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Abstract
Dental X-ray systems go through rigorous quality assurance protocols following
their production and assembly. The protocols include tests which address the
image quality and find certain errors or artifacts that may be present in the images.
Detecting faults from the images require human effort, experience, and time.

Recent advances in deep learning have proven them to be successful in image
classification, object detection, machine translation. The applications of deep
learning can be extended to fault detection in X-ray systems. This thesis
work consists of surveying, applying, and developing state-of-art deep learn-
ing approaches for detection of visual faults or artifacts in the dental X-ray systems.

In this thesis, we have shown that deep learning methods can detect geometry
and collimator artifacts from X-ray images efficiently and rapidly. This thesis is a
precursor for further development of deep learning methods to include detection
of wide range of faults and artifacts in X-ray systems to ease quality assurance,
calibration, and device maintenance.

Keywords X-ray, CBCT imaging, deep learning, visual fault diagnostics,
convolutional neural networks.



4

Preface
The machine learning and artificial intelligence revolution is moving forward faster
than ever. Healthcare is not untouched from it. The latest machine learning ad-
vances have potential to redesign healthcare completely. Being a customer service
engineer for healthcare machines previously in India, I passionately dream about a
world where healthcare is accessible to everyone with the lowest possible time and cost.

This Master’s thesis work was done at Planmeca Oy, Helsinki, Finland. I would like
to thank Planmeca Oy for the resources and the inspiring environment. I would like
to thank thesis supervisor Professor Simo Särkkä for providing feedback and insights
for writing this thesis. I thank thesis advisor Dr. Kalle Karhu at Planmeca for his
guidance, proofreading, and helping attitude throughout the thesis. I am also grate-
ful to the colleagues at Planmeca for bearing me and helping me out from time to time.

Otaniemi, 18.07.2018

Harshit Agrawal



Contents
Abstract 3

Preface 4

Contents 5

Abbreviations 6

List of Figures 7

List of Tables 11

1 Introduction 12

2 Background 15
2.1 Production of X-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Computed tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Cone-beam computed tomography . . . . . . . . . . . . . . . . . . . . 18
2.4 Geometry and collimation artifacts . . . . . . . . . . . . . . . . . . . 23
2.5 Deep learning basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Overview of convolutional neural network . . . . . . . . . . . . . . . . 29

3 Materials and Methods 36
3.1 Geometry artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Image preparation . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Network architecture . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Collimator artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Image preparation . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Network architecture . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Results 46
4.1 Geometry artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Collimation artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusions 53
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . 53

References 55

5



6

Abbreviations

Symbols
1D One dimensional
2D Two dimensional
3D Three dimensional
ADAM Adaptive moment estimation
AE Autoencoder
API Application programming interface
CBCT Cone-beam computed tomography
CNN Convolutional neural network
CPU Central processing unit
CT Computed tomography
DVT Digital volume tomography
FDD Fault detection and diagnostics
FDK Feldkamp-Davis-Kress reconstruction algorithm
FOV Field of view
GPU Graphics processing unit
keV Kilo electronvolt
kVp Peak kilovolt
LOO Leave-one-out
MRI Magnetic resonance imaging
QA Quality assurance
R&D Research and development
RBM Restricted Boltzmann machine
ReLU Rectified linear unit
SGD Stochastic Gradient Descent



List of Figures

1 A simple schematic of X-ray tube (Pauwels et al., 2015). The cathode
has negative and anode has positive charge. The filament in the
cathode emits electrons, when heated. The focal spot makes a
small portion of whole anode. The cathode electrons are accelerated
towards anode. Whole process is carried out inside a glass envelope
with vacuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Electron interaction with a target and its relationship to the X-ray
tube energy spectrum. (a) Bremsstrahlung radiation is produced
when high-speed electrons are decelerated by the electric field of
the target nuclei. (b) Characteristic radiation is generated when
a high-speed electron interacts with a target electron and ejects
it from its electronic shell. When outer-shell electrons fill in the
vacant shell, characteristic X-rays are emitted. (c) A high-speed
electron directly hits the nucleus and the entire kinetic energy gets
converted to X-ray energy. For the X-ray spectrum shown in the
figure, the target material is tungsten, and additional filtration is
used to remove low-energy X-rays (Hsieh, 2015: p. 36). . . . . . . . 16

3 The first generation CT scanners (A) utilized a pencil beam fixed
with a single detector moving simultaneously by translation-rotation
motion. The second generation scanners (B) were similar to the
first generation scanners but used multiple pencil beams coupled
with multiple detectors and had a wider angle of rotation. The third
generation scanners (C) utilized a fan-beam and an array of multiple
detectors rotating simultaneously around the patient. The fourth
generation scanners (D) used a wider fan-beam rotating around the
patient and a stationary ring of multiple detectors (Mehr, 2013). . . 17

4 (A) Computed tomography utilizes a fan-shaped X-ray beam. (B)
CBCT uses a cone-shaped X-ray beam. (Mehr, 2013). . . . . . . . . 18

5 Schematic drawing of Planmeca ProMax 3D CBCT device (Planmeca
Oy, 2017). Main parts of the machine are numbered as: (1) C-arm,
(2) sensor (detector), (3) tube head, (4) patient supports, (5) patient
support table, (6) patient handles, (7) patient positioning controls,
(8) touch screen, (9) telescopic column, (10) stationary column, (11)
emergency stop button. . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 An X-ray beam passing through an object with different attenuation
coefficients along a line. . . . . . . . . . . . . . . . . . . . . . . . . . 19

7



8

7 The parallel projection geometry. The source and detector rotate
about the center of the object. For each angle θ, the attenuation
coefficients are added along the X-ray at the detector. Projections
are usually taken for the θ ∈ [0, 180). . . . . . . . . . . . . . . . . . 21

8 Ideal Feldkamp geometry. The X-ray source S rotates along an ideal
circle of radius R with center of rotation at O. In this geometry, the
rotation direction is anti-clockwise and given by the angle θ. The
detector is on the opposite side and rotates along with the source in
the same direction. The lower diagram is a simpler representation
of cone-beam geometry (Sakamoto et al., 2005). . . . . . . . . . . . 22

9 Upper two images show the motion artifact and the lower two images
are without any motion artifacts. The images have been acquired
on a skull phantom at the R&D facility of Planmeca Oy. . . . . . . 24

10 Upper two images show the collimation artifact in the extended
volume and the lower two images are without any collimation artifacts.
The images have been acquired on a skull phantom at the R&D
facility of Planmeca Oy. . . . . . . . . . . . . . . . . . . . . . . . . 25

11 Flowchart of collimation calibration in the production. The process
is repeated until the collimator artifacts are not visible any more in
the extended volumes. . . . . . . . . . . . . . . . . . . . . . . . . . 26

12 The upper diagram is a biological neuron and the lower diagram is
equivalent model of the perceptron (Li, 2018). . . . . . . . . . . . . 27

13 The left diagram is sigmoid, middle is tanh, and right is ReLU
non-linearity (Li, 2018). . . . . . . . . . . . . . . . . . . . . . . . . . 28

14 A simple feed-forward neural network with one hidden layer. . . . . 29

15 LenNet-5 network (LeCun et al., 1998). The convolution of 6 filter
kernels with the input image of 32× 32 results in 6 feature maps of
size 28× 28 (C1). In next layer S2, average pooling (subsampling)
is performed using a 2 × 2 kernel. Again a convolution (C3) and
pooling (C5) was performed. Now the map values are flattened and
two fully connected layers (C5, F6) are attached. The output layer
has 10 units for 10 classes. . . . . . . . . . . . . . . . . . . . . . . . 30

16 2-D Convolution. f is a 2-D image which is convolved with the filter
kernel g. The center pixel 5 showed inside the red box in the input
image gets changed to -45 in the output image h after convolutional
operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

17 Maxpooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



9

18 One of the phantom set up used to acquire the training data with
Promax mid CBCT device (Courtsey of Planmeca Oy). . . . . . . . 37

19 The left image is an input image of size 268 × 268 and the right
image shows 64 patches of size 60 × 60 made from the left image
with 50% overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

20 The convolutional neural network with three hidden layers, one fully
connected layer and one softmax layer as output. The size of input
is H ×W ×D, where H is height, W is width and D is depth of the
input. In our experiment, the input size is 60× 60× 1. The outputs
of the network are the probabilities for the two classes, in our case,
motion and non-motion (Küstner et al., 2018) . . . . . . . . . . . . 38

21 The original VGG-16 network with 16 layers (Simonyan and Zis-
serman, 2014). The output softmax layer has 1000 units for 1000
classes in ImageNet database. . . . . . . . . . . . . . . . . . . . . . 41

22 The VGG-16 architecture showing different layers and parameters.
The softmax layer has 1000 units for 1000 class classification in
ImageNet data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

23 The custom VGG architecture showing different layers and parame-
ters. The softmax layer has 2 units for 2 class classification. . . . . . 43

24 The accuracy and loss curves during model training. . . . . . . . . . 46

25 The motion maps for some test images. The left images show the
probability of motion for patches of the right images projected back
into the image space with an patch overlap of 50%. The patches
more than 55% zero pixels have been given 0 probability by default.
(A) is canine motion image with 96% motion patches. (B) is canine
non-motion image with 0% motion patches. (C) is temporal bone
motion image with 32% motion patches. (D) is temporal bone non-
motion image with 0% motion patches. (E) is jaw motion image
with 38% motion. (F) is jaw non-motion image with 1% motion
patches. The colorbar is shown on the top. . . . . . . . . . . . . . 49

26 Change in slice-wise accuracy and prediction time for different num-
ber of slices. We took different slices from each volume and the
model predicted artifact/no artifact for each slice. Even with 10
slices from 65 volumes, the accuracy is 96.7% and the prediction
time is only 6.4 seconds. . . . . . . . . . . . . . . . . . . . . . . . . 50



10

27 Change in volume-wise accuracy and prediction time for different
number of slices. We took different slices from single good volume
and the model predicted artifact/no-artifact for single volume. With
10 slices from the volume, prediction time is only 0.13 seconds and
accuracy is still 100%. . . . . . . . . . . . . . . . . . . . . . . . . . 51

28 Accuracy and loss curves during training of custom model with
dropout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

29 Activations in the first convolutional layer (upper), and the last
convolutional layer (lower) of the trained custom model applied on
a collimator artifact image. Every box represents an activation map
corresponding to some filter. Activations are dense in the first layer
but sparse in the last layer capturing arc like artifact. . . . . . . . . 52



List of Tables

1 Slice-wise test accuracy for the canine and temporal bone images.
200 with motion and 200 without motion canine images and 400
with motion and 400 without motion temporal bone images were
used for testing of the model. We had 800 with motion and 800
without motion slices from jaw volumes. . . . . . . . . . . . . . . . 47

2 Volume-wise motion detection accuracies for two canine volumes. . . 47

3 Volume-wise motion detection accuracies for temporal bone volumes. 47

4 Volume-wise motion detection accuracies for each jaw volume. . . . 48

5 Various scores for the canine, temporal bone and jaw image slices.
Class 0 slice is without artifact and class 1 slice is with motion artifact. 48

6 Accuracy and loss for training, validation, and testing. Testing
results are for 6500 slices. "dp" stands for dropout and "aug" is data
augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11



1 Introduction
Dentistry has seen tremendous advances over the past three decades. The need
for more precise imaging and diagnostics tools has become essential (Shah et al.,
2014). X-ray based techniques are playing a major role in the development of these
tools. From simple intra-oral periapical X-rays to more advanced extra-oral imaging
techniques like fan-shaped X-ray beam based computed tomography (CT) or cone-
shaped X-ray beam based cone-beam computed tomography (CBCT) are being used
in dental applications (Vandenberghe et al., 201).

Current state-of-art CBCT systems provide excellent high resolution and three
dimensional images of oral bony anatomy. CBCT scans are also low cost in comparison
to CT scans. However many imaging artifacts are inherently present in CBCT systems
(Nagarajappa et al., 2015; Schulze et al., 2011). These artifacts may contribute to
image degradation and lead to inaccurate or false diagnostics (Lee, 2008).

Before being delivered to the diagnostics facility, dental X-ray systems go through
rigorous quality assurance (QA) protocols following their production and assembly.
Many of these tests still require a lot of human intervention. The human operator
has to go through many image volumes and decide the quality of the images based on
his/her experience, which if automated, could save many work hours and improve the
decision making accuracy. In addition, the image quality of the system may change
with the wear and tear in various machine parts during the usage at the diagnostics
facility. It will be beneficial to have a mechanism to monitor the degradation of
image quality and its causes automatically. This would enhance customer experience
and reduce number of visits of service engineer to the diagnostics facility.

Recent advances in machine learning methods for image classification and pattern
recognition provide excellent precursor for the visual fault detection task. Notably
deep learning and large convolutional neural network models (Alex et al., 2012;
Simonyan and Zisserman, 2014) have recently demonstrated impressive image clas-
sification performance on the ImageNet large scale visual recognition challenge
benchmark, an international competition for object detection and classification,
consisting of 1.2 million everyday color images (Russakovsky et al., 2015).

The purpose of this thesis is to investigate applicability of state-of-art deep
learning methods for the automatic detection of various visual faults in dental X-ray
systems in order to ease tests at production or during service. This will provide
better and improved quality services to the customer. This work mainly focuses on
testing the classification of artificially induced geometry and collimator artifacts in
the images generated using skull phantoms. We demonstrate that good accuracies
can be obtained for visual faults detection using deep learning methods.

Prior work
Fault detection and diagnostics (FDD) have been an important aspect from shipping
(Babaei et al., 2018) to aircraft Glavaski and Elgersma (2001) industries and from
building systems (Katipamula and Brambley, 2005b) to medical equipment (López
et al., 2009). The primary objective of an FDD system is early detection of faults
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and diagnosis of their causes, enabling corrections before additional damage to the
system or loss of service occurs as described by Katipamula and Brambley (2005a)
for building systems. In the case of medical equipment, safety of patient becomes
another important factor. It is better if the faults in medical equipment could be
detected during the production phase itself as it minimizes the costs and safety
concerns arising from the bug fixing and recalls in later phases (Alemzadeh et al.,
2013). The faults may also occur later during the usage at customer sites due to
wear and tear in the equipment. The dental X-ray systems are also tightly regulated
to avoid radiation overdose to the patient or repeated exams (Hirvonen-Kari, 2013;
Rout and Brown, 2013). Thus the fault detection or even fault prediction becomes a
crucial aspect for medical equipment.

The FDD systems can be divided into two major categories: model based and data
driven. In model based methods, domain knowledge of the system is incorporated to
create a model and the measured values of some system parameters are compared
with the model values and prediction is made (Isermann, 2005; Oppenheimer and
Loparo, 2002). The complexity and noisy working conditions affect the development
of such models and most of these models can not be updated with on-line measured
data (Zhao et al., 2016b). On the other hand, data driven fault detection models learn
a model based on observations of input and output data (Katipamula and Brambley,
2005a). These methods have become more attractive because of availability of big
data, large computing power, and breakthrough of deep learning (Zhao et al., 2016b).

The faults in an equipment can be mechanical (Sheng et al., 2011) or software
specific (Wallace and Kuhn, 2001, 1999). Depending upon the type of the fault
and data available for the model training, different approaches are used. There
have been many recent attempts to detect machine faults by applying deep learning
methods (Zhao et al., 2016b). Sun et al. (2016) proposed a one layer autoencoder
(AE, Goodfellow et al., 2016a) based neural architecture for the classification of faults
in induction motor. They classified six types of the motor conditions using vibration
signals acquired by an acceleration sensor. Lu et al. (2017) presented a detailed study
of stacked denoising autoencoders with three hidden layers for fault diagnosis of
rotary machinery components. The input features to those autoencoder models were
raw sensory time-series. In Deutsch and He (2017), a restricted Boltzmann machine
(RBM, Smolensky, 1986) based method was proposed for the prediction of remaining
useful life of a bearing. Ding and He (2017) proposed a deep convolutional network
where wavelet packet energy images were used as input for spindle bearing fault
diagnosis. Recurrent neural network (RNN Rumelhart et al., 1986b) (RNN) models
are used to handle sequential data with its ability to encode temporal information.
The RNN models have been applied in various machine health monitoring problems
recently (M.Yuan et al., 2016; Zhao et al., 2016a).

The progress in deep learning methods is changing the analysis of natural images
(Dong et al., 2016) and videos (Wang et al., 2015). Similar examples are emerging in
medical imaging. In the image related problems, convolutional neural networks have
been used extensively. Litjens et al. (2017) have stated that out of the 47 papers
published on medical image classification in 2015, 2016, and 2017, 36 were using
CNNs, 5 AEs, and 6 were using RBMs. The application areas of these methods
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were very diverse, ranging from brain magnetic resonance imaging (MRI) to retinal
imaging and digital pathology to lung computed tomography (CT). Examples include
classification of pulmonary tuberculosis from X-ray images (Lakhani and Sundaram,
2017), X-ray scattering image classification (Wang et al., 2017), differential diagnosis
of benign and malignant breast nodules from ultrasound images (Cheng et al., 2016),
and identifying diabetic retinopathy in retinal fundus photographs (Gulshan et al.,
2016).

Similarly, CNNs have been used recently to detect artifacts in medical images.
Meding et al. (2017) implemented a convolutional neural network for automatic
detection of motion artifacts in MRI images. The network architecture consisted
of two sequential convolutional layers interleaved with ReLU and pooling layers.
Küstner et al. (2018) used a patch based approach for detection of motion artifacts
from MRI images. They divided image slices to patches and fed the patches to the
CNN. Zhang and Yu (2018) used convolutional neural network based approach for
metal artifact reduction in CT scan images. Granholm (2018) tried transfer learning
based CNNs for the detection of geometry and collimation artifacts from calibration
images in CBCT machines.

Structure of the thesis
We start by describing the basics of X-ray production and main principles behind
CBCT scanning. We then briefly explain motion and collimation artifacts in CBCT
machine. We explain the central concepts in deep learning with focus on convolutional
neural networks. Then we describe the neural network architectures and data
collection methods used in our work. We also provide the code snippets wherever
required. Finally we show the results obtained in our experiments and discuss how
the deep learning methods can reduce the workload in the production and enhance
accuracy for the visual fault diagnosis in dental X-ray systems.
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2 Background
Since the revolutionary invention of X-rays in 1895 by Roentgen (Glasser, 1995),
many diagnostics and imaging techniques have been developed such as digital X-ray,
computed tomography (CT Scan), mammography, cath-lab. One such technique
is cone-beam CT (CBCT), which is also known as digital volumetric tomography
(DVT). Commercial development of dental CBCT technology first emerged in second
half of the 1990s (Glasser, 1995; Mozzo et al., 1998; Arai et al., 1999; Scarfe and
Farman, 2007; Scarfe et al., 2012). CBCT machines have been a widely used tool for
several dental applications such as implant planning (implantology), endodontics,
oral and maxillofacial surgery, and orthodontics (Scarfe et al., 2007, 2009; Mehr,
2013; Harrel Jr et al., 2018; Doyle et al., 2018; Alamari et al., 2012). Below we
describe some basic principles and background physics behind X-ray and CBCT
devices.

2.1 Production of X-rays
X-rays are generated in a glass tube containing two oppositely charged electrodes.
Positively charged electrode is called anode and the negatively charged electrode is
called cathode. Both electrodes are separated by a vacuum. The cathode consists of
a filament which when supplied an electric current, gets heated and emits electrons.
This process is called thermionic emission. A high voltage of the order of thousands of
volts is applied between the two electrodes to accelerate the cathode electrons towards
the anode. The area of the anode surface which receives the beam of electrons from
the cathode is called focal spot. The focal spot consists of a high density material
(e.g. tungsten). When the high speed electrons collide with the target material (focal
spot), X-rays are produced (Bushberg et al., 2012a; Hsieh, 2015: pp. 33–42).

Figure 1: A simple schematic of X-ray tube (Pauwels et al., 2015). The cathode has
negative and anode has positive charge. The filament in the cathode emits electrons,
when heated. The focal spot makes a small portion of whole anode. The cathode
electrons are accelerated towards anode. Whole process is carried out inside a glass
envelope with vacuum.

All electron-focal spot collisions do not produce useful X-rays. Around 99% of the
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input energy gets converted into heat. There can be three types of the interaction of
the speeding cathode electrons with the target atoms as described in Hsieh (2015:
p. 35). The high-speed electron travels partially around the nucleus due to the
attraction between the positive nucleus and the negative electron. The sudden
deceleration of the electron produces Bremsstrahlung radiation and energy of this
Bremsstrahlung radiation depends on the kinetic energy of the incident electron
which is given off in de-acceleration. As the amount of interaction increases, the
resulting X-ray energy increases. This type of radiation covers the entire range of
the X-ray energy spectrum. If the electron collides directly with a nucleus, its entire
energy appears as Bremsstrahlung. The X-ray energy produced by this interaction
represents the upper energy limit in the X-ray spectrum. For example, for an X-ray
tube operating at 120 kVp, this interaction produces X-ray photons with 120-keV
energy. This kind of interactions are very rare. The third kind of interaction occurs
when a high-speed electron collides with one of the inner shell electrons of the target
atom and frees the inner shell electron. When the hole is filled by an electron from
an outer shell, characteristic radiation is emitted. The energy of the characteristic
X-ray is the difference between the binding energies of two shells.

Figure 2: Electron interaction with a target and its relationship to the X-ray
tube energy spectrum. (a) Bremsstrahlung radiation is produced when high-speed
electrons are decelerated by the electric field of the target nuclei. (b) Characteristic
radiation is generated when a high-speed electron interacts with a target electron and
ejects it from its electronic shell. When outer-shell electrons fill in the vacant shell,
characteristic X-rays are emitted. (c) A high-speed electron directly hits the nucleus
and the entire kinetic energy gets converted to X-ray energy. For the X-ray spectrum
shown in the figure, the target material is tungsten, and additional filtration is used
to remove low-energy X-rays (Hsieh, 2015: p. 36).
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2.2 Computed tomography
Computed tomography (CT) is a technique for imaging cross-sections of an object
using a series of X-ray measurements taken from different angles around the object.
CT uses simultaneously rotating detectors and X-ray tube. The development of
the CT technology is often divided into four generations (Goldman, 2007; Bushberg
et al., 2012b).

The first-generation of CT consists of X-ray tube rigidly linked to a detector
located on the other side of the subject. The tube-detector sweeps horizontally which
is called translation. During translation, the measurement is made at each location
of the detector using a pencil beam X-ray. Then the system rotates at 1◦ increments
to collect 180 views over 180◦ rotation.

The second-generation CT used multiple narrow beams of X-rays with multiple
detectors and, as in the first generation, used rotate–translate motion. Number of
required translations was reduced by a factor of 1/(number of detectors) (Goldman,
2007).

The third-generation CT eliminates translation and motion is purely rotation
using slip-ring technology. The X-ray beam is fan-beam. This form of CT technology
is most commonly used currently.

The fourth-generation CT consists detectors placed circularly and rapid measure-
ments are taken as the tube sweeps across the field of view of the detector. Because
of expensive detector arrays, the fourth-generation CT scans did not gain popularity.

Figure 3: The first generation CT scanners (A) utilized a pencil beam fixed with a
single detector moving simultaneously by translation-rotation motion. The second
generation scanners (B) were similar to the first generation scanners but used multiple
pencil beams coupled with multiple detectors and had a wider angle of rotation. The
third generation scanners (C) utilized a fan-beam and an array of multiple detectors
rotating simultaneously around the patient. The fourth generation scanners (D)
used a wider fan-beam rotating around the patient and a stationary ring of multiple
detectors (Mehr, 2013).
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2.3 Cone-beam computed tomography
CBCT has revolutionised dental diagnosis by facilitating transition from 2D imaging
to 3D imaging, which has added a lot of third party applications. The traditional
CT scan systems used a fan-shaped beam and several detectors to acquire individual
image slices of the field of view (FOV) and then stack the slices to obtain a 3D
representation. CBCT uses a cone-shaped beam and a single detector where X-rays
are directed through the middle of the area of interest onto the detector on opposite
side. The X-ray source and the detector rotate around the patient and take multiple
sequential projection images of the field of view (FOV). Only one rotation sequence
of the gantry is necessary to acquire enough data for image reconstruction (Farman
and Scarfe, 2018).

Figure 4: (A) Computed tomography utilizes a fan-shaped X-ray beam. (B) CBCT
uses a cone-shaped X-ray beam. (Mehr, 2013).

CBCT scan has smaller size and lower cost in comparison to CT scan. Since CBCT
aquires data from whole FOV, it has faster scan time which results in the reduction of
image unsharpness caused by the translation of the patient, reduced image distortion
due to internal patient movements, and increased X-ray tube efficiency (Gulsahi,
2011). However, because of larger FOV, large amounts of scattered radiation is
produced. The detection of large scattered radiation in CBCT causes limitations in
image quality related to noise and contrast resolution (Scarfe and Farman, 2008).
Nonetheless, CBCT has become a popular tool for dental and maxillofacial imaging
(Jacobs, 2011; Mamatha et al., 2015).

A CBCT device is shown in Figure 5. In CBCT device, a C-shaped rotating
arm (C-arm) consists of a radiation source (X-ray tube) and a detector mounted on
opposite side. The target object (patient or phantom) is placed between the X-ray
source and detector. During a scan, the C-arm rotates in a circular trajectory around
the target object, collecting hundreds of frames (views) from different angles. The
frames are sent to a computer for reconstruction, which computes a 3D reconstruction
of the target object.
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Figure 5: Schematic drawing of Planmeca ProMax 3D CBCT device (Planmeca Oy,
2017). Main parts of the machine are numbered as: (1) C-arm, (2) sensor (detector),
(3) tube head, (4) patient supports, (5) patient support table, (6) patient handles, (7)
patient positioning controls, (8) touch screen, (9) telescopic column, (10) stationary
column, (11) emergency stop button.

Image reconstruction
When an X-ray travels through an object, it attenuates due to effects such as
absorption or refraction (McKetty, 1998). The internal material of the object has
an absorption coefficient at each point in the space, higher attenuation coefficient
implies a denser material.

Figure 6: An X-ray beam passing through an object with different attenuation
coefficients along a line.

If we assume that X-ray is infinitely thin and travels along a straight line (see
Figure 6), the relationship between the incident intensity of X-rays Iin and transmitted
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intensity Iout can be written according to Beer-Lambert law (Swinehart, 1962),

Iout = Iin exp[−
∫ L

0
µ(l) dl], (1)

where µ(l) is attenuation coefficient of the object in the beam path. By taking
logarithm on both sides, the line integral can be written as,

p =
∫ L

0
µ(l) dl = − ln Iout

Iin

, (2)

where p is the projection measurement and L is the thickness of the object X-ray
beam travelled.

This can be extended to a 2D object (image slice) as shown in Figure 7 where X-
ray projections are taken along many parallel lines. In a parallel projection geometry,
parallel projections are also taken at several angles θ. The source and detector move
together in a circular path. For the purpose of CT, the inside of the object can be
reconstructed by obtaining attenuation coefficients or the object density information.
If the object’s densities are represented by a function f(x, y), the line projections
can be written as,

p(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − ρ)dxdy, (3)

where projection p(ρ, θ) is also called forward Radon transform of the object function
f(x, y), ρ = x cos θ + y sin θ is line along the projections, and δ(.) is Dirac delta
function (Kak and Slaney, 1988b: p. 50).

The task is to construct the image of the object by obtaining inverse Radon
transform using such projection measurements. Two major categories of reconstruc-
tion methods are analytical and iterative. In general, analytical reconstruction is
considered computationally more efficient while iterative reconstruction can improve
image quality (Hsieh et al., 2013). Traditionally, most commonly used analytical
reconstruction method in commercial CT scanners has been filtered back-projection
(FBP) (Saxena and Kumar, 2018). It applies a 1-D filter on the projection data before
back-projecting (smearing) the data onto image space (Hiriyannaiah, 1997; Kak
and Slaney, 1988b). Various FBP-type methods have been developed for different
generations of CT scans. The detailed explanation of these methods is not in the
scope of this thesis but the curious reader can refer to the book by Kak and Slaney
(1988a) for fundamentals of image reconstruction and review by Flohr et al. (2005)
for multi-slice CT reconstruction.

Feldkamp algorithm
In CBCT the detector is 2D and projections could be considered as 2D forward
Radon transforms. While there have been many variants developed for the image
reconstruction as described by Turbell (2001), for a simple and fast implementation,
the well known Feldkamp algorithm is mostly used either in its original form (Feld-
kamp et al., 1984) or with some modifications (Xiao et al., 2003; Scherl, 2012). We



21

Figure 7: The parallel projection geometry. The source and detector rotate about
the center of the object. For each angle θ, the attenuation coefficients are added
along the X-ray at the detector. Projections are usually taken for the θ ∈ [0, 180).

will explain Feldkamp algorithm in simple form here. For more detailed explanation
and derivations, reader can consult (Feldkamp et al., 1984; Turbell, 2001).

The Feldkamp algorithm (FDK) is based upon a circular trajectory (see Figure
8), where the source and detector rotate along an ideal circle. The X-ray source S is
at a distance D from the detector center d. The object in the middle is in the world
coordinate system (x, y, z) placed at the rotation center O. OX is aligned towards
the source and detector center at angle zero. The flat panel detector and source
rotate together around the z-axis. The radius of the circular trajectory is R, and u
and v are the pixels in the image. For any ray hitting the detector at u and v at a
particular angle θ, the projection function can be written as,

p(θ, u, v) =
∫ ∞

0
f(s(θ) + αγ̂)dα, (4)

where s(θ) = (R sin θ, R cos θ, 0) is the location of the source with respect to rotation
center O, α ∈ [0,

√
D2 + u2 + v2] is the distance from source along the ray vector

and γ̂ is the unit vector along the direction of ray vector (Scherl, 2012).

Steps: FDK is an approximate reconstruction algorithm. FDK algorithm for
circular CBCT with planar detector can be applied in following successive steps:

Step 1 - Filtering: Each measured projection p(θ, u, v) is filtered in following
steps:
(a) Cosine weighting: This step weights the projections according to the cosine of
the angle ϕ between the ray hitting the detector at center d and the ray hitting the
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Figure 8: Ideal Feldkamp geometry. The X-ray source S rotates along an ideal circle
of radius R with center of rotation at O. In this geometry, the rotation direction is
anti-clockwise and given by the angle θ. The detector is on the opposite side and
rotates along with the source in the same direction. The lower diagram is a simpler
representation of cone-beam geometry (Sakamoto et al., 2005).

detector at (u, v).

pc(θ, u, v) = p(θ, u, v)× cos ϕ, (5)
where cos ϕ = D√

u2+v2+D2 .

(b) Ramp filtering: This step is 1-D convolution along the rows of the detec-
tor The cosine-weighted projections are convolved with a ramp filter (Wei et al.,
2005).

pf (θ, u, v) = pc(θ, u, v) ∗ h(u), (6)
where h(u) is impulse response of ideal ramp filter in frequency domain.
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Step - 2 Back-projection: The filtered projections are back-projected (smeared)
into the image space to obtain approximated solution as below.

f̂(x, y, z) =
∫ 2π

0
µ(θ, x, y, z)pf (θ, u(θ, x, y, z), v(θ, x, y, z))d(θ), (7)

where µ(θ, x, y, z) is a point-dependent distance weight such as,

µ(θ, x, y, z) = R2

R + y sin θ − x cos θ
, (8)

and the detector coordinates u and v in terms of x, y, z coordinate system (Xiao
et al., 2003) are,

u(θ, x, y) = D(y cos θ + x sin θ)
R + y sin θ − x cos θ

, (9)

v(θ, x, y, z) = zD

R + y sin θ − x cos θ
. (10)

2.4 Geometry and collimation artifacts
Geometry artifacts

In reality, the assumption of a circular source-detector trajectory is not essentially true.
Motion of the X-ray source and detector differ significantly from a simple circular
orbit (Daly et al., 2008) due to, for example, gravity-induced mechanical flex (Jaffray
et al., 2002) or due to the tilted detector rows with respect to an ideal Feldkamp-
like acquisition (Scherl, 2012). Failing to correct such non-idealities may result in
misregistration, loss of details, or image artifacts (Jaffray et al., 2002). A calibration
of the imaging system geometry is done for the accurate image reconstruction (Yang
et al., 2006).

In geometry calibration, a specific phantom with known dimensions is scanned
and various geometry parameters are recorded. During the reconstruction, the
geometry parameters already obtained from the calibrations are in the reconstruc-
tion algorithm (Cho et al., 2005; Yang et al., 2006). During the patient scan, it
is assumed that the patient is stationary and the source and detector are follow-
ing a predefined trajectory. The motion artifacts can occur from one of the two causes:

1. Patient motion: The exposure time in CBCT ranges from 5.4 to 40 seconds
(Nemtoi et al., 2013) and such time is long enough for the patient’s movements.
Hanzelka et al. (2013) have found that patient with open eyes tend to follow the
motion of the C-arm. Patient motion can cause misregistration artifacts within the
image (Lee, 2008). If an object moves during the scanning process, the reconstruction
algorithm does not account for the movement since no information on this movement
is integrated in the reconstruction process.
2. Non-patient motion: If the geometry defined in the geometry calibration files
does not repeat itself due to some reason like flex or jitters while rotation, it can
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cause motion artifacts in the images (Jaffray et al., 2002). This causes same sort
of artifacts as described above. Reconstruction algorithms try to compensate those
effects up to some limit. It is not essential that the source and detector follow a
perfect circular trajectory, but the trajectory should be repeatable following the
geometry calibration (Pauwels et al., 2015). Even minute deviations can cause poor
image quality (Nagarajappa et al., 2015).

Motion artifacts can have detrimental impact on the diagnostic images. It is beneficial
to be aware of the presence of artifacts and be familiar with their characteristic appear-
ances in order to enhance the extraction of diagnostic information from cone-beam
images (Makins, 2014; Nardi et al., 2016).

Figure 9: Upper two images show the motion artifact and the lower two images are
without any motion artifacts. The images have been acquired on a skull phantom at
the R&D facility of Planmeca Oy.

Collimation artifacts

The collimator is essentially a rectangular window made from lead sheets. It controls
the field of view for the X-ray exposure. If the collimator window is not open accurately
during the scan, it can cause the artifacts in the images. In the production, extended
volumes are taken in order to visualise the collimation artifacts more clearly. The
worker has to go through all the images in the extended volume manually and decide
whether there is artifact. If there is an collimation artifact, worker needs to move
the collimator manually and repeat the whole process again.

Collimator calibration pipeline in production: In order to check and do the
collimation calibration the CBCT device goes through the work-flow shown in Figure
11. Beam check is done to see whether the collimator is open enough to cover the
rectangular detector. The flat field calibration is done for the correction of the pixel
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Figure 10: Upper two images show the collimation artifact in the extended volume
and the lower two images are without any collimation artifacts. The images have
been acquired on a skull phantom at the R&D facility of Planmeca Oy.

gain and dark currents in the detector when no object is present between source and
detector. After this, the extended volume scan is taken on a skull phantom to check
if any collimator artifact is visible in the images. If the collimator artifact is visible,
the collimator blades are moved wider and the whole process is repeated again until
the collimator artifacts are not visible. Once there are no collimator artifacts, other
scans and checks can be performed.

2.5 Deep learning basics
Machine learning

Classical computer programs are explicitly programmed by hand to perform a task.
With machine learning, some part of the human contribution is replaced by an
algorithm. In machine learning, computers are fed with data and the computer
algorithm tries to learn the hidden relationships in the data (Bishop, 2006; Murphy,
2012).

In supervised machine learning (Hastie et al., 2008a), the program receives a set
of inputs and corresponding labels as training dataset and the algorithm tries to learn
the relationship between input and output. Once the algorithm is trained, it can
predict an output for any new input. In unsupervised machine learning (Hastie et al.,
2008b), there is no training dataset, but the task of the computer is to divide the
input data into a number of clusters or to find patterns. In supervised learning, we
are interested in the prediction of the output class for an input rather than making
clusters of inputs whose labels are unknown. For example, in a typical cat-dog
classification problem, if a dataset is available with images of dogs and cats and
the corresponding labels, supervised learning can be used to learn the relationship
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Figure 11: Flowchart of collimation calibration in the production. The process
is repeated until the collimator artifacts are not visible any more in the extended
volumes.

between the images and labels. The trained network will predict the label for any new
image of cat or dog. On the other hand, unsupervised learning will need no labelled
data. Unsupervised learning will try to separate the input cat and dog images into
two separate clusters, but the label of the both clusters will not be available.

In this work, the focus is in the applications of deep learning (Goodfellow et al.,
2016b), a subset of machine learning. Deep learning is a branch of machine learning
which has become very popular in recent years for its wide range of applications
(Voulodimos et al., 2018; Ker et al., 2018). Below we will describe some central
concepts in deep learning which we have utilized in our work.

Neuron model

The basic unit of the neural network is loosely motivated by the basic computational
unit of the brain called neuron. The early model of a neuron is termed as McCulloch
Pitts neuron (McCulloch, 1943). There are approximately 100 billion neurons in
the human brain and each neuron is estimated to have up to 15,000 connections
with other neurons (Nguyen, 2013). Each neuron receives input signals from the
connected neurons at its dendrites. The input signals get summed and if the total
sum is above a certain threshold, the neuron can fire, sending a spike along its axon.

The firing of the neuron is called activation and there are many activation
functions which are used in practice nowadays, which are different from the classical
(binary) neuronal model. The output can be expressed in mathematical form as,

output = ϕ(
m∑

m=1
wmxm + b), (11)
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Figure 12: The upper diagram is a biological neuron and the lower diagram is
equivalent model of the perceptron (Li, 2018).

where wm are the weights of the m connected neurons, b is the neuron bias, and ϕ is
the activation function.

These neuronal units are essentially not the same as in the brain. There are many
different types of neurons with very different characteristics. For example, synapses
are not just simple scalar weights but they are complex non-linear and dynamic
system (London and Häusser, 2005; Brunel et al., 2014). The McCulloch-Pitts neuron
could fire (0,1) or (-1,1). However, this model is so simplistic that it only generates
a binary output. Nevertheless, below are some popular activation functions.

Activation functions

The capacity of the neural networks to approximate any function, especially non-
convex, is directly the result of the non-linear activation functions. Activation
function takes a vector and performs a certain fixed point-wise operation on it. Below
are some most used activation functions.

Sigmoid:The sigmoid non-linearity has the following mathematical form,

σ(x) = 1
1 + e−x

. (12)

The sigmoid function squashes the real valued input number between 0 and 1. Large
negative numbers become 0 and large positive numbers become 1. The function is
steep in the middle region, that is, any change in the input will change the output
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drastically. But at the edges, output values tend to respond less to changes in input,
this results in the problem of vanishing gradients during the network training. Also,
its output is not zero-centered. In practice, the sigmoid non-linearity has recently
fallen out of favour for the use in feed-forward neural networks.

Hyperbolic tangent: The tanh non linearity has the following mathematical
form,

tanh(x) = 2σ(2x)− 1 (13)

The tanh squashes the real-valued input number to the range [−1, 1]. Its output
is zero centered, but it also has the gradient vanishing problem at the ends.

Figure 13: The left diagram is sigmoid, middle is tanh, and right is ReLU non-
linearity (Li, 2018).

ReLU: Rectified linear unit computes the function f(x) = max(0, x). It means that
the activations below zero are clipped to zero and the activations above zero remain
same. The slope is 1 for the activations above zero. Alex et al. (2012) showed that
ReLU accelerated convergence of stochastic gradient descent. It is very simple to
calculate in comparison to sigmoid or tanh.

Feed-forward neural network

The individual neuron units are connected in a graph to form a neural network. The
network is called feed-forward because the input flows towards the output in forward
direction and there is no feedback from the forward branch to backward branch. A
simple form of feed-forward neural network is shown in Figure 2.5.

There are three layers in this network. The leftmost layer is called input layer. The
middle layer is hidden layer which consists of neuron units and does the calculations.
The rightmost layer is called output layer. The output layer is a single linear neuron
here, depending upon the task in hand the output layer’s size changes.

Let us denote the input features by x which is a length m column vector. The
weights for the hidden layer and output layers are W1 and w2, respectively. The
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Figure 14: A simple feed-forward neural network with one hidden layer.

biases for hidden layer neuron are b. The output of the feed-forward network can be
given as below.

y = ϕ(W1x + b)w2, (14)

where ϕ is an activation function, x = [x1, x2, x3]⊺,

W1 =

⎡⎢⎢⎢⎣
w11 w12 w13
w21 w22 w23
w31 w32 w33
w41 w42 w43

⎤⎥⎥⎥⎦ ,

b = [b1, b2, b3, b4]⊺, and w2 = [wh1, wh2, wh3, wh4]⊺.

In modern neural networks a large number of hidden layers are incorporated in a
long chain. The output of a hidden layer becomes the input of next hidden layer.
The overall length of the chain gives depth of the model. The deep term in deep
learning comes from this deep chain of hidden layers. The number of hidden layers
determine the depth and the dimensionality of the hidden layer (number of units
in a hidden layer) determines the width of the model (Goodfellow et al., 2016b: p.
164).

2.6 Overview of convolutional neural network
Most of the expansion of deep learning is the result of the success of convolutional
neural networks (CNN). Although the use of CNNs goes back to 1998 (LeCun et al.,
1998), their widespread use is due to much more recent event, when a deep CNN was
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used by Alex et al. (2012) to beat a state-of-art level in the ImageNet classification
challenge (Russakovsky et al., 2015). Since then, the development in computing
power and the access to the large amount of data has brought CNNs at the forefront
of rapid progression. For image classification tasks, many variants of CNN architec-
tures have been successfully applied on ImageNet dataset namely VGG (Simonyan
and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), Resnet (He et al., 2016).
However, the basic building blocks are very similar. The LeNet-5 (LeCun et al.,
1998) is a simple and initial CNN architecture. LeNet network architecture is shown
in Figure 15. We will explain different processing layers in a typical convolutional
neural network in following section.

Convolutional layer: Images can have millions of dimensions, and it is very expen-

Figure 15: LenNet-5 network (LeCun et al., 1998). The convolution of 6 filter
kernels with the input image of 32× 32 results in 6 feature maps of size 28× 28 (C1).
In next layer S2, average pooling (subsampling) is performed using a 2× 2 kernel.
Again a convolution (C3) and pooling (C5) was performed. Now the map values are
flattened and two fully connected layers (C5, F6) are attached. The output layer
has 10 units for 10 classes.

sive to use fully connected layers. For example, if a 32× 32 input is connected to a
hidden layer of 1000 neurons, total number of parameters will be 32×32×1000 = 1.024
million, which is huge. Instead, convolutional layers come handy here. Convolution
is a linear transformation which preserves the spatial properties of the images. The
convolutional layer works as a feature extractor. When the filter weights are convolved
with the input image, the output is called feature map. The weights of the filter
are learned during the training. Several feature maps are obtained by using many
different filter kernels. The idea is to extract important features like edges from the
images. Moreover same filter weights can be used for the whole image, which reduces
the number of parameters in the network and enhances the computations. Some
kind of activation is also applied on the feature maps in order to give the model
non-linear functionality. Thus a convolutional layer learns a set of k filters g1, g2 ..,
gk which are convolved spatially with the image f of size m× n to produce a set of
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k, 2D feature maps h,

hk[x, y] = (f ∗ g)(x, y) =
∑
m

∑
n

f [m, n]g[x−m, y − n] (15)

Figure 16: 2-D Convolution. f is a 2-D image which is convolved with the filter
kernel g. The center pixel 5 showed inside the red box in the input image gets
changed to -45 in the output image h after convolutional operation.

Padding: In order to calculate the center pixel, it is important to consider the type
of padding at the boundaries of the image. A common way is to add zero padding
along the boundaries, so that the convolved output will be of the same size as of the
input image. It is called same padding. In the valid padding scheme in which we
do not add any zero padding to the input, the size of the output would be reduced.
Also, depending upon the type of strides and filter size used in the convolution, the
output size of the feature map might change. Stride is the units by which the kernel
moves left to right or up to down during convolution. The output width and height
can be calculated using the following equations.

output width = w − fw + 2p

sw

+ 1, (16)

output height = h− fh + 2p

sh

+ 1, (17)

where w = input width, h = input height, fw = filter width, fh = filter height,
p = amount of zero padding, sw = horizontal strides, and sh = vertical strides.

Pooling: After the convolutional layers, the feature maps are down-sampled (or
subsampled) using pooling. It reduces the spatial size of the features which in turn
reduces the amount of parameters and the computations in the network. Pooling
can be thought of as a summary statistic of the nearby outputs (Goodfellow et al.,
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2016b: p. 330). One form is to apply a 2× 2 kernel with a stride of 2 and taking
the max value inside the filter box. This kind of max pooling (Zhou and Chellappa,
1988) is shown in Figure 17.

Figure 17: Maxpooling.

Different filter sizes and strides are also used in the literature. Other forms of
pooling can be seen as taking the average (shown as sub-sampling in Figure 15) or
sometimes taking l2-norm (also known as euclidean norm or mean-square norm) of
the elements inside the filter kernel instead of taking the max (Scherer et al., 2010;
Rezaei et al., 2017).

Fully connected layers: The stacks of convolutional and pooling layers are followed
by fully connected layers. In the fully connected layer, neurons are connected to
all activations in the previous layer, as shown in the case of feed-forward network.
Hence, the activations of the neurons are calculated by matrix multiplication followed
by a bias offset.

Output layer: The output layer is generally a linear layer which takes the feature
maps as input and transforms it into a score or probability. The length of output
vector depends upon the number of classes.

Softmax is one type of output layer used in a multi class classification problem.
For a given input, it outputs a probability of belonging to each of the class.

Training Process

The training data is usually divided into three sets, namely: training, validation, and
test set. The model is trained with the training data and tested on the validation
data during training. Once the training has converged, the trained model is tested
on unseen test data. The training or learning process has three major steps.

Forward pass: The network takes an input x and produces an output y. This is
called forward propagation. Also, a scalar cost L is calculated.
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The neural network tries to find a function which maps input to a given output
label. The learning of this function is done by providing set of input and output pairs,
called training set. In practice, for supervised learning and classification problem,
we have a set of inputs and corresponding labels. For example, the input can be a
two dimensional matrix such as an m× n size image, that is, the input is a m× n
dimensional matrix. During the training, the network compares its output y to the
real image label and tries to minimise the difference between the predicted output and
real label. The idea is to maximise the likelihood of the prediction. In order to do so,
the negative log likelihood (loss or cost) is minimised using some optimization tech-
niques. The loss function can be formed depending upon the type of problem in hand.

A typical form of loss function used in convolutional networks for classification
tasks is cross entropy loss which is the cross entropy between the training data and
the model’s predictions. The cross-entropy loss for a binary classification problem
(class 0 and 1) is calculated as,

L = −(y log(p) + (1− y) log(1− p)), (18)

where y and p the correct class label and predicted probability by the model, re-
spectively. The more general form of cross-entropy loss for multi-class problem is,

L = −
C∑

i=1
yi log(pi), (19)

where C is number of classes, yi and pi are the correct class label and predicted
probability by the model for the ith class, respectively.

Backward pass: In this step, the gradient of the cost function is calculated using
back propagation. The partial derivatives of cost function L are calculated for all
weights w and bias b. Since the information from the cost function flows backward
in the network for gradient computation, this process is called back-propagation
(Rumelhart et al., 1986a; LeCun et al., 1989) or back-prop.

Computing an analytical expression for the gradients of the cost function with
respect to the network parameters is a computationally expensive task owing to
the number of parameters in the neural net. Fortunately, we have a method called
chain rule of derivatives to calculate the gradient of the scalar loss with respect to
any parameter in the network. For more information reader can refer to Nielsen (2018).

Optimization: Optimization is the task of either minimizing or maximizing some
function. Here we are interested in minimizing the loss function. Once all gradients
are computed, network parameters are updated using an optimization technique. The
loss function of CNN is highly non-convex and does not have a global minimum. In
stochastic gradient descent (SGD) optimization, the loss is reduced by moving in
small steps with the opposite sign of its derivative. The small step is called learning
rate. Learning rate can be fixed or dynamic. The loss is calculated for each training
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sample and the process is repeated iteratively until the algorithm seems to converge.

θ ← θ − ϵ∇θL(f(x; θ), y), (20)

where θ is the network parameter to be updated, ϵ is a scalar learning rate, and
∇θL(f(x; θ), y) is the derivative of the loss function L with respect to θ. It is
computationally costly and time taking to iterate over each training sample. In
mini-batch SGD, the update is performed for every mini-batch of n training samples.
The algorithm has been found to converge faster by this method. It reduces the
variance of the parameter updates, which can lead to more stable convergence.

θ ← θ − ϵ∇θ

n∑
i=1

L(f(xi; θ), yi). (21)

Adaptive moment estimation (Adam) optimizer (Kingma and Ba, 2014) com-
putes adaptive learning rates for each parameter. It stores exponentially decaying
average of past squared gradients vt and past gradients mt. The calculations are as
below,

mt = β1mt−1 + (1− β1)gt, (22)

vt = β2vt−1 + (1− β2)g2
t , (23)

where mt and vt estimates first moment (mean) and second moment (variance) of
the gradients gt respectively, and β1 and β2 are constants (close to 1). The authors
found that mt and vt are biased towards zero, the bias corrected first and second
order moment estimates are,

m̂t = mt

1− βt
1
, (24)

v̂t = vt

1− βt
2
. (25)

Finally, the Adam update is:

θ ← θ − ϵ√
v̂t + δ

m̂t, (26)

where δ is a constant for stabilization in the case v̂t becomes zero.

Regularization techniques

One of the focus of machine learning is to increase the generalization capability of the
model, that is, in addition to the validation set, the model should perform equally
well on the unseen data. Following are the major regularization techniques used in
this work.

L2 regularization: One regularization approach to overcome over-fitting is the
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weight decay, which adds an additional term to the cost function to penalise parame-
ters such that it drives weights closer to the origin. That means it penalises large
increase in weights. The new cost function is,

J(x, y) = L(f(x; θ), y) + λ
∑

i

θ2
i , (27)

where λ ∈ [0,∞) is a hyperparameter that weights the contribution of regularization
term.

Data augmentation: The best way to make a machine learning model gener-
alise better is to give it more data (Goodfellow et al., 2016b: p. 233). In practice,
the amount of training data is limited. One way to solve this problem up to a
certain limit is to generate more fake but representative data. For images, many
techniques like shift, rotation, contrast change, vertical, and horizontal inversion are
some methods to augment the data as demonstrated by Wang and Perez (2017).

Dropout: Dropout (Srivastava et al., 2014) is a recent and simple but effective data
regularization method. Dropout refers to dropping (ignoring) some of the neuronal
units during the training phase. The set of neurons to be ignored is chosen randomly.
At each training stage, individual unites are either dropped out of the network with
probability 1− p or kept with probability p, so that a reduced network is left. It has
been shown that dropout forces a neural network to learn more robust features and
reduces the possibility of over-fitting in convolutional neural networks (Wu and Gu,
2015).

Transfer Learning

In machine learning, transfer learning is, applying models trained on one task on
another task. For example, networks trained on ImageNet datasets are widely utilised
in medical imaging applications (Shin et al., 2016). A machine learning algorithm
trained for the classification of every day color images, such as cat and dogs, could
be used to classify radio-graphs. The idea is that all images share similar features
such as edges and blobs, which makes transfer learning feasible. In addition, deep
neural networks often require large datasets (in the millions) for the proper training.
Starting the training with weights from pre-trained networks might perform better
than the random initialization if we have small dataset (Tajbakhsh et al., 2016;
Zhou et al., 2017). In medical imaging classification tasks, the training data is often
limited.
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3 Materials and Methods
The experiments involved three major steps: data acquisition, model training, model
testing. A number of deep learning frameworks are available to easily build neural
networks from existing modules on a high level. Caffe (Jia et al., 2014), Theano
(Theano Development Team, 2016), TensorFlow (Abadi et al., 2016), PyTorch (Paszke
et al., 2017) and Keras (Chollet, 2018) are some of the frameworks for implementing
neural networks. We used Keras for our experiments as Keras comes with Theano
and TensorFlow backend. It is easy to use and is continuously being maintained and
updated. It runs seamlessly on CPU and GPU. It is very simple with emphasis on
rapid model development. It has very good documentation containing many code
examples and other resources that help users to get started very quickly. We also
used CUDA (parallel computing platform and API model which enables graphics
processing unit (GPU) for general purpose processing) and cuDNN (GPU-accelerated
library of primitives for deep neural networks) for model development on GPUs.

We worked on two different types of artifacts and our approach deferred for both.
We will describe material and methods for the two tasks separately.

3.1 Geometry artifacts
3.1.1 Data acquisition

The images were acquired using six lab phantoms available at the R&D facility of
Planmeca Oy using ProMax 3D Mid CBCT device. The data was acquired using a
robotic automation script developed at Planmeca Oy. Canine Left and Canine Right
sub-programs were used to acquire the training images. We acquired 9 volumes for
the training, the size of each volume was 268× 268× 334. From each volume, 123
2D axial slices were taken and a total of 1107 images from 9 volumes were used
for the training. The motion artifact was synthetically induced in the non-motion
images by corrupting the geometry file. The number of motion images were same as
the number of non-motion images. A total of 2214 image slices were available for
training after taking the motion images into count.

Synthetic motion images: It was easier to produce large dataset of motion
images from non-motion images by changing the geometry file and reconstructing
the volume from the corrupted geometry file. We used three volumes of real motion
images and their corresponding motion artifact corrected volumes to generate a
function by fitting a normal distribution on the geometry file difference between
motion and non-motion images. We induced motion artifacts in the images by adding
randomly sampled values from the fitted function to the original geometry files of
the non-motion images.



37

Figure 18: One of the phantom set up used to acquire the training data with
Promax mid CBCT device (Courtsey of Planmeca Oy).

3.1.2 Image preparation

Image intensities were normalised from 0 to 1 for the whole 3-D volume by dividing
each pixel by the maximum pixel value of the volume. This was the only preprocessing
done on the images. Each image slice was divided into 60× 60 resolution patches
with 50% overlap (see Figure 19). For simplification, it was assumed that all patches
in the motion images contain motion artifacts. The total number of patches available
were 141,696. The patches from non-motion images were assigned label 0 and the
patches from the motion images were assigned label 1. 80% of the patches were used
for the training and 20% patches were used for the validation.

3.1.3 Network architecture

We used a method described by Küstner et al. (2018) for the motion artifact detection
in MRI images. The network used is called CNNArt by the authors. The network
takes image patches as input and outputs the probabilities of belonging to class 0
(non-motion) and class 1 (motion), for each patch. Keras library (Chollet, 2018)
was used for the network implementation with TensorFlow backend. Training was
performed using two NVIDIA Geforce GTX-780 cards with 3 GB RAM each.

Below is an example of Keras sequential API to create network model. The
model object is called using sequential API. Layers and activation can be added in
series. Convolutional kernel coefficients were initialized by a Gaussian distributed
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Figure 19: The left image is an input image of size 268× 268 and the right image
shows 64 patches of size 60× 60 made from the left image with 50% overlap.

randomization. For the output predictions, a softmax layer is added in the last.

cnn = Sequential()

cnn.add(Conv2D(32, kernel_size=(14, 14),kernel_initializer=’he_normal’,

weights=None,padding=’valid’,strides=(1, 1),

W_regularizer=l2(1e−6),input_shape=(60,60, 1)))
cnn.add(Activation(’relu’))

cnn.add(Flatten())

cnn.add(Dense(output_dim= 2,init = ’normal’,W_regularizer=’l2’))

cnn.add(Activation(’softmax’))

Figure 20: The convolutional neural network with three hidden layers, one fully
connected layer and one softmax layer as output. The size of input is H ×W ×D,
where H is height, W is width and D is depth of the input. In our experiment, the
input size is 60× 60× 1. The outputs of the network are the probabilities for the
two classes, in our case, motion and non-motion (Küstner et al., 2018)

.
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CNN filter coefficients were trained by optimizing the categorical cross-entropy
loss function for a learning rate of 0.0001 with L2 coefficient regularization. The
cost function was optimized using Adam with corresponding parameters as β1 = 0.9,
β2 = 0.999 and ϵ = 108 as used by the authors in Küstner et al. (2018) and described
by Kingma and Ba (2014) in original Adam article as good default settings for the
tested machine learning problems.

The below Keras code creates the optimizer object with custom parameters.
opti = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999,

epsilon=1e−08, decay=0.0)

As shown in the below code, model training was run for 500 epochs and the
model for the epoch with the lowest validation loss was saved using Keras call-
backs object. In Keras, model needs to be compiled before the actual training
starts, where the loss, optimizer, and metric (to be used for the training) are spec-
ified. Finally the training was run using fit function. The training and validation
datasets are given to the fit function as input. "batch_size" determines number
of samples taken at a time and "verbose=1" prints the training progress on the screen.

iEpochs=500

batchSize=32

callbacks=keras.callbacks.ModelCheckpoint(’model.h5’,

monitor=’val_loss’, verbose=1, save_best_only=True,

save_weights_only=False, mode=’auto’, period=1)

cnn.compile(loss=’categorical_crossentropy’,optimizer=opti,metrics=[’accuracy’])

result = cnn.fit(X_train,

y_train,

validation_data=[X_test, y_test],

nb_epoch=iEpochs,

batch_size=batchSize ,

callbacks=[callbacks],

verbose=1)

For the testing of the trained model, we used canine images from the 6th phantom,
which were not used for the training. Also, the performance of the model was tested
against volumes from the other sub-programs like temporal bone and jaw. The test
slices were first divided into the 60 × 60 patches and the softmax function gave
probabilities for each patch of belonging to both motion and non-motion classes. We
considered only the probability of motion class. Patches with probability of greater
than 0.5 for motion class were taken as having motion artifacts. Finally, to get
percentage of patches in a 2D image slice, below formula was used:

motion(%) = patches with motion probability>0.5
total patches

. (28)
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To assist the model predictions we dropped all the patches with more than 55%
zero pixels. So Equation 28 becomes,

motion(%) = patches with motion probability>0.5 and less than 55% zero pixels
total patches−patches with more than 55% zero pixels

.
(29)

3.2 Collimator artifacts
3.2.1 Data acquisition

Data for the collimator artifact was collected from the Planmeca Oy’s production
and R&D facilities. Extended image volumes were acquired from the ProMax
Classic CBCT device using teeth sub-program. In the R&D facility, to simulate the
collimator artifact, we set the collimator position wrongly which produced artifacts
in the extended volume. Data obtained from the production was the data collected
during the routine testing protocols. Three different phantoms were used for diversity
of information in the images. A total of 48 volumes were used for the training, out
of which half of the volumes had collimator artifacts. 65 unseen volumes were used
for model testing.

3.2.2 Image preparation

Image pixels were normalised between 0 to 1 for each 3-D volume by dividing each
pixel by maximum pixel value of the volume. The volume size was 551× 551× 551.
290 2D slices were taken from each of the 48 volumes for training. In total we had
13920 image slices for network training. Each image slice was resized to 224× 224
for being used as input to the custom VGG model. Each gray image was stacked to
make a 3-channel image to be used with VGG model pre-tuning as pre-trained VGG
model accepts only 3-channel input images.

3.2.3 Network architecture

We modified the VGG-16 model shown in Figure 21. VGG-16 has 16 layers in the
network. VGG-16 model won ImageNet Challenge 2014 submission, where it secured
first and the second places in the localisation and classification tracks respectively
(Simonyan and Zisserman, 2014). The VGG article has been cited more than 11,800
times since 2014. We used the original VGG-16 also by using pre-trained weights
and fine tuning some of the last layers. We trained modified VGG from scratch.

The training was performed using Elastic compute cloud (EC2 management
console on Amazon web services (AWS) platform. A deep learning Amazon machine
image (AMI - 5d7c5024), preloaded with Keras, CUDA and CuDNN was used. The
testing was performed on a computer system installed with two NVIDIA Geforce
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Figure 21: The original VGG-16 network with 16 layers (Simonyan and Zisserman,
2014). The output softmax layer has 1000 units for 1000 classes in ImageNet database.

Figure 22: The VGG-16 architecture showing different layers and parameters. The
softmax layer has 1000 units for 1000 class classification in ImageNet data.

GTX-780 cards with 3 GB RAM each. The pretrained model weights were down-
loaded from Keras. The code below loads the VGG-16 model with pretrained weights.

from keras.applications.vgg16 import VGG16

input = Input(shape=(224, 224, 3))

model = VGG16(input_tensor=input, include_top=True,

weights=’imagenet’)

Below code is an example of Keras functional API. The output of the last
convolutional layer was taken and flattened. The fully connected dense layers (4096
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units) were replaced by new smaller layers (512 units) and 1000 units of output
softmax layer was replaced by 2 units for binary classification task.
last_layer=model.get_layer(’block5_pool’).output

x=Flatten(name=’flatten’)(last_layer)

x=Dense(512,activation=’relu’,name=’fc1’)(x)

x=Dense(512,activation=’relu’,name=’fc2’)(x)

out=Dense(2,activation=’softmax’,name=’output’)(x)

finetuned_vgg=Model(input,out)

Instead of training all layers, only the last 3 layers’ parameters were trained for
the input images. The rest of the layer’s parameters were frozen. Below is the code
for freezing the training of remaining layers of the model.
for layer in finetuned_vgg.layers[:−3]:

layer.trainable = False

The loss function was categorical cross-entropy function with a learning rate of
0.0001. The cost function was optimized using Adam with corresponding default
parameters as β1 = 0.9, β2 = 0.999 and ϵ = 108. The training was run for 500 epochs
and the best epoch model with lowest loss was saved using callbacks in Keras.

The custom VGG model is shown in Figure 23. The implementation of custom
model with dropout layers was as following in Keras using functional API. The
operations like dropout, convolution, and maxpooling can be imported and applied
very easily layer by layer. The ReLu activation is applied after each convolution.
The model is built by using "Model" function by providing input tensor and output
tensor.
from keras.layers import Dense, Dropout, Flatten, Input

from keras.layers import Conv2D, MaxPooling2D , ZeroPadding2D

from keras.models import Model

model_input = Input(shape=(224,224,1), name="input_layer")

x = ZeroPadding2D((1,1)) (model_input)

x = Conv2D(64, (3, 3), activation=’relu’) (x)

x = ZeroPadding2D((1,1)) (x)

x = Conv2D(64, (3, 3), activation=’relu’) (x)

x = MaxPooling2D((2,2), strides=(2,2)) (x)

x = ZeroPadding2D((1,1)) (x)

x = Conv2D(128, (3, 3), activation=’relu’) (x)

x = ZeroPadding2D((1,1)) (x)

x = Conv2D(128, (3, 3), activation=’relu’) (x)

x = MaxPooling2D((2,2), strides=(2,2)) (x)

x = ZeroPadding2D((1,1)) (x)

x = Conv2D(256, (3, 3), activation=’relu’) (x)

x = ZeroPadding2D((1,1)) (x)
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x = Conv2D(256, (3, 3), activation=’relu’) (x)

x = ZeroPadding2D((1,1)) (x)

x = Conv2D(256, (3, 3), activation=’relu’) (x)

x = MaxPooling2D((2,2), strides=(2,2)) (x)

x = Flatten() (x)

x = Dense(512, activation=’relu’) (x)

x = Dropout(0.5) (x)

x = Dense(512, activation=’relu’) (x)

x = Dropout(0.5) (x)

x = Dense(2, activation=’softmax’) (x)

custom_model = Model(inputs=model_input , outputs=x)

Figure 23: The custom VGG architecture showing different layers and parameters.
The softmax layer has 2 units for 2 class classification.
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The data augmentation in Keras was done using "ImageDataGenerator" class as
shown in the code below. This class generates modified images on the fly during
training and the modifications in the images are random. The type and range of
modifications can be specified in the arguments.
traingen = ImageDataGenerator(

rotation_range=30,

width_shift_range=0.2,

height_shift_range=0.5,

horizontal_flip=True)

train_generator=traingen.flow(X_train, y_train, batch_size=64,seed=42)

testgen = ImageDataGenerator()

test_generator=testgen.flow(X_test,y_test, batch_size=64)

hist = model.fit_generator(train_generator , steps_per_epoch=len(X_train)/64,

callbacks=[callback], epochs=100, verbose=1,

validation_data=test_generator)

3.3 Metrics
While accuracy is an important metric to measure the model performance, there are
some other metrics which provide greater insights into the model performance.

Precision: In a classification task, the precision for a class is the number of items
correctly labelled as belonging to the class (true positive) divided by the total number
of elements labelled as belonging to the positive class (sum of true positives and false
positives). In other words it means how many selected items are correct.

Recall: In a classification task, recall or sensitivity is the number of true posi-
tives divided by the total number of elements that actually belong to the positive
class (the sum of true positives and false negatives). In other words it means how
many correct items are selected.

F1 score: F1 score is the harmonic average of precision and recall. An F1 score
reaches its best value at 1 (perfect precision and recall) and worst at 0.

F1 score = 2 × precision× recall
precision+recall (30)

Cross validation: Cross validation is a method to check the model robustness
to the data (Kohavi, 1995). It is particularly useful when the dataset is small. A part
of dataset is reserved for testing (validation) and model is trained on the remaining
dataset. It can be done in different ways. In leave-one-out cross validation (LOOCV),
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we reserve only one data point from the available dataset, and train the model on the
rest of the data. In k-fold cross validation the entire dataset is split in k folds. For
each fold, model is trained on k − 1 folds and validated on kth fold. We used 5-fold
cross validation using Scikit-learn library (Pedregosa et al., 2011), keeping 20% data
for test and 80% data for model training. The dataset division was stratified, means
that for each data-folds, the division of classes was balanced. As shown in the code
below, "Stratified KFold" cross-validator provides train/test indices to split data in
train/test sets and number of folds can be controlled by "n_splits" variable.
from sklearn.model_selection import StratifiedKFold

seed=42

kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed)

for train, test in kfold.split(X, Y):

X_train, Y_train =X[train],Y[train]

Y_test,Y_test=X[test],Y[test]
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4 Results

4.1 Geometry artifacts
The training process curves are shown in Figure 24. The training set accuracy reached
0.9961 and validation set accuracy reached 0.9960. The training and validation losses
were 0.0264 and 0.0236 respectively. 5-fold cross validation mean loss and mean
accuracy were 0.3683 and 0.9919 respectively for the validation dataset folds.

Figure 24: The accuracy and loss curves during model training.

Accuracy

We tested the model trained on the canine images for motion prediction in temporal
bone images also. Temporal bone images had higher resolution of (801× 801) while
the model was trained on low resolution canine images (268× 268). The thresholds
for prediction motion in a slice has been taken as 10% and 15%, that is, a slice
contains a motion artifact if the percentage of patches classified by the model as
motion artifact class is more than the threshold. The motion detection accuracies of
the model for canine and temporal bone images is shown in Table 1.
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Table 1: Slice-wise test accuracy for the canine and temporal bone images. 200
with motion and 200 without motion canine images and 400 with motion and 400
without motion temporal bone images were used for testing of the model. We had
800 with motion and 800 without motion slices from jaw volumes.

Canine Temporal bone Jaw
Motion > 10% > 15% > 10% > 15% > 10% > 15%

no 100 100 100 100 93 98.75
yes 100 100 98.75 87 94.62 92.62

Below are the volume-wise motion detection accuracies based on taking 100 image
slices from the volume for canine and temporal bone. For the canine volumes motion
detection accuracy is 100% (see Table 2). For the temporal bone volumes if we put a
threshold of 95%, that is, if more than 95% slices in the volume contain artifact, then
the volume is considered as motion volume. Then the volume-wise motion detection
accuracy for temporal volumes can also be considered as 100% (see Table 3).

Table 2: Volume-wise motion detection accuracies for two canine volumes.

Canine
Volume - 1 Volume - 2

Motion > 10% > 15% > 10% > 15%
no 100 100 100 100
yes 100 100 100 100

Table 3: Volume-wise motion detection accuracies for temporal bone volumes.

Temporal bone
Volume - 1 Volume - 2 Volume - 3 Volume - 4

Motion > 10% > 15% > 10% > 15% > 10% > 15% > 10% > 15%
no 100 100 100 100 100 100 100 100
yes 100 100 100 100 95 52 100 96

The volume-wise motion detection accuracy for jaw volume is also 100% when
we consider a volume as having motion if at least 78% of slices have artifact in that
volume (see Table 4).
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Table 4: Volume-wise motion detection accuracies for each jaw volume.

Jaw
Volume - 1 Volume - 2 Volume - 3 Volume - 4

motion > 10% > 15% > 10% > 15% > 10% > 15% > 10% > 15%
no 100 100 93 100 96 100 83 95
yes 78.50 70.50 100 100 100 100 100 100

Scores

Further to examine the model’s accuracy, we calculated precision, recall and F1 score
for image slices.

Table 5: Various scores for the canine, temporal bone and jaw image slices. Class 0
slice is without artifact and class 1 slice is with motion artifact.

Canine
class precision recall F1 - score slices

0 1 1 1 200
1 1 1 1 200

avg/total 1 1 1 400
Temporal bone

class precision recall F1 - score slices
0 0.96 1 0.98 400
1 1 0.96 0.98 400

avg/total 0.98 0.98 0.98 800
Jaw

class precision recall F1 - score slices
0 0.95 0.93 0.94 800
1 0.93 0.95 0.94 800

avg/total 0.94 0.94 0.94 1600
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Motion maps

We also drew the motion probability maps. An visualization of the motion maps
predicted by the model for canine, temporal bone and jaw test images is shown in
Figure 25. The map of the motion image contains different colors but the map of the
motion-less image is almost completely blue. The percentage of patches with motion
artifact as predicted by the model are 96.15% and 0.0%, respectively, for canine
motion and non-motion image and 38.39 % and 1.41 %, respectively, for temporal
bone motion and non-motion image.

Figure 25: The motion maps for some test images. The left images show the
probability of motion for patches of the right images projected back into the image
space with an patch overlap of 50%. The patches more than 55% zero pixels have
been given 0 probability by default. (A) is canine motion image with 96% motion
patches. (B) is canine non-motion image with 0% motion patches. (C) is temporal
bone motion image with 32% motion patches. (D) is temporal bone non-motion
image with 0% motion patches. (E) is jaw motion image with 38% motion. (F) is
jaw non-motion image with 1% motion patches. The colorbar is shown on the top.
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4.2 Collimation artifacts
Comparison between different models are shown in Table 6 for 6500 slices obtained
from 65 image volumes. Out of which, 5400 slices contained no collimator artifact
and 1100 contained collimator artifact. The finetuned VGG model took more time
for predictions than the custom model, also the finetuned model had less accurate
predictions. For the finetuned VGG model, the gray images needed to be converted
into 3-channels both for training and testing, which adds additional time.

Table 6: Accuracy and loss for training, validation, and testing. Testing results are
for 6500 slices. "dp" stands for dropout and "aug" is data augmentation.

model training validation testing
loss acc loss acc loss acc time (s)

vgg finetuned 0.00001 100 0.00002 100 0.3431 93.29 59.16
vgg finetuned + dp 0.0367 99.09 0.0127 99.75 0.6274 91.72 53.71

custom + dp 0.0101 99.66 0.00001 100 0.1612 96.52 42.36
custom + dp + aug 0.0741 97.05 0.0012 99.96 0.1402 96.84 42.45

We did further analysis for the custom model trained with dropout. Interestingly
we observed that the artifact detection accuracy remained almost same for varying
number of slices taken from the imaging volume. We took 10 to 100 slices (in incre-
ment of 10) from each of the 65 volumes and ran the model prediction. Theses slices
were taken by putting the slice number 200 in the center. Time for the prediction
reduced greatly, at the same time the prediction accuracy remained almost same (see
Figure 26).

Figure 26: Change in slice-wise accuracy and prediction time for different number of
slices. We took different slices from each volume and the model predicted artifact/no
artifact for each slice. Even with 10 slices from 65 volumes, the accuracy is 96.7%
and the prediction time is only 6.4 seconds.

Volume-wise artifact detection accuracy was 96.29% for 54 good volumes, that is,
two volumes were predicted wrong. Also, for 11 bad volumes, the artifact detection
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accuracy was 100 %. Volume-wise accuracies also remained same, regardless of the
number of slices taken from the volume (see Figure 27).

Figure 27: Change in volume-wise accuracy and prediction time for different number
of slices. We took different slices from single good volume and the model predicted
artifact/no-artifact for single volume. With 10 slices from the volume, prediction
time is only 0.13 seconds and accuracy is still 100%.

The training curves of the custom model are shown below. The final loss and
accuracy parameters are shown in Table 6 (custom + dp).

Figure 28: Accuracy and loss curves during training of custom model with dropout.
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We visualised the activations of the network during the forward pass. For ReLU
networks, the activations usually start out looking relatively blobby and dense, but
as the training progresses the activations usually become more sparse and localized.

Figure 29: Activations in the first convolutional layer (upper), and the last convolu-
tional layer (lower) of the trained custom model applied on a collimator artifact image.
Every box represents an activation map corresponding to some filter. Activations
are dense in the first layer but sparse in the last layer capturing arc like artifact.
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5 Conclusions

5.1 Summary
Our objective was to test state-of-art deep learning networks for the artifact detection
in dental X-ray images.

The motion detection is working well for canine as well as for jaw, and temporal
bone images. The volume-wise accuracies are 100 % if the threshold for the motion
in a volume is set as 80% slices with motion artifacts. The slice-wise accuracies
are also above 90% for all image groups. While the motion detection accuracies of
the model are quite impressive, the motion maps do not show the fine resolution
motion. The major reason could be simplification in the labelling process. Also, the
patch correction (ignoring the patches with many zero pixels) could be the reason of
loosing information near the image borders. But at the same time it helps to ignore
the black background. The mean F1 score for canine, temporal bone and jaw slices
were 1, 0.98, and 0.94, respectively.

For the collimator artifacts, 96% slice wise accuracy was achieved. The volume-
wise accuracy was 98% (96.29% for good volumes and 100% for bad volumes). The
convolutional layer activations were visibly picking up the arc-like collimator artifacts.
We also demonstrated that with a robust model, the volume prediction accuracies
can be obtained much faster (0.14 seconds) by examining only few slices (10) from
the volume. The volume-wise prediction was the main objective for implementing
the model in production tests.

5.2 Discussion and future work
The training data was acquired in the lab setting on the skull phantom which was
a very important step. The results have shown that impressive accuracies can be
obtained in X-ray fault detection with relatively limited set of data using deep
learning methods. It has been seen that the transfer learning might not perform best
in some cases. For us, it might be because of small and different training dataset
than the ImageNet dataset. The model accuracies and robustness can be further
improved with more data and training analysis but for our objectives, it already is
giving pretty good results.

The immediate future objective of this work is to integrate the model with the
existing software and further analyse the model robustness. Finally, we list some
possible future applications of this work. This thesis is an excellent precursor for the
automation of many visual detection based quality tests in the production as well as
for the automation of quality assurance tests at the diagnostics facility performed
by the customer or service engineer. Many times a field engineer has to do the
failure diagnostics on the basis of images. This thesis work can be extended to the
applications where the failure diagnostics could be supported using deep learning
models. Also, the algorithm could be run at local level on the machine and may
be used to monitor the quality of the images during the normal usage. This can
help detect the degradation of images which might support proactive diagnosis of
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upcoming failures. The fault detection is not limited to only the analysis of visual
images. The deep learning applications can easily be extended to other forms of fault
data, hidden for example, in signals from motor movements or machine’s error logs,
which has the potential to completely transform the productivity of the machine and
customer satisfaction.
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