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The expansion of the Internet of Things (IoT) has resulted in an increasing num-
ber of new devices communicating independently over the network with each
other and with servers. This has created a need for protocols to manage the
swiftly growing network. Consequently, formal verification methods have become
an important part of the development process of network systems and protocols.
Before implementation, the specification itself has to be shown to be reliable and
secure.

Nimble out-of-band authentication for EAP (EAP-NOOB) is a protocol for boot-
strapping IoT devices with a minimal user interface and no pre-configured cre-
dentials. In this thesis, we create a symbolic model of the EAP-NOOB protocol
with the mCRL2 modelling language and verify both its correct operation and its
liveness properties with exhaustive state space exploration and model checking.
Major findings relate to the recovery of the protocol after lost or corrupted mes-
sages, which could be exploited for denial-of-service attacks. We contribute to
the standardisation process of the protocol by model checking the current draft
specification and by suggesting improvements and clarifications to the next ver-
sion. Finally, we verify the changes made to the protocol and show that they
improve the overall reliability and fix the detected issues. Moreover, while mod-
elling the protocol, we found various underspecified features and ambiguities that
needed to be clarified. Furthermore, we create a test suite for testing the cryp-
tographic implementation. By comparing message logs from the implementation
with output generated by our test script, we find that incompatibilities between
cryptographic libraries sometimes resulted in protocol failures.
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Utvidgandet av sakernas internet (IoT) har resulterat i en ökning av nya
frist̊aende apparater som kommunicerar med varandra och med servrar. Detta
har skapat ett behov av protokoll för att upprätth̊alla det växande nätverket.
Följaktligen har användning av formell verifiering blivit en viktig del av utveck-
lingsprocessen av nätverkssystem och protokoll. Innan ett protokoll implemente-
ras, måste själva specifikationen bevisas vara p̊alitlig och säker.

Nimble out-of-band authentication for EAP (EAP-NOOB) är ett protokoll
för koppling av IoT-apparater med ett minimalt användargränssnitt och inga
förhandskonfigurerade kreditiv. I detta examensarbete skapar vi en symbolisk mo-
dell av EAP-NOOB-protokollet med mCRL2 spr̊aket och verifierar diverse egen-
skaper genom tillst̊andsutforskning. Vi bidrar till protokollets standardiserings-
process med förändringsförslag, visar att de förbättrar protokollets tillförlitlighet
och korrigerar de upptäckta problemen. I samband med verifieringsprocessen hit-
tade vi diverse tvetydigheter i specifikationen som korrigerades. Ytterligare pre-
senterar vi ett testprogram för kryptografisk verifiering och datagenerering. Ge-
nom att jämföra loggfiler fr̊an implementeringen med v̊ara genererade data visar
vi att det existerar inkompatibiliteter mellan kryptografiska programbibliotek.

Nyckelord: IoT, EAP, EAP-NOOB, mCRL2, formell verifiering, modell
checking

Spr̊ak: Engelska
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Chapter 1

Introduction

System development is an iterative process that consists of repeated cycles of
specification, implementation, documentation and verification [5]. The speci-
fication of a system defines the behaviour of any implementation, whereas the
documentation generally describes a specific implementation. The purpose
of verification is to determine whether an implementation or specification
has a set of properties, such as the desired functionality or the ability to
recover from error situations. A system is considered to be correct if it satis-
fies all the specified properties [5]. These properties can range from generic
requirements defined in the specification to implementation-specific features
that describe the correct behaviour of a piece of code. Consequently, we can
divide system verification into two categories: implementation (or software)
verification and specification verification.

Traditional software verification techniques include testing and code re-
viewing, both of which have been proven to be effective ways to find defects
in implementations [5]. Software testing is a dynamic verification technique
that can be automated to verify a set of properties, expressed as pairs of
matching input and output values, every time the implementation changes.
After a change is made, each specified input is still expected to return the cor-
responding output. This technique is especially suitable for verifying software
with a modular design, as it enables testing of individual parts, or modules,
one at a time. However, testing can only show the absence or presence of
pre-determined errors and it does not prove the overall correctness of a sys-
tem [5]. Any property that is not explicitly defined by the developers will
not be tested and mistakes made during the test implementation may gen-
erate false results. Furthermore, testing reactive systems creates additional
challenges due to the fact that the execution does not always terminate.
Many systems are meant to keep running without ever exiting, which makes
verification with input-output pairs less applicable [17].

1



CHAPTER 1. INTRODUCTION 2

Code reviews solve these problems by not requiring execution of the soft-
ware and help mitigate human error by involving more individuals in the
process. After a feature passes all automated tests, it is reviewed by one or
more developers, who are usually not directly involved in the development
process of the feature. This way, mistakes made by one person are more
likely to be detected before a feature is accepted for production and new
errors that are not part of the automated test cases may be detected. More-
over, code reviews can improve the quality of software. Even if a piece of code
works properly, it might be inefficient or redundant. Although an effective
way to catch programming errors, manual reviewing can be time consuming
and might still overlook subtle or obscure mistakes due to its dependence on
humans [5].

Exhaustive verification becomes increasingly relevant when developing
standards that serve as specifications for multiple independent implementa-
tions. In particular, the standardisation process of communication protocols
often requires multiple iterations of improvements based on reviews and em-
pirical examination. Prior to testing individual implementations with either
of the aforementioned techniques, the protocol itself has to be verified to
be correct in order to mitigate the possibility of design flaws. Any errors
in the specification will likely propagate to the implementations. Correcting
errors later requires modification of each individual implementation, which
can include a significant amount of work and leave older versions vulnerable
to failure until patches have been implemented and tested properly.

Formal verification is a group of techniques based on applied mathematics.
These methods can be divided into two categories: deductive verification and
model-based verification [5, 17]. Deductive verification includes inferring
the correctness of a system specification with axioms and proof rules. It
resembles mathematical proofs and requires a thorough understanding of the
method to be applicable [17]. Model-based verification, on the other hand,
involves creating a state model of the system and performing exhaustive
exploration of all possible states. When an error state is reached, the model-
checker typically provides a trace leading from the initial state to the error
state. Formal verification methods are often used to prove the reliability of
commonly used protocols, such as TLS 1.3 [40] (e.g. Cremers et al. [19]), and
they have been used by companies such as Amazon [37] and Facebook [13]
to eliminate bugs in large-scale services.

Symbolic modelling is a variant of model-based verification that strives
to cover all relevant properties of a specification while abstracting away ir-
relevant details. Such details consist of data that does not affect the system
behaviour [5]. The purpose of abstraction is to avoid the combinatorial ex-
plosion of system states [17]. The desired properties are expressed with a



CHAPTER 1. INTRODUCTION 3

property specification language, such as temporal logic, which allows refer-
ring to the sequence of actions or states occurring in the system over time [5].
This means that properties can include statements such as the system will
eventually reach state X, or the system will never reach state Y after
reaching state X.

The Internet Engineering Task Force1 (IETF) is an organisation that
maintains a collection of Internet specifications, called Requests for Com-
ments (RFCs). Each RFC starts as an Internet-Draft (ID) and requires
often multiple iterations of improvements before it is accepted as a standard.
One such draft is the nimble out-of-band authentication for EAP (EAP-
NOOB) [3], a bootstrapping protocol for Internet of Things (IoT) devices
with minimal user interface.

EAP-NOOB is based on previous work by Sethi et al. [42, 43] and ex-
pands the Extensible Authentication Protocol (EAP) [45]. It has already
undergone several iterations of improvements based on reviews of previous
versions of the specification and the development of a software implemen-
tation [38, 41]. However, the protocol still requires additional iterations of
feedback and improvements before standardisation. The main prospective
verification tasks include assuring that the protocol design has the expected
functionality, verification of linear properties, and understanding the proto-
col behaviour in various exceptional cases, such as error situations and after
message loss.

The main objective of this thesis is to perform a thorough analysis of the
protocol specification [2] with formal verification techniques. We will create
a symbolic model of the current protocol draft with the formal specification
language micro Common Representation Language 2 (mCRL2). The model
will be used to test the overall reliability of the protocol, as well as its ability
to recover from errors and failures in the channels between servers and peers.
Furthermore, we will simulate the protocol in a multi-server, multi-peer en-
vironment and verify that the desired properties are not affected by multiple
simultaneous connections from different sources.

The goals of the research are as follows:

1. Create an mCRL2 model of the EAP-NOOB protocol.

2. Verify the correct behaviour of the protocol with automated queries and
manual simulations. We will focus on verification of linear properties,
i.e. correct behaviour of the client and server as reactive systems, as
well as absence of denial-of-service situations.

1http://www.ietf.org/tao.html
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3. Based on the results, provide updates to the protocol design team for
the next version of the draft.

4. Perform software testing and targeted code reviews for the features
that cannot be modelled with mCRL2, especially the cryptographic
implementation.

Note that verification of the security of the cryptographic protocol is
beyond the scope of this thesis and our focus is on verifying the correctness
of the specification. For future work, see section 7.3.

1.1 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 describes the theo-
retical and historical background of model checking and presents the formal
verification language mCRL2. Chapter 3 provides a brief introduction to the
EAP-NOOB protocol and chapter 4 gives an in-depth explanation of how
it was modelled. Chapter 5 presents the verification process by describing
what was verified, how it was done, and what changes were made in the pro-
tocol specification and its implementation. Chapter 6 explains the software
testing and code-reviewing techniques used for functional verification of the
cryptographic implementation. Chapter 7 evaluates the modelling process,
summarises the contributions that were made and discusses future work that
could still be done. Finally, chapter 8 provides a summary of the thesis and
concluding remarks.



Chapter 2

Model Checking Background

In this chapter, we present the historical and theoretical background of model
checking. We begin with an explanation of the necessary background infor-
mation by briefly introducing to the concept of a process algebra. After that,
we describe the steps leading up to the development of the formal specifi-
cation language mCRL2, used in this thesis for modelling the EAP-NOOB
protocol, followed by an introduction to the language itself. We describe the
concept of model checking and present its history and current state of art.
Finally, we describe temporal logic as a way to verify models.

2.1 Process Algebra

In this thesis, we use symbolic modelling for verification of the reliability
and correctness of the EAP-NOOB protocol. Symbolic modelling is a for-
mal verification method based on process algebra, the study of parallel and
distributed systems. A process describes the behaviour of a system, i.e. all
events and actions that it can perform, including properties such as timing
and probabilities. Alternatively, it can be viewed as a discrete event system,
for which we can observe the occurrence of a behaviour at some moment in
time. Modelling centralised, sequential systems can be done by examination
of the processes as simple automata with finite numbers of states and transi-
tions between them. The functionality of such models can be evaluated with
a set of predetermined test cases of input-output pairs, simply by following
the path from the initial state to a final state [4]. The downside of sequen-
tial models is their inability to model the interaction required by parallel or
distributed (reactive) systems. Instead of a single execution path, the tran-
sitions of such systems might depend on the states of other parts running in
parallel, possibly on separate hosts.

5



CHAPTER 2. MODEL CHECKING BACKGROUND 6

The aim of a process algebra is to solve the problem of sequential mod-
els by providing means of performing calculations with processes, describing
distributed systems and specifying interactions between them. Furthermore,
it allows defining alternative and sequential composition, i.e. choice and
sequential behaviour [4]. The basic laws of process algebra are the struc-
tural laws concerning the basic operations + (nondeterministic choice) and .
(sequential composition). Finite processes can be generated with five basic
axioms [7]. In addition to these, additional theorems define the behaviour of
the merge, abstraction, and communication operators [4].

Axiom 1 Commutativity of nondeterministic choice:
x+ y = y + x

Axiom 2 Associativity of nondeterministic choice:
x+ (y + x) = (x+ y) + x

Axiom 3 Idempotence of nondeterministic choice:
x+ x = x

Axiom 4 Right distributivity of nondeterministic choice over sequential com-
position:

(x+ y) . z = x . z + y . z

Axiom 5 Associativity of sequential composition:
(x . y) . z = x . (y . z)

Model checking requires both nondeterministic choice and sequential com-
position in order to generate all possible execution paths, or futures, for ex-
haustive state space exploration. For example, as shown in listing 2.1, an
in-band server-to-peer channel is given the choice of receiving and sending
either a success message (row 3) or a failure message (row 6). Additionally,
instead of forwarding the message, the channel can drop it (rows 4 and 7)
and raise an error to notify the user that the message was not delivered.
This way, whenever the channel receives a message, it creates two distinctive
paths to explore: one in which the message is delivered and one in which it
is dropped. Both cases should be considered by the verification process to
cover all possible execution paths for messages sent through the channels.
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1 % In-band channel: Server to Peer

2 ServerToPeerChannel () =

3 SEND_EAP_SUCC_I

4 . (RECV_EAP_SUCC_O + ERROR_MSG(dropped_msg))

5 . ServerToPeerChannel ()

6 + SEND_EAP_FAIL_I

7 . (RECV_EAP_FAIL_O + ERROR_MSG(dropped_msg))

8 . ServerToPeerChannel ()

9 ;

Listing 2.1: In-band server-to-peer channel

Algebra of Communicating Processes (ACP) is a process algebra devel-
oped to investigate the solutions of unguarded recursive equations [4]. It was
first introduced by Bergstra and Klop [7] in a paper which also included the
original definition of the term process algebra. In addition to the basic laws
(A1-A5), ACP defines two axioms for the deadlock action [7]:

Axiom 6 Deadlock 1:
δ + x = x

Axiom 7 Deadlock 2:
δ . x = δ

The deadlock action δ was included to describe failure of a process; no other
action can take place after it, forcing the process to terminate unsuccess-
fully [7].

2.1.1 micro Common Representation Language 2

The micro Common Representation Language (µCRL) was developed by
Groote and Ponse [24] for studying processes with data. It is based on previ-
ous work by Bergstra [7] and extends ACP with the notation of data. µCRL
was designed to be as simple as possible, while still capable of modelling
realistic systems. However, due to its simplistic design, it lacked some of the
basic functionality required to describe complex systems. During the decade
following its initial release, µCRL went through various major changes, such
as being extended with time, constructors and the ability to choose the initial
state.

The toolset translates a given µCRL-specification to a linear process oper-
ator (LPO), which can be used for simulation or translated into an optimised
labelled transition system (LTS) [10], as shown in figure 2.1.
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Figure 2.1: µCRL Overview [10]

µCRL was later replaced by its successor, mCRL2, which further im-
proved the notation of data with higher-order abstract data types. The
new version introduced standard data types, such as sorts, natural num-
bers, function types, structured types, lists, sets and bags. Additionally, it
includes support for multi-actions (combined collections of more than two
actions) and operators for blocking, allowing, and defining communication
of actions [22, 23]. Similar to its predecessor, mCRL2 was developed for
analysing complex, distributed and parallel systems. It is a collection of
tools for simulation, minimisation, visualisation and model checking. The
language itself consists of three sub-languages [18]:

1. The data language expresses data with abstract data types, such as
Booleans and natural numbers. Other, non-default data types can be
constructed with type constructors, such as sets, lists and functions.

2. The process language describes the behaviour of a system. Each
system consists of one or more processes that are composed of user-
defined operators, such as multi-action composition and abstraction
operators.

3. The property language describes high-level temporal properties. It is
an extension to modal µ-calculus that adds the notion of data, allowing
queries to include variables.

The mCRL2 toolset is a collection of over 60 tools for analysing a system
expressed with the specification language [18].
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Simulators Manipulators Visualisers Manipulators
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Figure 2.2: mCRL2 Toolset [44]

An mCRL2 process specification (.mcrl2 ) is initially transformed into a linear
process specification (LPS), removing any parallelism and reducing the com-
plexity of the processes with behaviour-preserving transformations [18]. The
LPS is finite and can be used for simulation, reduction and viewing statisti-
cal information. Furthermore, it can be optimised into a labelled transition
system (LTS), or state space, which can be visualised as a state transition
graph or a 3D model [21].

A labelled transitions system LTS is defined as follows [23] :

LTS = (S,ACT,→, s, T ) (2.1)

where S is a set of states, ACT is a set of actions,→⊆ S×Act×S is a transi-
tion relation, s ∈ S is the initial state, and T ⊆ S is the set of terminal states.

For example, the LTS L = ({s0, s1}, {A}, {(s0, A, s1)}), {s0}, {s1}) represents
the transition system depicted in figure 2.3.

s0 s1
A

Figure 2.3: Visualisation of an LTS as a State Transition Graph
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2.2 Model Checking

Model checking is a verification technique based on the formal specification
of a system. The examined problem is as follows: given a model M and a
formula f , find states which satisfy f . Formally, a model M is defined as [17]:

M = (S, S0, R, L) (2.2)

where S is a finite set of states, S0 ⊆ S is a set of initial states, R ⊆ S×S
is a binary relation of transitions, and L : S → 2AP is a set of every atomic
proposition (AP ).

A model checker typically consists of three parts [15, 16]:

1. A property specification language (usually based on a temporal
logic) for describing the required properties.

2. A model specification language for describing the system to be
verified.

3. A verification procedure for state space exploration to verify the
specified properties. In other words, for each formula f , check if it
is satisfied by the model M . If not, provide a counterexample that
violates the truthfulness of the statement.

The properties are generally expressed with some temporal logic that al-
lows describing transitions in terms of time, often without explicitly defining
it. This allows formalising statements such as proposition p holds some-
time in the future, proposition p holds always in the future, or proposition
p holds until proposition q holds. Many variations of temporal logic have
been created, mainly differing in the way operations are expressed [5, 17].

Preprocessor Model Checker

Specification

Program or
Circuit

True or
Counterexamples

Figure 2.4: Overview of a Model Checker [16]



CHAPTER 2. MODEL CHECKING BACKGROUND 11

The model checking process consists of three steps [5]: (1) the modelling
step, (2) the running step, and (3) the analysis step. In the first phase,
the system is modelled with some specification language and the required
properties are formalised. In the second phase, the formalised properties are
tested in the state space of the created model. Falsification of a property is
often faster than verification, since finding a single counterexample suffices to
prove that it does not hold globally. On the other hand, if no counterexamples
were found, the entire state space needs to be explored to show that there
are in fact no counterexamples to be found [15]. Finally, in the third phase,
the model, the design and the properties are refined according to results from
the previous phase [5].

Requirements System

Formalising
Properties

Modelling
System

Property
Specification

System
Model

Model
Checking

1

2

1

2

3 3

3 3

Figure 2.5: The Model Checking Process

The two main challenges that model checking tries to solve are the model
validation problem and the verification problem. The model validation prob-
lem asks whether a model and the given properties describe a system with
sufficient precision, whereas the verification problem asks whether a system
is specified or implemented correctly. An incorrect or insufficient model may
give false positives or negatives and thus be completely useless for the re-
finement process [5]. When verifying a system with modelling, three main
types of errors may occur: (1) modelling errors happen when the imple-
mented model does not describe the system correctly (validation problem),
(2) design errors when the design of the system itself is faulty and needs to
be changed, and (3) property errors when a formalised property does not
correctly describe a requirement [17].
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The main strengths and weaknesses of model checking according to Baier
and Katoen [5]:

+ Model checking is a general verification approach that can be integrated
to any stage of the system design and implementation process. It sup-
ports partial or complete verification and provides means of verifying
that a protocol is correct before any actual software implementation
is made. Finding bugs in early stages is a major step towards correct
and secure systems and will often save a significant amount of time and
other resources.

+ The verification process itself is often completely automatic. The main
task of the developer is to create correct and complete models of the
systems that need to be verified. As with traditional testing, the ad-
ditional properties can be formalised and re-tested any time the model
itself is changed.

+ Model checking does not depend on the likelihood of an error occurring,
because the entire state space is examined. Formalising properties with
temporal logic helps to find obscure mistakes that might be exploited
by malicious parties.

+ Many modelling tools provide diagnostic information, such as execution
traces, when problems are discovered. This information can be helpful
when reproducing the failures in the actual implementations in order
to fix the issues.

− Model checking verifies the specification, not the actual implementa-
tion. Even though the model is proves the correctness of the speci-
fication, any implementation might contain bugs or be dependent on
other vulnerable software. Furthermore, model checking only verifies
the stated properties. Anything that is not explicitly formalised as a
property will not be tested.

− The model checker itself might contain bugs and give false results, even
if the model is correct and complete. Thus, the verification software
needs to be thoroughly tested in order to avoid false positives and
negatives.

− Model checking is generally not suitable for data-intensive applications
and suffers from the state-explosion problem. If the amount of data
that cannot be abstracted away grows too large, the verification process
might end up taking an infeasible amount of time or memory.
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The state-explosion problem is a consequence of the combinatorial growth
of system states. This issue is often likely to occur during the model check-
ing process, since it relies on exhaustive search of the state space to verify
properties. In order to avoid a state-explosion, Clarke et al. [17] list four
main categories of countermeasures:

1. Abstraction of irrelevant data is the main approach to minimise the
number of states throughout the modelling process. In cases where
the actual content of some data does not affect the behaviour of the
system, it can be abstracted to a smaller set of values, such as undefined
integers or strings. This removes unnecessary states and transitions
that ultimately are exactly the same as each other.

2. Partial order reduction involves dropping sequences that are impossible
to distinguish between when disregarding the ordering of independent
events. In other words, if two separate paths with a common starting
point lead to the same results, only one of them needs be considered in
the verification process.

3. Compositional reasoning for modular structures divides the system into
sub-parts that can be independently checked and shows that correct
behaviour of the components implies the correct behaviour of the entire
system. Although efficient, this approach requires the system and the
modelling method to be modular in order to be applicable.

4. Symmetry can be exploited to get rid of actions that do not affect the
state of the system. This is done by removing non-trivial permutations
that preserve the state transition graph.

Furthermore, symbolic model checking is often applicable for verifying
large systems (e.g. Burch et al. [12], Biere et al. [8]). The idea of a symbolic
model is to avoid explicit state representations, which can be achieved by
exploiting the regularity of the state space to represent it symbolically with
e.g. a binary decision diagram (BDD) [12].

a

b c

1 0 1

1 0

1 0 1 0

Figure 2.6: BDD representation of (a ∧ b) ∨ (¬a ∧ ¬c)
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2.2.1 History of Model Checking

Model checking based on temporal logic was first introduced by Clarke and
Emerson [14] as an alternative to constructing proofs, without axioms and
rules [17]. The approach suggests that a system can be modelled as a finite
state machine and the desired properties as clauses with a propositional tem-
poral logic (PTL). The (bounded) finite model property for PTL states that
if a formula f is satisfiable, it is satisfiable in a finite model, and a finite
model of f can be constructed. Furthermore, in a finite state model, each
required property, expressed as a PTL formula, can be tested against the
(finite) state space of the model [17].

In addition to introducing the concept, Clarke and Emerson [14] describe
a model checker for deciding whether a finite structure models a given for-
mula. The verification process searches the entire state space to decide
whether the clauses hold, with a high-level temporal logic specification to
automatically produce a synchronisation skeleton of the system; an abstrac-
tion with irrelevant details removed. The original version of the verification
tool was designed for concurrent programs in a shared-memory environment,
although it can be extended for distributed systems. Finally, Clarke and
Emerson [14] present a model-checking algorithm for verifying existing (fi-
nite state) programs.

description
program

TRANSLATOR

model : IPN pre ANALYSER

specification
formulas

diagnostics

Figure 2.7: CESAR [39]

In an unrelated paper, Queille and Sifakis [39] introduce CESAR, a model
checker for concurrent, distributed systems. A concurrent system consists of
a finite number of processes {P1, . . . , Pm}. Each process can be described
with a flow graph that consists of nodes that represent states in the sys-
tem and connections between nodes that show transitions from one state
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to another [39]. Much like the model checker introduced by Clarke and
Emerson [14], CESAR validates the description of a system, expressed in a
high-level language. The verification process works by abstracting away irrel-
evant details, such as data, and focuses on testing the control structure [39].
Properties to be tested are given as a set of specification formulas, expressed
in branching time logic, and consist of invariant and liveness properties, as
well as properties of response to an action.

Throughout the history of model checking (with state exploration tech-
niques) the state-explosion problem [16] has been one of the main challenges
to overcome. As reactive systems have grown larger in size, modelling real-
life systems has become increasingly difficult. Most of these modern systems
are practically impossible to perform exhaustive searches on and many of
them have an infinite amount of states if no abstraction is applied. However,
the importance of modelling as a verification tool has increased due to an
increase in safety-critical systems depending on both software and hardware.
Furthermore, in recent years, the trend of concurrent, distributed systems
has created new challenges for modelling tools to keep up with [15].

In addition to improving the modelling tools, two major trends have
emerged to accompany the model-checking research: synthesis and model
measuring. Whereas verification is concerned with ensuring that a system
matches its specification, synthesis involves the task of constructing the sys-
tem based on a specification. Furthermore, model measuring tries to decide
how well a system matches the specification. Synthesis aims to eliminate
any errors in the implementation phase and model measuring allows defining
an acceptable error margin, a feature that most traditional model checking
approaches lack [15].

2.3 Temporal Logic

A model checker typically consists of a verification procedure and two specifi-
cation languages: one for formalising the model itself and one for formalising
the required properties under test. The property specification language is
generally based on a temporal logic, which makes it possible for statements
to include time as a constraint [15, 16]. There are multiple variants of tem-
poral logic that differ in both syntax and semantics. In this section, we
provide an overview of three notable logics in regards to our work: CTL*,
Hennesy-Milner logc (HML) and modal µ-calculus.
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2.3.1 CTL*

CTL* is an extension to computational tree logic (CTL) that combines it
with features from linear temporal logic (LTL) [5].

A CTL* state formula is defined over the set of atomic propositions AP :

φ ::= true | a | φ1 ∧ φ2 | ¬φ | Eϕ. (2.3)

where a ∈ AP and ϕ is a CTL* path formula:

ϕ ::= φ | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2. (2.4)

where X (next) and U (until) are temporal modalities.

In addition to the basic syntax, the U (until) operator is often used to derive
two additional temporal modalities:

Fφ := trueUφ (finally) and Gφ := ¬♦¬φ (globally) (2.5)

With these additions, model checking reachability in a state space becomes
relatively straight forward. For example, we can formulate the absence of
deadlocks simply as: some action can globally happen, or reachability of a
given state as: the system will finally reach the desired state. The universal
path quantifier A can be defined as follows:

Aϕ = ¬∃¬ϕ (2.6)

2.3.2 Modal µ-Calculus

Hennessy-Milner logic [26, 27] is an alternative to CTL* that specifies reach-
ability with the diamond and box modalities. The diamond modality ♦aφ is
valid whenever an action a can be performed s.t. φ holds afterwards. Cor-
respondingly, the box modality �aφ is valid iff for every action a, φ holds
afterwards [23].

The syntax of HML is as follows [23]:

φ ::= true | false | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | ♦aφ | �aφ. (2.7)

where φ is a formula, ∧ (and), ∨ (or) and ¬ (not) are Boolean connectors,
→ is implication, a is an action, ♦ is the diamond modality, and � is the
box modality.
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Standard HML provides enough flexibility to express both finite and in-
finite systems but lacks expressiveness in many areas. Mainly, it does not
support representing data or specifying fairness properties (=given an in-
finite amount of chances to perform an action, it must eventually occur).
Modal µ-calculus [33] extends HML with the minimal and maximal fix point
operators [23]:

� the minimal fix point operator µ refers to the smallest set that satisfies
an equation (e.g. µX.φ, where X is a set of states)

� the maximal fix point operator ν refers to the largest set that satisfies
an equation (e.g. νX.φ, where X is a set of states)

The definition of a formula φ in µ-calculus includes the definition of standard
HML, as well as the extended operators µ and ν [23]:

φ ::= true | false | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | ♦aφ | �aφ | µX.φ | νX.φ | X. (2.8)

where ∧ (and), ∨ (or) and ¬ (not) are Boolean connectors, → is implica-
tion, a is an action, ♦ is the diamond modality, � is the box modality, X
is a predicate variable, and µ and ν are the minimal and maximal fix point
operators.

The mCRL2 language includes a first-order modal µ-calculus (extended
with data) for formalising the requirements of the system [23]. These require-
ments, expressed as properties, are tested by translating the corresponding
formula and process into a parametrised boolean equation system (PBES)
that consists of minimal and maximal fix point equations [18]. The solution
to a generated PBES determines whether or not the property holds for the
process.

The typical form of a single equation is as follows:

(µX(d : D) = φ) or (νX(d : D) = φ) (2.9)

where X is a predicate variable, d is a formal variable of type D, φ is a pred-
icate formula, and µ and ν are the minimal and maximal fix point operators.



Chapter 3

EAP-NOOB

In this chapter, we provide an overview of the EAP framework and the EAP-
NOOB method. We focus on explaining the structure of the state machine
and describe the general concept of exchanges in the EAP-NOOB protocol.
Further details about individual exchanges and the key derivation process
can be read in the current protocol draft [3].

3.1 EAP Framework

The Extensible Authentication Protocol (EAP) [45] is a flexible framework
for authentication methods. The purpose of it is to provide reliable trans-
portation of parameters for key generation. As the name suggests, EAP
itself is not a complete authentication mechanism, but rather a framework
for authentication methods, such as EAP-NOOB. The three main parties
present in an EAP exchange are the peer, the authenticator, and the authen-
tication server (see figure 3.1). The authentication procedure begins with
a request from the authenticator to the peer, which the peer counters with
an appropriate response. Depending on the method, the authenticator will
either process the response and possibly send further requests to the peer
or operate as a pass-through node, forwarding the packets between the peer
and an authentication server.

An EAP packet consists of four or more octets of data and contains the
following information: a type code identifying the packet type, an identifier
for matching it with an appropriate request or response, the length of the
packet, and optional data. The supported packet types are request, response,
success, and failure. Each exchange consists of one or more request-response
pairs and always ends with either a success (if the method was completed)
or a failure.

18
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Peer
Pass-through
Authenticator

Authentication
Server

Figure 3.1: EAP Framework Overview

3.2 EAP-NOOB Protocol Overview

Nimble out-of-band authentication for EAP (EAP-NOOB) [3] is an EAP
method for bootstrapping IoT devices with minimal user interface and no
preconfigured authentication credentials. It requires either input (e.g. cam-
eras) or output (e.g. displays) from the peer device and creates a set of keys
for secure communication between a device and a server. The authentica-
tion process is based on a user-assisted one-directional out-of-band (OOB)
channel. The EAP-NOOB state machine contains three ephemeral (states
0-2) and two persistent (states 3-4) states. Initially, both parties start out
in the Unregistered (0) state with no exchanged values. The pairing process
consists of four EAP exchanges and one user-assisted step. Each exchange
delivers a set of values to the other endpoint and negotiates supported ver-
sions and other variables. After reaching one of the persistent states, only
a user reset can revert the state of a device or server back to an ephemeral
one. In case of data loss (failure or reset), a peer is treated as a new device
with no previously exchanged values.

0. Unregistered 1. Waiting for OOB

2. OOB Received4. Registered

3. Reconnecting

Initial
Exchange

OOB Output/Initial Exchange/
Waiting Exchange

OOB
Input

Completion
Exchange

OOB
Reject/
Initial

Exchange

Completion
Exchange

Mobility/
Timeout/

Failure

User
Reset

Reconnect
Exchange

Figure 3.2: EAP-NOOB State Machine [3]
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Exchange Purpose

Initial Exchange

- The server allocates a unique identifier (PeerId)
to the Peer

- Protocol and cryptosuite versions are negotiated
- Nonces are exchanged
- ECDH parameters for key derivation∗ and

MAC∗∗ calculation are exchanged

Waiting Exchange
- The server informs the peer that the OOB step

is not yet complete and the Completion
Exchange cannot yet be initiated

OOB Step
- One of the parties creates a secret nonce Noob

and sends it to the counterpart, together with a
cryptographic fingerprint Hoob

Completion Exchange
- Mutual authentication is completed
- Keys are confirmed

Reconnect Exchange

- Protocol and cryptosuite versions are
re-negotiated

- Nonces are exchanged
- ECDH parameters for re-keying∗ and MAC∗∗

calculation are exchanged

* = Elliptic Curve Diffie-Hellman (ECDH) algorithm following the NIST specification [6]
** = Computed with the HMAC [34] function

Table 3.1: EAP-NOOB Exchanges

An exchange is always initiated by the peer (with the exception of a
server-to-peer OOB message) after receiving an EAP-Reqeuest/Identity packet
from the authenticator (an entity initiating the EAP authentication). The
peer responds by sending out a network access identifier (NAI) [20] that con-
sists of the concatenation of a unique peer identifier (PeerId) allocated by
the server during the initial exchange (“noob” for unregistered devices), the
current state (X ) of the peer (unless the state is 0), and the suffix @eap-
noob.net. The server chooses the appropriate exchange based on the states
of the server and the peer. The correct exchanges for each pair of states are
listed in table 3.2.
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Server state Peer state∗ Exchange

0
0
1
2

Initial Exchange

1
0
1
2

Initial Exchange
Waiting Exchange
Completion Exchange

2
0
1
2

Initial Exchange
Waiting Exchange
Completion Exchange

3
4

3 Reconnect Exchange

* = An exchange should never be initiated when the peer is in the Registered (4) state.

Table 3.2: Exchange Chosen by Server

The rest of the exchange consists of one or more EAP-Request/EAP-
NOOB and EAP-Response/EAP-NOOB messages, and ends with an EAP-
Failure or EAP-Success. Each request/response contains a payload and can
be identified by the receiver by its type parameter (Type ∈ {0 . . . 8}).

EAP Peer EAP Server

EAP-Request/Identity

EAP-Response/Identity

(NAI=PeerId+sX@eap-noob.net)

EAP-Request/EAP-NOOB

(Type=Y,PeerId,...)

EAP-Response/EAP-NOOB

(Type=Y,PeerId,...)

EAP-Success/EAP-Failure

Figure 3.3: EAP-NOOB Exchange

An exception to the described exchange pattern is the user-assisted OOB
step that occurs once or more before the Completion Exchange. The direction
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of OOB messages is negotiated during the Initial Exchange, and has three
alternatives: (1) peer-to-server (P2S), (2) server-to-peer (S2P), or (3) both
P2S and S2P are allowed and the first message to be delivered is accepted.
The OOB step requires the assistance of the user and can for example consist
of scanning a bar-code with a camera. It delivers a 16-byte secret nonce Noob
and a 32-byte cryptographic hash value Hoob, computed from the previously
exchanged values. The accepting party computes the corresponding hash
value Hoob and only proceeds to the next step if the hashes match and if the
nonce is still valid. In case of multiple delivered OOB messages the receiver
can choose which one to accept.

EAP Peer EAP Server

EAP Peer EAP Server

OOB

(PeerId,Noob,Hoob)

OOB

(PeerId,Noob,Hoob)

Figure 3.4: P2S/S2P OOB Step

Any errors occurring during an exchange can either lead to an error recov-
ery procedure or to the peer informing the user that recovery is impossible.
Recoverable errors may happen due to non-persistent reasons, such as packet
loss or modification in the channel. Other errors, such as mismatching ver-
sion numbers of supported protocols, need to be solved manually by the user.
The error handling procedure starts with a message of type 0, followed by
an EAP-Failure from the server.

EAP Peer EAP Server

EAP Peer EAP Server

EAP-Response/EAP-NOOB

(Type=0,[PeerId],ErrorCode,[ErrorInfo])

EAP-Failure

EAP-Request/EAP-NOOB

(Type=0,[PeerId],ErrorCode,[ErrorInfo])

EAP-Failure

Figure 3.5: P2S/S2P Error Reporting
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The correct behaviour after receiving an error message depends on the on-
going exchange:

� During the Initial Exchange, both parties revert back to the Unreg-
istered (0) state and start over.

� During the Waiting/Completion Exchange, both parties remain in
their current state but abort the ongoing exchange.

� During the Reconnect Exchange, both parties change their state to
the Reconnecting (3) state and abort the ongoing exchange.



Chapter 4

Modelling EAP-NOOB

In this chapter, we describe the modelling process of the EAP-NOOB pro-
tocol. We begin with presenting an overview of the model itself, followed by
a description of how data, communication and storage is represented in it.
Finally, we discuss how time and timing properties are modelled.

4.1 Model Overview

The model (see Appendix B) we created for this thesis represents the current
version of the EAP-NOOB protocol [3] (draft version 03) with some minimi-
sation techniques (mainly abstraction and partial order reduction) applied
in order to reduce the state space. It consists of three main processes: (1)
the server, (2) the peer, and (3) the server-side database. In addition to
these, two sub-processes are included to manage nonce generation and error
handling, respectively.

In-band channel: Server to Peer

In-band channel: Peer to Server

OOB Channel: Peer to Server

OOB Channel: Server to Peer

ServerDatabase Peer

Figure 4.1: EAP-NOOB Model Overview (one server, one peer)

24
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Each specified process can be spawned one or more times depending on
the attributes under test. The decision of how many servers and peers to
include in an instance of the model is made before the compilation and needs
to be defined at the end of the model specification file (eap-noob.mcrl2 ).
For example, one server can be created for communicating with multiple
peers, each of which is recognisable by a unique PeerId. All communication
between the processes is defined as pairs of synchronised actions that create
atomic multi-actions. Every PeerId recognised by the server, along with
exchanged data, is stored in the server-side database. When a peer initiates
a connection to the server, the peer-specific data is fetched from the database
and subsequently updated.

Database Database

ServerServer Server

Peer PeerPeerPeer Peer

Figure 4.2: EAP-NOOB Model Overview (multiple servers, multiple peers)

Furthermore, the model contains a process that represents a pseudo-
random value generator, which creates unique PeerIds and nonces (both
represented as natural numbers). To avoid a state-explosion, the number
of generated values must be limited depending on the features under test.
The minimum number of values needed for each state to be reachable is one
PeerId, two Noob values (one if sending the OOB message is only allowed in
one direction: S2P or P2S), and four nonces.

% Maximum number of PeerIds , Noob values , nonce values in

% the model

max_peers = 1;

max_noobs = 2;

max_nonces = 4;

% Maximum number of failed OOB messages before going back to

% state 0 (Unregistered)

max_oob_retries = 2;

Listing 4.1: Limiting the model to avoid unnecessary states
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4.1.1 Data Types

The EAP-NOOB protocol requires the servers and peers to validate and use
the exchanged data. Each exchange consists of sending and receiving device-
specific values that are stored and later compared by calculating message
authentication codes (MACs) with the HMAC [34] function. If the HMAC
does not match the previously exchanged values, the message in which it
was sent in is rejected. As a result, most of the data cannot be abstracted
away and needs to be assigned comparable values. To achieve this as cost-
effectively as possible, we substitute most data types with a natural number
(Nat) or a list of natural numbers.

% Data types

Ver_t = Nat; % Version

Ver_l = List(Ver_t); % List of versions

Cryptosuite_t = Nat; % Cryptosuite

...

NoobId_t = Nat; % Noob ID

Listing 4.2: Mapping of data types to natural numbers

The values that cannot be abstracted away or represented using only
numbers are defined as custom data types. mCRL2 allows to define new
types as comparable structures, which consist of values and other custom
types. For example, we represent a derived key with a structure that contains
the parameters used for the key-derivation. The same technique is used for
modelling MACs, packets, and other complex data types.

% Cryptographic MAC
MAC t = struct HMAC(K: K t ,

Dir :Nat , Vers : Ver l , Verp :Nat , PeerId :Nat ,
Cryptosu i t e s : Crypto su i t e l , Dirs :Nat , S e r v e r In f o : I n f o t ,
Cryptosuitep :Nat , Dirp :Nat , Peer In fo : I n f o t , PKs :Nat ,
Ns :Nat , PKp:Nat , Np :Nat , Noob :Nat)

;
% Derived keys
K t = struct no key
| Completion ( s l i c e :Nat , Z : ECDH t , Np:Nat , Ns :Nat , Noob :Nat)
| RekeyingECDH( s l i c e :Nat , Z : ECDH t , Np2 :Nat , Ns2 :Nat , Kz : K t )
| Rekeying ( s l i c e :Nat , Kz : K t , Np2 :Nat , Ns2 :Nat)

;

Listing 4.3: Custom MAC and key structures in the model
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% Data sent between peer and s e r v e r
Data t = struct empty d ? is empty

% Type 1−8 r e q u e s t s and re sponse s
| req1 ( Vers : Ver l , Cryptosu i t e s : Crypto su i t e l , Dirs :Nat ,

S e rv e r I n f o : I n f o t ) ? i s r e q 1
| r e s1 ( Verp :Nat , Cryptosuitep :Nat , Dirp :Nat , Peer In fo :

I n f o t ) ? i s r e s 1
| req2 (PKs :Nat , Ns :Nat) ? i s r e q 2
| r e s2 (PKp:Nat , Np :Nat) ? i s r e s 2
| req3 ? i s r e q 3
| r e s3 ? i s r e s 3

...

| req8 ? i s r e q 8
| r e s8 ( NoobId :Nat) ? i s r e s 8

;

Listing 4.4: Custom data structure in the model

4.1.2 Communication

The model specifies four types of channels: two for communicating from a
peer to a server (one in-band, one out-of-band), and two for communicating
from a server to a peer (one in-band, one out-of-band). All communication
between the servers and peers happens over these channels. Each server-peer
pair has one out-of-band channel in each direction for the OOB messaging
and one in-band channel in each direction for the network communication.
Sending a message over any channel consists of four actions (I = in, O = out,
* = message type):

Sender
(SEND * O)+(SEND * I)−−−−−−−−−−−−−−→

1 2
Channel

(RECV * O)+(RECV * I)−−−−−−−−−−−−−−−→
3 4

Receiver

Figure 4.3: Message Delivery in the Model

1. The message is sent to the channel

2. The message is received by the channel

3. The message is sent to the receiver

4. The message is received by the receiver
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The supported message types in the in-band channels are REQ (EAP-
Request/EAP-NOOB), RES (EAP-Response/EAP-NOOB), RES ID (EAP-
Response/Identity), FAIL (EAP-Failure) and SUCC (EAP-Success). Cor-
respondingly, the supported message types in the out-of-band channels are
OOB P2S and OOB S2P. The first two actions are synchronised with a multi-
action, as are the two last ones: * O and * I happen simultaneously, or not
at all.

% OOB Channel: Peer to Server

PeerToServerOOBChannel =

sum PeerId:PeerId_t , Noob:Noob_t , Hoob:Hoob_t . (

SEND_OOB_P2S_I(PeerId , Noob , Hoob)

. RECV_OOB_P2S_O(PeerId , Noob , Hoob)

. PeerToServerOOBChannel

)

;

Listing 4.5: P2S OOB channel

However, as shown in listing 2.1, messages may be dropped by the in-
band channels. After a channel has received a message, it can choose to
either deliver it to its destination or simply drop it and continue to wait
for new packets. The participants are not informed of the dropped message
and are responsible for detecting and correcting any consequent errors. In
practice, this means that two distinctive execution paths will be created for
every packet: one where the message is dropped and one where it is delivered.

Furthermore, the in-band channels can be compromised by an attacker,
which may modify messages before the channel delivers them. As the protocol
itself has no way of resisting against persistent denial-of-service attacks, the
modelled attacker is limited to a certain number of spoofed messages before
leaving the channel. Examining the protocol behaviour with compromised
channels verifies that issues caused by invalid data, such as spoofed nonces
or peer identifiers, do not lead to persistent error states.

4.1.3 Server-Side Database

The server-side database is a process responsible for storing peer data for each
individual PeerId recognised by the server. Whenever a server communicates
with a peer, any peer-specific values are fetched from the database and after
the interaction, the values are stored or updated as needed. The database is
implemented as a key-value structure and provides an interface to the server
for reading and writing data.
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% Assoc i a t i on database e n t r i e s ( keyed by PeerId : Nat )
S t a t e e = PeerId −> S t a t e t ; % Current s t a t e
Verp e = PeerId −> Verp t ; % Vers ion
Cryptosu i t ep e = PeerId −> Cryptosu i t ep t ; % Cryptosu i te
Dirp e = PeerId −> Dirp t ; % OOB Di r e c t i on
Pee r In f o e = PeerId −> I n f o t ; % Peer In fo
PKp e = PeerId −> PK t ; % Publ ic key ( peer )
Np e = PeerId −> N t ; % Peer nonce
Ns e = PeerId −> N t ; % Server nonce
Noob e = PeerId −> Noob t ; % Noob nonce
OOB e = PeerId −> Nat ; % OOB r e t r i e s
Type e = PeerId −> Type t ; % Expected type
Kms e = PeerId −> K t ; % ECDH key ( s e r v e r )
Kmp e = PeerId −> K t ; % ECDH key ( peer )

Listing 4.6: Database entries

The following actions are supported through the interface:

� Query and update:

– all data stored for a given PeerId

– the expected type of the next message

– the number of failed OOB messages received

� Update only:

– the nonce value of the peer

– the derived keys for both the server and the peer

� Reset the database entry of a given PeerId

Although the database is a separate process from the server, communi-
cation between the database and the server is considered to be reliable and
the transactions atomic. Each visible action consists of a pair of actions (*
and * DB) synchronised to form an atomic multi-action ( MA).

4.2 Time and Timeouts

Modelling time and timing properties is a central part of verification of com-
munication protocols. The unreliability of the communication channels re-
quires protocols to consider messages delivered with a delay or even disap-
pearing completely. Hence, the ability to model time is generally a vital
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feature of any modelling language. There are two alternative ways of dealing
with time-dependent processes in a nondeterministic model of a system. The
first, is expressing it as a timed transition system (TTS).

A timed transition system TTS can be defined as follows [23]:

TTS = (S,ACT,→, , s, T ) (4.1)

where S is a set of states, ACT is a set of actions, →⊆ S × Act × R>0 × S
is a transition relation,  ⊆ S × R>0 is the idle relation, s ∈ S is the initial
state, and T ⊆ S is the set of terminal states.

For example, consider the transition system depicted in figure 4.4. Similar
to the LTS in figure 2.3, the action A transitions the system from the initial
state s0 to the terminal state s1. However, in this case, the transition is
only allowed to happen within the first 9 time units. After that, the process
timeouts and ends up in the deadlock state s2.

s0 s1

s2

A@[1, 9]

T@[10]

Figure 4.4: Timed Transition System of a Process

Another way of modelling time and timeouts is to state that a timeout
can possibly happen, split the execution path in two distinctive futures, and
explore both. The downside of this technique is the number of states and
transitions it creates. For every nondeterministic choice, two paths will be
created, which makes the state space of the model grow significantly. On
the other hand, disabling some choices allows to adjust the state space to
correspond to the attributes under test.

To simplify the model and avoid explicit definition of time for each pro-
cess, we modelled the protocol following the second alternative. For example,
as shown in listing 4.7, the server can timeout whenever it is idle in the Reg-
istered (4) state. If a test case is not dependent on reaching the Reconnecting
(3) state, the timeout action can be blocked, which prevents it during the
execution.
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% Allow Mobility/Timeout/Failure to happen for the server

+ (state(PeerId) == s4 && type(PeerId) == no_type) -> (

SERV_STATE(PeerId , s4)

. Database ()

+ MOBILITY_TIMEOUT_FAILURE

. SERV_STATE(PeerId , s3)

. Database(

state = state[PeerId ->s3]

)

)

Listing 4.7: Server timeout



Chapter 5

Verifying Protocol Properties

In this chapter, we describe how the protocol properties were verified and
which changes were made in the specification and its implementation. We
begin by discussing the general procedure of protocol verification in our model
and describe how the different types of attributes were tested. After that, we
present the significant improvements and clarifications made to the specifi-
cation based on our modelling and verification results. Finally, we discuss a
major change in the implementation to fix errors caused by misinterpretation
of the specification.

The implemented verification queries can be divided into four categories:
(1) queries for the reachability of normal states, (2) liveness and deadlock
queries, (3) error state queries, and (4) error recovery queries. The first group
consists of tests for verification of normal protocol behaviour, i.e. tests that
check whether each exchange can be completed with the expected results.
Successful completion of these queries denotes that all initiated peers were
able to connect to servers and that each of them performed a successful Re-
connect Exchange. Furthermore, the liveness queries ensure that the state
machines cannot end up in an unrecoverable combination of states. The ad-
ditional queries are concerned with reachability of error states and recovery
from them. First, they check whether or not any of the error states are
reachable during normal protocol execution or after an error, such as mes-
sage corruption, is caused intentionally. If an error state can be reached,
a follow-up query determines if it is always possible to recover from it and
end up back in the Registered (4) state. Some errors, such as mismatching
version numbers, are always impossible to recover from, whereas others can
be expected to occur frequently are are recoverable.

32
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Auxiliary Actions

In our model, verification of reachability properties is based on the detection
of informational transition events, introduced exclusively for the purpose of
model checking. The property language of mCRL2 (modal µ-calculus) is an
event-based query language, i.e. rather than relying on detection of states,
it detects the transitions between them. As a result, instead of directly ver-
ifying the reachability of state combinations, we were forced to introduce
some auxiliary actions to inform the queries of the current states of peers
and servers. An auxiliary action resembles any other action in the model,
with the exception that it is independent (i.e. not part of any multi-action)
and without side effects. It can be triggered before or after an event takes
place and queried by the µ-calculus formulas. This way, we are able to not
only query actual transitions but also the status of any state machine in the
model. Similarly, errors and other anomalies can be detected and queried by
creating events that are triggered in the error state.

The auxiliary actions of the model include:

Action Event

SERV STATE(PeerId, State) a server enters a new state for some PeerId

PEER STATE(PeerId, State) a peer enters a new state

LOG ERROR(ErrorCode) the server sends or receives an error message

MESSAGE LOST(Type) a message is lost in a channel

MAX PEERIDS REACHED() no more PeerIds can be generated

MAX NOOBS REACHED() no more Noob values can be generated

MAX NONCES REACHED() no more nonces can be generated

5.1 Simulating Expected Protocol Behaviour

Our main approach to protocol verification is based on simulation of expected
behaviour. As described in chapter 3, both the server and the peer maintain
their separate state machines indicating the status of the connection. Thus,
the execution of the protocol can be described as pairs of server-peer states,
e.g. server in state 2, peer in state 1. We can determine whether the expected
combinations are reachable and whether the unexpected combinations are
unreachable by exhaustive exploration of the state space. In case the model
reaches an undesired state combination, it can be backtracked towards the
initial state until the origin of the issue is found.

Much like in traditional software testing, we created a collection of tests
for all (5 × 5) 25 state combinations (0-4 for both parties) and 11 error
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states (see section 5.3). Each query examines a pair of server-peer states and
returns true if there exists a path leading from the initial state to the given
combination of states, and false otherwise. For example, the reachability
query in listing 5.1 states that for each PeerId n, both the server and the
peer can enter the Registered (4) state in a series of transitions. In case the
query returns false, one of the endpoints might have reached a deadlock (or
livelock) prohibiting it from ever completing the Completion Exchange.

Since µ-calculus is an event-based language, testing reachability requires
querying the transitions leading to the combination of states under test,
rather than querying the actual states. For example, to test whether the state
combination (4,4) is reachable, we use the following formula (E = exists, F
= finally):

EF(S4, P4) (state-based temporal logic)
EF(S4 ∧ X(¬SxUP4)) (event-based temporal logic)
µY.((S4, P4) ∨ ♦tY ) (µ-calculus)

To determine whether a state combination is reachable, it is sufficient to
find one path leading to it. The aforementioned query can be simplified to
a single case, in which the server enters state four, immediately followed by
the peer entering state four (see listing 5.1). Successful completion of this
query means that at least one path exists that leads from the initial state to
the state combination (4,4). In other words, it shows that the combination
is reachable, but does not guarantee that it can always be reached.

% Eventually , the server enters state 4, immediately

% followed by the peer entering state 4

forall n:Pos . val(n <= 1)

=> <true* . SERV_STATE(n, s4) . PEER_STATE(n, s4)> true

Listing 5.1: Reachability query for states (4,4)

Even though simplification to a single case works for reachability queries,
it is not sufficient to show that a state combination is unreachable. Even if
one path is shown to not exist in the state space, there might be others that
eventually lead to the same result. For this reason, unreachability tests are
slightly more complicated. Instead of testing one case, we include all possible
paths, in which one of the parties transitions first and the other one eventu-
ally follows. Listing 5.2 shows how the (unreachable) state combination (4,1)
is tested.
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% After the server enters state 4, the peer will not be able

% to enter state 1 until the server transitions again.

forall n:Pos . val(n <= 1)

=> [true* . SERV_STATE(n,s4)

. !( SERV_STATE(n,s0) || SERV_STATE(n,s1) ||

SERV_STATE(n,s2) || SERV_STATE(n,s3))*

. PEER_STATE(n,s1)] false

&&

% After the peer enters state 1, the server will not be able

% to enter state 4 until the peer transitions again.

forall n:Pos . val(n <= 1)

=> [true* . PEER_STATE(n,s1)

. !( PEER_STATE(n,s0) || PEER_STATE(n,s2) ||

PEER_STATE(n,s3) || PEER_STATE(n,s4))*

. SERV_STATE(n,s4)] false

Listing 5.2: Reachability query for states (4,1)

All reachable state combinations (excluding temporary states after a user
reset or an error) are listed in table 5.1. As described in section 3.2, reaching
the OOB Received (2) state is a special case that requires the negotiated
OOB direction to allow the other party to send OOB messages. In case the
direction is set to 2 (server-to-peer), only the peer can enter state 2 and,
correspondingly, if the direction is 1 (peer-to-server), only the server can
enter state 2. The third case, in which the direction is set to 3, allows either
one of the endpoints to send an OOB message and can in some rare situations
lead to both parties to enter state 2 simultaneously.

Results: table 5.1 shows the results of the reachability queries. As ex-
pected, all good states are reachable and most bad states are unreachable.
However, there are several unwanted states, all of which have one of the
parties in state four and the other one in state one or two. There are two
possible explanations for this: (1) there is an issue in the protocol that in
some situation causes an unrecoverable error after the Completion Exchange,
or (2) the queries fail because the transition events are asynchronous. In fact,
the failure may be caused by either reason. Unfortunately, the limitations of
the query language means that we cannot properly test the transition to the
persistent state. The protocol issue is currently verified, but not fixed. It is
further explained and investigated in section 5.4.
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Server state Peer state

1
1
2∗

4∗

2
1∗∗

2∗∗∗

4∗∗

3
3
4

4

1∗∗

2∗

3
4

* = OOB direction 2 or 3, ** = OOB direction 1 or 3, *** = OOB direction 3

Table 5.1: Reachable state combinations

5.2 Deadlocks and Liveness Properties

One of the main goals of our model is to verify the absence of persistent error
states in the EAP-NOOB protocol. We decided to model the protocol with
the formal verification language mCRL2, because it is designed for validation
and verification of distributed systems [23] and suitable for examination of
liveness and deadlock properties. A deadlock occurs when the system enters
a state in which no more actions can be performed and the system cannot
progress any further by transitioning to another state [35]. A livelock, on the
other hand, allows the system to perform some actions but prevents it from
making significant progress in the protocol. It essentially creates a loop-like
situation, in which the process seemingly performs work, but never actually
advances as intended. As shown in section 2.1.1, detecting a deadlock is gen-
erally a straightforward task. Unfortunately, detecting a livelock is slightly
more complicated and requires consideration of time-related properties re-
garding the progression.

Consider the following formula (G = globally):

AG EF(S4, P4) (state-based temporal logic)
AG EF(S4 ∧ X(¬SxUP4)) (event-based temporal logic)
νY.(µZ.((S4, P4) ∨ ♦tZ) ∧�tY ) (µ-calculus)
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The formula states that there always exists a path that finally ends up
in state (4,4). In other words, the protocol is always capable of returning
back to the persistent state, regardless of the current state. Listing 5.3
shows the mcf formula for this property. However, because only a limited
number of nonces that can be generated in the model, this query will not
terminate successfully. Furthermore, even if the number of nonces was taken
into account in the query, the possibility of persistent failure due to loss of
last message (see section 5.4) would cause the query to fail.

% It is always possible to return to state (4,4)

[true*]<true*>(S4,P4)

Listing 5.3: Liveness query

Results: no deadlocks can occur in the protocol, unless it is under a per-
sistent denial-of-service attack. We did not manage to verify the absence of
livelocks.

5.3 Error States and Error Recovery

An important part of the verification procedure was to examine the behaviour
of the protocol when introduced to issues that resulted in one or both of the
parties to end up in an error state. These states are not a part of the normal
protocol behaviour and should therefore be examined in detail in order to
verify correct behaviour and to avoid deadlocks. For each error that can
occur, the protocol needs to define a recovery procedure, as an attacker
might otherwise be able to cause a persistent failure by forcing one of the
parties to enter an unrecoverable error state.

In the EAP-NOOB protocol, errors are handled by sending the other end-
point a special error-notification message (type 0) and, if possible, recovering
to a persistent state (see section 3.2). The protocol specification contains a
list of possible errors and defines the correct course of actions for each ex-
change that should be taken after sending or receiving an error message. In
addition to a unique code, each error has a description to inform the user of
what the cause of the issue was. All currently implemented and tested errors
in the model are listed in table 5.2. Some additional errors are defined by
the specification but it is not possible to test them with mCRL2 and thus
they are excluded from the model.
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Error Code Error Message Recoverable?
1003 Invalid data Yes
1004 Unexpected message type Yes
1005 Unexpected peer identifier Yes
1006 Unrecognised OOB message identifier Yes
2002 State mismatch Yes∗

3001 No mutually supported protocol version No
3002 No mutually supported cryptosuite No
3003 No mutually supported OOB direction No
4001 MAC verification failure Yes
5002 Invalid server info No
5004 Invalid peer info No

* = user action required

Table 5.2: Error Codes and Messages

The recovery procedure after either one of the endpoints reaches an error
state is a specific case of liveness that requires its own set of queries to be
tested. Error and error recovery queries check whether a given error can
occur, and if it can, is it always possible to recover from it. For example,
the detection query for error 3002 in listing 5.4 declares that there does not
exists a path leading from any state to a state in which the error occurs.

% Error 3002 never occurs

[true* . LOG_ERROR(E3002)] false

Listing 5.4: Error query for error 3002

Most errors are not supposed to happen during normal protocol execu-
tion. However, in some cases, certain errors are allowed to occur during an
exchange and should not be considered abnormalities, as long as the proto-
col can recover from them. In these cases, after the error occurs, the model
checks whether it is always possible to recover from the error and only re-
ports it if there is an execution path in which the system cannot recover.
For example, the recovery query for error 1006 in listing 5.5 declares that
there always exists a path leading from the error state to the Registered
(4) state, as long as a new nonce can still be generated. However, this is only
true for some of the possible error states and, hence, errors can be divided
into two categories: (1) recoverable errors, and (2) unrecoverable errors. Un-
recoverable errors, such as mismatching version numbers, are persistent and
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need to be manually solved by a user.

% If it is still possible to generate a new Noob , it is

% always possible to recover from error 1006

forall n : Pos . val (n <= 1)

=> [! MAX_NOOBS_REACHED* . LOG_ERROR(E1006)]

<true* . SERV_STATE(n, s4). PEER_STATE(n, s4)> true

Listing 5.5: Recovery query for error 1006

Another case in which errors are expected is when issues are purposefully
introduced in the model in order to examine how it behaves when something
goes wrong. One way of doing this is to compromise one or more of the in-
band channels. Since most of the communication is done over these channels,
values can be modified and dropped as needed. For example, changing the
identifier NoobId in the Completion Exchange should lead to error 1006 (un-
recognised OOB message identifier) since the receiver does not recognise the
nonce. To enable message spoofing and modification, the in-band channel
can be initialised as compromised, as shown in listing 5.6.

% In−band channel : Server to Peer
% compromised : true , i f the channel i s c o n t r o l l e d by an attacker ,
% f a l s e o therw i se
ServerToPeerChannel ( compromised : Bool ) =

. . .
% Modify va lue s i f the channel i s compromised
( compromised ) −> (

( type == t4 ) −> (
% Spoof NoobId
RECV EAP REQ O( type , PeerId , req4 (NoobId(data)+10 , MACs( data ) ) )
. ServerToPeerChannel ( fa l se )

)
. . .

;

Listing 5.6: In-band server-to-peer channel

To avoid a state explosion, the number of unique nonces and identifiers
that can be generated is limited to a minimum, which in some cases means
that the system enters a deadlock when it tries recover from an error. These
deadlocks are ignored when testing error recovery, because they would not
occur in an implementation which allows generating an unlimited number
nonces and identifiers. In the model checking process, this is done by limiting
the queries to cases where the maximum number of generated values has
not yet been reached. Furthermore, the attacker is limited to one spoofed
message per channel (as shown in listing 5.6). If the attacker were allowed to
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continue spoofing messages, the protocol would end up in a persistent livelock
and would never be able to successfully finish a Completion Exchange.

Results: no unrecoverable errors can occur and the protocol is capable to
recover from non-persistent denial-of-service attacks and modified values.

5.4 Persistent Failure Due to Loss of Last

Message

Since EAP often works on top of an unreliable lower layer [45], packets may
end up disappearing anywhere between the sender and the receiver, often
without either one realising it. Although many attempts have been made to
create reliable communication protocols, message loss is an inevitable con-
sequence of communication over lossy channels and should therefore be ex-
pected to occur at any given time. The reasons for it can be divided into
two categories: intentional and unintentional causes. Possible reasons for
dropped packets include radio link failures, congested channels and unreach-
able nodes in the network. Furthermore, by placing itself between the two
endpoints, an attacker can exploit these possibilities to purposefully cause
persistent failure and denial-of-service. For these reasons, the ability to drop
packets was added to the in-band channels in the model.

In the context of distributed systems, the state of knowledge refers to a
set of local or global information. Each processor makes its decisions based
on its local state of knowledge, whereas a distributed system of processors
requires groups of local knowledge states from all participants in order to
make decisions [25]. Communication in a distributed system can be viewed
as advancing in the knowledge hierarchy, ranging from distributed knowledge
to common knowledge. Distributed knowledge includes information issued
among the members of a group without a guarantee of it being delivered,
whereas common knowledge is “public” information, guaranteed to be known
by all parties. However, as shown by Halpern and Moses [25], common
knowledge in a strict sense is impossible to achieve in a distributed system
where messages may be dropped.

Many protocols, such as TCP [28], rely on acknowledgement (ACK) pack-
ets to inform the other endpoint that the previously sent message was de-
livered correctly. However, asynchronous communication protocols all suffer
from a common issue: how can the delivery of the last message in a se-
quence of packets be guaranteed? The reason for why this is impossible can
be intuitively understood by considering a system with two endpoints (see
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figure 5.1). Each party can only perform an action iff the counterpart is
guaranteed to perform the same action simultaneously. Each ACK confirms
the delivery of the previous packet, but requires in turn a new ACK to be
acknowledged. No matter how long this goes on, the last message remains
unacknowledged and can be dropped without either of the endpoints realising
it.

Process A Process B

Message

ACK (1)

ACK (2)

ACK (3)

ACK (n)

Figure 5.1: Achieving Common Knowledge in a Distributed System

As described in section 3.2, each exchange in the EAP-NOOB protocol
ends with either an EAP-Success or an EAP-Failure message sent to the peer.
For the server, sending this message implies that the exchange was success-
fully completed and it can transition to the next state. Correspondingly, the
peer can either consider sending the last response, or receiving the success
or failure message as the end of a successful exchange. In most cases, this
works as intended and ensures that both parties are aware of each other’s
state. However, if the last message is lost, one of the parties will transition
to the next state before completing the exchange. Since a state mismatch
is considered to be an unrecoverable error, this causes a persistent state of
failure if it happens during the Completion Exchange or when updating val-
ues needed for key-derivation. Implicit success indication can be introduced
to avoid issues caused by lost success or failure messages, but similar to the
case depcited in figure 5.1, this only shifts the process of acknowledgements
back by one step.
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EAP Peer EAP ServerState State

1 2

1 4

EAP-Request/Identity

EAP-Response/Identity

(NAI=PeerId+s1@eap-noob.net)

EAP-Request/EAP-NOOB

(Type=4,PeerId,NoobId,MACs)

EAP-Response/EAP-NOOB

(Type=4,PeerId,MACp)

EAP-Success

Figure 5.2: Loss of the Last Message in EAP-NOOB

Packet loss between a peer and a server can be modelled as a special
case of liveness. For example, consider the Completion Exchange depicted
in figure 5.2. It starts with the peer in the Waiting for OOB (1) state and
the server in the OOB Received (2) state. The exchange begins with the
peer receiving an identity request from the authenticator and ends with the
server sending an EAP-Success message, which in this case is lost in the
channel. As a result, the peer remains in state 1 waiting for the missing
packet, whereas the server transitions to the Registered (4) state. Now, if
the peer tries to continue the exchange or start over, the server will consider
it a state mismatch, send an error message and inform the user that a reset is
needed to recover. The protocol specification does currently not define how
this could be avoided but acknowledges the issue.

Results: failure to deal with the loss of the last packet confirmed in the
verification.

5.5 Recovering From A Rejected NoobId

Generating (pseudo-)random nonces is part of the EAP-NOOB exchange
process for both servers and peers. During the Initial Exchange (and possi-
ble Reconnect Exchanges), both the peer and the server generate their own
connection-specific nonces (Ns and Np) for MAC calculation and key deriva-
tion. Furthermore, prior to the Completion Exchange, one or both of the
parties generate a nonce Noob and send it over the OOB channel together
with the peer’s identifier PeerId and a cryptographgic fingerprint Hoob. The
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receiver of the message calculates a Hoob with the corresponding values and
accepts the nonce if it is still valid and if the fingerprints match. The va-
lidity period of the nonce depends on an application-specific timeout value,
NoobTimeout, which determines how long after its generation a nonce is still
usable.

After receiving a valid OOB message, the receiver transitions to the OOB
Received (2) state to indicate its readiness for the Completion Exchange. In
normal cases, the exchange begins shortly after this, and the received Noob
value remains valid. However, since each nonce is given an expiration time
when created, it can expire before the Completion Exchange, which causes
the sender to forget it. The receiver, on the other hand, may still accept
the OOB message and attempt the Completion Exchange with the expired
nonce. The NoobId calculated from the nonce will now be rejected in the
Completion Exchange and an error message (error code 1006) will be sent to
the other party indicating that the nonce was invalid. In version 02 of the
EAP-NOOB draft [2], if the invalid Noob is the only received nonce, this will
lead to a deadlock situation, as no new OOB messages are accepted in state
2.

Version 02: Version 03:

1. Waiting for OOB 1. Waiting for OOB

2. OOB Received 2. OOB Received

OOB
Input

Initial
Exchange

OOB
Input

OOB
Reject/
Initial

Exchange

Figure 5.3: Updated Completion Exchange

Fortunately, ending up in a deadlock because of an expired nonce is easily
avoidable by adding an additional transition from state 2 to state 1 (see
figure 5.3). If the Completion Exchange fails due to an expired or invalid
Noob, both parties revert back to the Waiting for OOB (1) state and start
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over. The additional transition was included in version 03 of the draft [3]
and verified by modelling an execution path in which the received nonce is
expired, which causes error 1006 to occur (see section 4.2 for further details
about modelling timeouts).

In addition, a clarification was made regarding any additional OOB mes-
sages received after accepting a nonce and transitioning to the OOB Re-
ceived (2) state. When receiving an OOB message in the Waiting for OOB
(1) state, the receiver has two options: (a) if the nonce Noob has not yet
expired and the locally calculated fingerprint Hoob matches the one in the
message, transition to state 2, or (b) reject the message and notify the user.
After accepting a valid OOB message and moving to state 2, no more OOB
messages should be accepted. However, these messages may be buffered for
later use in case an expired nonce or other failure causes the party to revert
back to the Waiting for OOB (1) state.

Results: improvements and clarifications to the specification to avoid a
deadlock situation caused by an expired nonce.

5.6 Rejecting Unexpected Messages

Throughout the modelling process, we discovered various ambiguities in the
specification, some of which caused the model to contain some incorrectly
implemented parts. Each detected inconsistency was subsequently compared
against the corresponding part of the EAP-NOOB software implementation.
This way, we managed to improve the validity of the model, as well as that
of the implementation.

One of the biggest flaws that we detected concerns how to deal with un-
expected messages. This issue was discovered when validating the model and
shown to exists in the implementation as well. In order to avoid unwanted
messages, both the server and the peer maintained information about the
ongoing exchange in a variable and only accepted messages of types that are
part of that exchange. For example, after initiating the Initial Exchange, the
message types accepted by the peer included EAP-Requests of type 1 and 2,
and the EAP-Failure that ends the exchange. This works well in most cases
because the exchange process (mostly) follows a linear request-response pat-
tern and any lost messages are retransmitted by the underlying EAP layer.
However, in the case where the negotiated OOB direction is set to 3 (both
S2P and P2S are acceptable directions), this causes issues in a system with
multiple parallel channels that messages can be sent over.
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Consider the following situation:

1. The OOB direction is negotiated to 3, meaning that both the server
and the peer are allowed to send OOB messages.

2. Both parties are in the Waiting for OOB (1) state, generate Noob
nonces and send them to the other endpoint in OOB messages.

3. Due to a slow S2P OOB channel, the P2S message gets delivered first
and the server transitions to the OOB Received (2) state.

4. The peer initiates a Completion Exchange, but before the exchange
can be completed, one of the messages gets temporarily stuck in the
in-band channel.

5. Before re-initiating the exchange, the S2P OOB message is delivered
and the peer transitions to state 2.

6. Now both parties are in state 2, which is treated similarly to the case
in which the server is still in state 1.

7. A new Completion Exchange is initiated by the peer. Before it finishes,
the message held up in the channel is finally delivered causing two
simultaneous Completion Exchanges to run in parallel.

8. Eventually, one of them finishes, which allows both parties to transition
to the Registered (4) state.

9. The registration is now complete, but might result in a MAC verifica-
tion failure in case of a Reconnect Exchange, as the derived keys do
not necessarily match if different (Noob) nonces were used during the
key derivation.

The problem was solved by replacing the variable that keeps track of
the ongoing exchange with a variable that stores the type of the previously
sent message. Instead of receiving any type of message belonging to the
ongoing exchange, the server only accepts a response corresponding to the
previously sent request. For example, after sending an EAP-Request of type
1, the server expects to get an EAP-Response of type 1 in return. Any other
messages are discarded and an error message (error code 1004) is sent to
notify the other party that a message was rejected.

Results: major improvements to the EAP-NOOB software implementa-
tion.



Chapter 6

Testing the Cryptographic Im-
plementation

Our goal for this thesis was to implement a symbolic model of the EAP-
NOOB protocol with the formal specification language mCRL2. This model
was mainly used for verification of properties in the current protocol specifi-
cation, as well as verification of the improved version for the upcoming draft.
Throughout the model-checking process, we discovered various inconsisten-
cies, ambiguities and other minor defects in both the specification and the
implementation, all of which were subsequently corrected or clarified.

However, as mCRL2 is mainly intended for simulation and state space
exploration, our model is not capable of verifying cryptographic output. In-
stead of performing actual calculations on cryptographic primitives, it simply
represents the results as comparable structures that contain the input val-
ues. This is sufficient to check the correctness of the protocol on an abstract
level, but it cannot detect errors in the the cryptographic implementation.
Errors can be caused, for example, by ambiguities in message formats and
incompatibilities between cryptographic libraries. Additional verification ap-
proaches are required in order to ensure that the cryptographic aspects of the
protocol are sufficiently described in the specification and work as intended
in the implementation.

In addition to verifying the protocol specification with model checking
techniques, we created a test script1 for message generation based on test
vectors and previously generated nonces. It is, however, not a complete im-
plementation of the protocol, but rather a complementary tool intended for
verification of the outputs from actual implementations. The script was im-
plemented with Python and the cryptographic calculations are mainly based

1https://github.com/tuomaura/eap-noob/tree/master/test-vectors
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on two modules: the cryptography.hazmat module for low-level cryptographic
calculations2 and the PyNaCl module3 for (public and private) key genera-
tion and calculation. To ensure that the script produces correct outputs, we
used the test vectors [36] provided for the X25519 function for Elliptic Curve
Diffie-Hellman calculations and compared our results with the expected out-
put.

Since the script is not intended for simulation of the protocol, it needs
to be provided with the device-specific values, generated nonces and ECDH
keys as input. These values are then used for the cryptographic calculations
(hashes, MACs and key derivation) and printed out in a readable format for
easy comparison with the output of the actual implementation. Each mes-
sage type, excluding failure and success messages, is included in the output,
and everything is printed out as it would be received through the channels,
making it a mixture of plaintext and base64url [30] encoded values.

Server

EAP-NOOB

Peer

Test
Script

log generated
values & keys

log generated
values & keys

Protocol Output Protocol Output

COMPARE

Figure 6.1: Comparison of Cryptographic Output

Figure 6.1 outlines the intended verification procedure of a protocol exe-
cution. The implementation, depicted on the left side of the figure, performs
all the usual steps of connecting a device to a server and stores both the
generated values and the protocol output in message logs. After the last ex-
change is completed, the script is configured with the generated values and a
corresponding output is produced. Any differences in the two outputs should
be considered as possible errors and further investigated. Listing 6.1 shows
the output of a Completion Exchange, which contains the 16-byte identifier
NoobId computed with a one-way function of the generated Noob nonce, as

2https://cryptography.io
3https://pynacl.readthedocs.io
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well as the MACs calculated witht the HMAC [34] function for both the
server (MACs) and the peer (MACp).

====== Completion Exchange ======

Identity response:

u9N3BQhuKmDFQ0n5y94nvt+s2@noob.example.com

EAP request (type 8):

{"Type":8,"PeerId":"u9N3BQhuKmDFQ0n5y94nvt"}

EAP response (type 8):

{"Type":8,"PeerId":"u9N3BQhuKmDFQ0n5y94nvt","NoobId":"

LBtGFeOkMeg4nA2oAlolmA"}

EAP request (type 4):

{"Type":4,"PeerId":"u9N3BQhuKmDFQ0n5y94nvt","NoobId":"

LBtGFeOkMeg4nA2oAlolmA","MACs":"SFGm-

HaUmxSDMxA_95nVo8AQ_Jmr6ZjraltxmCIgC4Q"}

EAP response (type 4):

{"Type":4,"PeerId":"u9N3BQhuKmDFQ0n5y94nvt","MACp":"

Pr6sCG_b3d8T0NQp4_M9dB40-Gg5Hb-_O89PYfxx0X4"}

Listing 6.1: Output of the Completion Exchange

Results: Clarifications introduced in version 03 of the protocol draft [3]:

� In addition to specifying an ECDH curve and a hash function, each
cryptosuite must define how the public key should be encoded as a
Jason Web Key (JWK) [29] object, since differing encodings will lead
to mismatching keys. Furthermore, the naming conventions and order-
ing of the parameters has to be mutual. This clarification was made
to ensure consistency and avoid ambiguous interpretations of the key
formats mentioned in the specification.

� EAP-NOOB requires some parameters to be base64url [30] encoded
and offers it as an option for others. Each base64 encoded character
represent six bits of data. The encoding process splits the input into
groups of three 8-bit binary values combined into a 24-bit sequence,
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which is encoded as four base64-encoded characters. If the output is
not a multiple of four, ’=’ is used for padding. In the case of EAP-
NOOB, padding does not make a difference as the values are of fixed
length. However, if one party decides to add padding to the encoded
values and the other one decides not to, it might cause problems with
decoding and MAC calculations. Thus, in version 03 of the draft, a
clarification was made to indicate that no padding should be added by
either party.

� Although nonces may be sent over the channel as base64-encoded val-
ues, they should be decoded to raw bytes for the key derivation func-
tion. This was already implied in the previous draft, but a clarification
was made to emphasise it further, as in other cases message fields are
expected to be copied verbatim without any modifications.

� The explanations of PeerId, Realm and NAI were simplified and an
appendix suggesting values for ServerInfo and PeerInfo was added.
Although the content remained unchanged, these clarifications were
made to improve the readability and unambiguity of the specification.



Chapter 7

Discussion

In this chapter, we discuss the modelling process, the contributions we made
and reflect on future work that still needs to be done. We begin with sum-
marising the most important outcomes from the project and evaluate the
overall implementation process. We finish the chapter by suggesting addi-
tional measures to be taken in order to improve the reliability of the protocol
before standardising it.

7.1 Contributions

In this thesis, we created a symbolic model of the EAP-NOOB protocol with
the formal specification language mCRL2. We modelled a system with mul-
tiple servers, peers and channels, and verified that each individual device
managed to authenticate to a server as specified in the protocol. Further-
more, we formalised a set of properties that describe reachability of states,
lack of errors and recoverability from error states. To examine how the pro-
tocol handles unexpected behaviour, we intentionally introduced issues by
compromising one or more of the in-band channels and purposefully manip-
ulated data. Finally, we performed multiple simulations and backtracked
traces from reachable error states to figure out how to patch the protocol
against the issues we found. We also implemented a test script for crypto-
graphic verification that could not be done with our model due to its design
and implementation language.

The main contribution of this thesis was to provide feedback regarding
issues found during the modelling and verification processes (see chapters 5
and 6) for the development of the next IETF draft, as well as to verify the
reliability of the updated protocol version. We managed to create a com-
plete model of the protocol, including a set of automated tests for property
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verification. The final version of the model, as well as the test script, were
published together with the implementation1 and are available for supporting
future development of the protocol.

One of the main results from our work was to discover unrecoverable
error states due to lost messages (see section 5.4), which can be exploited
in order to cause persistent failure in the system. Forcing IoT-devices to
enter deadlock states may cause significant financial damage if the number
of devices is large. Although we only examined one protocol, it is reasonable
to assume that other similar protocols might be affected, which requires
future work to be clarified.

7.2 Reflections

The goal of our work was to improve the reliability of the EAP-NOOB pro-
tocol and its implementation with formal verification techniques. We created
a symbolic model of the protocol with the mCRL2 verification language and
performed exhaustive state space exploration to determine its behaviour in
various situations. Our model detects informational actions that describe
the occurrence of events of interest, which allows us to check the model for
liveness properties, deadlocks, reachability of error states and error recov-
ery. We managed to simulate the protocol behaviour when exposed to not
only normal but also abnormal situations, such as dropped or modified mes-
sages. Furthermore, our test script (see chapter 6) verifies the cryptographic
calculations made in the protocol implementation and presents the overall
structure of the exchanges.

Throughout the modelling process, we encountered various minor prob-
lems regarding how to model a specific feature or functionality. Most of
the issues were caused by either limitations in the verification language or
ambiguities in the specification (see section 5.6). The language limitations
varied from minor inconveniences, such as limitations in the implemented
data structures, to severe restrictions that affected our design decisions. Is-
sues caused by misinterpretations of the specification were relatively easy to
fix after discovery, whereas a language limitation forced us to find an alter-
native way to solve the problems it affected. The language limitations we
discovered include:

� Declaring aliases for data types. In an attempt to unify the pro-
tocol specification and model as much as possible, we applied the type
alias declaration feature of mCRL2 to our model. This feature allowed

1https://github.com/tuomaura/eap-noob/
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it to contain custom data types that were mapped to existing ones
during the compilation process. For example, a PeerId could be de-
clared with a type called PeerId t, even though it is was represented as
a natural number during the calculations. However, this feature was
incorrectly implemented in the verification language, which caused ex-
ponential compilation times when applied to the model (see appendix A
for more details). Although not a crucial part of the modelling process,
finding the cause of the issues was time consuming.

� Preprocessing the specification file. One of our main design goals
for the model was to make it as easily adaptable to different scenarios
as possible. Ideally, the user should be able to use the same model for
all verification tasks and simply declare the settings for the protocol
(i.e. determine the number of servers, peers, channels, and set the lim-
itations for generated values) prior to executing a collection automated
tests. However, as the entire specification is located in a single file, the
only way to change parameters is to manually edit that file. Further-
more, testing the model is based on queries and each individual query
has to be executed separately. In the end, we managed to automate
the compilation process, execution of the tests and some other minor
tasks related to simulation and visualisation of the model. This was
easily done with a makefile and some shell scripts, but the only way
to change the parameters is still to edit the specification file. Unfortu-
nately, there does not seem to exist a sensible way of preprocessing the
specification file, other than to write a separate program that modifies
it line by line.

� Creating and running parallel processes. A crucial part of veri-
fying the protocol involves modelling a typical client-server setting, in
which one server communicates with multiple clients (peers) simultane-
ously. One way to implement this is to have a master process (server)
that creates new threads as required. However, mCRL2 only supports
sequential processing and does not allow a process to create an un-
specified number of new processes during the model checking phase.
Because of that, we had to settle for simulating the behaviour with a
limited number of parallel processes for the peers and a single-threaded
server process that sequentially processes client requests.

Although we managed to overcome all the issues mentioned in this section,
one way or another, there is still room for improvement and possibly better
ways to solve them. For instance, instead of settling for sequential behaviour
for the server, it might be possible to create a thread pool of pre-instantiated
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threads for new connections. This way, when a peer connects to the server,
one of the threads can be assigned to it and the server can continue waiting
for new connections. Once the thread is done working, it simply returns to
the thread pool to be used later. Deciding the amount of threads before
compilation would overcome the inability to create new processes during the
model checking and would simulate a real server with limited resources.

Client

Server

Thread Pool

...T2T1 Tn−1 Tn

(1) RequestRespond (5)

(2) AssignRespond (4)

(3) Process

Figure 7.1: Conceptual Overview of a Thread Pool

Furthermore, even though we limited the state space as much as possible,
most values are still explicitly initiated as numbers or lists. Instead, we could
reduce the state space even further with symbolic modelling techniques that
cannot be done with the mCRL2 language. The size of the state space for
each possible direction (with one server, one peer and the minimum possible
number of nonces and identifiers generated) is listed in table 7.1. The reason
for the large state space in the third row is that OOB direction 3 includes
both the previous cases as well as the special case of both endpoints sending
an OOB message. In addition, the maximum number of generated nonces
has to be increased in order to avoid problems with timeouts when examining
the special case.
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Direction States Transitions
1 2 372 7 777
2 2 576 8 344
3 362 277 93 854

Table 7.1: State Space of the Model

7.3 Future Work

The model we created for this thesis was developed with the mCRL2 language
with the purpose of verification of reachability properties by exhaustive state
space exploration. Consequently, all properties were tested with auxiliary
event actions, as described in chapter 4. Although convenient for verification
of properties related to state reachability and error recovery, this approach
does not support modelling basic security considerations, such as secrecy or
authentication. Each sender is blindly trusted and messages are accepted as
a valid part of the ongoing exchange, as long as their content and format
resembles what is actually expected. Fortunately, there exists a range of
other tools, such as ProVerif [9] or AVISPA [1], specifically made for verifying
security properties of cryptographic protocols. Hence, a separate model could
be created to complement our model and to verify properties that are not
possible to examine with mCRL2.

However, as described in section 4.1.2, our model does support com-
promising any of the in-band channels and modifying messages in order to
examine how unexpected situations are dealt with. Currently, the only sup-
ported modification is exchanging the NoobId during the Completion Ex-
change. In future work, additional modifications could be implemented for
examining the behaviour of the protocol in case of non-persistent attacks or
unreliable channels. Correspondingly, the number of properties tested with
queries could be increased and diversified. Furthermore, as the protocol is
still in its development stage, it will likely change in the future, requiring
new properties and features to be implemented.

Due to limited time and resources, the state space of tested instances
remained fairly small (less than 1 000 000 states) throughout the verification
process. In addition to abstracting away most of the irrelevant data, the lists
of supported version numbers to be negotiated between, as well as the number
of allowed nonces and identifiers to be generated, were strictly limited. For
each individual execution of the test cases, the limits were adjusted to be
sufficient for successful completion of each exchange, but limited enough to
avoid unnecessary resets or packet losses. The number of servers and peers
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was kept low due to the same reasons.
One way of possibly improving the efficiency of the verification process

would be to use an independent tool, such as LTSmin [11, 31], for the the
model checking process. It is a high-performance model checker with built-in
support for mCRL2, that provides tools for state space generation and min-
imisation, as well as symbolic, multi-core, sequential and distributed model
checking through the Partitioned Next-State Interface (PINS).

mCRL2 ... ...Language
Modules

PINS2PINS
Wrappers

Algorithmic
Backends

Transition
caching

Variable reordering,
Transition grouping

Partial-order
reduction

Distributed Multi-core Symbolic

PINS

PINS

Figure 7.2: LTSmin - Architectural Overview2

Comparative experiments have shown that the performance of the LTSmin
toolset matches, or often improves, the efficiency of the language-specific
tools [11]. As of now, model checking the compiled specification is essen-
tially the only task capable of running in parallel, making the compilation
process (mCRL2 specification → LPS → LTS) a bottleneck. Overcoming
this issue would improve the speed of simulating large systems with multiple
participants.

2Adapted and modified from http://ltsmin.utwente.nl/#pins2pins-wrappers
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Conclusions

The expansion of the Internet of Things (IoT) has resulted in an increasing
number of new IoT devices to constantly communicate over the network with
servers and with other devices. This has created a need for developing new,
secure communication protocols to ensure secrecy and to prohibit exploiting
the large number of independent devices for e.g. denial-of-service attacks.
As a result, formal verification methods are becoming an important part of
the system development process. In addition to ensuring the correctness of
each individual implementation, the specification itself has to be confirmed
to be reliable and secure.

Model checking is a general verification approach that verifies the formal
specification of a system by examining a model of it. The process generally
consists of creating the model, formalising the required properties and testing
whether they hold in the state space of the model. By applying minimisation
techniques, such as abstraction and partial order reduction, the state space
can often be reduced significantly or at least be delimited to a finite size.
Exhaustive exploration of the state space helps detecting obscure mistakes
that are easily overlooked by traditional testing methods.

In this thesis, we created a symbolic model of the EAP-NOOB protocol,
used for bootstrapping IoT devices, and verified various reachability prop-
erties in a multi-server and multi-peer environment. We identified several
issues with the previous version of the protocol and proposed some changes
made in version 03 of the draft. Major findings relate to the recovery of
the protocol after lost or corrupted messages, which could be exploited for
denial-of-service attacks. Our model was also used to verify the changes we
made and to investigate the behaviour of the protocol in various situations.
With the results from both the modelling and the verification process, we
improved and clarified the specification and implementation of the protocol.

Throughout the verification process, we compared the results of the model
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with the protocol implementation and the test script to minimise the risk
of mistakes. However, even though our model implies correct behaviour of
the system, we cannot guarantee complete reliability or validity. Instead
of seeing the model as proof of correctness, it should be considered as an
additional tool for testing and finding flaws. As with any verification method,
we should still consider the possibility of unknown issues discovered in the
future. Furthermore, the issues we managed to identify were all related to
reachability and recovery from errors. Some of these flaws can be exploited
by attackers for denial-of-service. We did not verify other security aspects
of the cryptographic protocol, leaving room for future work to be done in
regards to formal verification of the specification.
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Appendix A

Changes in mCRL2

During the modelling process, we discovered various minor defects and lacks
of features in the modelling language, requiring simple workarounds to im-
plement specific parts of the protocol. However, we also detected a bug in
the type checking algorithm, causing exponential compilation times when us-
ing user-declared type aliases. The bug was reported and later fixed by the
development team. In this section, we describe the causes and consequences
of said bug.

A.1 Slow Type Checking

To make the model comparable to the protocol specification, we used the
same variable names as defined in the draft [3]. However, as described in
chapter 4, abstraction is one of the main methods we used for reducing the
state space of the model. As a result, many of the data types, such as the
identifiers and the nonces, were replaced by natural numbers.

Fortunately, mCRL2 allows declaring sort aliases, creating pairwise equal
types to be used in the specification. For example, declaring a custom data
type PeerId as a natural number (Nat)

% Define an alias mapping PeerId to Nat

sort PeerId = Nat;

Listing A.1: Type alias for PeerId

replaces all consequent occurrences of PeerId with Nat during the compi-
lation process. Our intention was to use this feature to even further im-
prove the readability of the model by introducing an alias for each individual
type. However, in the current stable release version (201409.0) of the mCRL2
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toolset, using multiple custom types slows down the compilation process ex-
ponentially.

Consider the following example:

1 % Map several custom data types to natural numbers

2 sort

3 A_t = Nat; B_t = Nat; C_t = Nat; D_t = Nat;

4 E_t = Nat; F_t = Nat; G_t = Nat;

5
6 % Create a new structure that consists of custom data

7 % types

8 S_t = struct s(

9 A:A_t , B:B_t , C:C_t , D:D_t , E:E_t , F:F_t , G:G_t

10 % A:Nat , B:Nat , C:Nat , D:Nat , E:Nat , F:Nat , G:Nat

11 );

12
13 act

14 a;

15
16 proc

17 P = a;

18
19 init

20 P;

Listing A.2: Using type aliases in structures

Intuitively, each occurrence of a custom data type on row 8 should be replaced
by Nat, making rows 8 and 9 equivalent. However, compiling the specification
using version 201409.0 on an Intel(R) Core(TM) i5-7300U (2.60GHz) CPU
takes more than 240 seconds, whereas switching lines 8 and 9 reduces the
compilation time to a fraction of a second.

A bug report1 was submitted to the mCRL2 mailing list2 and later ver-
ified a by the developers, who identified it as a mistake in creating unique
normal forms of structures using the Knuth-Bendix completion [32]. In the
above example, the compiler would create exponentially many variants of the
structure, replacing each custom data type with a rewrite rule (as shown in
listing A.3).

1https://github.com/mCRL2org/mCRL2/issues/1456
2https://listserver.tue.nl/pipermail/mcrl2-users/
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struct s (A:Nat , B: B t , C: C t , D: D t , E: E t , F : F t , G: G t ) = S t
struct s (A: A t , B:Nat , C: C t , D: D t , E: E t , F : F t , G: G t ) = S t
struct s (A: A t , B: B t , C:Nat , D: D t , E: E t , F : F t , G: G t ) = S t

..

.

struct s (A:Nat , B:Nat , C:Nat , D:Nat , E :Nat , F :Nat , G:Nat) = S t

Listing A.3: Exponential growth of structures

Internally, even more duplicates were created, making compiling larger struc-
tures infeasible. The issue was submitted to the bug tracker of the project
and fixed shortly after. Compiling the specification after applying change set
15361 (version 201707.1.15361 or later) removes the issue and makes creating
custom data types equal to predefined types.
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Model Code

1 sort

2 % === Data types of communication and cryptographic functions === %

3
4 % States 0 to 4, no state , error state (user action required)

5 State_t = struct s0 | s1 | s2 | s3 | s4 | no_state | error ? is_error;

6
7 % Types 0 to 8, no type , identity , failure , success

8 Type_t = struct t0 | t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 | no_type | id | failure | success;

9
10 % Data types

11 Ver_t = Nat; % Version

12 Ver_l = List(Ver_t); % List of versions

13 PeerId_t = Nat; % Peer ID

14 % Realm_t = Nat; % Realm

15 PK_t = Nat; % Public key

16 Cryptosuite_t = Nat; % Cryptosuite

17 Cryptosuite_l = List(Cryptosuite_t); % List of cryptosuites

18 Dir_t = Nat; % Direction

19 N_t = Nat; % Nonce

20 % SleepTime_t = Nat; % Sleep time

21 Noob_t = Nat; % Noob

22 NoobId_t = Nat; % Noob ID

23
24 % Server or Peer information

25 Info_t = struct no_info ? is_noinfo

26 | info ? is_validinfo % Valid server information

27 | invalidinfo ? is_invalidinfo % Invalid server information

28 ;

29
30 % Error codes

31 Error_t = struct

32 % | E1001 % Invalid NAI

33 % | E1002 % Invalid message structure

34 E1003 % Invalid data

35 | E1004 % Unexpected message type

36 | E1005 % Unexpected peer identifier

37 | E1006 % Unrecognised OOB message identifier

38 % | E1007 % Invalid ECDH key

39 % | E2001 % Unwanted peer

40 | E2002 % State mismatch , user action required

41 | E3001 % No mutually supported protocol version

42 | E3002 % No mutually supported cryptosuite

43 | E3003 % No mutually supported OOB direction

44 | E4001 % MAC verification failure

45 % | E5001 % Application -specific error

46 | E5002 % Invalid server info

47 % | E5003 % Invalid server URL

48 | E5004 % Invalid peer info

49 ;

50
51 % Cryptographic hash Hoob

52 Hoob_t = struct H(

53 Dir:Nat , Vers:Ver_l , Verp:Nat , PeerId:Nat , Cryptosuites:Cryptosuite_l , Dirs:Nat , ServerInfo:Info_t ,

54 Cryptosuitep:Nat , Dirp:Nat , PeerInfo:Info_t , PKs:Nat , Ns:Nat , PKp:Nat , Np:Nat , Noob:Nat)

55 ;
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56
57 % Cryptographic MAC

58 MAC_t = struct HMAC(K:K_t ,

59 Dir:Nat , Vers:Ver_l , Verp:Nat , PeerId:Nat , Cryptosuites:Cryptosuite_l , Dirs:Nat , ServerInfo:Info_t ,

60 Cryptosuitep:Nat , Dirp:Nat , PeerInfo:Info_t , PKs:Nat , Ns:Nat , PKp:Nat , Np:Nat , Noob:Nat)

61 ;

62
63 % ECDH key derivation (commutative)

64 ECDH_t = struct ECDH(PK1:Nat , PK2:Nat);

65
66 % Derived keys (see Table 3)

67 K_t = struct no_key

68 | Completion(slice:Nat , Z:ECDH_t , Np:Nat , Ns:Nat , Noob:Nat)

69 | RekeyingECDH(slice:Nat , Z:ECDH_t , Np2:Nat , Ns2:Nat , Kz:K_t)

70 | Rekeying(slice:Nat , Kz:K_t , Np2:Nat , Ns2:Nat)

71 ;

72
73 % Data sent between peer and server

74 Data_t = struct empty_d ? is_empty

75 % Type 1-8 requests and responses

76 | req1(Vers:Ver_l , Cryptosuites:Cryptosuite_l , Dirs:Nat , ServerInfo:Info_t) ? is_req1

77 | res1(Verp:Nat , Cryptosuitep:Nat , Dirp:Nat , PeerInfo:Info_t) ? is_res1

78 | req2(PKs:Nat , Ns:Nat) ? is_req2

79 | res2(PKp:Nat , Np:Nat) ? is_res2

80 | req3 ? is_req3

81 | res3 ? is_res3

82 | req4(NoobId:Nat , MACs:MAC_t) ? is_req4

83 | res4(MACp: MAC_t) ? is_res4

84 | req5(Vers:Ver_l , Cryptosuites:Cryptosuite_l) ? is_req5

85 | res5(Verp:Nat , Cryptosuitep:Nat) ? is_res5

86 | req6(PKs2:Nat , Ns2:Nat) ? is_req6

87 | res6(PKp2:Nat , Np2:Nat) ? is_res6

88 | req7(MACs2:MAC_t) ? is_req7

89 | res7(MACp2:MAC_t) ? is_res7

90 | req8 ? is_req8

91 | res8(NoobId:Nat) ? is_res8

92 % Error message

93 | err(ErrorCode:Error_t) ? is_error_msg

94 % Invalid data

95 | invalid ? is_invalid

96 ;

97
98 % === Internal data types for peer and server implementation === %

99
100 % Initialization data for peer

101 StaticPeerData_t = struct empty_sp

102 | static_peer_data(Vers:Ver_l , Cryptosuites:Cryptosuite_l , Dirs:Nat , PeerInfo:Info_t , PK:Nat , PK2:Nat)

103 ;

104
105 % Initialization data for server

106 StaticServerData_t = struct empty_s

107 | static_server_data(Vers:Ver_l , Cryptosuites:Cryptosuite_l , Dirs:Nat , ServerInfo:Info_t , PK:Nat , PK2:Nat)

108 ;

109
110 % Association database interface at server , updating fields and querying peer entries

111 DBInterface_t = struct empty_dbi

112 | Noob(Noob:Nat) ? is_noob

113 | NoobId(NoobId:Nat) ? is_noobid

114 | Nonce(N:Nat) ? is_nonce

115 | Type(Type:Type_t) ? is_type

116 | Keys(Kms:K_t , Kmp:K_t) ? is_key

117 | DBEntry(Verp:Nat , Cryptosuitep:Nat , Dirp:Nat , PeerInfo:Info_t , PKp:Nat , Np:Nat , Ns:Nat , Noob:Nat ,

118 Type:Type_t , Kms:K_t , Kmp:K_t) ? is_dbentry

119 ;

120
121 % Association database entries at server (keyed by PeerId:Nat)

122 State_e = Nat -> State_t;

123 Verp_e = Nat -> Nat;

124 Cryptosuitep_e = Nat -> Nat;

125 Dirp_e = Nat -> Nat;

126 PeerInfo_e = Nat -> Info_t;

127 PKp_e = Nat -> Nat;

128 Np_e = Nat -> Nat;

129 Ns_e = Nat -> Nat;

130 Noob_e = Nat -> Nat;

131 OOB_e = Nat -> Nat;

132 Type_e = Nat -> Type_t;

133 Kms_e = Nat -> K_t;

134 Kmp_e = Nat -> K_t;

135
136 act

137 % SEND_xxx = send to channel multiaction

138 % SEND_xxx_O = send to channel , action on sender side
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139 % SEND_xxx_I = send to channel , action on channel side

140 % RECV_xxx = receive from channel multiaction

141 % RECV_xxx_O = receive from channel , action on sender side

142 % RECV_xxx_I = receive from channel , action on channel side

143
144 % == EAP -Response/Identity == %

145 SEND_EAP_RES_ID ,

146 RECV_EAP_RES_ID ,

147 SEND_EAP_RES_ID_O ,

148 SEND_EAP_RES_ID_I ,

149 RECV_EAP_RES_ID_O ,

150 RECV_EAP_RES_ID_I: PeerId_t # State_t;

151
152 % == EAP -Request/EAP -NOOB == %

153 SEND_EAP_REQ ,

154 RECV_EAP_REQ ,

155 SEND_EAP_REQ_O ,

156 SEND_EAP_REQ_I ,

157 RECV_EAP_REQ_O ,

158 RECV_EAP_REQ_I: Type_t # PeerId_t # Data_t;

159
160 % == EAP -Response/EAP -NOOB == %

161 SEND_EAP_RES ,

162 RECV_EAP_RES ,

163 SEND_EAP_RES_O ,

164 SEND_EAP_RES_I ,

165 RECV_EAP_RES_O ,

166 RECV_EAP_RES_I: Type_t # PeerId_t # Data_t;

167
168 % == EAP -Failure == %

169 SEND_EAP_FAIL;

170 RECV_EAP_FAIL;

171 SEND_EAP_FAIL_O;

172 SEND_EAP_FAIL_I;

173 RECV_EAP_FAIL_O;

174 RECV_EAP_FAIL_I;

175
176 % == EAP -Success == %

177 SEND_EAP_SUCC;

178 RECV_EAP_SUCC;

179 SEND_EAP_SUCC_O;

180 SEND_EAP_SUCC_I;

181 RECV_EAP_SUCC_O;

182 RECV_EAP_SUCC_I;

183
184 % == OOB message in peer -to-server (P2S) and server -to-peer (S2P) direction == %

185 SEND_OOB_P2S ,

186 RECV_OOB_P2S ,

187 SEND_OOB_S2P ,

188 RECV_OOB_S2P ,

189 SEND_OOB_P2S_O ,

190 SEND_OOB_P2S_I ,

191 SEND_OOB_S2P_O ,

192 SEND_OOB_S2P_I ,

193 RECV_OOB_P2S_O ,

194 RECV_OOB_P2S_I ,

195 RECV_OOB_S2P_O ,

196 RECV_OOB_S2P_I: PeerId_t # Noob_t # Hoob_t;

197
198 % == Mobility/Timeout/Failure == %

199 MOBILITY_TIMEOUT_FAILURE;

200
201 % == User Reset == %

202 USER_RESET;

203
204 % == Query server and peer state , error status during testing and verification == %

205 SERV_STATE ,

206 PEER_STATE: PeerId_t # State_t;

207 LOG_ERROR: Error_t;

208
209 % == Notify that a message was lost. For testing and verification == %

210 MESSAGE_LOST: Type_t;

211
212 % == Generate random PeerId , Noob , nonces == %

213 % Multiaction for any random number generation

214 RNG_MA: Nat;

215 % Generator and server/peer actions

216 NEW_PEERID_RNG ,

217 NEW_PEERID: PeerId_t;

218 NEW_NOOB_RNG ,

219 NEW_NOOB: Noob_t;

220 NEW_NONCE_RNG ,

221 NEW_NONCE: N_t;
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222 % Can ’t generate more values

223 MAX_PEERIDS_REACHED;

224 MAX_NOOBS_REACHED;

225 MAX_NONCES_REACHED;

226
227 % == Query and update the association database at server == %

228 % _MA = multiaction , _DB = action at database , no _x = action at server

229 QUERY_STATE_MA ,

230 QUERY_STATE_DB ,

231 QUERY_STATE: PeerId_t # State_t # Type_t;

232 QUERY_DATA_MA ,

233 QUERY_DATA_DB ,

234 QUERY_DATA: PeerId_t # DBInterface_t;

235 QUERY_FAILED_OOBS_MA ,

236 QUERY_FAILED_OOBS_DB ,

237 QUERY_FAILED_OOBS: PeerId_t # Nat;

238 UPDATE_FAILED_OOBS_MA ,

239 UPDATE_FAILED_OOBS_DB ,

240 UPDATE_FAILED_OOBS: PeerId_t # Nat;

241 UPDATE_STATE_MA ,

242 UPDATE_STATE_DB ,

243 UPDATE_STATE: PeerId_t # State_t;

244 UPDATE_DATA_MA ,

245 UPDATE_DATA_DB ,

246 UPDATE_DATA: PeerId_t # Data_t;

247 UPDATE_NONCE_MA ,

248 UPDATE_NONCE_DB ,

249 UPDATE_NONCE: PeerId_t # DBInterface_t;

250 UPDATE_TYPE_MA ,

251 UPDATE_TYPE_DB ,

252 UPDATE_TYPE: PeerId_t # DBInterface_t;

253 UPDATE_KEY_MA ,

254 UPDATE_KEY_DB ,

255 UPDATE_KEY: PeerId_t # DBInterface_t;

256
257 % == Reset database for a PeerId == %

258 RESET_DATABASE_MA ,

259 RESET_DATABASE_DB ,

260 RESET_DATABASE: PeerId_t;

261
262 map

263 % Static data structures

264 static_peer_data: StaticPeerData_t; % Peer data

265 static_serv_data: StaticServerData_t; % Server data

266
267 % Constants

268 max_peers: Nat; % Max PeerIds generated

269 max_noobs: Nat; % Max Noob values generated

270 max_nonces: Nat; % Max nonces generated

271 max_oob_retries: Nat; % Application -specific number of invalid oob messages

272
273 % Database entry at the server: db contains one of each field per peer

274 state: State_e;

275 verp: Verp_e;

276 cryptosuitep: Cryptosuitep_e;

277 dirp: Dirp_e;

278 peerinfo: PeerInfo_e;

279 pkp: PKp_e;

280 np: Np_e;

281 ns: Ns_e;

282 noob: Noob_e;

283 oobretries: OOB_e;

284 type: Type_e;

285 kms: Kms_e;

286 kmp: Kmp_e;

287
288 var

289 a, a’,

290 b, b’ ,

291 n, n’: Nat;

292 l, l’: List(Nat);

293
294 eqn

295 % Initialize static data structures at peer and server

296 % Version(s), Cryptosuite(s), Dir , PeerInfo , PK , PK2

297 static_peer_data = static_peer_data ([1], [1], 2, info , 1, 2);

298 % Version(s), Cryptosuite(s), Dir , ServInfo , PK , PK2

299 static_serv_data = static_server_data ([1], [1], 2, info , 3, 4);

300
301 % Maximum number of PeerIds , Noob values , nonce values in the model

302 max_peers = 1; % >=1

303 max_noobs = 2; % >=2 if Dirp=1 or Dirp=2, >=3 if Dirp=3

304 max_nonces = 4; % >=4
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305
306 % Maximum number of failed OOB messages before going back to state 0

307 max_oob_retries = 2;

308
309 % Default values for database at the server

310 state(n) = no_state;

311 verp(n) = 0;

312 cryptosuitep(n) = 0;

313 dirp(n) = 0;

314 peerinfo(n) = no_info;

315 pkp(n) = 0;

316 np(n) = 0;

317 ns(n) = 0;

318 noob(n) = 0;

319 oobretries(n) = 0;

320 type(n) = no_type;

321 kms(n) = no_key;

322 kmp(n) = no_key;

323
324 % ECDH is commutative

325 ECDH(a, b) == ECDH(a’, b’) = (a == a’ && b == b’) || (a == b’ && b == a’);

326
327 proc

328 % In-band channel: Peer to Server

329 % compromised : true , if the channel is controlled by an attacker , false otherwise

330 PeerToServerChannel(compromised:Bool) =

331 sum PeerId:PeerId_t , State:State_t . (

332 SEND_EAP_RES_ID_I(PeerId , State)

333 . (RECV_EAP_RES_ID_O(PeerId , State) + MESSAGE_LOST(id))

334 . PeerToServerChannel(compromised)

335 )

336 + sum PeerId:PeerId_t , data:Data_t , type:Type_t . (

337 SEND_EAP_RES_I(type , PeerId , data)

338 % Modify values if the channel is compromised

339 . (compromised) -> (

340 (type == t8) -> (

341 % Spoof NoobId

342 RECV_EAP_RES_O(type , PeerId , res8(NoobId(data) + 20))

343 . PeerToServerChannel(false)

344 )

345 <> (RECV_EAP_RES_O(type , PeerId , data) + MESSAGE_LOST(type))

346 . PeerToServerChannel(compromised)

347 )

348 <> (RECV_EAP_RES_O(type , PeerId , data) + MESSAGE_LOST(type))

349 . PeerToServerChannel(compromised)

350 )

351 ;

352
353 % In-band channel: Server to Peer

354 % compromised : true , if the channel is controlled by an attacker , false otherwise

355 ServerToPeerChannel(compromised:Bool) =

356 sum PeerId:PeerId_t , data:Data_t , type:Type_t . (

357 SEND_EAP_REQ_I(type , PeerId , data)

358 % Modify values if the channel is compromised

359 . (compromised) -> (

360 (type == t4) -> (

361 % Spoof NoobId

362 RECV_EAP_REQ_O(type , PeerId , req4(NoobId(data) + 10, MACs(data)))

363 . ServerToPeerChannel(false)

364 )

365 <> (RECV_EAP_REQ_O(type , PeerId , data) + MESSAGE_LOST(type))

366 . ServerToPeerChannel(compromised)

367 )

368 <> (RECV_EAP_REQ_O(type , PeerId , data) + MESSAGE_LOST(type))

369 . ServerToPeerChannel(compromised)

370 )

371 + SEND_EAP_SUCC_I

372 . (RECV_EAP_SUCC_O + MESSAGE_LOST(success))

373 . ServerToPeerChannel(compromised)

374 + SEND_EAP_FAIL_I

375 . (RECV_EAP_FAIL_O + MESSAGE_LOST(failure))

376 . ServerToPeerChannel(compromised)

377 ;

378
379 % OOB Channel: Peer to Server

380 PeerToServerOOBChannel =

381 sum PeerId:PeerId_t , Noob:Noob_t , Hoob:Hoob_t . (

382 SEND_OOB_P2S_I(PeerId , Noob , Hoob)

383 . RECV_OOB_P2S_O(PeerId , Noob , Hoob)

384 . PeerToServerOOBChannel

385 )

386 ;

387



APPENDIX B. MODEL CODE 71

388 % OOB Channel: Server to Peer

389 ServerToPeerOOBChannel =

390 sum PeerId:PeerId_t , Noob:Noob_t , Hoob:Hoob_t . (

391 SEND_OOB_S2P_I(PeerId , Noob , Hoob)

392 . RECV_OOB_S2P_O(PeerId , Noob , Hoob)

393 . ServerToPeerOOBChannel

394 )

395 ;

396
397 % Random number generator

398 % PeerId : Next PeerId to generate

399 % Noob : Next Noob to generate

400 % N : Next nonce to generate

401 Rng(PeerId:PeerId_t , Noob:Noob_t , N:N_t) =

402 (PeerId <= max_peers) -> (

403 NEW_PEERID_RNG(PeerId)

404 . (PeerId == max_peers) -> (

405 MAX_PEERIDS_REACHED

406 . Rng(PeerId+1, Noob , N)

407 ) <> Rng(PeerId+1, Noob , N)

408 ) <> MAX_PEERIDS_REACHED . Rng(PeerId , Noob , N)

409 + (Noob <= max_noobs) -> (

410 NEW_NOOB_RNG(Noob)

411 . (Noob == max_noobs) -> (

412 MAX_NOOBS_REACHED

413 . Rng(PeerId , Noob+1, N)

414 ) <> Rng(PeerId , Noob+1, N)

415 ) <> MAX_NOOBS_REACHED . Rng(PeerId , Noob , N)

416 + (N <= max_nonces) -> (

417 NEW_NONCE_RNG(N)

418 . (N == max_nonces) -> (

419 MAX_NONCES_REACHED

420 . Rng(PeerId , Noob , N+1)

421 ) <> Rng(PeerId , Noob , N+1)

422 ) <> MAX_NONCES_REACHED . Rng(PeerId , Noob , N)

423 ;

424
425 % Server database

426 Database(state:State_e , verp:Verp_e , cryptosuitep:Cryptosuitep_e , dirp:Dirp_e , peerinfo:PeerInfo_e , pkp:PKp_e ,

427 np:Np_e , ns:Ns_e , noob:Noob_e , oobretries:OOB_e , type:Type_e , kms:Kms_e , kmp:Kmp_e) =

428 sum PeerId:PeerId_t . (

429 sum State:State_t . (

430 QUERY_STATE_DB(PeerId , state(PeerId), type(PeerId))

431 . Database ()

432 + UPDATE_STATE_DB(PeerId , State)

433 . SERV_STATE(PeerId , State)

434 . Database(

435 state = state[PeerId ->State]

436 )

437 )

438 + QUERY_FAILED_OOBS_DB(PeerId , oobretries(PeerId))

439 + QUERY_DATA_DB(PeerId , DBEntry(

440 verp(PeerId), cryptosuitep(PeerId), dirp(PeerId), peerinfo(PeerId), pkp(PeerId), np(PeerId),

441 ns(PeerId), noob(PeerId), type(PeerId), kms(PeerId), kmp(PeerId)

442 ))

443 . Database ()

444 + sum OobRetries:Nat . (

445 UPDATE_FAILED_OOBS_DB(PeerId , OobRetries)

446 . Database(

447 oobretries = oobretries[PeerId ->OobRetries]

448 )

449 )

450 + sum data:Data_t . (

451 UPDATE_DATA_DB(PeerId , data) . (

452 % Type 1 response

453 (is_res1(data)) -> (

454 Database(

455 verp = verp[PeerId ->Verp(data)],

456 cryptosuitep = cryptosuitep[ PeerId ->Cryptosuitep(data)],

457 dirp = dirp[PeerId ->Dirp(data)],

458 peerinfo = peerinfo[PeerId ->PeerInfo(data)]

459 )

460 )

461 % Type 2 response

462 <> (is_res2(data)) -> (

463 Database(

464 pkp = pkp[PeerId ->PKp(data)],

465 np = np[PeerId ->Np(data)]

466 )

467 )

468 % Type 5 response

469 <> (is_res5(data)) -> (

470 Database(
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471 verp = verp[PeerId ->Verp(data)],

472 cryptosuitep = cryptosuitep[PeerId ->Cryptosuitep(data)]

473 )

474 )

475 <> (is_res6(data)) -> (

476 % Type 6 response (w/ PKp2)

477 (PKp2(data) != 0) -> (

478 Database(

479 pkp = pkp[PeerId ->PKp2(data)],

480 np = np[PeerId ->Np2(data)]

481 )

482 )

483 % Type 6 response (w/o PKp2)

484 <> (PKp2(data) == 0) -> (

485 Database(

486 np = np[PeerId ->Np2(data)]

487 )

488 )

489 )

490 ))

491 + sum data:DBInterface_t . (

492 UPDATE_NONCE_DB(PeerId , data) . (

493 % Server nonce update

494 (is_nonce(data)) -> (

495 Database(

496 ns = ns[PeerId ->N(data)]

497 )

498 )

499 % Server noob update

500 <> (is_noob(data)) -> (

501 Database(

502 noob = noob[PeerId ->Noob(data)]

503 )

504 )

505 )

506 % Ongoing exchange update

507 + UPDATE_TYPE_DB(PeerId , data)

508 . (is_type(data)) -> (

509 Database(

510 type = type[PeerId ->Type(data)]

511 )

512 )

513 % Key update

514 + UPDATE_KEY_DB(PeerId , data)

515 . (is_key(data)) -> (

516 Database(

517 kms = kms[PeerId ->Kms(data)],

518 kmp = kmp[PeerId ->Kmp(data)]

519 )

520 )

521 )

522 % Allow Mobility/Timeout/Failure to happen for the server

523 + (state(PeerId) == s4 && type(PeerId) == no_type) -> (

524 SERV_STATE(PeerId , s4)

525 . Database ()

526 + MOBILITY_TIMEOUT_FAILURE

527 . SERV_STATE(PeerId , s3)

528 . Database(

529 state = state[PeerId ->s3]

530 )

531 )

532 % Reset database values for a given PeerId

533 + RESET_DATABASE_DB(PeerId)

534 . SERV_STATE(PeerId , s0)

535 . Database(

536 state = state[PeerId ->no_state],

537 verp = verp[PeerId ->0],

538 cryptosuitep = cryptosuitep[PeerId ->0],

539 dirp = dirp[PeerId ->0],

540 peerinfo = peerinfo[PeerId ->no_info],

541 pkp = pkp[PeerId ->0],

542 np = np[PeerId ->0],

543 ns = ns[PeerId ->0],

544 noob = noob[PeerId ->0],

545 oobretries = oobretries[PeerId ->0],

546 type = type[PeerId ->no_type],

547 kms = kms[PeerId ->no_key],

548 kmp = kmp[PeerId ->no_key]

549 )

550 )

551 ;

552
553 % EAP Server
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554 % sd : Server data

555 % noobs : Generated Noob values

556 Server(sd:StaticServerData_t , noobs:List(Nat)) =

557 sum PeerId:PeerId_t , Peer_State:State_t . (

558 RECV_EAP_RES_ID_I(PeerId , Peer_State) . (

559 % Initial Exchange

560 (PeerId == 0) -> (

561 sum PeerId:PeerId_t . (

562 NEW_PEERID(PeerId)

563 . SEND_EAP_REQ_O(t1, PeerId , req1(Vers(sd), Cryptosuites(sd), Dirs(sd), ServerInfo(sd)))

564 . UPDATE_TYPE(PeerId , Type(t1))

565 )

566 )

567 % Other exchanges

568 + (PeerId != 0) -> (

569 sum Server_State:State_t , Type:Type_t . (

570 QUERY_STATE(PeerId , Server_State , Type) . (

571 (Server_State != no_state) -> (

572 % Waiting Exchange

573 (Peer_State == s1 && Server_State == s1) -> (

574 SEND_EAP_REQ_O(t3 , PeerId , req3)

575 . UPDATE_TYPE(PeerId , Type(t3))

576 )

577 % Completion Exchange (peer -to-server)

578 <> (Peer_State == s1 && Server_State == s2) -> (

579 sum pd:DBInterface_t . (

580 QUERY_DATA(PeerId , pd)

581 . UPDATE_KEY(PeerId , Keys(

582 Completion (192, ECDH(PK(sd), PKp(pd)), Np(pd), Ns(pd), Noob(pd)),

583 Completion (224, ECDH(PK(sd), PKp(pd)), Np(pd), Ns(pd), Noob(pd))

584 ))

585 )

586 . sum pd:DBInterface_t . (

587 QUERY_DATA(PeerId , pd)

588 . SEND_EAP_REQ_O(t4, PeerId , req4(

589 Noob(pd), HMAC(Kms(pd), 2, Vers(sd), Verp(pd), PeerId , Cryptosuites(sd),

590 Dirs(sd), ServerInfo(sd), Cryptosuitep(pd), Dirp(pd), PeerInfo(pd), PK(sd),

591 Ns(pd), PKp(pd), Np(pd), Noob(pd))

592 ))

593 )

594 . UPDATE_TYPE(PeerId , Type(t4))

595 )

596 % Completion Exchange (server -to -peer)

597 <> (Peer_State == s2 && (Server_State == s1 || Server_State == s2)) -> (

598 SEND_EAP_REQ_O(t8 , PeerId , req8)

599 . UPDATE_TYPE(PeerId , Type(t8))

600 )

601 % Reconnect Exchange

602 <> (Peer_State == s3 && (Server_State == s3 || Server_State == s4)) -> (

603 SEND_EAP_REQ_O(t5 , PeerId , req5(Vers(sd), Cryptosuites(sd)))

604 . UPDATE_TYPE(PeerId , Type(t5))

605 )

606 % Drop old messages

607 <> (Server_State == s4) -> (

608 MESSAGE_LOST(Type)

609 )

610 % Check for state mismatch

611 <> (( Server_State == s1 && (Peer_State == s3 || Peer_State == s4)) ||

612 (Server_State == s2 && (Peer_State == s3 || Peer_State == s4)) ||

613 (Server_State == s3 && (Peer_State == s1 || Peer_State == s2)) ) -> (

614 % Send error E2002

615 SEND_EAP_REQ_O(t0 , PeerId , err(E2002))

616 . Server_Error(no_type , PeerId , E2002)

617 )

618 )

619 % Received unknown PeerId

620 <> (Server_State == no_state) -> (

621 % Send error E1005

622 SEND_EAP_REQ_O(t0 , PeerId , err(E1005))

623 . LOG_ERROR(E1005)

624 . Server(sd , noobs)

625 )

626 )

627 )

628 )

629 ) . Server(sd, noobs)

630 + sum PeerId:PeerId_t , type:Type_t , data:Data_t . (

631 RECV_EAP_RES_I(type , PeerId , data) . (

632 % Receive error message

633 (type == t0) -> (

634 sum pd:DBInterface_t . (

635 QUERY_DATA(PeerId , pd)

636 . Server_Error(Type(pd), PeerId , ErrorCode(data))
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637 . Server(sd , noobs)

638 )

639 )

640 % Invalid data

641 <> (is_invalid(data)) -> (

642 sum pd:DBInterface_t . (

643 QUERY_DATA(PeerId , pd)

644 . SEND_EAP_REQ_O(t0, PeerId , err(E1003))

645 . Server_Error(Type(pd), PeerId , E1003)

646 . Server(sd , noobs)

647 )

648 )

649 <> sum Type:Type_t , State:State_t . (

650 QUERY_STATE(PeerId , State , Type)

651 % Unexpected message type

652 . (Type != type) -> (

653 SEND_EAP_REQ_O(t0 , PeerId , err(E1004))

654 . Server_Error(Type , PeerId , E1004)

655 . Server(sd , noobs)

656 )

657 % Initial Exchange

658 <> (type == t1) -> (

659 % Invalid peer info

660 (is_invalidinfo(PeerInfo(data))) -> (

661 sum pd:DBInterface_t . (

662 QUERY_DATA(PeerId , pd)

663 . SEND_EAP_REQ_O(t0, PeerId , err(E5004))

664 . Server_Error(Type(pd), PeerId , E5004)

665 )

666 )

667 <> sum Ns:N_t . (

668 NEW_NONCE(Ns)

669 . SEND_EAP_REQ_O(t2, PeerId , req2(PK(sd), Ns))

670 . UPDATE_NONCE(PeerId , Nonce(Ns))

671 )

672 . UPDATE_DATA(PeerId , data)

673 . UPDATE_TYPE(PeerId , Type(t2))

674 )

675 <> (type == t2) -> (

676 SEND_EAP_FAIL_O

677 . UPDATE_DATA(PeerId , data)

678 . UPDATE_STATE(PeerId , s1)

679 . UPDATE_TYPE(PeerId , Type(no_type))

680 )

681 % Waiting Exchange

682 <> (type == t3) -> (

683 SEND_EAP_FAIL_O

684 . UPDATE_STATE(PeerId , s1)

685 . UPDATE_TYPE(PeerId , Type(no_type))

686 )

687 % Completion Exchange

688 <> (type == t4) -> (

689 sum pd:DBInterface_t . (

690 QUERY_DATA(PeerId , pd)

691 . (MACp(data) != HMAC(

692 Kmp(pd), 1, Vers(sd), Verp(pd), PeerId , Cryptosuites(sd), Dirs(sd), ServerInfo(sd),

693 Cryptosuitep(pd), Dirp(pd), PeerInfo(pd), PK(sd), Ns(pd), PKp(pd),

694 Np(pd), Noob(pd)))

695 -> (

696 SEND_EAP_REQ_O(t0 , PeerId , err(E4001))

697 . Server_Error(Type(pd), PeerId , E4001)

698 )

699 <> SEND_EAP_SUCC_O

700 . UPDATE_STATE(PeerId , s4)

701 . UPDATE_TYPE(PeerId , Type(no_type))

702 )

703 )

704 % Reconnect Exchange

705 <> (type == t5) -> (

706 sum Ns:N_t . (

707 NEW_NONCE(Ns)

708 . UPDATE_NONCE(PeerId , Nonce(Ns))

709 . sum pd:DBInterface_t . (

710 QUERY_DATA(PeerId , pd)

711 . (Cryptosuitep(data) == Cryptosuitep(pd)) -> (

712 SEND_EAP_REQ_O(t6 , PeerId , req6(0, Ns))

713 )

714 <> SEND_EAP_REQ_O(t6 , PeerId , req6(PK2(sd), Ns))

715 )

716 )

717 . UPDATE_DATA(PeerId , data)

718 . UPDATE_TYPE(PeerId , Type(t6))

719 )
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720 <> (type == t6) -> (

721 ((PKp2(data) != 0) -> (

722 sum pd:DBInterface_t . (

723 QUERY_DATA(PeerId , pd)

724 . UPDATE_KEY(PeerId , Keys(

725 RekeyingECDH (192, ECDH(PK2(sd), PKp2(data)), Np2(data), Ns(pd), Kms(pd)),

726 RekeyingECDH (224, ECDH(PK2(sd), PKp2(data)), Np2(data), Ns(pd), Kmp(pd))

727 ))

728 )

729 . sum pd:DBInterface_t . (

730 QUERY_DATA(PeerId , pd)

731 . SEND_EAP_REQ_O(t7, PeerId , req7(

732 HMAC(Kms(pd), 2, Vers(sd), Verp(pd), PeerId , Cryptosuites(sd), 0,

733 ServerInfo(sd), Cryptosuitep(pd), 0, PeerInfo(pd), PK2(sd), Ns(pd), PKp2(data),

734 Np2(data), 0)

735 ))

736 . UPDATE_TYPE(PeerId , Type(t7))

737 )

738 )

739 <> (PKp2(data) == 0) -> (

740 sum pd:DBInterface_t . (

741 QUERY_DATA(PeerId , pd)

742 . UPDATE_KEY(PeerId , Keys(

743 Rekeying (192, Kms(pd), Np2(data), Ns(pd)),

744 Rekeying (224, Kmp(pd), Np2(data), Ns(pd))

745 ))

746 )

747 . sum pd:DBInterface_t . (

748 QUERY_DATA(PeerId , pd)

749 . SEND_EAP_REQ_O(t7, PeerId , req7(

750 HMAC(Kms(pd), 2, Vers(sd), Verp(pd), PeerId , Cryptosuites(sd), 0,

751 ServerInfo(sd), Cryptosuitep(pd), 0, PeerInfo(pd), 0, Ns(pd), 0, Np2(data), 0)

752 ))

753 . UPDATE_TYPE(PeerId , Type(t7))

754 )

755 ))

756 . UPDATE_DATA(PeerId , data)

757 )

758 <> (type == t7) -> (

759 sum pd:DBInterface_t . (

760 QUERY_DATA(PeerId , pd)

761 . (

762 MACp2(data) != HMAC(

763 Kmp(pd), 1, Vers(sd), Verp(pd), PeerId , Cryptosuites(sd), 0, ServerInfo(sd),

764 Cryptosuitep(pd), 0, PeerInfo(pd), PK2(sd), Ns(pd), PKp(pd), Np(pd), 0)

765 &&

766 MACp2(data) != HMAC(

767 Kmp(pd), 1, Vers(sd), Verp(pd), PeerId , Cryptosuites(sd), 0, ServerInfo(sd),

768 Cryptosuitep(pd), 0, PeerInfo(pd), 0, Ns(pd), 0, Np(pd), 0)

769 ) -> (

770 SEND_EAP_REQ_O(t0 , PeerId , err(E4001))

771 . Server_Error(Type(pd), PeerId , E4001)

772 )

773 )

774 . SEND_EAP_SUCC_O

775 . UPDATE_STATE(PeerId , s4)

776 . UPDATE_TYPE(PeerId , Type(no_type))

777 )

778 % Completion Exchange

779 <> (type == t8) -> (

780 % Invalid OOB message identifier

781 (!( NoobId(data) in noobs)) -> (

782 sum pd:DBInterface_t . (

783 QUERY_DATA(PeerId , pd)

784 . SEND_EAP_REQ_O(t0, PeerId , err(E1006))

785 . Server_Error(Type(pd), PeerId , E1006)

786 )

787 )

788 <> sum pd:DBInterface_t . (

789 QUERY_DATA(PeerId , pd)

790 . UPDATE_KEY(PeerId , Keys(

791 Completion (192, ECDH(PK(sd), PKp(pd)), Np(pd), Ns(pd), NoobId(data)),

792 Completion (224, ECDH(PK(sd), PKp(pd)), Np(pd), Ns(pd), NoobId(data))

793 ))

794 )

795 . sum pd:DBInterface_t . (

796 QUERY_DATA(PeerId , pd)

797 . SEND_EAP_REQ_O(t4, PeerId , req4(

798 NoobId(data), HMAC(Kms(pd), 2, Vers(sd), Verp(pd), PeerId , Cryptosuites(sd),

799 Dirs(sd), ServerInfo(sd), Cryptosuitep(pd), Dirp(pd), PeerInfo(pd), PK(sd), Ns(pd),

800 PKp(pd), Np(pd), NoobId(data))

801 ))

802 )
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803 . UPDATE_NONCE(PeerId , Noob(NoobId(data)))

804 . UPDATE_TYPE(PeerId , Type(t4))

805 )

806 ) . Server(sd, noobs)

807 )

808 )

809 )

810 % Receive OOB (Peer -to -Server)

811 + (Dirs(sd) == 1 || Dirs(sd) == 3) -> (

812 sum PeerId:Pos , Server_State:State_t , Type:Type_t . (

813 (PeerId <= max_peers) -> (

814 QUERY_STATE(PeerId , Server_State , Type)

815 . (Server_State == s1 && Type == no_type) -> (

816 sum Noob:Noob_t , Hoob:Hoob_t . (

817 RECV_OOB_P2S_I(PeerId , Noob , Hoob)

818 . sum pd:DBInterface_t . (

819 QUERY_DATA(PeerId , pd)

820 . (Hoob == H(

821 Dirp(pd), Vers(sd), Verp(pd), PeerId , Cryptosuites(sd), Dirs(sd), ServerInfo(sd),

822 Cryptosuitep(pd), Dirp(pd), PeerInfo(pd), PK(sd), Ns(pd), PKp(pd), Np(pd), Noob)

823 ) -> (

824 UPDATE_STATE(PeerId , s2)

825 . UPDATE_NONCE(PeerId , Noob(Noob))

826 . Server(sd , noobs)

827 )

828 <> sum OobRetries:Nat . (

829 QUERY_FAILED_OOBS(PeerId , OobRetries)

830 . (OobRetries >= max_oob_retries) -> (

831 RESET_DATABASE(PeerId)

832 . UPDATE_STATE(PeerId , s0)

833 ) <> UPDATE_FAILED_OOBS(PeerId , OobRetries +1)

834 ) . Server(sd, noobs)

835 )

836 )

837 ) <> Server(sd , noobs)

838 )

839 )

840 )

841 % Send OOB (Server -to-Peer)

842 + (Dirs(sd) == 2 || Dirs(sd) == 3) -> (

843 sum PeerId:Pos , Server_State:State_t , Type:Type_t . (

844 (PeerId <= max_peers) -> (

845 QUERY_STATE(PeerId , Server_State , Type)

846 . (Server_State == s1 && Type == no_type) -> (

847 sum pd:DBInterface_t . (

848 QUERY_DATA(PeerId , pd)

849 . sum Noob:Noob_t . (

850 NEW_NOOB(Noob)

851 . SEND_OOB_S2P_O(PeerId , Noob , H(

852 Dirp(pd), Vers(sd), Verp(pd), PeerId , Cryptosuites(sd), Dirs(sd),

853 ServerInfo(sd), Cryptosuitep(pd), Dirp(pd), PeerInfo(pd), PK(sd), Ns(pd),

854 PKp(pd), Np(pd), Noob)

855 )

856 . SERV_STATE(PeerId , s1)

857 . Server(sd , noobs <| Noob)

858 )

859 )

860 ) <> Server(sd , noobs)

861 )

862 )

863 )

864 ;

865
866 % Restore the state after sending or receiving an error message

867 % Type : Next expected type

868 % PeerId : Peer ID

869 % Error : Error message

870 Server_Error(Type:Type_t , PeerId:PeerId_t , Error:Error_t) =

871 % Alert received error message

872 LOG_ERROR(Error)

873 % Send EAP -Failure and recover from error

874 . SEND_EAP_FAIL_O . (

875 % Error 1006: transition to state 1

876 (Error == E1006) -> (

877 UPDATE_STATE(PeerId , s1)

878 . UPDATE_TYPE(PeerId , Type(no_type))

879 )

880 % Error 2002: transition to sink state

881 <> (Error == E2002) -> (

882 UPDATE_STATE(PeerId , error)

883 . UPDATE_TYPE(PeerId , Type(no_type))

884 )

885 %% Generic error handling
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886 % Initial Exchange

887 <> (Type == t1 || Type == t2) -> (

888 UPDATE_STATE(PeerId , s0)

889 . UPDATE_TYPE(PeerId , Type(no_type))

890 )

891 % Reconnect Exchange

892 <> (Type == t5 || Type == t6 || Type == t7) -> (

893 UPDATE_STATE(PeerId , s3)

894 . UPDATE_TYPE(PeerId , Type(no_type))

895 )

896 % Waiting/Completion Exchange

897 <> (Type == t3 || Type == t8 || Type == t4) -> (

898 UPDATE_TYPE(PeerId , Type(no_type))

899 )

900 )

901 ;

902
903 % EAP Peer

904 Peer(Peer_State:State_t , PeerId:PeerId_t , Type:Type_t , spd:StaticPeerData_t , Vers:Ver_l , Verp:Ver_t ,

905 Cryptosuites:Cryptosuite_l , Cryptosuitep:Cryptosuite_t , Dirs:Dir_t , ServerInfo:Info_t , PKs:PK_t , Ns:N_t ,

906 Np:N_t , Noob:Noob_t , Dirp:Dir_t , Kmp:K_t , Kms:K_t , noobs:List(Nat), oobretries:Nat) =

907 (! is_error(Peer_State)) -> (

908 % Initial Exchange

909 (Peer_State == s0) -> (

910 (Type == no_type) -> (

911 SEND_EAP_RES_ID_O(PeerId , Peer_State)

912 . Peer(Type = id)

913 )

914 + (Type == t2) -> (

915 RECV_EAP_FAIL_I

916 . PEER_STATE(PeerId , s1)

917 . Peer(Peer_State = s1 , Type = no_type)

918 )

919 )

920 % Completion/Waiting Exchange

921 + (Peer_State == s1 || Peer_State == s2) -> (

922 (Type == no_type) -> (

923 SEND_EAP_RES_ID_O(PeerId , Peer_State)

924 . Peer(Type = id)

925 )

926 % Waiting Exchange

927 + (Type == t3) -> (

928 RECV_EAP_FAIL_I

929 . PEER_STATE(PeerId , s1)

930 . Peer(Peer_State = s1 , Type = no_type)

931 )

932 % Completion Exchange

933 + (Type == t4) -> (

934 RECV_EAP_SUCC_I

935 . PEER_STATE(PeerId , s4)

936 . Peer(Peer_State = s4 , Type = no_type)

937 )

938 )

939 % Reconnect Exchange

940 + (Peer_State == s3) -> (

941 (Type == no_type) -> (

942 SEND_EAP_RES_ID_O(PeerId , Peer_State)

943 . Peer(Type = id)

944 )

945 + (Type == t7) -> (

946 RECV_EAP_SUCC_I

947 . PEER_STATE(PeerId , s4)

948 . Peer(Peer_State = s4 , Type = no_type)

949 )

950 )

951 + sum PeerId_RCV:PeerId_t , data:Data_t , type:Type_t . (

952 RECV_EAP_REQ_I(type , PeerId_RCV , data) . (

953 % Receive error message

954 (type == t0) -> (

955 RECV_EAP_FAIL_I . (

956 % Error 1006: transition to state 1

957 (ErrorCode(data) == E1006) -> (

958 PEER_STATE(PeerId , s1)

959 . Peer(Peer_State = s1 , Type = no_type)

960 )

961 % Error 2002: transition to sink state

962 + (ErrorCode(data) == E2002) -> (

963 PEER_STATE(PeerId , error)

964 . Peer(Peer_State = error , Type = no_type)

965 )

966 % Initial Exchange

967 + (Type == t1 || Type == t2) -> (

968 PEER_STATE(PeerId , s0)
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969 . Peer(Peer_State = s0 , Type = no_type)

970 )

971 % Reconnect Exchange

972 + (Type == t5 || Type == t6 || Type == t7) -> (

973 PEER_STATE(PeerId , s3)

974 . Peer(Peer_State = s3 , Type = no_type)

975 )

976 % Waiting/Completion Exchange

977 + (Type == t3 || Type == t8 || Type == t4) -> (

978 Peer(Type = no_type)

979 )

980 % No exchange

981 + (Type == id || Type == no_type) -> (

982 Peer(Type = no_type)

983 )

984 )

985 )

986 % Invalid data

987 <> (is_invalid(data)) -> (

988 SEND_EAP_RES_O(t0 , PeerId_RCV , err(E1003))

989 . RECV_EAP_FAIL_I . (

990 % Initial Exchange

991 (Type == t1 || Type == t2) -> (

992 PEER_STATE(PeerId , s0)

993 . Peer(Peer_State = s0 , Type = no_type)

994 )

995 % Reconnect Exchange

996 + (Type == t5 || Type == t6 || Type == t7) -> (

997 PEER_STATE(PeerId , s3)

998 . Peer(Peer_State = s3 , Type = no_type)

999 )

1000 % Waiting/Completion Exchange

1001 + (Type == t3 || Type == t8 || Type == t4) -> (

1002 Peer(Type = no_type)

1003 )

1004 % No exchange

1005 + (Type == id || Type == no_type) -> (

1006 Peer(Type = no_type)

1007 )

1008 )

1009 )

1010 % Unexpected message type

1011 <> (

1012 (Type == id && type != t1

1013 && type != t3

1014 && type != t4

1015 && type != t5

1016 && type != t8) ||

1017 (Type == t1 && type != t2) ||

1018 (Type == t2 && type != failure) ||

1019 (Type == t3 && type != failure) ||

1020 (Type == t4 && type != success) ||

1021 (Type == t5 && type != t6) ||

1022 (Type == t6 && type != t7) ||

1023 (Type == t7 && type != success) ||

1024 (Type == t8 && type != t4)

1025 ) -> (

1026 SEND_EAP_RES(t0, PeerId_RCV , err(E1004))

1027 . RECV_EAP_FAIL_I . (

1028 % Initial Exchange

1029 (Type == t1 || Type == t2) -> (

1030 PEER_STATE(PeerId , s0)

1031 . Peer(Peer_State = s0 , Type = no_type)

1032 )

1033 % Reconnect Exchange

1034 + (Type == t5 || Type == t6 || Type == t7) -> (

1035 PEER_STATE(PeerId , s3)

1036 . Peer(Peer_State = s3 , Type = no_type)

1037 )

1038 % Waiting/Completion Exchange

1039 + (Type == t3 || Type == t8 || Type == t4) -> (

1040 Peer(Type = no_type)

1041 )

1042 % No exchange

1043 + (Type == id || Type == no_type) -> (

1044 Peer(Type = no_type)

1045 )

1046 )

1047 )

1048 % Initial Exchange , PeerId not set

1049 <> (type == t1) -> (

1050 % No mutually supported protocol version

1051 (!( exists a,b:Nat .
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1052 (a < #Vers(data) && b < #Vers(spd) && (Vers(data) . a) == (Vers(spd) . b)))) -> (

1053 SEND_EAP_RES_O(t0 , PeerId_RCV , err(E3001))

1054 . RECV_EAP_FAIL_I

1055 . PEER_STATE(PeerId , s0)

1056 . Peer(Peer_State = s0 , Type = no_type)

1057 )

1058 % No mutually supported cryptosuite

1059 <> (!( exists a,b:Nat . (a < #Cryptosuites(data) && b < #Cryptosuites(spd) &&

1060 (Cryptosuites(data).a) == (Cryptosuites(spd).b)))) -> (

1061 SEND_EAP_RES_O(t0 , PeerId_RCV , err(E3002))

1062 . RECV_EAP_FAIL_I

1063 . PEER_STATE(PeerId , s0)

1064 . Peer(Peer_State = s0 , Type = no_type)

1065 )

1066 % No mutually supported OOB direction

1067 <> ((Dirs(data)) != 3 && (Dirs(data)) != Dirs(spd)) -> (

1068 SEND_EAP_RES_O(t0 , PeerId_RCV , err(E3003))

1069 . RECV_EAP_FAIL_I

1070 . PEER_STATE(PeerId , s0)

1071 . Peer(Peer_State = s0 , Type = no_type)

1072 )

1073 % Invalid server info

1074 <> (is_invalidinfo(ServerInfo(data))) -> (

1075 SEND_EAP_RES_O(t0 , PeerId_RCV , err(E5002))

1076 . RECV_EAP_FAIL_I

1077 . PEER_STATE(PeerId , s0)

1078 . Peer(Peer_State = s0 , Type = no_type)

1079 )

1080 % No conflicts , send response back

1081 <> sum Cryptosuite:Cryptosuite_t , Version:Ver_t , Direction:Dir_t . (

1082 (Cryptosuite in Cryptosuites(data) && Cryptosuite in Cryptosuites(spd) &&

1083 Version in Vers(data) && Version in Vers(spd) && Direction == Dirs(spd)

1084 ) -> (

1085 SEND_EAP_RES_O(type , PeerId_RCV , res1(Version , Cryptosuite , Direction , PeerInfo(spd)))

1086 )

1087 . Peer(PeerId = PeerId_RCV , Type = type , Vers = Vers(data), Verp = Version ,

1088 Cryptosuites = Cryptosuites(data), Cryptosuitep = Cryptosuite , Dirs = Dirs(data),

1089 Dirp = Direction , ServerInfo = ServerInfo(data)

1090 )

1091 )

1092 )

1093 % PeerId set

1094 + (type >= t2) -> (

1095 % Initial Exchange

1096 (type == t2) -> (

1097 sum np:N_t . (

1098 NEW_NONCE(np)

1099 . SEND_EAP_RES_O(type , PeerId , res2(PK(spd), np))

1100 . Peer(Type = type , PKs = PKs(data), Ns = Ns(data), Np = np)

1101 )

1102 )

1103 % Waiting Exchange

1104 <> (type == t3) -> (

1105 SEND_EAP_RES_O(type , PeerId , res3)

1106 . Peer(Type = type)

1107 )

1108 % Completion Exchange

1109 <> (type == t4) -> (

1110 % Invalid OOB message identifier

1111 (!( NoobId(data) in noobs) && (NoobId(data) != Noob)) -> (

1112 SEND_EAP_RES_O(t0 , PeerId , err(E1006))

1113 . RECV_EAP_FAIL_I

1114 . PEER_STATE(PeerId , s1)

1115 . Peer(Peer_State = s1 , Type = no_type)

1116 )

1117 % MAC verification failure

1118 <> (MACs(data) != HMAC(

1119 Completion (192, ECDH(PK(spd), PKs), Np , Ns , NoobId(data)),

1120 2, Vers , Verp , PeerId , Cryptosuites , Dirs , ServerInfo ,

1121 Cryptosuitep , Dirp , PeerInfo(spd), PKs , Ns, PK(spd), Np ,

1122 NoobId(data)

1123 )) -> (

1124 SEND_EAP_RES_O(t0 , PeerId , err(E4001))

1125 . RECV_EAP_FAIL_I

1126 . Peer(Type = no_type)

1127 )

1128 <> SEND_EAP_RES_O(type , PeerId , res4(

1129 HMAC(Completion (224, ECDH(PK(spd), PKs), Np, Ns, NoobId(data)),

1130 1, Vers , Verp , PeerId , Cryptosuites , Dirs , ServerInfo ,

1131 Cryptosuitep , Dirp , PeerInfo(spd), PKs , Ns, PK(spd), Np ,

1132 NoobId(data))

1133 ))

1134 . Peer(Type = type ,



APPENDIX B. MODEL CODE 80

1135 Kmp = Completion (224, ECDH(PK(spd), PKs), Np, Ns, NoobId(data)),

1136 Kms = Completion (192, ECDH(PK(spd), PKs), Np, Ns, NoobId(data))

1137 )

1138 )

1139 % Reconnect Exchange

1140 <> (type == t5) -> (

1141 % No mutually supported protocol version

1142 (!( exists a,b:Nat .

1143 (a < #Vers(data) && b < #Vers(spd) && (Vers(data) . a) == (Vers(spd) . b)))) -> (

1144 SEND_EAP_RES_O(t0 , PeerId_RCV , err(E3001))

1145 . RECV_EAP_FAIL_I

1146 . PEER_STATE(PeerId , s0)

1147 . Peer(Peer_State = s0 , Type = no_type)

1148 )

1149 % No mutually supported cryptosuite

1150 <> (!( exists a,b:Nat .

1151 (a < #Cryptosuites(data) && b < #Cryptosuites(spd) &&

1152 (Cryptosuites(data).a) == (Cryptosuites(spd).b))) -> (

1153 SEND_EAP_RES_O(type , PeerId , err(E3002))

1154 . RECV_EAP_FAIL_I

1155 . PEER_STATE(PeerId , s3)

1156 . Peer(Peer_State = s3 , Type = no_type)

1157 )

1158 )

1159 % No conflicts , send response back

1160 + sum Cryptosuite:Cryptosuite_t , Version:Ver_t . (

1161 (Cryptosuite in Cryptosuites(data) && Cryptosuite in Cryptosuites(spd) &&

1162 Version in Vers(data) && Version in Vers(spd)

1163 ) -> (

1164 SEND_EAP_RES_O(type , PeerId , res5(Version , Cryptosuite))

1165 . Peer(Type = type , Vers = Vers(data), Cryptosuitep = Cryptosuite)

1166 )

1167 )

1168 )

1169 <> (type == t6) -> (

1170 sum np2:N_t . (

1171 NEW_NONCE(np2)

1172 . (PKs2(data) == 0) -> (

1173 SEND_EAP_RES_O(type , PeerId , res6(0, np2))

1174 . Peer(Type = type , Ns = Ns2(data), Np = np2 ,

1175 Kmp = Rekeying (224, Kmp , np2 , Ns2(data)),

1176 Kms = Rekeying (192, Kms , np2 , Ns2(data))

1177 )

1178 )

1179 <> (PKs2(data) != 0) -> (

1180 SEND_EAP_RES_O(type , PeerId , res6(PK2(spd), np2))

1181 . Peer(Type = type , PKs = PKs2(data), Ns = Ns2(data), Np = np2 ,

1182 Kmp = RekeyingECDH (224, ECDH(PK2(spd), PKs2(data)), np2 , Ns2(data), Kmp),

1183 Kms = RekeyingECDH (192, ECDH(PK2(spd), PKs2(data)), np2 , Ns2(data), Kms)

1184 )

1185 )

1186 )

1187 )

1188 <> (type == t7) -> (

1189 (MACs2(data) == HMAC(

1190 Kms , 2, Vers , Verp , PeerId , Cryptosuites , 0, ServerInfo ,

1191 Cryptosuitep , 0, PeerInfo(spd), 0, Ns, 0, Np, 0

1192 )) -> (

1193 SEND_EAP_RES_O(type , PeerId , res7(

1194 HMAC(Kmp , 1, Vers , Verp , PeerId , Cryptosuites , 0, ServerInfo ,

1195 Cryptosuitep , 0, PeerInfo(spd), 0, Ns, 0, Np, 0)

1196 ))

1197 . Peer(Type = type)

1198 )

1199 <> (MACs2(data) == HMAC(

1200 Kms , 2, Vers , Verp , PeerId , Cryptosuites , 0, ServerInfo ,

1201 Cryptosuitep , 0, PeerInfo(spd), PKs , Ns , PK2(spd), Np, 0

1202 )) -> (

1203 SEND_EAP_RES_O(type , PeerId , res7(

1204 HMAC(Kmp , 1, Vers , Verp , PeerId , Cryptosuites , 0, ServerInfo ,

1205 Cryptosuitep , 0, PeerInfo(spd), PKs , Ns , PK2(spd), Np, 0)

1206 ))

1207 . Peer(Type = type)

1208 )

1209 <> SEND_EAP_RES_O(t0 , PeerId , err(E4001))

1210 . RECV_EAP_FAIL_I

1211 . PEER_STATE(PeerId , s3)

1212 . Peer(Peer_State = s3 , Type = no_type)

1213 )

1214 % Completion Exchange

1215 <> (type == t8) -> (

1216 SEND_EAP_RES_O(type , PeerId , res8(Noob))

1217 . Peer(Type = type)
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1218 )

1219 )

1220 )

1221 + (Peer_State == s1 && Type == no_type) -> (

1222 % Receive OOB (Server -to-Peer)

1223 (Dirs(spd) == 2 || Dirs(spd) == 3) -> (

1224 sum noob:Noob_t , Hoob:Hoob_t . (

1225 RECV_OOB_S2P_I(PeerId , noob , Hoob)

1226 . (Hoob == H(

1227 Dirp , Vers , Verp , PeerId , Cryptosuites , Dirs , ServerInfo ,

1228 Cryptosuitep , Dirp , PeerInfo(spd), PKs , Ns, PK(spd), Np , noob)

1229 ) -> (

1230 PEER_STATE(PeerId , s2)

1231 . Peer(Peer_State = s2 , Noob = noob)

1232 )

1233 <> (oobretries >= max_oob_retries) -> (

1234 PEER_STATE(PeerId , s0)

1235 . Peer(Peer_State = s0 , oobretries = 0)

1236 ) <> Peer(oobretries = oobretries +1)

1237 )

1238 )

1239 % Send OOB (Peer -to-Server)

1240 + (Dirs(spd) == 1 || Dirs(spd) == 3) -> (

1241 sum noob:Noob_t . (

1242 NEW_NOOB(noob)

1243 . SEND_OOB_P2S_O(PeerId , noob , H(

1244 Dirp , Vers , Verp , PeerId , Cryptosuites , Dirs , ServerInfo ,

1245 Cryptosuitep , Dirp , PeerInfo(spd), PKs , Ns, PK(spd), Np , noob)

1246 )

1247 . PEER_STATE(PeerId , s1)

1248 . Peer(noobs = noobs <| noob)

1249 )

1250 )

1251 )

1252 )

1253 % Mobility/Timeout/Failure

1254 + (Peer_State == s4 && Type == no_type) -> (

1255 PEER_STATE(PeerId , s3)

1256 . MOBILITY_TIMEOUT_FAILURE

1257 . Peer(Peer_State = s3)

1258 )

1259 % User reset

1260 + USER_RESET

1261 . PEER_STATE(PeerId , s0)

1262 . Peer(Peer_State = s0 , PeerId = 0, Type = no_type)

1263 )

1264 ;

1265
1266 init

1267 % Allowed actions

1268 allow({

1269 SEND_EAP_RES_ID , RECV_EAP_RES_ID ,

1270 SEND_EAP_REQ , RECV_EAP_REQ ,

1271 SEND_EAP_RES , RECV_EAP_RES ,

1272 SEND_EAP_FAIL , RECV_EAP_FAIL ,

1273 SEND_EAP_SUCC , RECV_EAP_SUCC ,

1274 SEND_OOB_P2S , RECV_OOB_P2S ,

1275 SEND_OOB_S2P , RECV_OOB_S2P ,

1276 MOBILITY_TIMEOUT_FAILURE ,

1277 % USER_RESET ,

1278 SERV_STATE , PEER_STATE ,

1279 LOG_ERROR ,

1280 RNG_MA ,

1281 QUERY_FAILED_OOBS_MA , UPDATE_FAILED_OOBS_MA ,

1282 QUERY_STATE_MA , UPDATE_STATE_MA ,

1283 QUERY_DATA_MA , UPDATE_DATA_MA ,

1284 UPDATE_NONCE_MA , UPDATE_TYPE_MA , UPDATE_KEY_MA ,

1285 RESET_DATABASE_MA ,

1286 MAX_PEERIDS_REACHED ,

1287 MAX_NOOBS_REACHED ,

1288 MAX_NONCES_REACHED

1289 },

1290 comm({

1291 % Send/receive messages

1292 SEND_EAP_RES_ID_O | SEND_EAP_RES_ID_I -> SEND_EAP_RES_ID ,

1293 RECV_EAP_RES_ID_O | RECV_EAP_RES_ID_I -> RECV_EAP_RES_ID ,

1294 SEND_EAP_REQ_O | SEND_EAP_REQ_I -> SEND_EAP_REQ ,

1295 RECV_EAP_REQ_O | RECV_EAP_REQ_I -> RECV_EAP_REQ ,

1296 SEND_EAP_RES_O | SEND_EAP_RES_I -> SEND_EAP_RES ,

1297 RECV_EAP_RES_O | RECV_EAP_RES_I -> RECV_EAP_RES ,

1298 SEND_EAP_FAIL_O | SEND_EAP_FAIL_I -> SEND_EAP_FAIL ,

1299 RECV_EAP_FAIL_O | RECV_EAP_FAIL_I -> RECV_EAP_FAIL ,

1300 SEND_EAP_SUCC_O | SEND_EAP_SUCC_I -> SEND_EAP_SUCC ,
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1301 RECV_EAP_SUCC_O | RECV_EAP_SUCC_I -> RECV_EAP_SUCC ,

1302 SEND_OOB_P2S_O | SEND_OOB_P2S_I -> SEND_OOB_P2S ,

1303 RECV_OOB_P2S_O | RECV_OOB_P2S_I -> RECV_OOB_P2S ,

1304 SEND_OOB_S2P_O | SEND_OOB_S2P_I -> SEND_OOB_S2P ,

1305 RECV_OOB_S2P_O | RECV_OOB_S2P_I -> RECV_OOB_S2P ,

1306
1307 % Database communication

1308 QUERY_STATE | QUERY_STATE_DB -> QUERY_STATE_MA ,

1309 QUERY_DATA | QUERY_DATA_DB -> QUERY_DATA_MA ,

1310 QUERY_FAILED_OOBS | QUERY_FAILED_OOBS_DB -> QUERY_FAILED_OOBS_MA ,

1311 UPDATE_FAILED_OOBS | UPDATE_FAILED_OOBS_DB -> UPDATE_FAILED_OOBS_MA ,

1312 UPDATE_STATE | UPDATE_STATE_DB -> UPDATE_STATE_MA ,

1313 UPDATE_DATA | UPDATE_DATA_DB -> UPDATE_DATA_MA ,

1314 UPDATE_NONCE | UPDATE_NONCE_DB -> UPDATE_NONCE_MA ,

1315 UPDATE_TYPE | UPDATE_TYPE_DB -> UPDATE_TYPE_MA ,

1316 UPDATE_KEY | UPDATE_KEY_DB -> UPDATE_KEY_MA ,

1317
1318 % Reset database for a given PeerId

1319 RESET_DATABASE | RESET_DATABASE_DB -> RESET_DATABASE_MA ,

1320
1321 % Random value generation

1322 NEW_NONCE_RNG | NEW_NONCE -> RNG_MA ,

1323 NEW_NOOB_RNG | NEW_NOOB -> RNG_MA ,

1324 NEW_PEERID_RNG | NEW_PEERID -> RNG_MA

1325 },

1326
1327 % Start processes

1328 Server(static_serv_data , []) ||

1329 Peer(s0 , 0, no_type , static_peer_data , [], 0, [], 0, 0, no_info , 0, 0, 0, 0, 0, no_key , no_key , [], 0) ||

1330 Rng(1, 1, 1) ||

1331 Database(state , verp , cryptosuitep , dirp , peerinfo , pkp , np, ns, noob , oobretries , type , kms , kmp) ||

1332 ServerToPeerChannel(true) || PeerToServerChannel(false) ||

1333 ServerToPeerOOBChannel || PeerToServerOOBChannel || ServerToPeerOOBChannel || PeerToServerOOBChannel

1334 ));
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