains a geometric series, defined

as Ψm (the stepped resonant factor), which can be reduced to

Ψm =
m∑
l=0

(
Γ̃1Γ̃2e

−2jk0d
)l

=
1−

(
Γ̃1Γ̃2e

−2jk0d
)m+1

1− Γ̃1Γ̃2e−2jk0d
. (4.18)

In theory, the geometric series of Equation (4.18) converges only when |Γ̃1Γ̃2| < 1.

Due to that, the transient component could diverge when active metasurfaces are

used. In a realistic scenario, this function never diverges since active metasurfaces

are nonlinear at high amplitudes of the fields. On the other hand, when lossy or

pure reactive metasurfaces are used, the steeped resonant ractor can be reduced

to

Ψ = lim
m→∞

Ψm =
1

1− Γ̃1Γ̃2e−2jk0d
,
(
|Γ̃1Γ̃2| < 1

)
, (4.19)

which corresponds to the resonance factor Ψ shown in Equation (3.8a). In fact,

all the transfer functions converge at infinite cycles to the transfer functions of

Equation (3.8).

Figure 4.6 shows that all the transfer functions converge evenly as the cycles

pass. Additionaly, because of the same convergence, the SWR does not depend on

the current cycle. From these results, there are two conclusions to be considered:

First, the SWR cannot be used as a figure of merit of the structure in a multiple

reflection analysis, instead, the figure of merit must be based on Ψm. In that case,

the convergent cycle must be defined as the m-cycle at which the absolute value of

its instance function |Ψm| is at least 90% of |Ψ|. Because of the complex nature

of the reflection coefficients in (4.18), the definition of convergent cycle cannot be

applied directly, but instead we consider only the absolute value of the reflection

0 20 40 60 80 1000
0.2
0.4
0.6
0.8
1

Figure 4.6. Evolution of transfer functions depending of the number of cycles, for the case of a DER
with SWR = 100.
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coefficients product. With this minor change, the expression for the convergent

cycle can be written as

m90% =

⌈
ln (1− 0.9)

ln |Γ̃1Γ̃2|
− 1

⌉
, (4.20)

where the ceiling function is used to obtain an integer value closer to the nominal

stage of the resonator.

Figure 4.7 shows the dependency of the convergent cycle as a function of the

grid impedance for a DER. This figure show the first tradeoff in this kind of

structures: The convergent cycle is inversely proportional to the absolute value of

the grid reactance, meaning that low reactive grid impedances can create high-

SWR standing waves but it requires more reflections to achieve its nominal state.

On the other hand, resonators with high reactive grid impedances produce low

SWR with high convergence. It is especially interesting to consider the case when

m90% = 1, meaning that the resonator is invisible after one cycle (with “direct"

convergence). This case is obtained using Equation (4.21), where X̃e,crit is referred

to the first metasurface in the case when DER is used or referred to the EPM when

a MER is used. In both cases, the normalized grid impedance is approximately

0.7352, corresponding to SWR of 3.5698.

X̃e,crit =
1

2

√√
1

1− 0.9
− 1 (4.21)
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Figure 4.7. Convergent cycle as a function of the grid reactace for the case of a DER with pure
reactive metasurfaces.
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4.3 Performance in frequency domain

The invisibility conditions for a volume bounded by metasurfaces can be clas-

sified by their nature: The first condition is given by the relation between the

metasurfaces grid impedances, and the second condition requires that a fixed

electric distance between the metasurfaces. The grid impedances condition was

used previously as a design’s parameter to engineer the resonant fields inside

the bounded volume based on the equivalent SWR. But, the second condition

was only represented as a collection of fixed distances between the metasurfaces.

This criterion is only applicable when a monochromatic wave illuminates the

bounded volume. Because of that, it is important to characterize the performance

of this kind of structures when they are illuminated by a source with variable

frequency. This analysis does not consider the effect of the wave’s wavelength over

the metasurfaces, because different metasurfaces designs can lead to different grid

impedance’s models. In order to characterize only the effects of frequency into the

structure design, the grid impedances of each metasurface are considered constant

in the selected frequency range. Therefore, as the frequency of the incident wave

changes, the wavenumber k becomes different from k0 found in (3.22c), changing

the magnitude and phase of the transfer functions of Equation (3.26).

Figure 4.8 shows the effect of the source’s wavelength over the transmission coef-

ficient of a DER, where λ0 is the wavelength corresponding to the first Fabry-Perot

mode (n = 1). This figure shows that the resonator becomes invisible only at the

frequencies related to different resonant modes, modifying the effective bandwidth

as a function of the grid impedance. Figure 4.8 also reminds the Airy distribution

of the transmitted wave from a FPR, where highly reflective bounds (dielectric

Figure 4.8. Transmission coefficient as a function of the grid reactance and the normalized wave-
length for a DER.
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interfaces or metallic plates) lead to a narrow transmission in the frequency do-

main. Like in RLC circuits, the quality factor can be used as a figure of merit

for this frequency-related behaviour. The Q-factor is defined as the ratio of the

resonance frequency and the half-power bandwidth with respect to the structure

transmittance:

Q =
ω0

∆ω
, |τ(ω0 ±∆ω/2)|2 = 1

2
|τ |2max, (4.22)

where the half-power bandwidth (∆ω) is defined as the frequency range where the

transmittance is at least half of the maximum value, which in the case of ideal

invisibility is equal to 1.

In the scenario where a DER is considered, the invisibility conditions related with

the impedance in (3.27c) and the resonance phase (e2jk0d = 1, which leads to d =

nλ0/2) are considered into the transmission coefficient in free space of Equation

(3.26c). Then, applying the quality factor definition of (4.22), the expression of

Equation (4.23) is achieved:

|e2jk∆d
(
1− 4Z̃2

e1

)
− 1|2 = 32|Z̃2

e1|2 (4.23)

The variable k∆ represents the wavenumber at the cutoff frequency: k∆ = k0 ±

(∆ω
√
ε0µ0)/2. If the phase product k∆d is considered, the expression can be

reduced to k∆d = nπ (1±∆ω/2ω0). The first component of the sum will vanish

after substituting it into the exponent in (4.23), while the second component will

lead us to the quality factor. The solution of Equation (4.23) requires the complex

expansion of the grid impedance (Z̃e = R̃e + jX̃e) and the complex exponential

e2jk∆d:

32

[(
R̃2

e1 − X̃2
e1

)2
+
(
2R̃e1X̃e1

)2]
=

[
cos

(
nπ

Q

)(
1− 4R̃2

e1 + 4X̃2
e1

)
± 8sin

(
nπ

Q

)
R̃e1X̃e1 − 1

]2
+

[
8cos

(
nπ

Q

)
R̃e1X̃e1 ± sin

(
nπ

Q

)(
4R̃2

e1 − 4X̃2
e1 − 1

)]2 . (4.24)

Due to the complexity of this equation of that, it is recommended to enforce the

condition of pure reactive metasurfaces (R̃e1 = R̃e2 = 0), to simplify the equation

into

32X̃4
e1 =

[
cos

(
nπ

Q

)(
1 + 4X̃2

e1

)
− 1

]2
+

[
sin

(
nπ

Q

)(
1 + 4X̃2

e1

)]2
. (4.25)
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Figure 4.9. Quality factor as a function of the grid reactance for n = 1.

This equation is easier to solve, obtaining the expression for the quality factor:

Q =
nπ

acos

(
1− 8X̃4

e1

1 + 4X̃2
e1

) . (4.26)

From the previous results, it can be found that the quality factor has a linear

relation with respect to the Fabry-Perot number n. As an example, the quality

factor can be increased 100% by doubling the distance between the metasurfaces.

This property can be explained if we consider the field alignment between the for-

ward and backward wave. At the resonance frequency, the forward and backward

waves fields can add constructively creating standing waves. But if the frequency

is changed, the distance between the metasurfaces and the ideal distance (where

the forward and backward waves are contructively aligned) differ, reducing the

standing fields produced inside the resonator and the transmitted wave. If the

distance between the metasurfaces is large (with a high Fabry-Perot number),

the resonator response will be narrower as the difference between the physical

distance and the ideal distance also increases.

Also, as shown in Figure 4.9, the quality factor is affected by the grid reactance.

Because the current in metasurfaces with high impedances is harder to induce,

as they are more transparent, the quality factor decreases as the grid reactance

increases. If we inspect Equation (4.26), we see that the quality factor reaches an

inflection point when

X̃e1 = ±

√
1 +

√
2

2
, (4.27)

with an SWR of 2.4144, and the denominator becomes equal to π. Then, two

effects happen: the quality factor becomes equal to n, and beyond this point
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the quality factor becomes complex, as shown in Figure 4.9. In practical terms,

the complex quality factor means that the structure transmits at all frequencies

under the −3 dB level. This effect takes place because the bandwidths of the

different resonant modes merge together (assuming frequency-independent grid

impedances).

4.4 Influence of metasurfaces dissipation loss on resonator properties

Until now, we considered ideal metasurfaces and their conditions which grant in-

visibility while tailoring the fields inside the inner volume. But, real metasurfaces

have intrinsic losses produced by the meta-atoms materials and metasurfaces

substrates. In this study, we will use two assumptions: the losses produced by

meta-atoms dominate over the other ones. The second assumption is that meta-

surfaces with equal absolute values of grid reactances have equal meta-atoms

losses. Under these assumptions, let us define the lossy grid impedances for both

metasurfaces:

Z̃e1 = R̃loss + jX̃e1, Z̃e2 = R̃loss + jX̃e2, (4.28)

where R̃loss represents the normalized grid losses (Rloss = η0R̃loss) and the normal-

ized reactances X̃e1 and X̃e2 keep the relation X̃e1 = −X̃e2 of Equation (3.27c).

Using the redefined grid impedances, the transfer functions of Equation (3.26) (for

a DER) can be reduced to

∆loss =(1 + 2R̃loss)
2 + 4X̃2

e1 − 1, (4.29a)

Γloss =∆loss
−1
[
−4R̃loss

]
, (4.29b)

τloss =4∆loss
−1
[
R̃2

loss + X̃2
e1

]
, (4.29c)

Floss =2∆loss
−1
[
R̃loss + jX̃e1 + 2

(
R̃2

loss + X̃2
e1

)]
, (4.29d)

Bloss =− 2∆loss
−1
[
R̃loss + jX̃e1

]
. (4.29e)

Figure 4.10 shows the evolution of the electric fields inside and outside the res-

onator for different grid losses, assuming X̃e1 = −X̃e2 = 0.101 (corresponding to

the case when SWR = 100 and R̃loss = 0).

From Figure 4.10, three different behaviours can be identified depending on the

ratio between metasurfaces resistance and reactance. The low-loss (R̃loss ≪ |X̃e1|)

region has waves close to the lossless case and the resonator is almost invisible.

The high-loss (R̃loss ≫ |X̃e1|) region is dominated by the meta-atoms losses. These

high losses result in the fact that the currents in the metasurfaces are harder to

induce, and the metasurfaces become transparent. The transition region, where
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Figure 4.10. 1-D parametric sweep for the normalized electrical field for different losses, consider-
ing d = λ and X̃e1 = 0.101 (SWR = 100 if R̃loss = 0).

the loss resistances are comparable with the grid reactances, is characterized by

high reflection and low transmission through the structure, while the inner fields

have a low standing wave ratio.

Since the losses degrade the metasurfaces performance, it is compulsory to

estimate the SWR under these new conditions. The SWR for lossy metasurfaces is

obtained by applying the forward and backward transfer functions of (4.29) into

the SWR definition of Equation (4.4):

SWRloss =
|2R̃loss − 2jX̃e1 + 1|+ 1

|2R̃loss − 2jX̃e1 + 1| − 1
. (4.30)

As shown in Figure 4.11, the SWR decreases as the losses increase since the

resonance is extinguished as the induced currents vanish. This effect is clearly

seen also with the transmittance |τ |2, reflectance |Γ|2, and absorbance |A|2 =

1− |τ |2 − |Γ|2. It is important to remark that the phase of transmission coefficient

τ and the reflection coefficient Γ are not affected by the grid losses.

During this part of the analysis, the grid reactances were considered as the

same for an ideal SWR of 100 (|X̃e1| = 0.101) and how the grid losses affect the

structure performance. To expand the knowledge related with grid losses, Figure

4.12 becomes useful. The SWR is affected negatively as the grid losses increases;

but this effect can be reduced by increasing the grid reactance, with the drawback

of degradating the structure’s performance in terms of ideal SWR.

Due of the degradation in resonator’s performance due to grid losses, it is impor-

tant to characterize these losses with a realistic model. In our case, we selected to

model a metallic plate (which can be seen as a slab mad of a given medium), useful

to determine the grid losses of different metals. For the analysis, we will consider
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Figure 4.11. DER performance as a function of the normalized grid resistance for the case X̃e1 =
0.101 (SWR = 100 if R̃loss = 0): top - SWR, bottom - transmittance, reflectance and
absorbance

Figure 4.12. SWR as a function of the grid resistance and grid reactance): top - SWR in dB scale,
bottom - Normalized SWR respect to the ideal case.

the scenario shown in Figure 4.13, where an infinite surface with thickness ∆d,

composed by a medium (like gold or silver) with complex characteristic impedance

η and complex propagation constant γ, is normally illuminated by a plane wave.

The scattered fields are denoted as it was shown in Equation (2.9); but in the inner

fields of (3.1), the propagation constant component jk must be replaced by γ.

Considering the Maxwell equations, the boundary conditions at z = 0 and z = ∆d
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Figure 4.13. Electromagnetic fields across a generic material.

do not contain surface currents and can be written as

EI(0) +ER(0) = EF(0) +EB(0), (4.31a)

HI(0) +HR(0) = HF(0) +HB(0), (4.31b)

EF(∆d) +EB(∆d) = ET(∆d), (4.31c)

HF(∆d) +HB(∆d) = HT(∆d). (4.31d)

By substituting the components of each field, the boundary conditions can be

reduced to

EI + ER = EF + EB, (4.32a)
EI

η0
− ER

η0
=

EF

η
− EB

η
, (4.32b)

EFe
−γ∆d + EBe

γ∆d = ETe
−jk0∆d, (4.32c)

EF

η
e−γ∆d − EB

η
eγ∆d =

ET

η0
e−jk0∆d. (4.32d)

The scattered fields can be solved as it was done for the bounded volume between

two metasurfaces, by defining transfer functions for each variable. In this case,

we are only interested in the transmission and reflection coefficients:

τloss =
4ej(k0−γ)∆dηη0

(η + η0)
2 − e−2γ∆d (η − η0)

2 , (4.33a)

Γloss =

(
1− e−2γ∆d

) (
η2 − η0

2
)

(η + η0)
2 − e−2γ∆d (η − η0)

2 . (4.33b)

Using these two transfer functions, and by using the Huygens equivalence princi-
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ple, it is possible to define an equivalent current sheet which produces the same

transfer functions. In this case, we can use the theory of EMPMs to obtain the

equivalent grid impedances, as it was done in Equation (2.30). Therefore, the grid

losses can be defined as

Zloss,e =
η0
2

1 + τloss + Γloss

1− τloss − Γloss
, (4.34a)

Zloss,m = 2η0
1− τloss + Γloss

1 + τloss − Γloss
. (4.34b)

One problem with the lossy slab model is that it is based on an EMPM, which

considers electrical and magnetic grid impedance, required to model the discon-

tinuities in electric and magnetic fields. These two grid impedances cannot be

compared directly with the EPM of the lossless case, since it only has the electric

grid impedance. Because of that, it is necessary to find a different impedance,

which can be used to compare EPMs and EMPMs under the same conditions. The

impedance matrix for an EMPM was described in Equation(2.39). In that case,

the Z-impedance element Z11 is a suitable parameter to compare the metallic

slab’s model with the lossless metasurfaces. Therefore, the impedance for the

metallic slab Z11,loss and for the lossless EPMs (Z11,e1 and Z11,e2, respectively) can

be written as

Z11,loss = Zloss,e +
Zloss,m

4
, (4.35a)

Z11,e1 = −Z11,e2 = Ze1. (4.35b)

Losses in the microwave range

For practical implementations, four materials (gold, silver, aluminium and copper)

are considered for the microwave range analysis ([1 − 20] [GHz]). In this range,

all the selected metals can be considered as good conductors, whose propagation

constant γ and the characteristic impedance η can be written as

γ = (1 + j)

√
2πfµσe

2
, (4.36a)

η = (1 + j)

√
2πfµ

2σe
, (4.36b)

where σe is the metal conductance, f is the operational frequency and µ is the

metal permeability (being equal to µ0, vacuum’s permeability, for the selected

metals) [42]. For this analysis, the slab thickness is equal to 17 [µm] (approximately

0.05% of the wavelength in free space at the frequency of 9 [GHz]), and the metals

conductivities were taken from Reference [42]. The slab resistance R11 as a

52



General properties of invisible cavity resonators

100 1010
0.01
0.02
0.03
0.04
0.05

Figure 4.14. Resistance R11 for different materials in microwave range (1-20[GHz]) using a slab
with thickness ∆d = 17 [µm].

function of the incident wave frequency is shown in Figure 4.14.

Based on these results, we can conclude that the design of a DER in the mi-

crowave range is feasible since the resistance R11 of the metallic slab is quite

small compared to the grid reactance for a high-SWR lossless resonator. For

example, the grid reactance for a lossless resonator with SWR = 100 is equal to

|Xe1| ≈ 40 [Ω], while in the worst case (at 20 [GHz] for aluminium) the resistance

R11,loss = Re{Z11,loss} is smaller than 0.05 [Ω]. With this information, let us con-

sider an example of a copper slab of thickness ∆d = 17 [µm] illuminated by a plane

wave at f = 9 [GHz]. In that case, the resistance R11,loss is equal to 0.0243 [Ω]. If

we compare with the grid reactance for a lossless DER with SWR = 100, which

was mentioned to be close to 40 [Ω], the equivalent lossy resonator will have an

SWRloss of 99.44. Additionally, the transmittance of this resonator |τloss|2 is equal

to 98.82% of the incident power, the absorbance |Aloss|2 is around 1.18% and the

reflectance |Γloss|2 is negligible.

Losses in the near-infrared region

In the near-infrared region (more specifically between [1− 1.7] [µm]), metals such

as silver, gold, copper and aluminium cannot be considered as good conductors

anymore, and the propagation constant and characteristic impedance can be

obtained from the experimental data on their relative permittivity available in

Reference [44]. For generic materials [42], the propagation constant and the

medium impedance can be written as

γ = j2πf
√
µε, (4.37a)

η =

√
µ

ε
. (4.37b)
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Figure 4.15. Resistance R11 for different materials in infrarred range (1000− 1700 [nm]) using a
slab with thickness ∆d = 30 [nm]. The usable range for this model is located between
1400− 1700 [nm].

For this analysis, the slab thickness is equal to ∆d = 30 [nm] (approximately 2%

of λ = 1550 [nm] ). Under these conditions, the resistance R11 as a function of the

wavelength for different materials is shown in Figure 4.15.

In this case, the results shown that the resistance R11 in the near-infrared region

are greater than in microwave range, especially for aluminium which resistance is

20% the required grid reactance for a lossless resonator with SWR = 100. Let us

consider as example a silver slab with thickness of 30 [nm] at λ = 1550 [nm]. In this

case, the resistance R11,loss is equal to 0.657 [Ω], which corresponds to an SWRloss

of 86.16 (when a grid reactance of X̃e1 = 0.101 is used). In terms of power, this

lossy structure has transmittance |τloss|2 of 73.77%, absorbance |Aloss|2 of 24.24%

with a reflectance |Γloss|2 of approximately 2%. Based on these results, the concept

of using a metallic slab to estimate the metasurface loss resistance is still valid;

but simulations of actual metasurface designs will determine the grid losses

more accurately. The error increases at higher frequencies, where metals start

resonating at their plasma frequency. This increase of loss resistance can be seen

in the shaded region of Figure 4.15.
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5. Applications of invisible resonators

At this point, different properties of invisible cavity resonators were analysed

based on the interaction of the resonator with an external plane wave. But, in

order to reveal possible applications of this new type of resonators, it is important

to develop more complex analysis. In this chapter, several scenarios when there

are objects inside the resonator, will be considered. At first, the case when a

radiant source is located inside the resonator (called the “reciprocal” case) is under

study. Next, a mathematical model for a structure made of multiple metasurfaces

is developed. Based on this new framework, the case when a planar sensor will

be studied. At the end of this chapter, some more complex resonators will be

analysed.

5.1 Reciprocity of the structure

Thanks to the analysis performed in previous chapters, we can understand how

an invisible cavity resonator behaves when it is illuminated by an external plane

wave. When the adequate conditions are achieved, the resonator is invisible (zero

reflections with total transmission) while there are standing waves inside it. At

this point, one question appears: what would happen if we position an electro-

magnetic source inside the resonator? Answering this question not only requires

to find out the electromagnetic fields inside the structure, but it also requires to

understand the different phenomena that are produced in this new fascinating

scenario. From the previous chapter we know that inside the resonator there are

regions where the electric field is stronger or weaker compared to the incident

wave. According to the Lorentz reciprocity theorem, placing the source in the

locations where there was field enhancement, the fields outside the resonator must

be amplified by the same number of times. But this statement implies that more

power would be radiated outside the structure. This conclusion must be valid

even for pure-reactive metasurfaces (neither lossy nor active), which could suggest
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Figure 5.1. Electromagnetic fields across a DER in free space, when a current source is placed
inside it.

that there is some violation of the law of conservation of energy. Also, what is

the relation between the fields outside the resonator and the ones inside it? Is it

possible that the location of the source affects the overall fields distribution? Due

to these questions, it is important to analyse how reciprocity works for an invisible

cavity resonator.

Consider the scenario where an infinitesimally thin current sheet is placed

between two electrically polarizable metasurfaces, at a distance z = δd from the

first metasurface. The metasurfaces are separated by a distance d and the source

is inside the resonator at location 0 < δd < d. In order to compare the previous

results with this case, the current in this sheet must radiate electromagnetic fields

with the same amplitude as the plane wave used in studies of normal incidence

from outside. Based on this statement, boundary conditions for a current sheet

placed at the origin can be formulated, obtaining

Js = −2Erad

η0
ax, (5.1)

where JS is the source electrical current density, which produces forward (prop-

agation in +z half space) and backward (propagation in −z half space) waves

with their magnitudes equal to Erad. Due to the insertion of the source inside the

resonator, the whole space can be divided into four regions, as shown in Figure 5.1,

where different standing waves are produced inside the resonator, a transmitted

wave ET1 propagates into z < 0 half-space and another transmitted wave ET2
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propagates into z > d half-space:

ET1 = ET1e
jk0zax, HT1 = −HT1e

jk0zay, (5.2a)

ET2 = ET2e
−jk0zax, HT2 = HT2e

−jk0zay, (5.2b)

EF1 = EF1e
−jk0zax, HF1 = HF1e

−jk0zay, (5.2c)

EB1 = EB1e
jk0zax, HB1 = −HB1e

jk0zay, (5.2d)

EF2 = EF2e
−jk0zax, HF2 = HF2e

−jk0zay (5.2e)

EB2 = EB2e
jk0zax, HB2 = −HB2e

jk0zay. (5.2f)

In this scenario, the scattered fields around each metasurface can be solved

using the scattering matrix (based on Equation (2.38), considering the free-space

scenario), and taking into account the displacement of the second metasurface

with the results shown in Equation (3.5). The relations between the fields around

each metasurface can be reduced into

ET1 = τ̃1EB1, (5.3a)

EF1 = Γ̃1EB1, (5.3b)

ET2 = τ̃2EF2, (5.3c)

EB2e
jk0d = Γ̃2EF2e

−jk0d. (5.3d)

For the current sheet, the best strategy is to use the boundary conditions previously

shown in Equation (2.7), obtaining

EF1e
−jk0δd + EB1e

jk0δd = EF2e
−jk0δd + EB2e

jk0δd , (5.4a)

EF2e
−jk0δd − EB2e

jk0δd = EF1e
−jk0δd − EB1e

jk0δd + 2Erad. (5.4b)
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The equation system can be solved by defining the transfer functions:

τ1 =
ET1

Erad
=

τ̃1e
−jk0δd

(
e2jk0d + Γ̃2e

2jk0δd
)

e2jk0d − Γ̃1Γ̃2

, (5.5a)

F1 =
EF1

Erad
=

Γ̃1e
−jk0δd

(
e2jk0d + Γ̃2e

2jk0δd
)

e2jk0d − Γ̃1Γ̃2

, (5.5b)

B1 =
EB1

Erad
=

e−jk0δd
(
e2jk0d + Γ̃2e

2jk0δd
)

e2jk0d − Γ̃1Γ̃2

, (5.5c)

τ2 =
ET2

Erad
=

τ̃2e
jk0(2d−δd)

(
e2jk0δd + Γ̃1

)
e2jk0d − Γ̃1Γ̃2

, (5.5d)

F2 =
EF2

Erad
=

ejk0(2d−δd)
(
e2jk0δd + Γ̃1

)
e2jk0d − Γ̃1Γ̃2

, (5.5e)

B2 =
EB2

Erad
=

Γ̃2e
−jk0δd

(
e2jk0δd + Γ̃1

)
e2jk0d − Γ̃1Γ̃2

, (5.5f)

which dependent of each metasurface transmission and reflection coefficients, and

the position of the source.

The solution of (5.5) applies to any combination of metasurfaces, but in this

particular case a DER will be considered. So, by replacing the scattering coeffi-

cients for each metasurface, according to Equation (2.13) with their respective

grid impedances, the transfer functions are simplified into

∆ = e2jk0d(2Z̃e1 + 1)(2Z̃e2 + 1)− 1, (5.6a)

τ1 = 2Z̃e1e
−jk0δd

(
(2Z̃e2 + 1)e2jk0d − e2jk0δd

)
∆−1, (5.6b)

F1 = −e−jk0δd
(
(2Z̃e2 + 1)e2jk0d − e2jk0δd

)
∆−1, (5.6c)

B1 = e−jk0δd(2Z̃e1 + 1)
(
(2Z̃e2 + 1)e2jk0d − e2jk0δd

)
∆−1, (5.6d)

τ2 = 2Z̃e2e
jk0(2d−δd)

(
(2Z̃e1 + 1)e2jk0δd − 1

)
∆−1, (5.6e)

F2 = ejk0(2d−δd)(2Z̃e2 + 1)
(
(2Z̃e1 + 1)e2jk0δd − 1

)
∆−1, (5.6f)

B2 = −e−jk0δd
(
(2Z̃e1 + 1)e2jk0δd − 1

)
∆−1. (5.6g)

In order to solve the reciprocal case, the invisibility conditions for a DER of

Equation (3.27) must be applied; in that case, the transfer functions are reduced
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to

∆ = −4Z̃2
e1, (5.7a)

τ1 = 2Z̃e1e
−jk0δd

(
1− 2Z̃e1 − e2jk0δd

)
∆−1, (5.7b)

F1 = −e−jk0δd
(
1− 2Z̃e1 − e2jk0δd

)
∆−1, (5.7c)

B1 = e−jk0δd(2Z̃e1 + 1)
(
1− 2Z̃e1 − e2jk0δd

)
∆−1, (5.7d)

τ2 = 2Z̃e1e
−jk0δd

(
1− (2Z̃e1 + 1)e2jk0δd

)
∆−1, (5.7e)

F2 = e−jk0δd(1− 2Z̃e1)
(
(2Z̃e1 + 1)e2jk0δd − 1

)
∆−1, (5.7f)

B2 = e−jk0δd
(
1− (2Z̃e1 + 1)e2jk0δd

)
∆−1. (5.7g)

The reciprocity analysis will be performed in two stages: the first stage will focus

on the fields inside the structure by performing an SWR analysis, while the second

stage will focus on the fields outside the resonator by analysing the transmitted

coefficients and the radiated power. If we consider the standing waves produced

in front of (z > δd) and behind (z < δd) the current sheet, and the propagation

sense of the induced fields, it is possible to define the standing wave ratios in both

regions:

SWR1 =
|B1|+ |F1|
|B1| − |F1|

=
|2Z̃e1 + 1|+ 1

|2Z̃e1 + 1| − 1
, (5.8a)

SWR2 =
|F2|+ |B2|
|F2| − |B2|

=
|2Z̃e1 − 1|+ 1

|2Z̃e1 − 1| − 1
. (5.8b)

These SWR have similar expressions compared to Equation (4.6), which correspond

to the “conventional case” where the resonator is illuminated from the outside.

Notice that the difference between the SWR in the conventional case and SWR1

presented for the region behind the current sheet is produced because the incident

wave propagates in the opposite sense. In other words, the resonator is inverted

and the terms are expressed in terms of the “second” metasurface instead of the

“first” one by replacing Z̃e1 in (5.8a) with Z̃e2, which lead us to the expression of

Equation (4.6).

As done in the conventional case, the standing waves transfer functions Se can

be defined as

Se,1(z, δd) = F1e
−jk0z +B1e

jk0z, (5.9a)

Se,2(z, δd) = F2e
−jk0z +B2e

jk0z. (5.9b)

The magnitude of both transfer functions can be deduced, considering pure-
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Figure 5.2. Electric field across a resonator with SWR = 100 (X̃e1 = 0.101) as a function of the
position of the current sheet placed inside.

reactive metasurfaces:

|Se,1(z, δd)| = |Se,2(z, δd)| = |Se(z)||Se(δd)|, (5.10)

where |Se(z)| is the same function as given in (4.10); |Se(δd)| is the same as |Se(z)|

but replacing z by δd:

|Se(δd)| =
1

|X̃e1|

√
X̃2

e1 + X̃e1sin(2k0δd) + sin2(k0δd). (5.11)

In Chapter 4 was shown that |Se(z)| (likewise, |Se(δd)|) have maxima and minima.

These values were proven to be located at fixed positions z0 defined in Equation

(4.8a). By extension, the locations δ0, where |Se(δd)| reaches its maxima or minima,

should follow the same conditions of (4.8). In conclusion, the locations of these

extrema remain unchanged in the reciprocal case. Due to that, the absolute

maximum of the standing wave is obtained when the source is placed in the

maximum and the field is measured also in the maximum location. Likewise, the

absolute minimum is obtained when the source is placed in the minimum and the

field is also measured in the minimum. The exact values for these two extreme

scenarios can be determined analytically:

|Se,1,2|max = SWR, |Se,1,2|min =
1

SWR
. (5.12)

To illustrate this behaviour, Figure 5.2 shows the effect of the current sheet

position on the scattered fields across a resonator with SWR = 100, using pure

reactive metasurfaces with grid reactances X̃e1 = −X̃e2 = 0.101.

The next step is to analyse the fields radiated outside, characterized by τ1 and
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Figure 5.3. Normalized power distribution across a DER with d = λ and SWR = 100, as a function
of the current sheet position (shown as a line): left - Normalized active power density,
right - Normalized reactive power density.

τ2. For both cases, it is possible to determine the magnitude of this two functions

as a function of the source position:

|τ1| = |τ2| = |Se(δd)|, (5.13)

where |Se(δd)| is the same function described in (5.11); implying that the effect of

the sheet position can be analysed separately from the general problem. In other

words, the position of the radiant sheet only affects the magnitude of the scattered

and transmitted fields, but not the position of standing waves nodes. Due to that,

the active power Pre and the reactive power Pim (defined in Equation (5.14) and

(5.15), respectively) can be understood also by this decoupling effect.

Pre(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 |Re {ET1 ×H∗

T1} · az| z < 0

1
2 |Re {(EF1 +EB1)× (HF1 +HB1)

∗} · az| 0 < z < δd
1
2 |Re {(EF2 +EB2)× (HF2 +HB2)

∗} · az| δd < z < d

1
2 |Re {ET2 ×H∗

T2} · az| z > d

(5.14)

Pim(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 |Im {ET1 ×H∗

T1} · az| z < 0

1
2 |Im {(EF1 +EB1)× (HF1 +HB1)

∗} · az| 0 < z < δd
1
2 |Im {(EF2 +EB2)× (HF2 +HB2)

∗} · az| δd < z < d

1
2 |Im {ET2 ×H∗

T2} · az| z > d

(5.15)

In fact, the sheet position affects the magnitude of the power radiated/stored

but not the physical displacement of the stored energy, as shown in Figure 5.3,

normalized using Prad = |Erad|2/2η0.

One last property of this scenario is the enhancing capabilities of the resonator.
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Figure 5.4. Enhancement factor as a function of current sheet position and the first metasurface
grid reactance for a DER.

In this case it is convenient to define Ef as the “enhancement factor”, which is the

ratio of the total radiated power by a current sheet placed inside the resonator and

the radiated power by the same current sheet placed in free space. Mathematically,

the enhancement factor can be written in terms of electromagnetic fields and in

terms of transfer functions:

Ef =
1
2Re{ET1H

∗
T1}+

1
2Re{ET2H

∗
T2}

2
(
1
2Re{EradH

∗
rad}

) =
|τ1|2 + |τ2|2

2
. (5.16)

In this particular case, the enhancement factor can be simplified based on the

results found in Equation (5.13):

Ef = |Se(δd)|2, (5.17)

which shows that the current sheet radiated power can be modified in the range

between [1/SWR , SWR]. Figure 5.4 shows how the current sheet position and the

grid reactance (which is related with the SWR) affect the enhancement factor.

The increment in the active power (Figure 5.3) and in the enhancement factor

(5.4) is not a violation of the law of conservation of energy. In fact, the extra

radiated power comes from the radiating source as the resonator improves its

matching with the free space. With ideal currents sources, there is no limit of how

much power they can radiate; but in the case of realistic radiating sources, the

power will be increased until the source saturates.
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5.2 Multiple-layer structures and the transfer matrix

Until now, different properties of a cavity resonator composed of two metasur-

faces were considered, based on analyses which were performed based on the

metasurfaces scattering matrices of Equations (2.34) and (2.37). In all of these

cases, the solutions came from a four-equation system for the scattered fields at

each metasurface. But, as seen in the reciprocity analysis, the addition of more

layers increases the number of equations to be solved. Because of that, it is useful

to define the relations between the fields around the metasurface, such that the

fields located at one side are defined as functions of the fields of the other side,

based on the T-parameter matrix [45–48]. In contrast to the most accepted nota-

tion, here the term “T-parameter matrix” corresponds to the version developed

in Reference [45] because most of the analysis shown in this thesis considers

that the source wave corresponds to the parameter EI− of Figure 2.5. Hence, the

T-parameter matrix is defined as⎡⎣EOUT+

EIN+

⎤⎦ =

√
η+
η−

⎡⎣T11 T12

T21 T22

⎤⎦⎡⎣ EIN−

EOUT−

⎤⎦ . (5.18)

By comparing Equation (5.18) with Equation (2.34), it is possible to write the

T-parameter matrix in terms of the scattering matrix components or vice-versa:⎡⎣T11 T12

T21 T22

⎤⎦ =
1

S12

⎡⎣S12S21 − S11S22 S22

−S11 1

⎤⎦ , (5.19)

⎡⎣S11 S12

S21 S22

⎤⎦ =
1

T22

⎡⎣ −T21 1

T11T22 − T12T21 T12

⎤⎦ . (5.20)

In the case of a non-bianisotropic metasurface (like EPMs, MPMs or EMPMs)

placed in free-space, the T-parameters can be simplified to⎡⎣T11 T12

T21 T22

⎤⎦ =
1

τ̃

⎡⎣τ̃2 − Γ̃2 Γ̃

−Γ̃ 1

⎤⎦ . (5.21)

Also, it is possible to combine the results shown in Equation (3.5), such that the

T-parameter matrix not only show the metasurface scattering coefficients, but

also the effects of metasurface displacement:⎡⎣T11 T12

T21 T22

⎤⎦ =
1

τ̃

⎡⎣ τ̃2 − Γ̃2 Γ̃e2jk0d

−Γ̃e−2jk0d 1

⎤⎦ . (5.22)
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Figure 5.5. Electromagnetic fields produced by an electromagnetic wave incident onto a system
made of N metasurfaces in free space.

Consider a system composed by N metasurfaces in free space, as shown in Figure

5.5, which is illuminated by a normally incident plane wave. The scattered waves

can be grouped in such a way that after the i-th metasurface, with a transfer

parameter matrix [Ti] and located at position z = di, there is a forward wave (EF,i )

and a backward wave (EB,i ). The magnitudes of these forward and backward

waves can be written as functions of the incident wave and the total reflected wave:

⎡⎣EF,i

EB,i

⎤⎦ = [Tcomb,i ]

⎡⎣EI

ER

⎤⎦ , (5.23)

where [Tcomb,i ] is the i-th combined T-parameter matrix

[Tcomb,i ] = [Ti] ∗ [Ti−1] ∗ ... ∗ [T1] =
i∏

l=1

[Tl] . (5.24)

It is important to remark that the total combined T-parameter matrix [Ttot], which

corresponds to [Tcomb,N ], relates the transmitted wave ET with the incident and

reflected waves (EI and ER, respectively). Due to that, it is important to transform

this T-parameter matrix into the equivalent scattering matrix, using Equation

(5.20), in order to obtain the reflected and transmitted waves in terms of the

incident wave and the properties of the whole structure. In both cases, reflected

and transmitted waves can be represented by their transfer functions:

Γ =
ER

EI
= −Ttot,21

Ttot,22
, (5.25a)

τ =
ET

EI
=

Ttot,11Ttot,22 − Ttot,12Ttot,21

Ttot,22
. (5.25b)
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In the case of three layers (N = 3), the transfer function of each scattered wave can

be written as a function of each metasurfaces scattering coefficients and distances

di:

∆ =Γ̃1Γ̃3

(
Γ̃2
2 − τ̃22

)
e2jk0(d1+d2) + Γ̃1Γ̃2

(
−e2jk0(d1+d3)

)
+ e2jk0(d2+d3) − Γ̃2Γ̃3e

4jk0d2 , (5.26a)

τ =
ET

EI
=∆−1τ̃1τ̃2τ̃3e

2jk0(d2+d3), (5.26b)

Γ =
ER

EI
=∆−1e−2jk0d1

[
Γ̃3

(
Γ̃2
1 − τ̃21

)(
Γ̃2
2 − τ̃22

)
e2jk0(d1+d2)

−Γ̃2

(
Γ̃2
1 − τ̃21

)
e2jk0(d1+d3) + Γ̃1e

2jk0(d2+d3) − Γ̃1Γ̃2Γ̃3e
4jk0d2

]
, (5.26c)

F1 =
EF1

EI
=∆−1τ̃1

(
e2jk0(d2+d3) − Γ̃2Γ̃3e

4jk0d2
)
, (5.26d)

B1 =
EB1

EI
=∆−1τ̃1

(
Γ̃2e

2jk0d3 − Γ̃3e
2jk0d2

(
Γ̃2
2 − τ̃22

))
, (5.26e)

F2 =
EF2

EI
=∆−1τ̃1τ̃2e

2jk0(d2+d3), (5.26f)

B2 =
EB2

EI
=∆−1Γ̃3τ̃1τ̃2e

2jk0d2 . (5.26g)

As seen from Equation (5.26), the transfer functions only depend on the metasur-

faces scattering coefficients and positions. This is useful as the transfer functions

do not depend directly on the meta-atoms which the metasurfaces are made of.

In other words, these functions can be used for scenarios where one of the meta-

surfaces is replaced by any object which can be modelled using transmission and

reflection coefficient. One scenario where these conclusions can be applied is when

a sensor is placed inside an ICR.

5.3 Sensing with invisible resonators

In physics, the observer effect is the disturbance of a phenomenon produced by

the act of measuring by an observer [49]. In the case of electromagnetics, different

approaches were discussed in order to minimize the disturbances produced by

a sensor. One of these approaches is based on the use of minimum-scattering

antennas [50, 51]. The trade-off with this approach is the low power induced

inside the antenna, reducing the sensibility of the sensor. Another approach is

the use of spatial diversity (like the use of antenna arrays) to improve the sensor

directivity [52–54]. In an one-dimensional case (as the invisible resonator), we

have only two directions (forward and backward). Therefore, we need to make

Γ = 0 and to balance the ratio between absorbed and transmitted powers. Due

to these facts, it becomes of special interest how the scattering properties of a
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Figure 5.6. Electromagnetic fields produced by an electromagnetic wave incident onto a DER, when
a planar sensor is placed between the metasurfaces.

particular sensor could be modified if it is placed inside a DER.

Now, consider the case, where a lossy object is placed inside an invisible cavity

resonator, as shown in Figure 5.6. The resonator is formed by two metasurfaces,

which fulfil the invisibility conditions of Equation (3.27) (with d3 − d1 = λ0). The

resonator is placed so that d1 = 0 and the sensor is placed at d2 = δd. The sensor

can be modelled as an EMPM, as this model can achieve total absorption, using

the equations of (2.24), with electric and magnetic grid impedances Zes and Zms

(where “s” means “sensor”) and scattering coefficients of Equation (2.29). The

external scattered fields are defined as it was done in Equation (2.9), while the

inner fields are defined as in Equation (5.2). With this information, the transfer

functions can be solved from Equation (5.26), in terms of resonator and sensor

grid impedances, as shown in Equation (5.27).
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∆ =2e2jk0δd
(
Z̃esZ̃ms + 1− Z̃2

e1(2Z̃es + 1)(Z̃ms + 2)
)

+ e4jk0δd(2Z̃e1 + 1)(Z̃esZ̃ms − 1) + (2Z̃e1 − 1)(1− Z̃esZ̃ms), (5.27a)

τ =
ET

EI
=2∆−1Z̃2

e1e
2jk0δd(Z̃ms − 4Z̃es), (5.27b)

Γ =
ER

EI
=∆−1

[
2e2jk0δd(2Z̃e1 − 1)(Z̃esZ̃ms + 1)

+e4jk0δd(1− Z̃esZ̃ms) + (1− 2Z̃e1)
2(1− Z̃esZ̃ms)

]
, (5.27c)

F1 =
EF1

EI
=∆−1Z̃e1e

2jk0δd
[
2e2jk0δd(Z̃esZ̃ms − 1)

−(2Z̃e1 − 1)(2Z̃es + 1)(Z̃ms + 2)
]
, (5.27d)

B1 =
EB1

EI
=∆−1Z̃e1

[
(2Z̃es − 1)(Z̃ms − 2)e2jk0δd

−2(2Z̃e1 − 1)(Z̃esZ̃ms − 1)
]
, (5.27e)

F2 =
EF2

EI
=∆−1Z̃e1e

2jk0δd(2Z̃e1 − 1)(Z̃ms − 4Z̃es), (5.27f)

B2 =
EB2

EI
=∆−1Z̃e1e

2jk0δd(Z̃ms − 4Z̃es). (5.27g)

After obtaining the general transfer functions, the next step is to define the sensor

properties in terms of grid impedances Z̃es and Z̃ms.

Sensor modelled as an electrically and magnetically polarizable metasurface

In order to simplify the whole analysis, it is convenient to define a sensor model

based on two criteria: sensor absorbance |As|2 and how transmissive/reflective the

sensor is when it is in free space. For the first criterium, the sensor absorbance is

defined as

|As|2 = 1− |τ̃s|2 − |Γ̃s|2, (5.28)

where |τ̃s|2 and |Γ̃s|2 corresponds to sensor transmittance and reflectance in free-

space, respectively. The second criterium is harder to define since Equation

(5.28) helps to solve partially the ratio of transmission and reflection coefficient

(considering that both parameters had magnitude and phase). In order to simplify

the model, the transmission and reflection coefficients are considered as real

values (X̃es = X̃ms = 0). Additionally, Equation (5.28) can be written in terms

of Pythagorean theorem with an hypotenuse of 1 − |As|2 and both scattering

coefficients as catheti. In that case, it is possible to define transmission and
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Figure 5.7. Grid sensor transmission and reflection coefficients as functions of absorbance (color)
and parameter ι. Yellow line - lossy EP metasurfaces, Purple line - lossy MP metasur-
faces.

reflection coefficients using trigonometric functions:

τ̃s =
√
1− |As|2 cos

(π
2
ι
)
, (5.29a)

Γ̃s = −
√

1− |As|2 sin
(π
2
ι
)
, (5.29b)

where the parameter ι (iota) indicates how much backscattering is produced by

the sensor (values of |ι| close to 1 correspond to high backscattering, while values

closes to 0 or 2 correspond to low backscattering). Substuting these definitions of

transmission and reflection coefficients in Equation (2.30), it is possible to obtain

the electric and magnetic grid impedances as functions of the absorbance and

parameter ι:

Z̃es =
1

2

1 +
√
1− |As|2

(
cos
(
π
2 ι
)
− sin

(
π
2 ι
))

1−
√
1− |As|2

(
cos
(
π
2 ι
)
− sin

(
π
2 ι
)) , (5.30a)

Z̃ms = 2
1−

√
1− |As|2

(
cos
(
π
2 ι
)
+ sin

(
π
2 ι
))

1 +
√
1− |As|2

(
cos
(
π
2 ι
)
+ sin

(
π
2 ι
)) . (5.30b)

Under these definitions, it is possible to obtain all the transmission/reflection

combinations, as shown in Figure 5.7, for ι = [−2, 2], but we will consider only the

range of ι = [−1, 1].
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Using this model, it is possible to obtain some cases where the sensor is an EPM

or an MPM. The location of EPMs and MPMs are shown in Figure 5.7, where the

yellow line represents lossy EPM (which fulfil Equation (2.11d)) and the purple line

indicates lossy MPM (based on Equation (2.19d)). One observation related with

the location of EPMs and MPMs in this model is that positive values of parameter

ι correspond to metasurfaces with dominant electric behaviour, while negative

parameter ι values imply a dominance of the magnetic properties of the sensor.

Additionally, it is possible to define a region in Figure 5.7, limited by the axis of

τ̃s = 0 and the pure EPM and MPM lines, where both grid impedances are positive

real values. In contrast, outside of this region one of the grid impedances have

negative values (with active properties). It is true that there are values outside

the triangle where the whole sensor is lossy, but because this active component

can be excited by the resonant fields, it is convenient to use lossy grid impedances

values.

Due to the number of degrees of freedom, it is convenient to perform some

analysis in order to find the relations between different parameters: SWR of the

resonator, position and scattering properties of the sensor. The parameters to

consider through the analysis are the system transfer functions Γ and τ , and the

system absorbance |A|2 defined as

|A|2 = 1− |τ |2 − |Γ|2. (5.31)

This system absorbance is useful to determine how much the sensor can be cloaked,

since the resonator without any object is lossless under invisibility conditions. The

first analysis is focused on determining the effect of the sensor position δd and its

absorbance |As|2. In that case, a resonator with an SWR = 100 was considered;

while the sensor parameter ι was defined to ensure equal magnitudes of the

transmission and reflection coefficients, being the only difference the sign of the

reflection coefficient. The results for this analysis is shown in Figure 5.8.

Both figures show similar results, but the fundamental difference between them

is the location where the system absorbance is maximized. In the case of Γ̃s < 0,

the absorption is maximized in locations where the electrical field of the standing

wave is weak. Likewise, the absorption is maximum for Γ̃s > 0 when the sensor is

placed at positions where the electrical field is strong (and the magnetic field is

weak). This effect can be understood by the contributions of sensor electric and

magnetic grid impedances. In the case of Γ̃s < 0, the sensor behaves more like

an EMP affecting more the standing waves where the electrical field is stronger.

On the other hand, for Γ̃s > 0, the sensor acts more like an MPM, affecting more

the standing waves at locations where the magnetic field is maximal. Therefore,
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Figure 5.8. Transmittance, reflectance and absorbance of a DER with SWR = 100 and a grid sensor
placed inside, as a function of the sensor position and absorbance in free space: left -
Γ̃s < 0, right - Γ̃s > 0.

the system absorption is maximized at locations where the sensor affects less the

standing waves, but it still collects power as the sensor collects the energy from

the forward and backward waves.

If we compare the system absorption in terms of sensor absorbance, it must

be noticed that the system absorption is maximum for sensors with low absorp-

tion. Sensors with high absorption disturb more the standing waves created by

the sensors. As the sensor absorption increases, the standing waves fade faster.

This scenario implies that for high-SWR resonators, the use of high-absorption

sensor should degenerate the standing waves even more. Due to that, it becomes

important to perform a second analysis which compares the system transmittance,

reflectance, and absorbance as a function of the resonator SWR and the sensor ab-

sorbance. The sensor has the same scattering properties as the previous analysis,

but only in the case when Γ̃s < 0 is considered. Also, the sensor is placed in an

eletric field minimum, so the system absoprtion can be maximized. Meanwhile,

the resonator metasurfaces are modified to realize different SWR, between 2 and

100. The results of this analysis is shown in Figure 5.9.

Based on the obtained results, the system behaviour can be divided into three

regions as a function of the sensor absorbance: sensor attenuation, sensor match-

ing, and resonance destruction. The first region, corresponding to the sensor

attenuation, is when the sensor absorption is too small to disturb harmfully the

standing wave. In that case, the location over a minimum is more determinant,

and the sensor absorption is attenuated. In the second region, the sensor is par-

tially matched to free space due to the scattering produced by both metasurfaces.

In this region, the system absorption seems to be enhanced, by degradating the

system transmission and reflection. In the third region, where the sensor has
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high absorption, the standing wave is degradated and the system reflection is

dominated by the first metasurface. In the other hand, the transmission is dom-

inated by the sensor absorption. In this region, the system absorption is also

degradated because the first metasurface is more opaque and the energy captured

by the sensor is reduced. In terms of the SWR, as this parameter increases, the

range of the resonance destruction region increases, while the range of the other

two regions decreases. As a conclusion, it is not necessary to use high-absorption

sensor inside the resonator since its properties degrade as the resonator SWR

increases. Because of that, the next analysis will focus on low-absorption sensors.

Sensor modelled as an electrically polarizable or magnetically polarizable
metasurface

In order to simplify the analysis, we will focus only on pure EPM and pure MPM

sensors, following the yellow and purple lines of Figure 5.7. By using equations

(2.11d) and (2.19d) with the definitions of transmission and reflection coefficients

for our model in (5.29), it is possible to find the relation between the sensor

absorbance and parameter ι for lossy EPMs and MPMs metasurfaces:

|As|2 =
sin(π|ι|)

1 + sin(π|ι|)
. (5.32)

Figure 5.9. Transmittance, reflectance and absorbance of a DER and a grid sensor (with Γ̃s < 0)
placed inside, as funcitons of the sensor absorbance and the resonator SWR. The sensor
is placed in an electic field minimum.
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Therefore, sensor transmission and reflection coefficients can be written only as

functions of parameter ι:

τ̃s =
cos
(
π
2 ι
)√

1 + sin(π|ι|)
, (5.33a)

Γ̃s = −
sin
(
π
2 ι
)√

1 + sin(π|ι|)
. (5.33b)

Figure 5.10 illustrates these relationships.

From the previous results, it is important to determine how the resonator SWR

and the sensor absorbance (through parameter ι) affect the system performance

(transmittance, reflectance and absorbance). In this analysis, only EPM-based

sensor results will be presented, as the only difference between both models (EPM

and MPM) is the location where the system absorption is maximized. Therefore,

Figure 5.11 shows the system transmission, reflection and absorbance as functions

of parameter ι and the resonator SWR, when the sensor is placed at electrical field

maxima and minima.

From both figures, we can conclude that the absorption enhancement can be

obtained for low-absorption sensors, but in two specific scenarios: placed at the

corresponding maxima for low values of parameter |ι| (most transmittive); while for

high values of parameter |ι| (close to one), the absorption enhancement is achieved

when the sensor is placed at mimima locations. In both cases, the absorption

enhancement (which maximum value is 0.5, corresponding with the limits of

pure EPM/MPM-based sensors) degenerates the invisibility conditions (system

transmission and reflection coefficients), as the energy captured by the sensor is

not used by the metasurfaces to cancel their scattering. Notice that the nature of

-1 -0.5 0 0.5 1-1
0
1

-1 -0.5 0 0.5 10
0.2
0.4
0.6

Figure 5.10. Sensor transmittance, reflectance and absorbance and absorbance for pure EPM-based
and MPM-based models as functions of parameter ι.
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Figure 5.11. Transmittance, reflectance and absorbance of a DER and a grid sensor placed inside;
as functions of the sensor parameter ι and the resonator SWR: left - At maxima of
electrical field, right - At minima of electrical field.

the three regions (sensor attenuation, matching and resonance destruction) is the

same as explained in the previous analysis. In fact, the matching region becomes

narrower as the resonator SWR increases, but also displaces to regions where

the sensor has small absorption. When the sensor is placed at an electric field

maximum, as in Figure 5.11, this matching region is achieved when the sensor

transmission coefficient is close to 1. This can be useful to enhance the sensibility

of nearly-transparent sensor, but affecting the system scattering.

For the last analysis, we reconsider the relationship between the sensor position

and its parameter ι, using pure EP and MP models. We consider a resonator with

d = λ0 and SWR = 100. Also, the system transmission, reflection and absorbance

are compared with their respective parameters of the sensor in free space (without

the resonator). All of this information is shown in Figures 5.12 and 5.13.

Analysing these two figures, we can achieve some conclusions. In terms of

absorption enhancement: The optimal location for most-transmittive sensors is at

their corresponding field maxima, while most-reflective sensors should be placed

at field minima. A more interesting result can be seen from Figure 5.13, where

a region where an object can be cloaked appears. This region is located near the

field minima corresponding to the nature of the object (electric field if the object

is like an EPM, and the magnetic field for an MPM-like object). In this region,

the transmission and reflection coefficients of the whole system are closer to ideal

invisibility compared to the original scattering properties of the object. Due to

the fact that this region is tolerant to variations of parameter ι, it can be used for

sensor cloaking.
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Figure 5.12. System transmission and reflection coefficients, and absorbance for lossy EPM or
MPM based sensors using a resonator with SWR = 100 as functions of sensor positon.

Figure 5.13. Comparision between transmission and reflection coefficients, and absorbance between
the sensor inside the resonator and the sensor in free space (without the resonator). A
resonator with SWR = 100 was considered. The results are shown in dB scale.

5.4 Analysis of invisible resonators through transmission-line theory

Let us re-examine the invisibility conditions obtained in Chapter 3 for a DER in

free space:

e2jφ = 1 (5.34a)

d =
nλ

2
(5.34b)

Z̃e1 = −Z̃e2 (5.34c)

74



Applications of invisible resonators

Figure 5.14. Equivalent schematics for a DER.

If we consider each metasurface as a lumped element (as in Figure 2.7a) in a

transmission line, the DER will look like in Figure 5.14.

From the transmission-line theory [43], the equivalent shunt impedance of

the second metasurface seen at the location of the first metasurface Z̃eq2 can be

obtained through

Z̃eq2 =
Z̃e2 + jtan(k0d)

1 + jZ̃e2tan(k0d)
. (5.35)

If we consider that the distance between the metasurfaces is the same as in

(5.34b), then the equivalent impedance of the second metasurface is equal to its

grid impedance (Z̃eq2 = Z̃e2). Then, the equivalent normalized impedance of the

whole resonator is equal to the expression

Z̃eq1,2 =

[
1

Z̃e1

+
1

Z̃eq2

]−1

=
Z̃e1Z̃e2

Z̃e1 + Z̃e2

. (5.36)

If we apply the impedance condition for an invisible resonator of Equation (5.34c),

then the equivalent impedance goes to infinity, like if there were nothing there. In

other words, the resonator is completely invisible since its equivalent impedance

goes to infinity. This result can be extended to different kinds of resonators, for

example if we decide to add a third EPM, as shown in Figure 5.15.

To avoid the use of the equivalent impedance equation of (5.36), and use only
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Figure 5.15. Electromagnetic fields produced by an electromagnetic wave incident onto a resonator
made of three EP metasurfaces.

the grid impedance, each metasurface is placed at a distance di, multiple of λ0/2.

In this case, the equivalent normalized shunt admittance can be written as

Ỹeq =
1

Z̃eq1,2

=
1

Z̃e1

+
1

Z̃e2

+
1

Z̃e3

(5.37)

To achieve invisibility, the equivalent normalized admittance must be equal to

zero, which is useful to determine the required grid impedance of one metasurface

as a function of the other two:

Z̃e2 = − Z̃e1Z̃e3

Z̃e1 + Z̃e3

. (5.38)

Notice that if we select positive grid impedances Z̃e1 and Z̃e3, then the grid

impedance Z̃e2 will be always negative. This result implies that there must be al-

ways metasurfaces with opposite signs (active/lossy and/or capacitive/inductive) of

surface resistance and/or reactance. Using these conditions (the distance between

metasurfaces and Equation (5.38)), it is possible to reduce the transfer functions
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of (5.26) to

Γ = 0, (5.39a)

τ = 1, (5.39b)

F1 = 1− 1

2Z̃e1

, (5.39c)

B1 =
1

2Z̃e1

, (5.39d)

F2 = 1 +
1

2Z̃e2

, (5.39e)

B2 = − 1

2Z̃e2

. (5.39f)

From these transfer functions, it is possible to notice that this three-EPM resonator

(or Triple Electric Resonator - TER) behaves like if two DER were put together and

two adjacent metasurfaces were combined. Under this point of view, the properties

of the standing waves inside each half can be understood using the analysis found

in Chapter 4.

The next step is to determine how Z̃e1 and Z̃e2 affect the standing waves in each

subresonator. Let us take the extreme case when Z̃e1 → ∞ (the first metasurface

becomes invisible). In that case, through Equation (5.38) we can find that Z̃e2 =

−Z̃e3; which corresponds to a DER. If we do the same analysis via Z̃e3, we can

choose the dynamic range of the first and third metasurfaces grid impedance are

between −Z̃e2 and −∞. Outside of this range, the resonator still works but the

distribution of positive and negative grid impedances will change. Considering

these facts, Figure 5.16 shows how the balance in the standing waves can be

modified between each subresonator, considering that we fix the grid impedance

X̃e2 = 0.101 and use the dynamic range for the other two metasurfaces between

X̃e1, X̃e3 = [−X̃e2;−∞].

One particular scenario in Figure 5.16 is when X̃e1 = X̃e3, where both subres-

onators have the same SWR. In that case, the relation between the grid impedance

and the transfer functions for the standing waves can be written as

Z̃e1 = Z̃e3 = −2Z̃e2, (5.40a)

F1 = 1− 1

2Z̃e1

, (5.40b)

B1 =
1

2Z̃e1

, (5.40c)

F2 = 1 +
1

2Z̃e1

, (5.40d)

B2 = − 1

2Z̃e1

. (5.40e)
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Figure 5.16. Electic field across a three-EP resonator for different combinations of X̃e1 and X̃e2 in
the range [−X̃e2;−∞] using X̃e2 = 0.101.

This specific case will be taken into account for introducing the next, and last,

kind of invisible cavity resonators to be studied in this thesis.

5.5 Matryoshka-like invisible cavity resonators

The structure analysed in the previous section can also be seen as an arrangement

of two resonators, where one of the metasurfaces of the first resonator overlaps

with one of the second resonator. In that case, we can divide the grid impedance

of the second metasurface to obtain two independent DERs. Considering that

each resonator is invisible by itself, we can interchange the metasurfaces positions

of the second resonator without altering the total reflection and transmission

of the whole system. If the distance between the resonators is large enough,

the “inner” metasurfaces (the closest ones) will start to resonate. At this point,

these two metasurfaces can be seen as a resonator, and the combination of the

external metasurfaces can be seen as another one. Also, each new resonator can

be tuned to be invisible. In other words, this structure is equivalent to a resonator

inside another one, while both maintain the invisibility conditions. This concept of

placing a resonator inside another one resembles a certain Russian doll-toy. Due

to that, it is convenient to call this new kind of structures as “Matryoshka-like

invisible cavity resonator”, abbreviated as “MLR”. One representation of this novel

structure is shown in Figure 5.17.

Due to the complexities involved to the analysis of a four-metasurface structure,

it is convenient to choose resonators with similar properties. In this analysis,
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Figure 5.17. Electromagnetic fields produced by an incident electromagnetic wave into a
matryoshka-like invisible resonator, using only DERs.

both resonators are based on a DER topology with the same SWR and using only

reactive grid impedances. The only difference between the inner resonator and

the external one is the separation between their metasurfaces, such that the inner

resonator is smaller than the external one:

d1 =
n1λ0

2
, Z̃IN,1 = −Z̃IN,2 = Z̃e, (5.41a)

d2 =
n2λ0

2
, Z̃EX,1 = −Z̃EX,2 = Z̃e, (5.41b)

where n1 and n2 are positive integer values with the relation n2 > n1. In this

case, there are only two parameters that can be used to tune the structure: the

grid impedance Z̃e and the displacement of the inner resonator compared to the

external one δd. The transfer functions for this MLR were solved by replacing the

transmission and reflection coefficients of each EPM into the T-parameter matrix

of Equation (5.22) and using the i-th combined T-parameter matrix of Equation

(5.24) to find out the i-th forward and backward waves. Additionally, Equations

(5.25) were used to verify that this MLR has zero reflection with total zero-phase

transmission.
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The expression for the transfer functions are written as

τ = 1, (5.42a)

Γ = 0, (5.42b)

F1 = F3 = 1− 1

2Z̃e

, (5.42c)

B1 = B3 =
1

2Z̃e

, (5.42d)

F2 =
(2Z̃e − 1)2 − e2jk0δd

4Z̃2
e

, (5.42e)

B2 =
(2Z̃e − 1)e−2jk0δd + 2Z̃e + 1

4Z̃2
e

. (5.42f)

Equations (5.42) show that the fields inside the external resonator but outside

the internal one have the same transfer functions as of Equation (4.5); therefore,

the behaviour of the standing waves in these two regions can be explained from

the DER analysis presented in Chapter 4. Due to the invisibility properties of the

inner resonators, the standing waves outside it remains unchanged as we change

the position δd of the inner resonator inside the external one. On the other hand,

the expression for the forward and backward waves inside the inner resonator are

more complex, depending of the grid impedance and the resonator displacement.

For this inner standing wave, it is convenient to determine its SWR:

SWR2 =
|(2Z̃e − 1)2e−2jk0δd − 1|+ |(2Z̃e − 1)e−2jk0δd + 2Z̃e + 1|
|(2Z̃e − 1)2e−2jk0δd − 1| − |(2Z̃e − 1)e−2jk0δd + 2Z̃e + 1|

, (5.43)

which correspond to the case where pure reactive metasurfaces were used (Z̃e =

jX̃e).

Figure 5.18 shows the electric field distribution inside a MLR with d1 = λ0/2,

d2 = 3λ0/2 and X̃e = 0.101, versus the position of the inner resonator δd. The

fields inside the inner resonator increase or decrease according to the resonator

displacement, and it becomes of special interest to determine the peak value of

the SWR. To maximize the inner SWR, it is necessary to solve the first and second

derivative of the expression found in Equation (5.43) as a function of δd. The

locations of the maxima and minima δ0 are

δ0 =
λ0

4

(
p− 1

π
arctan

(
4X̃e

1− 4X̃2
e

))
, (5.44)

where p is a positive integer value and λ0 is the resonance wavelength. Due to the

complexity related to the curvature analysis, the values of p and the exact values

of SWR2 were solved numerically. For this structure, an odd p value leads to a
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Figure 5.18. Electric field across a matryoshka-like invisible resonator as a function of the internal
resonantor displacement δd. Both resonators were designed to have an individual
SWR = 100 (X̃e = 0.101).
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Figure 5.19. The normalized value of the internal resonator SWR as a function of the resonator
displacement for different values of SWR1. The yellow line shows where SWR2

reaches its maximum value, likewise, the green line denotes the minima of SWR2.
Notice that this is a periodical plot (with the period λ0/2).

SWR maxima equal to SWR2
1, where SWR1 is the SWR created by the external

resonator. On the other hand, an even value of p leads to a minimum value of

SWR2 = 1; the same as for a plane wave in free space.

All of these results can be sumarized as shown in Figure 5.19, where the SWR of

the internal resonator SWR2 is plotted as a function of the resonator displacement

δd and the SWR of the external resonator SWR1(which is the same as in the case

when there is no internal resonator).

From Figure 5.19 it is possible to notice that as SWR1 increases, the location of

SWR2 maxima (and minima) shifts to values multiples of λ0/2. Also the region

where SWR2 > SWR1 becomes wider as SWR1 increases, meaning that the SWR
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enhancement becomes less dependent of the inner resonator position. These

results can be useful in scenarios where it is required to obtain a high-SWR

resonator with metasurfaces whose grid impedances cannot be made very small.
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6. Discussion and conclusions

This thesis analyses the design requirements and the properties of one-dimensional

invisible cavity resonators. In the first chapters, a theoretical background was de-

veloped to characterize different kinds of metasurfaces in terms of their impedances

under normal incidence. With this background, it is possible to analyse the inter-

action between two metasurfaces separated by a given distance, without using the

generalized sheet transition conditions. Using this information, the conditions

for different combinations of metasurfaces, such that there is no scattering, were

obtained. For resonators with a dielectric slab, the requirements of invisibility

indicate that the distance between the metasurfaces must be fixed fractions of the

wavelength, while their impedances must be complex conjugate. In the case of a

resonator without dielectric filling, the distance between the metasurfaces is a

multiple of half of the resonance wavelength; meanwhile, the grid impedance of

one metasurface must be equal to the negative of the other one.

In the fourth chapter, some characteristics of these resonators were studied,

focused mostly on a double electric resonator based on pure-reactive metasurfaces.

The analysis of the standing waves inside the resonator revealed that the standing

wave ratio can be increased by using metasurfaces with low impedances. Addition-

ally, it was determined how to obtain the reactance required for a specific standing

wave ratio. This design rule is useful for creation of invisible resonators with

regions where the electric field is enhanced or suppressed, which can be exploited

for sensor enhancement or sensor cloaking. The multiple-reflections analysis

revealed that as the standing wave ratio increases, the resonator requires more

time to reach its steady-state regime. This analysis can be used to understand how

the resonator will work in the time domain. In terms of the frequency response,

it was shown that invisible cavity resonators can achieve large quality factors

by increasing the standing wave ratio or the distance between the metasurface.

The last sections of the fourth chapter were focused on determining the effect of

metasurface losses. It was found that the resonator performance does not degrade
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when metasurfaces with low level of losses are used. In terms of realistic imple-

mentations, it is shown that losses is a minor issue when the resonator is designed

for the microwave range. On the other hand, for the visible and near-infrared

ranges, effect of losses must be taken into account and studied separately (e.g., via

full-wave simulations).

The last chapter can be divided into two parts: the interaction between a res-

onator with an object placed inside it, and the extension of the invisibility condi-

tions for multiple-metasurfaces structures. In the first part, the scenario when

an active source is placed inside the resonator was considered. The analysis of

this case shows that the resonator can be used to improve or to decrease the

matching between the source and the free space. This is done by placing the

source at specific locations inside the resonator, such that it is able to radiate more

or less power. Similar matching properties were found for the scenario when a

lossy sheet (modelling a sensor) is placed inside the resonator. In that case, the

resonator can be used to increase the harvested energy by the sensor with the

disadvantage that the whole system becomes more visible. On the other hand,

when the resonator is used to improve the matching of the lossy sheet, it is shown

that the resonator can decrease the scattering of the sheet in order to make the

whole system more invisible (compared to the same sheet in free space). In this

case, the analysis reveals that the resonator creates a region where the sheet

scattering can be reduced. In other words, the proposed ICR can be used as a

cloaking device under certain conditions (except for extreme cases like cloaking a

perfect electric conductor).

The second part of Chapter 5 developed the mathematical model for a three-

metasurfaces structure, such that it can be extended for multiple-metasurfaces

structure. An approach based on the transmission-line theory was used to define

a triple electric resonator starting from a double electric resonator. In that case, it

was shown that this resonator can be seen as two resonators placed in a cascade.

Finally, this triple electric resonator was used as a basis for one specific case of a

resonator made of four metasurfaces, called matryoshka-like invisible resonator,

as it follows the principle of placing one resonator inside another one. The analysis

of matryoshka-like resonators were focused on giving us an idea of their properties

and application possibilities.

To summarize, this thesis is an attempt to explore electromagnetic properties and

physical principles of invisible cavity resonators. Also, it analyses the advantages

and disadvantages of these structures and some possible applications. Future

work related with this thesis includes the characterization of a resonator with

actual metasurfaces. In order to achieve a better understanding of these novel
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structures, it is suggested to analyse alternative scenarios (e. g., oblique incidence)

and to extend the previous analyses to a more general case (with two electrically

and magnetically polarizable metasurfaces) or to more complex structures like

matryoshka-like resonators.
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