
Aalto University

School of Science

Master’s Programme in ICT Innovation

Alessio Spallino

Native versus hybrid mobile applica-
tion development for professional mem-
bership services

Master’s Thesis
Espoo, July 30, 2018

Supervisors: Professor Mario Di Francesco, Aalto University
Professor Anna Perini, University of Trento

Advisor: Tapio Rantanen M.Sc. (Tech.)

Aalto University
School of Science
Master’s Programme in ICT Innovation

ABSTRACT OF
MASTER’S THESIS

Author: Alessio Spallino

Title:
Native versus hybrid mobile application development for professional membership
services

Date: July 30, 2018 Pages: 70

Major: Software and Service Architectures Code: SCI3082

Supervisors: Professor Mario Di Francesco
Professor Anna Perini

Advisor: Tapio Rantanen M.Sc. (Tech.)

Mobile development is a necessity for every modern business. Nowadays, many so-
lutions to implement mobile applications are available in the market. The largest
amount of applications are purely native, meaning that native development is
still the preferred development solution. However, the advent of cross-platform
mobile development and hybrid mobile development technologies is starting to
change the software development process in companies. In fact, several major mo-
bile applications including Facebook, Instagram, Skype, Bloomberg, Uber, Tesla,
and Soundcloud are not native; these mobile applications are implemented using
frameworks that combine native code with platform-independent code. These
frameworks are part of the Hybrid mobile development solutions.

In many cases, businesses are trying to offer their services through mobile appli-
cations, but most of the times these applications are not complicated and do not
require very innovative development. For this reason, software companies are keen
to explore new mobile application development solutions that are cost-efficient.

This thesis presents the complete renovation process of a mobile application for
professional membership services currently available in the Apple app store and
Google play store. It starts showing the requirements engineering process that
helped to define the software requirements. After that, this thesis details the
implementation process of two native mobile applications and one in React Na-
tive. The three applications follow the same design constraints required by the
customer. Finally, this thesis presents a performance comparison between the
purely Native mobile applications and the React Native mobile application.

Keywords: Mobile application development, Native applications, Hybrid
applications, React Native, Performance, requirements engi-
neering, applications, iOS, Android

Language: English

2

Acknowledgements

I would first like to thank my thesis supervisor, Dr. Mario Di Francesco,
who was always available to help me whenever I ran into a trouble spot or
had a question about my research or writing. He never made me feel under
pressure, without him I would never have managed to finish on time.

I would also like to thank my second thesis supervisor Prof. Anna Perini,
research scientist at Fondazione Bruno Kessler and Professor at University of
Trento. I am gratefully indebted to her for helping me with the requirements
engineering chapter.

I would also like to thank the Insinööriliitto engineers association for
giving me the freedom to write my MSc thesis using material from the im-
plementation of their mobile application.

I am also grateful to Tapio Rantanen, Software leader at Eficode Oy. I
am extremely thankful for the help he gave me to conclude this thesis with
excellent results.

Finally, I must express my very profound gratitude to my parents for pro-
viding me with unfailing support and continuous encouragement throughout
my years of study and through the process of researching and writing this
thesis. This accomplishment would not have been possible without them.
Thank you.

Espoo, July 30, 2018

Alessio Spallino

3

Abbreviations and Acronyms

Virtual DOM Virtual Document Object Model
SR Model Strategic Rationale Model
SD Model Strategic Dependency Model
UML Unified Modeling Language
SRS Software Requirement pecification
RSS Really Simple Syndication
AHP Analytic Hierarchy Process
CPU Central Processing Unit
IoT Internet of Things
SDK Software Development Kit
IDE Integrated Development Environment
JS Javascript
HTML HyperText Markup Language
CSS Cascading Style Sheets
CLI Command Line Interface
XML eXtensible Markup Language
GPU Graphics Processing Unit
MiB Mebibyte

4

Contents

Abbreviations and Acronyms 4

1 Introduction 9
1.1 Research topic . 10
1.2 Research questions and methodology 10
1.3 Structure of the Thesis . 11

2 Mobile application programming 12
2.1 Platform-specific native applications 13
2.2 Progressive web applications 14
2.3 Hybrid mobile applications . 14

2.3.1 Ionic framework (Cordova) 15
2.3.2 React Native . 16

2.4 Agile software development 19

3 Requirements engineering 22
3.1 Goal-oriented requirements engineering 23
3.2 UML models . 28
3.3 Software requirements . 30

3.3.1 Requirements specification 30
3.3.2 Prioritization of the requirements 32

4 Implementation 35
4.1 Native mobile applications . 38
4.2 React Native mobile application 44

5 Performance comparison 48
5.1 iOS applications . 49

5.1.1 CPU . 49
5.1.2 GPU . 51
5.1.3 Memory . 52

5

5.2 Android applications . 53
5.2.1 CPU . 54
5.2.2 Memory . 55
5.2.3 GPU . 57

5.3 Summary of results . 60

6 Conclusion 63

A First appendix 69

6

List of Figures

2.1 The standard components for the UI of different DOMs 16
2.2 Redux state management overview 19
2.3 Scrum process overview [24] 20

3.1 The i* basic elements . 23
3.2 Strategic Dependencies model of the system as-is 24
3.3 Strategic Rationale model of the system to-be 25
3.4 Strategic Dependencies model where system-to-be is intro-

duced into the system-as-is . 25
3.5 Strategic Rationale of the final system-to-be 26
3.6 Main dependencies between system-to-be and engineers 27
3.7 Use case diagram of the Insinööriliitto mobile app with the

two actors . 28
3.8 Two examples of use case specification 29
3.9 Requirements specification table for the Insinööriliitto mobile

application. 31
3.10 First step of the Analytic hierarchy process (AHP) 33
3.11 Second step of the Analytic hierarchy process (AHP) 33

4.1 Drawer navigation of the native mobile applications 38
4.2 Overview of the news feed under iOS 40
4.3 Overview of the news feed under Android 40
4.4 iOS and Android overview of the ”work-hours” feature imple-

mentation: first tab view . 42
4.5 iOS and Android overview of the “work-hours” feature imple-

mentation: second tab view 43
4.6 React Native apps overview of the drawer and read RSS news

feature . 46
4.7 React Native apps overview of the add/edit work-hours feature 47

7

5.1 CPU Usage chart of the Native iOS mobile application versus
the React-Native application 50

5.2 GPU Usage chart of the Native iOS application versus the
React-Native application . 51

5.3 Memory usage chart of the Native iOS mobile application ver-
sus the React-Native application 53

5.4 Profile GPU Rendering Graph Legend 54
5.5 Enlarged Profile GPU Rendering graph 54
5.6 CPU Usage chart of the Native Android mobile application

versus the React-Native application 55
5.7 Memory usage chart of the Native Android mobile application

versus the React-Native application 56
5.8 GPU Usage comparison for the scrollview test and add workhour

process test . 58
5.9 GPU Usage comparison for the webview loading test and News

list loading test . 59
5.10 Results of the performance comparison tests 61
5.11 Styling issue during cells implementation 62

A.1 Applications functionalities . 69
A.2 Applications functionalities . 70

8

Chapter 1

Introduction

Despite the expansion of new and diverse technology niches, mobile applica-
tions and smartphones have still an important role in people’s life. According
to Ericsson, in five years’ time, 70 percent of the world’s population will use
smartphones; an unimaginable measure that explains how central these de-
vices are becoming to how we communicate with each other and perform
daily activities [12].

Technology trends are continually changing; the Internet of Things (IoT),
Artificial Intelligence, Augmented and Virtual Reality, and Chatbots are
prevalent, but in most cases the platform that incorporates these technolo-
gies is always a mobile device. Nowadays, people use smartphones for more
complex operations, due to the reduced difference between a computer and a
smartphone. This is justified by the rapid increase in the performance, mat-
uration of operating systems, and improvements in connectivity and storage
[11]. For all these reasons, users expect all businesses to offer their ser-
vices through mobile applications. Many small businesses we interact in our
everyday life have their dedicated mobile app. For marketing reasons, hav-
ing a mobile application is the fastest way to create a direct channel with
users. Services like push notifications give the possibility to get even closer
to direct interaction with the users, easily reminding about their services
whenever they need to. Moreover, people do not expect just apps, but they
pay attention to the mobile experience, the functionalities, and the design.
Due to the high demand for mobile applications, the approaches to develop
mobile applications are constantly growing. Indeed, developers and compa-
nies need to implement applications in a short time being able to propose
new and compelling solutions that impress customers.

9

CHAPTER 1. INTRODUCTION 10

1.1 Research topic

Insinööriliitto is the Finnish Association of Engineers. This association offers
the membership of the engineering union that provides several benefits. With
this membership, Insinööriliitto aims to help engineers on their professional
development. Members are free to ask questions about employment issues,
career planning, or paycheck. Moreover, the membership offers a range of
educational supplies and personal counseling, whenever the engineer is still a
student or has already a working career. Insinööriliitto has a website where
the user can quickly register to the union and check all their information.
Moreover, after the registration, engineers get a physical membership card
that guarantees several discounts for different services such as fuel and legal
services.

The idea of Insinööriliitto is to expand the use of their services throughout
their mobile application. The association already has a mobile application,
but their idea is to renovate it with new features. Insinööriliitto does not want
to create a new application from scratch; instead they intend to develop the
new features on top of the old application. The mobile application is available
for both Apple and Google platforms, and the structure is identical. Since
the applications look the same, there would be several options on the market
to develop the same application using less time and resources. These options
offer a mobile development environment to implement just one application
that works on different platforms, with small platform fixes. These options
are called hybrid mobile development solutions1.

The company that has agreed with Insinööriliitto for the implementation
of the new app wants to extend the range of mobile development solutions
that they offer to clients. Nowadays, they develop an application for the
Apple application store and another one for the Google application store.
If cross-platform mobile development solutions and hybrid mobile develop-
ment solutions prove their reliability, the company might take seriously in
consideration to add them in the technology stack they offer to customers.

1.2 Research questions and methodology

Based on the research topic presented before, this thesis aims at answering
the following research questions.

1Hybrid applications combine the functionality of native apps with the cross-platform
compatibility of web apps. The hybrid apps are then hosted inside a native Android or
iOS container so that the same code can be deployed on multiple mobile platforms

CHAPTER 1. INTRODUCTION 11

1. Do hybrid mobile application development solutions have the potential
to replace native mobile development solutions?

2. What are the differences in performance between hybrid mobile devel-
opment solutions and native mobile development solutions?

This research goes through all the development process of a native mobile
application. Moreover, it presents the implementation of the Insinööriliitto
mobile application with a hybrid mobile development framework called React
Native. After that, the thesis details the performance comparison between
the two mobile applications implemented with the two different solutions.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the back-
ground of mobile application programming, explaining several technologies
used during the implementation and performance comparison. Chapter 3
presents the requirements engineering process, namely, how to find the soft-
ware requirements starting from a set of goals of the stakeholders. Chap-
ter 4 provides a detailed explanation of the implementation process for the
Native mobile applications and the React Native mobile application. Chap-
ter 5 presents the performance comparison and discusses the results obtained
during the implementation and performance comparison process, trying to
analyze the results and provide the answers to the research questions.

Chapter 2

Mobile application programming

This chapter presents different mobile application development solutions cur-
rently available in the market. Furthermore, It introduces to a few helpful
technologies necessary to understand the next chapters. The last section of
the chapter presents which mobile application solution is used by this research
to perform the comparison between native and hybrid mobile applications.

With the rapid increase in the number of platforms available to develop
mobile applications, the whole process of deciding which mobile development
solution to use has become challenging. Companies and organizations in need
of developing a mobile application must take into consideration important
aspects, such as time and cost. Nowadays, the standard practice is still to
develop different mobile applications from scratch for every targeted platform
(e.g., iOS and Android)[35]. However, the mobile application development
world is continuously evolving, with very frequently new mobile development
technologies joining the market. E.g., The most recently released technology
is Flutter, another free and open-source solution presented by Google that is
now fast growing up.

The goal of this chapter is to introduce the four mobile development
application solutions available on the market, by focusing on the pros and
cons of each technology. The following are the four alternatives.

• Platform-specific native applications

• Progressive web applications

• Hybrid mobile applications

• React Native

12

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 13

2.1 Platform-specific native applications

A native application is a software program developed for use on a particu-
lar platform (iOS, Android, Windows). Building completely native mobile
applications represent the best way to ensure an in-depth integration of the
app with the mobile operating system. However, building platform-specific
mobile applications requires a different application for each native platform.
Moreover, each target platform requires different expertise with the program-
ming languages and Software Development Kits (SDKs) [23]. The code is
different for each target platform; this means that there is no way to share
the same code. The UI entirely fit the specific platforms, a key point that
guarantees everything to work fluidly. The following are the two most widely
used software for writing native mobile applications for the leading mobile
platforms.

• Android Studio. Integrated development environment (IDE) based
on IntelliJ IDEA of JetBrains1. The goal of Android Studio is to help
developers to be more productive and assist during the development
process. Android Studio has built-in support for Google services, such
as Google app engine and Firebase Cloud Messaging. Android Stu-
dio also provides extended support to develop for different devices like
smartphones, wearables, and Android TV. Uploading an Android ap-
plication on the Google play store requires only a few steps: Android
Studio gives the possibility to download the .apk file. The user then
needs to upload the file on the personal Google play store account.

• Xcode. Apple’s official Integrated development environment (IDE)
for Mac and iOS developers. It is the only software that allows devel-
opers to write code that runs on Apple products. Similar to Android
Studio, Xcode offer the support to develop for different Apple’s devices,
although Xcode works only on MacOS operating systems; it cannot run
on any other OS. Furthermore, Xcode holds a vital role in the publi-
cation of the applications. Apple has a meticulous way of checking
developers’ code, with different steps that start directly on Xcode be-
fore actually uploading the app on Apple’s Servers.

Platform-specific mobile applications have a high cost since every platform
needs a different mobile application, but also support and maintenance for
different types of apps result in higher product price. However, the platform-
specific solution of developing mobile applications is the most widely use and
tested approach.

1Java integrated development environment (IDE) for developing computer software

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 14

2.2 Progressive web applications

Progressive web applications strongly rely on the web standards (JS, HTML,
and CSS); for this reason, they can be installed via mobile web browsers and
are highly portable across multiple mobile platforms. This method enables
the app to work across platforms thereby reducing development cost and
time. Nevertheless, Progressive web apps also have some significant limita-
tions. E.g., the final user of the applications might use a browser or operating
system that does not support some features that developers need to imple-
ment; in this case, the web standards represent a negative aspect that might
cause some differences in the user experience. Moreover, Progressive web
apps offer access just to a limited number of native device features.

On the other hand, a key characteristic of a progressive web application is
the capacity for working and loading the content offline. The offline content
loading relies on a service worker2 that allows content caching.

It is enough to add the application to the device’s home screen. After
that, the app connects to the Internet to install the necessary data locally
on the device. When the application finally appears on the home screen,
it no longer carries the appearance of a site, giving the impression of being
a native application [13]. More precisely, content caching represents a key
feature that only progressive web applications offer, and it is in accordance
with the requirements of the RAIL model (Response, Animation, Idle, Load)
introduced by Google. Specifically, the RAIL model requires the application
to always respond to user requests, showing an animation while waiting for
content to load [27]. During inactivity, the so-called ”Idle moment” of the
RAIL model stores as much content as possible in the cache; this helps to
load all the content in less time the next time the user launches the app.

Furthermore, progressive web applications must also be adaptive and re-
sponsive to guarantee the user with an optimal version of the app for different
screen sizes.

2.3 Hybrid mobile applications

The definition of Hybrid mobile applications is still an open debate on the
mobile development field. This section introduces to two different mobile
application frameworks: Ionic framework and React native. In this case, the

2A service worker is a type of web worker. It is a JavaScript file that runs sepa-
rately from the main browser thread, intercepting network requests, caching or retrieving
resources from the cache, and delivering push messages.

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 15

Hybrid interpretation varies between the two solutions. The Ionic frame-
work is part of the Hybrid mobile world where the applications are websites
embedded in a mobile-native container. Contrarily, it is not entirely cor-
rect to define react native applications as native applications; although they
use native components, the logic and interaction do not change; it remains
written in Javascript. For this reason, the react native definition is open to
interpretations. This research defines react native as a hybrid solution.

2.3.1 Ionic framework (Cordova)

The Ionic Framework is an open source and free software development kit
(SDK) that is used to develop hybrid mobile applications with JavaScript,
CSS, and HTML5. It only requires a computer with an Internet connection to
start building applications. The Ionic framework has an active ever-growing
community that makes it easier for new developers to start building their
first applications.

As we have seen in the introduction of this section, the applications de-
veloped with the Ionic framework are Hybrid Mobile Applications; the main
reason is that they use browser windows to display their interfaces. These
browser windows are called WebViews3, and together with Apache Cordova4

they create the Architecture of Hybrid Mobile applications; everything relies
on these two concepts, where the WebView communicates with Cordova’s
APIs which then further communicates with the mobile device’s operating
system. Cordova mainly represents an interface between the WebViews and
the native functionalities of the phone, such as GPS or camera. Moreover,
Cordova converts the application code written in Ionic for other specific plat-
forms; the code is written only once, and then adapted to different platforms,
such as Android and iOS. Another important aspect of the Ionic framework
is that it provides a Command Line Interface (CLI) to develop and deploy
applications.

AngularJS is the core technology behind the Ionic framework. More pre-
cisely, AngularJS represents the engine that defines the components of the
graphical interface. To create native looking designs, developers must rely
on the CSS portion of the framework together with AngularJS [28].

3Browser pages that run inside the scope of a mobile application using Ionic. This
browser implements code written in HTML, CSS, and JavaScript.

4A platform that provides APIs written in JavaScript to interact with Native features
of the mobile device such as access to the camera or a microphone.

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 16

2.3.2 React Native

React Native is a framework to develop native mobile applications. As seen
with the Ionic framework, also React Native gives the possibility to deploy
the same code for Android and iOS platforms. React native is based on
ReactJS, a JavaScript framework used to develop web applications5. The
JavaScript code is the logic of the application, while all UI compiles into
native code. The application does not run into some wrapper, but a real
native app is available after the development process. React Native uses
JavaScript XML (JSX), a syntax extension to JavaScript that is used to
write the UI of the application. JSX uses the full power of JavaScript; it
produces React elements that can then be compiled into native code.

React Native follows a “component concept”. A component consists of
a state with some properties and a lifecycle. During the development of
the application, the developer can use the components multiple times, and
this usually really helps to speed up the development of the applications.
Furthermore, React Native also introduces to a new system called Virtual
document object model (Virtual DOM). This system is a virtual rep-
resentation, and simplified copy of the HTML DOM6. The Virtual DOM
allows React Native to do all the computational work within the virtual rep-
resentation, to skip DOM operations, often slow and browser-specific. More
precisely, when an event occurs, the page reacts to it modifying the Virtual
DOM elements of the page.

The Figure 2.1 below helps to better understand the concepts introduced
earlier. The figure compares some UI components of ReactJS for the web,
Native components, and React Native components. React Native knows the
translation of every Virtual DOM component for Android and iOS platforms.
The “translation” happen at compile-time.

Figure 2.1: The standard components for the UI of different DOMs

5https://reactjs.org/
6The Document Object Model (DOM) defines the logical structure of documents and

the way a document is accessed and manipulated.

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 17

Unlike the Ionic framework, React Native does not use WebViews, and
this is a positive aspect because the WebView usually requires a substantial
amount resources that lower the applications performances compared to the
ones developed with native UI. React Native maps every component into the
native interface of the Android and iOS platforms. Thanks to this mapping,
the mobile applications developed with React native provide performances
that are close to platform-specific mobile applications performances.

React Native applications also consist of some challenges that developers
must take into consideration:

• Limited cross-platform styling of components. Developers must
style components on their own or use third-party libraries. This styling
process can take a considerable amount of time.

• Only a basic set of pre-built components. The solution to
this problem is to build components from scratch or use a third party
library to speed up the building process. Usually, it is common to
use the second solution due to the number of open sources third-party
libraries available on the Internet.

• No responsiveness out of the box. Developers must create re-
sponsive designs on their own, defining sizes in the stylesheets or using
external packages (e.g., react-native-responsive-ui)

Besides having some restrictions, React Native is a framework that is con-
stantly growing, and a new version is available practically every month; there-
fore, bugs sometimes still appear, and this issue is also due to the high de-
pendency on third-party libraries React Native also includes powerful tools
that help to overcome the challenges presented above. The development pro-
cess might become hard, but the final results consist of applications with
deep integration into the operating system and excellent performance close
to native apps.

State management with Redux

After introducing React Native, it is important to mention and discuss Re-
dux, a state management framework. The state of a system (e.g., an appli-
cation) is the set of information that determines the output at a given input
at a specific time. For instance, a booking system of a restaurant that shows
that ten tables are free for the next day. During the day someone decides to
book a table; after that, the booking system is updated and shows that only
nine tables remain free. The internal state of the application changed, and

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 18

the component for reserving a table updated the state to show the number
nine instead of the number ten.

Redux helps to respond to user actions and manage the data displayed in
the application. The UI does not directly change the state of the application,
but instead, it sends a message to interpret the state.

Redux is built on top of three pillars.

• Actions. Actions are payloads of information that send data from
your application to your store. They are the only source of information
for the store.

• Reducers. Reducers specify how the application’s state changes in
response to actions sent to the store. Actions only describe what hap-
pened and not how the application’s state changes.

• Store. Object that brings actions and reducers together. More pre-
cisely, the store holds the application state and allows to access and
update it. Furthermore, the store allows listeners to register and un-
register.

Figure 2.2 clearly shows how Redux handles all the state management. The
following are the three key steps of the process.

1. The way to manipulate the state is to dispatch an action. As seen
before, actions are messages that we send to the store; e.g., if the
application wants to add a new row to a table, a component dispatches
an action to complete that request.

2. The reducers receive the action, and it updates the state. The way it
performs that is running a sync function. Reducers can be multiple
and combined.

3. Whenever the central store receives an update, it triggers the informa-
tion to all the subscribed components. The component can hook into
this subscription, and it receives the updates. After that, the applica-
tion might change some data displayed on the screen.

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 19

Figure 2.2: Redux state management overview

2.4 Agile software development

The company that has agreed with Insinööriliitto for the implementation of
the new application uses agile development methods for the development of
their software projects. Agile software development is a widely used process,
especially in the mobile landscape; it represents a set of different approaches
to implement software, with more collaboration between the software devel-
oper and the user (or stakeholders) during the software development process
[20]. Agile is now the mainstream software development method of choice
worldwide. The most popular agile method is called SCRUM [19]. There are
three principal roles in SCRUM [21] that includes product owner, scrum mas-
ter and team members. The product owner is responsible for maintaining the
list of requirements that are gathered by end users, teams, and stakeholders.
Scrum teams are the people that work on a project, including designers, de-
velopers, and testers. Teams use to complete the tasks in all their iterations.
Team members complete their work within a specific period, by arranging
daily meetings where they broadly discuss the work. The Scrum master is
the leader of the teams; it usually protects them from external or internal
disturbance, such as the product owner that asks directly a developer to add
a new feature. The Scrum master have to train the product owner and Scrum
team to follow the principles of agile methodology [24].

Figure 2.3 overviews the SCRUM process. It is important to mention
that the Scrum master, together with the product owner, has to decide when

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 20

to schedule the sprint reviews. The figure shows that sprint reviews times
usually take place every one to four weeks. During these Sprint reviews, the
team has to show the work to the product owner.

Figure 2.3: Scrum process overview [24]

The SCRUM process consists of the following five steps.

1. All the stakeholders start listing the requirements of the new system
together with the product owner. This list is called product backlog.

2. The scrum team defines the different sprints and their length. After
that, the team assigns the implementation of the requirements to the
different sprints.

3. The first sprint starts. The focus is the implementation of all the
requirements within the sprints created in the previous step. For every
sprint that ends there is a sprint review with the product owner.
During the development process or sprint reviews there might be the
need to create other sprints, or change the related allocation of the
time.

CHAPTER 2. MOBILE APPLICATION PROGRAMMING 21

4. After that sprints are completed, there is a potential final product
ready for the final users.

5. After the release, the entire SCRUM team gathers together to have
a final meeting called retrospective. During the retrospective, team
members discuss about the all process of development, trying to find if
something could be improved.

Chapter 3

Requirements engineering

Requirements Engineering is a process about discover, understand, formu-
late, analyze and agree on what problem the software should solve, why such
a problem needs a solution and who should take the responsibility of solving
that problem. More precisely, “Requirements Engineering is the process of
identifying, communicating and documenting the requirements for a system”
[25]. Requirements represent the purpose of a system, a set of statements
about the new system that the stakeholders agree must be right to solve the
customer’s problem adequately. The following are examples of requirements
sources: high-level goals expressed by various stakeholders, pre-existing sys-
tems, pre-existing documentation, competing systems, documentation about
interfacing systems, policies and collective agreements.

The Standish Group International, Inc.1 has presented a report where
they analyze the major sources of failure for new systems. The results show
that in 50% of cases, projects fail because of incomplete requirements, last
minute change of requirements, unrealistic expectations, and unclear goals
[10].

The results of the study presented above explain why it is so important to
consider requirements engineering during the development process; for this
reason, software companies are now aware of the importance of this set of
techniques. During the development of the new features for the Insinööriliitto
native mobile application, the company that has agreed with Insinööriliitto
for the implementation of the new app required to include the requirements
engineering studies in the development process.

This chapter describes the entire process of requirements engineering in-
troduced for the development of the new mobile application features.

1The Standish Group is a primary research advisory organization that focuses on soft-
ware project performance.

22

CHAPTER 3. REQUIREMENTS ENGINEERING 23

3.1 Goal-oriented requirements engineering

Goal Oriented analysis is an element of Requirements Engineering that aims
to define the goals of the stakeholders and the new system. A goal is an
objective that the new system should achieve, they refer to properties that
the system has to ensure. The system which a goal refers to may be the
system-as-is (the current one, without modifications) or the system-to-be
(The system after the development); both of them are into the Requirements
Engineering process. The system-to-be includes both the software and the
environment; it consists of active components such as humans, devices, and
software. The paper called “Goal-Oriented Requirements Engineering: A
Guided Tour” written by Axel van Lamsweerde [34] introduces the whole
process of Goal-Oriented requirements engineering, focusing on the theory
and specification of the most important elements in a complete manner.

Several languages available in the market offer the possibility to build
goal-oriented models. The most famous one is the language called i* intro-
duced by Eric Yu in the first half of the 90s [36]. The i* framework introduces
to two type of representation: the graphical and the formal representation.
This research focuses on the graphical representation, that has two modeling
components: The Strategic Rationale (SR) and the Strategic Dependency
(SD) model. The SD model describes mainly the dependency relationship
between actors within the organization, and as a result, it helps in under-
standing how a specific goal fits inside the organization. On the other hand,
the SR model describes stakeholders’ interests and stakeholders’ evaluation
of various alternatives respecting their interests [31].

Figure 3.1 shows the i* basic elements for graphical representation.

Figure 3.1: The i* basic elements

CHAPTER 3. REQUIREMENTS ENGINEERING 24

The following are the three main categories [31].

• The intentional elements. Goals, soft goals, tasks, resources of an
actor boundary.

• Links. Connect the i* model elements together. Contribution links.
positive (Make/Help links), negative (Hurt/ Break links).

This section presents four different i* diagrams related to the Insinöörili-
itto mobile application renovation: two Strategic Dependencies models (SD)
and two Strategic Rationale (SR).
Figure 3.2 shows one i* SD diagram with the stakeholders and they strategic
dependencies showing the current situation (as-is) considering early require-
ments. Figure 3.3 shows one i* SR diagram describing the goals of the user
of the software application considering the early requirements, from which
the need of the system to be emerge;

Figure 3.4 shows one i* SD diagram where the actor “system-to-be”
(=software application) is introduced in to the “as-is” diagram, to satisfy
some goals of the stakeholders (to-be situation), and show the new/changed
dependencies. Figure 3.5 shows one i* SR diagrams describing the goals of
actors and how the users goals get satisfied through the system-to-be;

Figure 3.6 categorise the main dependencies between system-to-be and
users. In this case, the engineers.

Figure 3.2: Strategic Dependencies model of the system as-is

CHAPTER 3. REQUIREMENTS ENGINEERING 25

Figure 3.3: Strategic Rationale model of the system to-be

Figure 3.4: Strategic Dependencies model where system-to-be is introduced
into the system-as-is

CHAPTER 3. REQUIREMENTS ENGINEERING 26

Figure 3.5: Strategic Rationale of the final system-to-be

CHAPTER 3. REQUIREMENTS ENGINEERING 27

Figure 3.6: Main dependencies between system-to-be and engineers

CHAPTER 3. REQUIREMENTS ENGINEERING 28

3.2 UML models

Another important element of Requirements Engineering is the Unified Mod-
eling Language (UML). The UML was developed by three software engineers
in 1994. These models help to model and document a software using dia-
grams representations. By using these diagrams it is possible to identify some
errors in the software process. The Unified Modeling Language consists in
a set of diagrams that serves for different purposes, before the implemen-
tation of the software or after. Some UML diagrams describe the behavior
of the system, while others try to analyze the structure of a process. This
research focuses on one UML category, the use cases. More precisely, this
diagram helps to understand in which way the different actors can interact
with the software. Figure 3.7 shows the different ways the actors (engineers
and union of engineers) can interact with the new mobile application. This
diagram takes in consideration only the new features.

Figure 3.7: Use case diagram of the Insinööriliitto mobile app with the two
actors

CHAPTER 3. REQUIREMENTS ENGINEERING 29

Figure 3.8 shows two examples of use case specification: The use case
specification about the “Edit personal detail”, and the use case specification
about the “Add work-hours”.

Figure 3.8: Two examples of use case specification

CHAPTER 3. REQUIREMENTS ENGINEERING 30

3.3 Software requirements

In the previous section, the paper analyzes just one type of diagram of the
UML models: the use cases diagram. The UML models consist of a large
set of diagrams; e.g., the UML class diagram, the sequence diagram, and
the state machines represents other important UML models that where not
required for the ilry mobile application2.

This section presents the last part of the study of requirements for the
Insinööriliitto new mobile application: The software requirements.

The previous sections of the requirements engineering studies have de-
livered all the possible interactions that the various actors can have with
the new application. Now it is time to analyze in details each requirement,
focusing on the description and the type of requirement.

3.3.1 Requirements specification

A software requirements specification (SRS) is a relevant part of the Require-
ments Engineering document that captures complete description about how
the system is expected to perform.

In software requirements specification, the requirements need to respect
the following qualities: correctness, unambiguous, consistency, completeness,
ranked for importance, verifiability, modifiability, and traceability [26]. These
qualities follow the standard ISO-IEEE 830 [6]; this standard introduces to a
set of recommended practice for Software Requirements Specifications. More-
over, every requirement belongs to a specific category, such as functional, per-
formance, interface, maintainability, reliability, safety, quality, operational,
resource, and constraint.

Figure 3.9 shows the requirements for the development of the new In-
sinööriliitto mobile application. Every requirement consist of a number, a
type, and description. The description of every requirement must follow the
rules of “Good requirements”; it needs to specify the system under discussion
and the desired result that is wanted within a specified time that is measur-
able (if possible). The table in the figure shows the seven requirements for
the development of the new application. These requirements do not repre-
sent the whole features of the application, but just the new ones. Four of
these requirements are functional requirements, while three are constraint re-
quirements. The rational column shows the condition that the system must
respect to have a valid requirement. E.g., the R1 does not work if the backend
is not fetching any RSS data.

2Official name of the application on the Android and iOS app stores

CHAPTER 3. REQUIREMENTS ENGINEERING 31

Figure 3.9: Requirements specification table for the Insinööriliitto mobile
application.

CHAPTER 3. REQUIREMENTS ENGINEERING 32

3.3.2 Prioritization of the requirements

With the whole group of requirements in place, the paper presents the last
step of the Requirements Engineering study for the Insinööriliitto mobile
application.

The prioritization of the requirements is essential before starting the im-
plementation process; it helps to find the best ordering of requirements to
ensure the quality and value of the new system. Through the prioritization
of the requirements, developers receive the list of requirements with their
priority. The following are the two general ways to give priority to a set of
requirements.

• Completely automated. Given the set of objects to order, these
can be rank on the bases of their properties.

• Human assisted. Human has to give a contextual assessment of the
object to rank (considering their properties).

This project uses the human-assisted way to rank the requirements. This
research uses two techniques that can work together to create a prioritiza-
tion matrix: The pair-wise prioritization and the Analytic hierarchy process
(AHP) matrix. The pair-wise technique compares every pair of two require-
ments giving a preference of which of the two is more important than the
other. The comparison uses a ranking criterion that the user decides before.
The following is the ranking chosen for the Insinööriliitto mobile application.

• 1 Neutral - 3 Slightly more important - 5 Moderately more
important - 7 significantly more important - 9 Completely
more important

This ranking togheter with the Analytic hierarchy process (AHP), creates a
matrix of comparison. Figure 3.10 shows the AHP matrix that compares the
requirements with each other. Moreover, the AHP matrix normalizes all the
column with the sum of the whole values. Figure 3.10 shows the same AHP
matrix of the previous figure, but here the matrix is performing the second
step, where the values in the cells have to divide the sum of the previous
step. After that, the matrix creates the sum of the rows.

CHAPTER 3. REQUIREMENTS ENGINEERING 33

Figure 3.10: First step of the Analytic hierarchy process (AHP)

Figure 3.11: Second step of the Analytic hierarchy process (AHP)

CHAPTER 3. REQUIREMENTS ENGINEERING 34

The matrix is now complete. Now it is time to order the requirements
based on their value. The third step of the Analytic hierarchy process requires
to normalize the results, dividing each value for the number of requirements
presents in the matrix (In this case seven). The following are the results of
the normalization in order of the requirements priorities.

• R2: 0,32 The ilry mobile app shall allow the user to edit personal
information (email and phone number) in the app

• R5: 0,20 The ilry mobile app shall allow the user to use the digital
membership card for discounts and benefits

• R7: 0,18 The ilry mobile app shall allow the user to read the collective
labor agreements negotiated by the engineering union

• R6: 0,11 The ilry mobile app shall allow the user to activate/deactivate
the possibility to receive push notifications

• R1: 0,085 The ilry mobile app shall allow users to read RSS news in
a tab view screen through Web views

• R4: 0,067 The ilry mobile app shall allow the user to add/edit work-
hours through an easy to use interface

• R3: 0,021 The ilry mobile app shall allow users to search for events
and workshops

The prioritization is now complete, together with the Requirements En-
gineering process.

Chapter 4

Implementation

This section goes back to the fundamental requirements of the research: the
update of the Insinööriliitto mobile application and the implementation of
a hybrid mobile application with the same functionalities of the native one.
As explained in chapter 1, the goal of the research is to perform a complete
comparison between the two solutions. Section 1.1 presented the general
expectation of the company, where the idea is to develop an entirely new
update of the already existing mobile application.

Currently, Insinööriliitto has two native applications in the market, one
for iOS platforms and the other one for the Android platform. The company
is requiring developers to update and rewrite the existing code. After con-
cluding the update of the existing applications, the research focuses on the
comparison between the apps. Section 2.1 presents a complete overview of all
the mobile application development solutions currently available in the mar-
ket. The research requires the development of a third application to perform
the comparison.

The first thing to clarify is the reason why this research does not focus
on a Progressive Web Application as a possible solution of comparison. This
research aims to propose a comparison with a solution that can replace the
current one; therefore a fundamental constraint of Insinööriliitto needs to
remain clear: the user must find the applications on the Apple store or
Google play store. Unfortunately, it is not possible to upload Progressive
Web Application to the official app store of iOS and Google. Furthermore,
as we have seen in Section 2.1.2, Progressive Web Apps are entirely based
on web standards (HTML, CSS, JavaScript). The web standards have a
positive aspect, the cross-platform availability without the need for platform-
specific adjustments. However, Progressive Web Apps are not close to native
solutions; therefore it would be too challenging to perform a real comparison
with the two complete native applications.

35

CHAPTER 4. IMPLEMENTATION 36

The remained solutions are the two hybrid ones: The Ionic framework
and React Native framework. The positive aspect is that both solutions offer
the cross-platform development. In case of React Native, Developers also
can write platform-specific design, while Ionic automatically adapts some
characteristics to the specific platform. This section uses the following four
important aspects to help understand which hybrid solution is better for the
research purpose.

• Programming language. The programming language of the two
solutions is different. Although both solutions use JavaScript, React
Native is based on ReactJS while Ionic on AngularJS.

• Testing. Another important feature offered by both solutions is the
real-time testing. During the development process, both solution re-
fresh instantly every time developers change the code; this is convenient
and useful.

• Developer experience. React Native does not use Webviews while
they are a key widget for the Ionic framework. With React Native the
browser compatibility issues disappear, no time is spent checking the
different styles for every browser. It is important to remember that it is
not possible to force the user to use a specific browser, so it is difficult
to avoid the styles issue with the Ionic framework.

• User experience. Ionic applications have a real problem with perfor-
mance. The web was not though to implement the complex applications
available today. On high-performance phones, the applications run fine,
but with low-performance phones, things can get worse. Differently,
React Native utilize native components with the smooth animations
that people see in platform-specific mobile applications.

React Native includes all the favorable characteristics of the Ionic frame-
work, but it also uses native components that help to offer a better developer
and user experience. Therefore, this research focuses on the comparison be-
tween the native applications and a third application implemented with the
React Native framework.

Now that the choice of the framework is clear and the requirements for
the Insinööriliitto mobile application have been specified, it is time to discuss
the implementation of the three different app versions:

• Native iOS mobile application using the xCode integrated devel-
opment environment (IDE);

CHAPTER 4. IMPLEMENTATION 37

• Native Android mobile application using the Android Studio (IDE);

• React Native mobile application using a text editor called Visual
studio code1.

The company that has agreed with Insinööriliitto for the implementation
of the new app uses the SCRUM agile method for the development of the
Insinööriliitto native mobile applications (Section 2.5). Sprint reviews with
Insinööriliitto are set every two weeks. The total time for the development of
the native applications was two months and a half, with five sprint reviews.
The total time for the development of the React native application was one
month. The team consist of two developers and one designer. One developer
worked on expanding the back-end side of the application while the author
of this thesis worked on the front-end side of the applications. The product
owner uses JIRA2 for a better management of the project. The language of
the applications is Finnish.

1https://code.visualstudio.com/
2JIRA is a complete tool that supports with Agile Project Management.

CHAPTER 4. IMPLEMENTATION 38

4.1 Native mobile applications

This section details the implementation of the two most important features of
the mobile application: Reading RSS news with Web Views and work-hours
creation, editing and reporting. Appendix A shows the figures of the other
features’ images.

Figure 4.1 shows the primary navigation tool of the apps, the drawer
navigator. The navigation of the application uses a drawer navigator. The
drawer opens from the left side of the app, and allows the user to access all
the functionalities of the application. This type of Navigation is available
natively for both Android and iOS platforms.

Figure 4.1: Drawer navigation of the native mobile applications

CHAPTER 4. IMPLEMENTATION 39

Read RSS news with WebView

One of the requirements of Insinööriliitto is to bring RSS-feeds into the main
view of the application. The user has to see the RSS news coming from
four different sources. The sources are Ajankohtaista, YTN, Insinööri-lehti,
and Akava3. The user must see a preview of the title of the news, with the
possibility to open it and have a complete overview of the news. Moreover,
the user must have the possibility to share the news in social networks. The
RSS news page is the first one shown right after the login of the user. The
view is set as follows: the team decided to create a tabbed view, with four
tabs that the user can swipe. Every tab represents a different source of news;
every view shows a list of cells where every cell corresponds to an article.

Figure 4.2 and Figure 4.3 show the look of the view for both iOS and
Android platforms, where the tabs are on top of the view. The top position
of the tabs represents the first challenge to overcome. The Android platform
supports the top bars natively, while iOS supports the tabs only at the bot-
tom of the view. During the design of the app, the product owner asked
about having the same look on both platforms; for this reason, the iOS app
has to install a third party library that allows the implementation of the top
bars also in iOS. Specifically, the iOS application uses the xmartlabs library:
XLPagerTabStrip by xmartlabs4. A parent View Controller needs to in-
corporate four children views. The xmartlabs library provides four different
implementations of the top bars, however, the RSS news view focuses on the
most popular one, the “Button Bar” (Similar to Instagram, Youtube, and
Skype).

Every cell has a button for sharing the news on social networks. More-
over, if the user clicks on one particular news item, a new page opens. The
new page incorporates a Web view that loads the RSS link of the article.
These links are not ready to show only the relevant text, but they show also
banners and other elements. Before loading the news on the Web views, the
developers of the team have to replace the banners and other elements’ code
from the HTML page of the news (Setting the style parameter “display” to
“none” is the faster solution).

3Namely, four different associations or federation which provide information for em-
ployees in the engineering sector.

4https://github.com/xmartlabs/XLPagerTabStrip

CHAPTER 4. IMPLEMENTATION 40

Figure 4.2: Overview of the news feed under iOS

Figure 4.3: Overview of the news feed under Android

CHAPTER 4. IMPLEMENTATION 41

Add/edit work-hours and send the report

An important new feature for the Insinööriliitto mobile applications is the
work-hours tracking feature. It allows users to register the amount of time
they work every day. Furthermore, Insinööriliitto required the option for
users to edit the work-hours and receive a report by email.

Figure 4.4 shows the final implementation of the feature for the iOS plat-
form and the Android platform. The structure of the view is similar to the
news feed view; however, in this case, there are only two tab views. Fig-
ure 4.4a presents the first tab view with two different type of expandable
cells. The first expandable cell (Kirjaa työtunnit) gives the possibility to
register a workhour element, while the second type of cell represents pre-
registered work-hours. If the user clicks on a registered workhour element,
the cell expands by showing additional information. If the user clicks on the
pen, an edit window opens.

The first cell asks the user to insert the following necessary information
(Figure 4.4b): start date, start time, end date, end time, lunch break, and de-
scription. Once the user finishes inserting the necessary data, the application
starts to calculate the bank-hours5 in the following way:

1. Convert start time, end time, lunch break, and default hours from
“00:00” format to “hours” format. The default hours is a parameter
set to “07:30”; the user can change this value through another view if
the company requires to work more or less than 7.5 hours per day;

2. Calculate the balance of hours spent at work: [(end time - start time)
- lunch break] - default hours;

3. If the result is more than 0, this means that the user has some extra
hours of work. In this case, the application opens a dialog window to
ask the user where to save these extra hours. The user can decide to
save them as bank-hours, or as overtime hours (Figure 4.4c);

4. When this process finishes, the application calls the backend through
an API to register a new workhour element.

5Total amount of hours spent at work by the user on a specific day of work

CHAPTER 4. IMPLEMENTATION 42

Figure 4.4: iOS and Android overview of the ”work-hours” feature imple-
mentation: first tab view

CHAPTER 4. IMPLEMENTATION 43

Figure 4.5 shows the second tab view (Raportit), which has two different
cells; the first cell is not expandable, and it only shows the total amount of
bank-hours for the specific user. With the second cell, the user requires a
report of the registered work-hours; different options available for reports,
such as a seven-day report, a monthly report, previous day report, a report
based on specific dates and a report that takes in consideration all the regis-
tered work-hours. When the report opens, a button gives the possibility to
send the report directly to the email of the user (Figure 4.5b).

Figure 4.5: iOS and Android overview of the “work-hours” feature imple-
mentation: second tab view

CHAPTER 4. IMPLEMENTATION 44

4.2 React Native mobile application

This section focuses on the implementation of the React Native application.
As seen in Chapter 1, the main reason behind the implementation of the
React Native application is the technical comparison, the final goal of this
thesis. Therefore, the React Native solution has to be as much similar as
possible to the native applications.

Similar to the previous section, we focus on the implementation of the
two most important new features of the mobile application: Read RSS news
with WebView and Add/edit work-hours and send the report. Appendix
A shows a complete overview of all the other functionalities and views. As
seen in Section 2.3.2, React Native has a key feature: it allows to write
the code once but it allows to run it on both iOS and Android platforms,
therefore, the look and feel of the apps is similar. Moreover, React Native
applications strongly rely on third-party libraries. React Native uses node
package manager modules6 [5] to install them. For instance, to install a new
package called “react-navigatio”, the user has to open the command line
inside the project main folder and write the following code: “npm install
react-navigation”.

The first significant concept of React Native is navigation. Several naviga-
tion packages are on the market, and developers must decide which solution
suits better for their project. The following are the four major available
navigation solutions.

• React navigation. The official React Native navigation solution.
Therefore, this is the most widely used [4].

• React Native Router. React Native Router (or react-native-router-
flux) was the first React navigation library. The library is still popular
but not fully supported and improved any more [2].

• React Native Navigation. The most supported and maintained
React Native navigation library. It has a native implementation, and it
exposes the native APIs usable in JavaScript. React Native navigation
is currently under development for the second version with additional
features [1].

• Native Navigation. Library developed by Airbnb. As seen with
React Native Navigation, also this library has a native implementation.

6The node package manager (npm) installs the packages the developer intends to use
and provides a useful interface to work with them. It uses Node.js [29], a JavaScript
runtime framework to write applications in JavaScript on the server.

CHAPTER 4. IMPLEMENTATION 45

Native Navigation is still in its early stages [7].

The solutions listed before cover the entire navigation of the application;
with the same library, developers can implement the drawer navigator and
the tab view without the need of other libraries.

We used the React Native navigation library: since the goal is to imple-
ment a possible replacement for the native apps, a fully supported and stable
library is essential. The only problem with React Native navigation is Tabs.
Due to the native implementation of the library, React Native navigation
respects the platforms’ rules. Therefore, the TabView on Android and iOS
are entirely different. The Android platform shows the tabs on top, while
the iOS platform shows them on the bottom. The solution to this problem
relies on a cross-platform tab view library called “React Native Tab View”
[3].

Figure 4.6 shows the implementation of the drawer menu and the RSS
news feed. Figure 4.6b shows that the React Native Tab View library gives
the possibility to implement the tabs on top of the views of both the Android
and iOS platforms. In contrary, the navigator bar is not the same as the
native apps. Indeed, one challenge of working with third-party libraries in
React Native is customization: it strongly depends on the implementation of
the library. The React Native navigation library has different customization
methods for the navigation bar, but these methods are not straightforward.
Figure 4.6a shows the drawer navigator, while Figure 4.6c shows an article
loaded inside a web view; the results of these implementations are equals to
the native implementations. Likewise the native implementation, developers
of the team have to replace the banners and other elements’ code from the
HTML page of the news (again, set the style parameter “display” to “none”
is the faster solution).

Figure 4.7 shows the implementation of the work-hours feature. Here the
result is close to the one of the native implementation.

CHAPTER 4. IMPLEMENTATION 46

Figure 4.6: React Native apps overview of the drawer and read RSS news
feature

CHAPTER 4. IMPLEMENTATION 47

Figure 4.7: React Native apps overview of the add/edit work-hours feature

Chapter 5

Performance comparison

This chapter presents a performance comparison between the two Native
mobile applications (Android and iOS platforms) and the application devel-
oped with the React Native framework. As discussed in Chapter 4, the three
applications looks almost the same; they slightly differ in some elements or
text dimensions though. However, it is possible to solve this differences by
working more accurately with the styling.

The idea of the comparison relies on the fact that Insinööriliitto explicitly
asked to develop two Native applications that must look the same. For this
reason, developers must follow the same design for both the iOS and Android
platform; this led them to have some issues. Therefore, developers started
thinking about a better solution that could improve all the development
process of the Insinööriliitto mobile application.

The goal of this chapter is to find out if the React Native application can
deliver performance results similar to the Native applications.

The comparison focuses on three resources: the Central Processing Unit
(CPU), the Graphics Processing Unit (GPU), and the memory. The research
includes tests for both platforms. This chapter first analyzes the Native iOS
application (swift) against the React Native app, then the Native Android
application against the React Native Android app. Tests run on real devices,
which ensures the valid of the results. The device used for the iOS comparison
is an iPhone X [9], while the device used for the Android comparison is a One
Plus 5T [30]. The data connection used on the real devices during the tests
is 4G, with no WiFi; this helps to simulate a realistic use of the applications.

The applications execute different types of functions. Between these func-
tions, the comparison focuses only on the most relevant and challenging ones.
In particular, the following are the four different functions considered for the
performance comparison.

• News list loading. This test start directly after the login of the user.

48

CHAPTER 5. PERFORMANCE COMPARISON 49

The application has to load all the news inside the cells. Moreover, the
application divides the news for each category/tabs.

• Webview loading (Open news). When a user clicks on the news,
a new page is open, and a web view loads an article through a link.

• Add workhour process. As seen in Section 4.1, the user can register
a new workhour element by compiling all the information correctly.
This test runs from when the user clicks on the confirmation button to
the moment when the list of workhours reloads.

• Scrollview and tabs. This test checks the performance of the apps
when the user swipes through all the news tabs and scrolls all the lists
of news.

5.1 iOS applications

For the iOS performance comparison, we used a software called “Apple In-
struments”, part of xCode, Apple’s IDE [8]. Apple Instruments is a set of
tools to check the performance of iOS applications. The following are the
tools used for the Insinööriliitto iOS mobile application comparison: CPU
(“Time Profiler Tool”), GPU (“Core Animation Tool”), and Memory (“Al-
locations Tool”).

Apple Instruments is easy to use; it allows the user to plug in an iOS
phone, pick any running app to test and choose a specific measurement tool.
After that, the tool starts recording the performance.

5.1.1 CPU

Figure 5.1 shows the CPU measurements of the Native iOS mobile applica-
tion (Swift) compared to the React Native mobile application. For both the
applications, we tested the four functions described before. For each func-
tion, we run four experiments; each of these produced one value. For every
function, the chart in the figure reports the average of the four experiments.
This type of average is called “mean”1.

1In arithmetic, the mean is the sum of all values divided by the total number of values.

CHAPTER 5. PERFORMANCE COMPARISON 50

Figure 5.1: CPU Usage chart of the Native iOS mobile application versus
the React-Native application

• Scrollview and tabs test. The Native iOS app uses 65% less CPU
than the React Native application. The process of swiping and scrolling
through the tabs and lists is the same for both applications.

• Add workhour process test. The Native iOS app uses 49% less
CPU than the React Native application.

• Webview loading test. The Native iOS app uses 8% less CPU than
the React Native application. This time the results difference is mini-
mal. Loading a link inside a WebView has almost the same CPU usage
for the Native application and the React Native one.

• News list loading test. The Native iOS app uses 34% less CPU than
the React Native application.

The React Native application and the Native iOS application never exceeds
30% of CPU utilization. However, if we consider the proposed tests, the

CHAPTER 5. PERFORMANCE COMPARISON 51

Native iOS CPU values are always lower than the CPU values of the React
Native app.

5.1.2 GPU

Figure 5.2 shows the GPU measurements of the Native iOS mobile applica-
tion (Swift) compared to the React Native mobile application. Similar to
the CPU measurements, each test was repeated four times. The value on
the plot is bounded by 60 frames/second. Each second, over the course of
time the task is performing, the “Core Animation” tool records a value. The
chart in the figure shows the average higher value recorded during the tests.

Figure 5.2: GPU Usage chart of the Native iOS application versus the React-
Native application

The results of the GPU test are the following:

• Scrollview and tabs test. The Native iOS app has more success
in this test slightly by running at 3 frames/second higher than React
Native. This means that the performance of this test is almost the
same for both applications.

CHAPTER 5. PERFORMANCE COMPARISON 52

• Add workhour process test. The Native iOS app has more success
in this test slightly by running at 1 frames/second higher than React
Native. Considering that the result is an average, the performance of
both apps is the same.

• Webview loading test. The Native iOS app has more success in this
test by running at 22 frames/second higher than React Native.

• News list loading test. The Native iOS app has more success in this
test by running at 18 frames/second higher than React Native; again
a high difference with the React Native application.

5.1.3 Memory

Figure 5.3 shows the memory usage measurements of the Native iOS mobile
application (Swift) compared to the React Native mobile application. As
usual, each experiment was repeated four times. While the user is performing
the task, the “Allocations” tool records different measurements; the result
in the chart is again an average of the higher peak value for each of the four
tests.

The results of the memory usage test are the following:

• Scrollview and tabs test. The Native iOS app achieved better per-
formance in this test by using 26 MiB less memory, a considerable
difference.

• Add workhour process test. The React Native app achieved bet-
ter performance in this test by using 25 MiB less memory. It is the
first time that React Native is considerably better than the Native iOS
application. The reason behind this result might be the state man-
agement framework called Redux (See Section 2.3.2). In fact, during
the “add workhour” test of the Native application, the view and work-
hours list reload at the end of the adding process. Thanks to Redux,
the React Native app reloads only the list and not the entire view.

• Webview loading test. The native iOS app achieved better per-
formance in this test by using 33 MiB less memory, a considerable
difference.

• News list loading test. The native iOS app achieved better perfor-
mance in this test by using 23 MiB less memory.

CHAPTER 5. PERFORMANCE COMPARISON 53

Figure 5.3: Memory usage chart of the Native iOS mobile application versus
the React-Native application

5.2 Android applications

For the Android performance comparison, we used a software called “Android
Profiler” [18]. Android Profiler is a set of advanced tools available on Android
Studio that help developers in diagnosing app performance. The primary
window available in Android Studio gives information on CPU, Memory and
Network profilers. To see real-time information, the user has to connect
a device with enabled USB debugging and have the app process running.
Unfortunately, the Android Profiler tool does not offer the possibility to
monitor the GPU usage of the app; therefore, we had to select another tool.
The two main options to check GPU usage are the following: search for a
third party application on the Play Store market, or use a tool called Profile
GPU Rendering.

The “Profile GPU rendering tool” [16] is a built-in tool available in any
Android smartphone with active Developer options [15]. The goal of this
tool is to display the performance of applications. It indicates the relative

CHAPTER 5. PERFORMANCE COMPARISON 54

time that each stage of the rendering pipeline takes to render the previous
frame. This may help developers to understand which area of the application
can be further improved and why. The rendering tool works in a simple way,
it shows vertical bars with a different height that represents the amount of
time the frame took to render (in milliseconds). The horizontal green line
represents 16 milliseconds. An application has a good performance when it
can render 60 frames per second or more, and this means that each bar has
to stay under the green line. Each bar has colored components that map to a
stage in the rendering pipeline. Figure 5.5 shows how the graph is displayed.
Figure 5.4 indicates the different color values of the pipeline.

Figure 5.4: Profile GPU Rendering Graph Legend

Figure 5.5: Enlarged Profile GPU Rendering graph

5.2.1 CPU

Figure 5.6 shows the CPU measurements of the Native Android mobile ap-
plication (Java) compared to the React Native mobile application. We used
the “mean” average like we did in the CPU measurements for the iOS appli-
cations.

The results of the CPU usage test are the following.

• Scrollview and tabs test. The Native Android app uses 25% less
CPU than the React Native application.

CHAPTER 5. PERFORMANCE COMPARISON 55

• Add workhour process test. The Native Android app uses 62% less
CPU than the React Native application.

• Webview loading test. The React Native app uses 10% less CPU
than the Native Android application.

• News list loading test. The Native Android app uses 37% less CPU
than the React Native application.

Figure 5.6: CPU Usage chart of the Native Android mobile application versus
the React-Native application

5.2.2 Memory

Figure 5.7 shows the memory usage measurements of the Native Android
mobile application (Java) compared to the React Native mobile application.
The Android Profiler shows different data for the memory measurements; this
section focuses on the “Native parameter”. The Native parameter represents
the amount of native memory used from the Android framework to allocate
objects [17]. Each experiment was run four times, then creating a final
average value using the “mean” method. The four values are the peaks
registered during each of the four process (the highest peak). Unlike the iOS

CHAPTER 5. PERFORMANCE COMPARISON 56

memory measurements, the unit of measure for the Android memory usage
test is MegaByte (MB) and not Mebibyte (MiB).

The results of the memory usage test are the following.

• Scrollview and tabs test. The native Android app achieved better
performance in this test by using 4 MB less memory during the test.

• Add workhour process test. The React Native app achieved better
performance in this test by using 5 MB less memory during the add
workhour process.

• Webview loading test. The React Native app achieved better per-
formance in this test by using 24 MB less memory, a considerable dif-
ference.

• News list loading test. The React Native app achieved better per-
formance in this test by using 4 MB less memory during the list loading
test.

Figure 5.7: Memory usage chart of the Native Android mobile application
versus the React-Native application

CHAPTER 5. PERFORMANCE COMPARISON 57

5.2.3 GPU

As explained before, The Android tool to measure the GPU usage of the two
applications works differently from the tool used for the iOS apps comparison.
The tool used for the Android GPU measurements is called profile GPU
rendering tool. Developers activate it through the phone settings. After
that, the bars show up on the screen of the phone. As a reminder, the green
horizontal line represents the 60 frames per second limit. If the bars are
higher than the green line, the application is rendering less than 60 frames per
second; if the density of high lines is considerable, the application is probably
not performing well. In case of the Android applications’ comparison, the
profile GPU rendering tool quickly shows which application is performing
each task better, executing a higher number of frames per second.

Figure 5.8a shows the scrollview and tabs test. During the test, the ma-
jority of the vertical bars remain under the green line of 60 frames per second.
Therefore, both applications are performing well. The Native Android ap-
plication presents a few bars over the green line; however, the bars are not
too high, so no significant difference in performance between the two apps.

Figure 5.8b shows the add workhour process test. During the test, the
vertical bars of the React Native app remain under the green line, while for
the Native Android application the trend is different. Three bars are over the
60 frames per second line; this means that the React Native app is performing
slightly better. The three bars have a light green color; Figure 5.4 shows the
parameter for every color of the bar. In this case, the parameters are the
“Measure / Layout”, “Animation”, “Input Handling” and the “Misc Time”;
the documentation [16] details the meaning of all the different colors.

Figure 5.9a shows the webview loading test. Both the application show
a few bars that are very high. These bars appear right after the webview
starts the loading process. The only difference between the bars of the two
applications is the color. The Native Android application’s bars have a large
concentration of red color, while the React Native application’s bars presents
green color; this means that at that moment both applications where render-
ing slowly, but for different reasons. The documentation shows that the red
color means “command issue”, while the green colors have different meanings
as seen before in the workhour process test.

Figure 5.9b shows the news list loading test. The results are similar; both
applications present a few bars over the green line right after the lists start
loading. However, the bars are not too high, no issues for the performance
of both the apps.

CHAPTER 5. PERFORMANCE COMPARISON 58

Figure 5.8: GPU Usage comparison for the scrollview test and add workhour
process test

CHAPTER 5. PERFORMANCE COMPARISON 59

Figure 5.9: GPU Usage comparison for the webview loading test and News
list loading test

CHAPTER 5. PERFORMANCE COMPARISON 60

5.3 Summary of results

The previous sections presented extensive performance tests. The iOS and
Android platform have several differences, not only in the implementation
but also in the way the user can check the performance. The tools used to
check the performance were different for each platform.

This section discuss the related findings and the reason why an appli-
cation performed better than the other one. The goal is to discuss every
measurement in details and come out with ideas that might help for future
application projects. Moreover, we analyze the styling challenge found during
the implementation process of the React Native applications.

The performance comparison between the Native iOS app and the React
Native app is simple thanks to the Apple Instruments suite. The first tool
we used is called “Time Profiler tool”; as explained in the previous chapter,
this tool helps with the CPU measurements. The results of the CPU usage
are very consistent; the React Native is always using a higher percentage of
CPU during all the four tests. In this case, we can certainly say that the
Native iOS solution is using the CPU better. The GPU usage test presents a
different situation. The first two tests (the scrollview and the add workhour
process), have similar results between the two applications. It is important
to remember that the final value is an average of four different registration;
a small difference is not enough to say that one application is performing
better. Differently, in the last two test (Webview and News list loading)
the Native iOS application has a significant advantage. Therefore, we can
say that overall, the Native solution is using the GPU better. The last test
is about memory usage. Likewise the previous two tests, the Native iOS
application has an overall better performance. However, the second test
(add workhour process) gave surprising results; the React Native application
used less memory than the Native app. As seen in Section 5.1.3, Redux with
the management of the state might have contributed to the result. In the
React Native app, only the list of workhours reloads, while in the Native iOS
application reloads all the view.

For the performance comparison between the Native Android app and the
React Native app, we used two different tools (See Section 5.2). In the CPU
measurements, the Native Android application is performing better in three
tests. In the Webview loading test, the React Native application uses slightly
less percentage of memory. Overall, the Native Android app uses the CPU
more efficiently. The memory usage test gives interesting results. In general,
the React Native app manages the memory better than the Native Android
application. The results are similar, with the Native app that performs better

CHAPTER 5. PERFORMANCE COMPARISON 61

only in the webview loading test. For the Android GPU comparison, we can
only provide a visual idea thanks to the Profile GPU rendering tool. If we
focus on the second test (add workhour process), React Native always renders
more than 60 frames per second while the Native app has some edge cases.
Apart from this test, the other results are relatively linear.

Figure 5.10 shows a summary of the performance comparison tests. The
first table shows the results of the iOS comparison, while the second table
presents the results of the Android comparison.

Figure 5.10: Results of the performance comparison tests

As we can see from the previous figure, the iOS development ecosystem
with Swift is better than React Native in all three parameters we checked.
However, both applications performed well; the React Native application has
no issues during regular use of the application. The author of “Comparing the
Performance between Native iOS (Swift) and React-Native” [22]implemented
and compared a few basic features in both Native iOS and React Native. The
implemented features are a facebook login, a to-do list, a tabbed interface
and a map view. The considered parameters are the same we checked for
this research (CPU, GPU, Memory usage). The difference lies in the results,
where he was able to obtain leveled results with Swift that performed better
in the CPU category, React-Native performed better in the GPU category
(barely), and React-Native that performed better in the Memory category.
The results of our iOS comparison are entirely different, React Native was
never performing as good as the Native iOS application, but the tasks we
performed are also more complicated.

Differently, the Android comparison presents some interesting findings.
The Native Android application better manages the CPU usage, while the
React Native application uses less memory to perform the tasks. The GPU
measurements are mostly neutral, even though React Native has a better
performance during the add workour process. We can eventually say that
the Android development ecosystem and the React Native framework showed

CHAPTER 5. PERFORMANCE COMPARISON 62

similar performance throughout all the tests. If we think that React Native
is still a beta framework, these results are promising.

Besides pure performance, it is worth considering styling issues in React
Native. React is advertised as “learn once, run everywhere”, but developers
and customers are still confused about this sentence. For this reason, the offi-
cial React Native website has to state that “write once, run anywhere” is not
what the framework offers [33]. Different platforms require style fixes; some-
times, during the development, a portion of code renders properly on one
platform but is completely off on another one. Related to that, Figure A.2
shows an example of different styling result obtained during the implemen-
tation of the Insinööriliitto mobile application. The code for the styling of
the cells is the same, but it looks as intended only for the Android platform.

Figure 5.11: Styling issue during cells implementation

To fix the styling issues, React Native provides a library called “Plat-
form”. This library enables the developers to write different code specifying
the target platform [32]. With this library we specified two different styling
for the iOS and Android platforms implementation of the cells.

Chapter 6

Conclusion

In this thesis, we have seen the complete process of implementing the In-
sinööriliitto mobile application. We started from scratch, we went through
the requirement engineering process and then the implementation. Both the
Android and iOS application are available on the platforms application store,
and the customer is happy with the general outcome of the project. With
the performance evaluation, the goal was to analyze the React Native frame-
work and answer the research questions presented in Chapter 1. We had
interesting results; now the company has enough data to understand if they
can use React Native for the development of future mobile applications for
professional services. Based on the experimental results, a possible future
approach would be to start testing both the applications with real users;
before that, the React Native application needs some fixes on the design.

From the research point of you, we can say that the advantages of the
development with the React Native framework do exist. The fact that React
Native depends only on JavaScript is a fundamental aspect; developers do
not need any other language to implement applications, this saves time and
resources. For a company that focuses on web development, the React Na-
tive framework could result in a smooth start for implementing mobile apps
without hiring any mobile developer.

Moreover, several mobile applications available in the market come from
the React Native framework. The following are examples of popular ap-
plications developed with React Native: Instagram, Facebook, Bloomberg,
SoundCloud, Gyroscope, and Delivery. The previous statement does not
mean that the development of mobile applications is moving into the hybrid
development world. Indeed, Gabriel Peal, an Android developer at Airbnb,
released an article where he explained that due to a variety of technical and
organizational issues, they were unable to meet their original goals, and they
moved back from a React Native application to Native applications [14]. To

63

CHAPTER 6. CONCLUSION 64

conclude and answer the research questions, during our experiments React
Native proved to perform well during all the tests. Therefore, the React
Native framework demonstrated reliability and software companies should
definitely take it into consideration for the development of professional mem-
bership services applications. However, there are pros and cons to both native
development and hybrid development solutions, and the choice depends on
the application to implement. The iOS development environment with Swift
is still the best solution, but we are confident that React Native can only fill
this gap in the years to come.

Bibliography

[1] React Native Navigation. https://github.com/wix/

react-native-navigation.

[2] React Native Router. https://github.com/aksonov/

react-native-router-flux.

[3] React Native tab-view: A cross-platform Tab View component
for React Native. https://github.com/react-native-community/

react-native-tab-view.

[4] React navigation. https://reactnavigation.org/.

[5] The node package manager (npm). https://www.npmjs.com/. Accessed
25.7.2018.

[6] Ieee recommended practice for software requirements specifications.
IEEE Std 830-1998 (Oct 1998), 1–40.

[7] Airbnb. Native Navigation, 2017. http://airbnb.io/

native-navigation/.

[8] Apple. Apple’s performance-analysis and testing tool. https://help.

apple.com/instruments/mac/current/#/dev7b09c84f5.

[9] Apple. iPhone X - Technical Specifications. https://www.apple.com/

lae/iphone-x/specs/.

[10] Clancy, T. The Standish Group Chaos Report, 2014. https://www.

projectsmart.co.uk/white-papers/chaos-report.pdf.

[11] Computer Hope. Computer vs. smartphone. webpage, January 24
2018. https://www.computerhope.com/issues/ch001398.htm.

[12] Ericsson. Ericsson mobility report june 2018. article, 2018. https:

//www.ericsson.com/en/mobility-report/reports/june-2018.

65

https://github.com/wix/react-native-navigation
https://github.com/wix/react-native-navigation
https://github.com/aksonov/react-native-router-flux
https://github.com/aksonov/react-native-router-flux
https://github.com/react-native-community/react-native-tab-view
https://github.com/react-native-community/react-native-tab-view
https://reactnavigation.org/
https://www.npmjs.com/
http://airbnb.io/native-navigation/
http://airbnb.io/native-navigation/
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://www.apple.com/lae/iphone-x/specs/
https://www.apple.com/lae/iphone-x/specs/
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.computerhope.com/issues/ch001398.htm
https://www.ericsson.com/en/mobility-report/reports/june-2018
https://www.ericsson.com/en/mobility-report/reports/june-2018

BIBLIOGRAPHY 66

[13] Fortunato, D., and Bernardino, J. Progressive web apps: An
alternative to the native mobile apps. In 2018 13th Iberian Conference
on Information Systems and Technologies (CISTI) (June 2018), pp. 1–6.

[14] Gabriel Peal, Android developer at Airbnb. Sunset-
ting React Native, 2018. https://medium.com/airbnb-engineering/

sunsetting-react-native-1868ba28e30a.

[15] Google - Android Developers. Activate Profile
GPU rendering tool. https://google-developer-training.

gitbooks.io/android-developer-advanced-course-practicals/

unit-2-make-your-apps-fast-and-small/lesson-4-performance/

4-1a-p-profile-gpu-rendering/4-1a-p-profile-gpu-rendering.html.

[16] Google - Android Developers. Inspect gpu rendering
speed and overdraw. https://developer.android.com/studio/profile/
inspect-gpu-rendering.html.

[17] Google - Android Studio. Memory allocations with Mem-
ory Profiler. https://developer.android.com/studio/profile/

memory-profiler.

[18] Google - Android Studio. Real-time data of the applica-
tion performance. https://developer.android.com/studio/profile/

android-profiler.

[19] Hoda, R., Salleh, N., and Grundy, J. The rise and evolution of
agile software development. IEEE Software (2018), 1–1.

[20] Hossain, E., Babar, M. A., and y. Paik, H. Using scrum in global
software development: A systematic literature review. In 2009 Fourth
IEEE International Conference on Global Software Engineering (July
2009), pp. 175–184.

[21] Joey Cho, J. An exploratory study on issues and challenges of agile
software development with scrum.

[22] John A. Calderaio. Comparing the Performance between Native iOS
(Swift) and React-Native. https://bit.ly/2fzpxls.

[23] Joorabchi, M. E., Mesbah, A., and Kruchten, P. Real chal-
lenges in mobile app development. In 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (Oct
2013), pp. 15–24.

https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1a-p-profile-gpu-rendering/4-1a-p-profile-gpu-rendering.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1a-p-profile-gpu-rendering/4-1a-p-profile-gpu-rendering.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1a-p-profile-gpu-rendering/4-1a-p-profile-gpu-rendering.html
https://google-developer-training.gitbooks.io/android-developer-advanced-course-practicals/unit-2-make-your-apps-fast-and-small/lesson-4-performance/4-1a-p-profile-gpu-rendering/4-1a-p-profile-gpu-rendering.html
https://developer.android.com/studio/profile/inspect-gpu-rendering.html
https://developer.android.com/studio/profile/inspect-gpu-rendering.html
https://developer.android.com/studio/profile/memory-profiler
https://developer.android.com/studio/profile/memory-profiler
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler
https://bit.ly/2fzpxls

BIBLIOGRAPHY 67

[24] Khalil, M. A., and Kotaiah, B. Implementation of agile methodol-
ogy based on scrum tool. In 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS) (Aug
2017), pp. 2351–2357.

[25] Mateen, A., Abbas, K., and Akbar, M. A. Robust approaches,
techniques and tools for requirement engineering in agile development.
In 2017 IEEE International Conference on Power, Control, Signals and
Instrumentation Engineering (ICPCSI) (Sept 2017), pp. 100–103.

[26] Medeiros, J., Goulão, M., Vasconcelos, A., and Silva, C.
Towards a model about quality of software requirements specification in
agile projects. In 2016 10th International Conference on the Quality of
Information and Communications Technology (QUATIC) (Sept 2016),
pp. 236–241.

[27] Meggin Kearney (Tech Writer), Addy Osmani (Web De-
veloper Relations), Kayce Basques (Technical Writer for
Chrome DevTools), Jason Miller(Web DevRel)). Measure
Performance with the RAIL Model, 2018. https://developers.google.
com/web/fundamentals/performance/rail.

[28] Minh Q. Huynh, Prashant Ghimire, D. T. Hybrid app approach:
Could it mark the end of native app domination? vol. 14, pp. 049–065.

[29] Node.js Foundation. JavaScript runtime framework. https://

nodejs.org/. Accessed 25.7.2018.

[30] OnePlus. OnePlus 5T - Technical Specifications. https://www.

oneplus.com/it/5t.

[31] Ramadan, N., and Zohdy, B. Goal modeling techniques for require-
ments engineering. 739–746.

[32] React Native, Facebook. Platform Specific Code. https://

facebook.github.io/react-native/docs/platform-specific-code.

[33] Sophie Alpert. Introducing React Native. https://reactjs.org/

blog/2015/03/26/introducing-react-native.html.

[34] van Lamsweerde, A. Goal-oriented requirements engineering: a
guided tour. In Proceedings Fifth IEEE International Symposium on
Requirements Engineering (2001), pp. 249–262.

https://developers.google.com/web/fundamentals/performance/rail
https://developers.google.com/web/fundamentals/performance/rail
https://nodejs.org/
https://nodejs.org/
https://www.oneplus.com/it/5t
https://www.oneplus.com/it/5t
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://reactjs.org/blog/2015/03/26/introducing-react-native.html
https://reactjs.org/blog/2015/03/26/introducing-react-native.html

BIBLIOGRAPHY 68

[35] Xanthopoulos, S., and Xinogalos, S. A comparative analysis
of cross-platform development approaches for mobile applications. In
Proceedings of the 6th Balkan Conference in Informatics (New York,
NY, USA, 2013), BCI ’13, ACM, pp. 213–220.

[36] Yu, E. S. K. Towards modelling and reasoning support for early-
phase requirements engineering. In Requirements Engineering, 1997.,
Proceedings of the Third IEEE International Symposium on (Jan 1997),
pp. 226–235.

Appendix A

First appendix

Appendix A shows all the implemented functionalities of the application.
The views presented are taken from the Native iOS application, but the
same functionalities have been developed for the Native Android application
and the React Native application.

Figure A.1: Applications functionalities

69

APPENDIX A. FIRST APPENDIX 70

Figure A.2: Applications functionalities

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Research topic
	1.2 Research questions and methodology
	1.3 Structure of the Thesis

	2 Mobile application programming
	2.1 Platform-specific native applications
	2.2 Progressive web applications
	2.3 Hybrid mobile applications
	2.3.1 Ionic framework (Cordova)
	2.3.2 React Native

	2.4 Agile software development

	3 Requirements engineering
	3.1 Goal-oriented requirements engineering
	3.2 UML models
	3.3 Software requirements
	3.3.1 Requirements specification
	3.3.2 Prioritization of the requirements

	4 Implementation
	4.1 Native mobile applications
	4.2 React Native mobile application

	5 Performance comparison
	5.1 iOS applications
	5.1.1 CPU
	5.1.2 GPU
	5.1.3 Memory

	5.2 Android applications
	5.2.1 CPU
	5.2.2 Memory
	5.2.3 GPU

	5.3 Summary of results

	6 Conclusion
	A First appendix

