
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Sunil Kumar Mohanty

Evaluation of Serverless Computing Frame-
works Based on Kubernetes

Master’s Thesis
Espoo, July 6, 2018

Supervisor: Professor Mario Di Francesco, Aalto University
Instructor: Gopika Premsankar M.Sc. (Tech.)

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Sunil Kumar Mohanty

Title:
Evaluation of Serverless Computing Frameworks Based on Kubernetes

Date: July 6, 2018 Pages: 76

Professorship: Mobile Computing, Services and Secu-
rity

Code: SCI3045

Supervisor: Professor Mario Di Francesco

Instructor: Gopika Premsankar M.Sc. (Tech.)

Recent advancements in virtualization and software architectures have led to the
birth of the new paradigm of serverless computing. Serverless computing, also
known as function-as-a-service, allows developers to deploy functions as comput-
ing units without worrying about the underlying infrastructure. Moreover, no
resources are allocated or billed until a function is invoked. Thus, the major ben-
efits of serverless computing are reduced developer concern about infrastructure,
reduced time to market and lower cost. Currently, serverless computing is gener-
ally available through various public cloud service providers. However, there are
certain bottlenecks on public cloud platforms, such as vendor lock-in, computa-
tion restrictions and regulatory restrictions. Thus, there is a growing interest to
implement serverless computing on a private infrastructure. One of the preferred
ways of implementing serverless computing is through the use of containers. A
container-based solution allows to utilize features of existing orchestration frame-
works, such as Kubernetes. This thesis discusses the implementation of serverless
computing on Kubernetes. To this end, we carry out a feature evaluation of four
open source serverless computing frameworks, namely Kubeless, OpenFaaS, Fis-
sion and OpenWhisk. Based on predefined criteria, we select Kubeless, Fission
and OpenFaaS for further evaluation. First, we describe the developer experience
on each framework. Next, we compare three different modes in which OpenFaaS
functions are executed: HTTP, serializing and streaming. We evaluate the re-
sponse time of function invocation and ease of monitoring and management of
logs. We find that HTTP mode is the preferred mode for OpenFaaS. Finally, we
evaluate the performance of the considered frameworks under different workloads.
We find that Kubeless has the best performance among the three frameworks,
both in terms of response time and the ratio of successful responses.

Keywords: docker, container, kubernetes, serverless, microservices

Language: English

2

Acknowledgments

I would like to thank my thesis supervisor Professor Mario Di Francesco
for giving me an opportunity to work on this thesis and providing valuable
insights. I would like to specifically thank my instructor Gopika Premsankar
who has always kept her door open to answer my unending queries. I am
grateful to her for constantly guiding me through out this thesis work.

I would like to thank my parents, sisters, in-laws and friends for their
constant support and motivation. Special thanks to my wife for constantly
encouraging me throughout my years of studies and through the process of
writing this thesis. This thesis would not have been possible without their
help and support.

Thank you.

Espoo, July 6, 2018

Sunil Kumar Mohanty

3

Abbreviations and Acronyms

3GPP 3rd Generation Partnership Project
API Application programming interface
AWS Amazon Web Services
CD Continuous Delivery
CDN Content Delivery Network
CI Continuous Integration
CLI Command-line Interface
CNCF Cloud Native Computing Foundation
FaaS Function as a Service
GKE Google Kubernetes Engine
HPA Horizontal Pod Autoscaler
IaaS Infrastructure as a Service
IoT Internet of Things
IPC Interprocess Communication
PaaS Platform as a Service
QPS Queries per second
REST Representational State Transfer
RBAC Role Based Access Control
SaaS Software as a Service
UTS Unix Time Sharing
VM Virtual Machine
VMM Virtual Machine Monitor

4

Contents

Abbreviations and Acronyms 4

1 Introduction 8
1.1 Motivation . 9
1.2 Contribution . 10
1.3 Structure of thesis . 11

2 Background 12
2.1 Virtualization . 12

2.1.1 Hypervisor-based virtualization 13
2.1.2 Container-based virtualization 14

2.2 Docker . 17
2.3 Container orchestration . 21

2.3.1 Docker Swarm . 21
2.3.2 Kubernetes . 23

2.4 Microservices . 27
2.5 Serverless computing . 29

2.5.1 Definition . 30
2.5.2 Existing platforms . 31
2.5.3 Use cases . 32
2.5.4 Benefits and Challenges 33

3 Open source serverless frameworks 35
3.1 Evaluation criteria . 35
3.2 Frameworks . 36

3.2.1 Kubeless . 36
3.2.2 Apache OpenWhisk . 38
3.2.3 Fission . 40
3.2.4 OpenFaaS . 41

3.3 Summary and comparison . 43

5

4 Evaluation 46
4.1 Methodology . 46
4.2 Ease of development . 47
4.3 Comparison of Watchdog modes in OpenFaaS 49

4.3.1 Setup . 49
4.3.2 Results . 53

4.4 Performance of the different frameworks 55
4.4.1 Setup . 56
4.4.2 Results . 57

5 Conclusion 60

A Fission 70
A.1 Function code . 70
A.2 Examples of Commands . 70

B Kubeless 71
B.1 Function code . 71
B.2 Examples of Commands . 71

C OpenFaaS 72
C.1 Create a new function . 72

C.1.1 Auto generated function code 72
C.1.2 Sample yml file for OpenFaaS functions 73

C.2 Deploy function . 73

D Function Code 75
D.1 Serializing Function - Classic 75
D.2 HTTP Function . 75
D.3 Streaming Function . 76

6

List of Figures

2.1 Hypervisor-based virtualization [60]. 13
2.2 Container-based virtualization. 14
2.3 cgroup hierarchical structure. 16
2.4 Docker architecture [60]. 18
2.5 Multiple Docker containers using the same image. 20
2.6 Docker Swarm architecture. 21
2.7 Kubernetes architecture. 24
2.8 Monoliths and microservices [54]. 27
2.9 Google Trends of “serverless” in last five years. 30
2.10 Developer control in different computing paradigms [40]. . . . 30

3.1 High-level architecture of Kubeless. 37
3.2 OpenWhisk: high level architecture [3]. 38
3.3 OpenWhisk system architecture [3]. 39
3.4 Fission system architecture [14]. 40
3.5 OpenFaaS system architecture [29]. 42
3.6 OpenFaaS: interaction between components [17]. 43

4.1 System architecture of OpenFaaS on a Kubernetes cluster. . . 50
4.2 OpenFaaS watchdog modes [34]. 52
4.3 Average response time (in ms) for different OpenFaaS watch-

dog modes. 54
4.4 Density of response time for different watchdog modes in Open-

FaaS. 55
4.5 Average response time (in milliseconds) for different serverless

frameworks with 1, 5, 25 and 50 function replicas. 58

7

Chapter 1

Introduction

Recent advancements in technology have been pushing software developers
to generate value quickly and release new features faster than before. The
time to market is also becoming a critical metric, driven primarily by the
fear of competition [48]. In the past, developers spent a significant amount
of time in planning and maintaining infrastructure in addition to writing
code for business logic. Developers purchased bare metal servers and either
installed them on-premise or leased rack space in data centers. Moreover,
they had to over-provision their infrastructure to account for scalability and
resilience [37]. Thus, much of the infrastructure remained unutilized for
a significant portion of time. The advent of virtualization improved the
utilization of the underlying hardware, resulting in significant reduction in
cost [39, 62]. This development led to the rise of cloud computing and devel-
opers started treating hardware as a utility. Presently, developers no longer
need to own the actual hardware and pay only for what they use. Of the sev-
eral virtualization technologies available, hypervisor-based virtualization and
container-based virtualization are the most popular ones [53, 64]. Container-
based virtualization has become more popular in the recent years as it allows
for better utilization of resources, faster provisioning and de-provisioning,
and rapid scalability when compared to hypervisor-based virtualization [61].
While hypervisor-based virtualization provides computing resources on de-
mand, container-based virtualization provides applications on demand. Ad-
vancements in container technology have made developers switch from a large
monolithic architecture to an architecture based on distributed microser-
vices [51].

Such a shift to containers and microservices architecture has given birth
to a new paradigm known as serverless computing [45]. In serverless comput-
ing (also known as function-as-a-service), functions are written and deployed
to a platform without developers worrying about the underlying infrastruc-

8

CHAPTER 1. INTRODUCTION 9

ture. The latter is generally managed by a third-party service provider or
a different team (when using a private cloud). It is important to note that
serverless computing does not mean the absence of servers. The term ‘server-
less’ is a misnomer and a marketing jargon made popular by the Amazon Web
Services (AWS) Lambda1 service. The implementation still happens on real
servers, but developers are relieved of installing and managing the infras-
tructure. The development team can then focus on the business logic and
deploy the functions as soon as they are ready. These functions are com-
pletely stateless, allowing them to scale rapidly and independent from each
other. As a consequence, serverless computing has made developers change
the way they design, develop and deploy modern software [37].

1.1 Motivation

The main motivation behind the rapid adoption of serverless computing are:
decreased concern for developers, reduced time to market, billing for code
execution instead of resource usage, and reduced effort in application man-
agement and operations. Although utilizing serverless offerings of public
cloud service providers is very easy and convenient, there are several scenar-
ios where developers prefer their private infrastructure. Some of the major
reasons are as follows. Certain organizations would like to use their own
infrastructure for regulatory reasons or also to utilize existing private infras-
tructure. A serverless environment allows them to bill individual business
units based on execution time, thus creating a simple and cheaper cost model
within the organization. Moreover, each public cloud provider has its own im-
plementation of serverless computing, forcing developers to write their code
in a certain way. Hence, one of the major risks in adopting a public serverless
platform is vendor lock-in. Each public cloud provider also has limitations
in terms of languages supported, maximum execution duration, maximum
concurrent executions and so on. All these bottlenecks can be addressed if
serverless computing is realized in a private cloud environment, thus giving
an organization complete control over the infrastructure.

Edge computing, specifically data analytics at the edge, is particularly
suited for serverless computing [67]. Presently, Internet of Things (IoT) sen-
sors produce a large volume of data that has to be analyzed to extract useful
information. A private serverless infrastructure can be created on the IoT
gateways to process the data with very low latencies (as they are located close
to the devices generating the data). This is all the more beneficial when the

1https://aws.amazon.com/lambda/

CHAPTER 1. INTRODUCTION 10

IoT gateways do not have an Internet connection to connect to cloud services.
With a serverless environment, consumers can deploy their functions and be
billed for only the execution time at the edge. Here, function-as-a-service
can be combined with gateway as a service [65]. Such a model will simplify
the programming of IoT devices and improve the utilization of resources at
the gateways.

The reasons described above have motivated us to implement serverless
computing on a private infrastructure. Indeed, serverless computing can be
implemented in a private cloud through containers [63]. There are many open
source tools available today which have made orchestration (i.e., the deploy-
ment and scaling) of containers easy. One of the most popular open source
container orchestration tools is Kubernetes2, which is developed by Google.
The goal of this thesis is to implement and evaluate serverless computing
in a private cloud by using Kubernetes as a container orchestration tool.
Specifically, we aim to evaluate existing open source serverless computing
frameworks in terms of their features and performance.

1.2 Contribution

The contributions of this work are the following.

• Establishing the feasibility of setting up a serverless platform on a
private cloud using Kubernetes as a container orchestration tool

• Evaluating the features of existing open source serverless frameworks,
namely, OpenFaaS, Kubeless, Fission and OpenWhisk

• Implementing a serverless environment on virtual servers by using Open-
FaaS, Kubeless and Fission

• Evaluating the serverless platforms in terms of ease of development and
monitoring of the functions; in particular, the steps needed to build and
deploy functions on each considered framework

• Evaluating the performance (in terms of response time and ratio of suc-
cessful responses) of the considered frameworks under different work-
loads

2https://kubernetes.io/

CHAPTER 1. INTRODUCTION 11

1.3 Structure of thesis

The rest of this thesis is structured as follows. Chapter 2 introduces the rele-
vant background about virtualization, containers, Kubernetes, microservices
and serverless computing. Chapter 3 discusses several open source solutions
to implement serverless computing. Chapter 4 describes the implementation
of serverless computing on a Kubernetes cluster by using OpenFaaS, Kubeless
and Fission. It also evaluates the performance of the serverless environment
with each of these frameworks. Finally, Chapter 5 provides some concluding
remarks and directions for future work.

Chapter 2

Background

The chapter provides background information on the technologies and con-
cepts relevant to this thesis. Section 2.1 introduces the concept of virtualiza-
tion and describes hypervisor and container-based virtualization. Section 2.2
describes the features of Docker, a popular software tool for Linux contain-
ers. Section 2.3 discusses two popular container orchestration frameworks,
Kubernetes and Docker Swarm. Section 2.4 presents the mircroservices ar-
chitecture, one of the driving forces behind serverless computing. Finally,
Section 2.5 describes the concept of serverless computing, its benefits and
disadvantages and highlights certain use cases for serverless computing.

2.1 Virtualization

Virtualization lies at the heart of serverless computing. Hence, it is im-
portant to clearly introduce virtualization to better understand serverless
computing. Although virtualization has gained rapid popularity in the last
few years, its origin can be traced to 1960’s when IBM introduced the idea
with the M44/44X system [49]. Virtualization enables developers to run mul-
tiple virtualized instances on top of a server. The instances run in complete
isolation and also provide rapid scalability, better utilization of computing
resources and reduction in cost [39, 62]. The two most popular virtualization
technologies are hypervisor-based virtualization and container-based virtu-
alization (also known as operating system-level virtualization). We describe
these technologies next.

12

CHAPTER 2. BACKGROUND 13

Figure 2.1: Hypervisor-based virtualization [60].

2.1.1 Hypervisor-based virtualization

In the words of Popek and Goldberg [69], a virtual machine (VM) can be
defined as “an efficient, isolated duplicate of the real machine”. Over the
last decade, hypervisor-based virtualization has been a popular method for
implementing VMs. This approach relies on a software called a hypervisor or
virtual machine monitor (VMM) that lies between the hardware and VMs. It
can host multiple VMs on top of it. The VMM has the following three char-
acteristics [69]: provides environments for programs which are identical to
the original machine had the program been run directly there; ensures min-
imal performance degradation for programs running in these environments;
the VMM has complete control over the resources on the host system.

Hypervisor-based virtualization can be further divided into two types
(Figure 2.1): Type 1, which is native or bare metal and Type 2, which
is hosted [57, 73]. A Type 1 hypervisor architecture runs the hypervisor
directly on top of the underlying host’s hardware. The VMs run on top of
the hypervisor. Here all the necessary scheduling and resource allocation
are done by the hypervisor. Some of the notable hypervisors based on this
architecture are Xen [42], Oracle VM, VMware ESX [66], Microsoft Hyper-
V [78]. In a Type 2 hypervisor architecture, the hypervisor runs on top of
the host operating system (OS). The VMs run on top of the hypervisor. Here,
the hypervisor relies on the host OS for processor scheduling and resource
allocation. Some of the notable hypervisors based on this architecture are
Oracle VirtualBox, VMWare Workstation [77], Microsoft Virtual PC [58],
QEMU [43], and Parallels1.

The major benefit of hypervisor-based virtualization is that it allows users
to run multiple VMs in isolation on a single machine. This allows developers

1http://www.parallels.com

CHAPTER 2. BACKGROUND 14

Figure 2.2: Container-based virtualization.

to create multiple environments with different hardwares and OS on a single
hardware. For example, a VM can be easily configured with 1 GB of memory
and 1 CPU on a host machine having 32 GB memory and 4 CPUs. The same
VM can then be reconfigured to have 4 GB of memory and 2 CPUs without
making any actual hardware changes, but only some configuration changes.
Developers can save a VM as an image and port this image to different
hardware or data centers. This gives developers a seamless experience from
development to testing to production. Furthermore, cloud service providers
have created interfaces which allow the creation of the VMs through APIs.
This has allowed developers to scale applications based on demand which
resulted in the initial wave of cloud computing.

Despite the many benefits, hypervisor-based virtualization has its limita-
tions. Firstly, there is some performance deterioration in VMs as compared
to native machines [42]. Moreover, VMs can be slow as they still need to be
booted up like a normal OS, resulting in long start up time.

2.1.2 Container-based virtualization

Containers, also known as operating system (OS)-level virtualization, are a
lightweight alternative to hypervisor-based virtualization. Containers create
multiple, isolated userspace instances on top of the same OS kernel [80]. Thus
containers provide an abstraction on top of the OS kernel allowing multiple
guest processes to run within a container in isolation from other containers.
As shown in Figure 2.2, each container behaves as an independent OS without
the need for an intermediate layer such as a hypervisor.

CHAPTER 2. BACKGROUND 15

There are multiple solutions for OS-level virtualization. Linux-VServer2

is one of the oldest implementations. It uses the chroot() barrier to pre-
vent unauthorized modification of the file system [76, 80]. OpenVZ3 relies on
kernel namespaces, allocating a PID namespace to each of the containers to
isolate them [76, 80]. OpenVZ relies on a modified Linux kernel and several
user-level tools [46]. Virtuozzo4 is another implementation of Linux container
technology and is based on OpenVZ. LXC5 is an implementation of container-
ization which uses Linux kernel functionalities already implemented in the
upstream Linux kernel [72]. Moreover, the use of Linux Security Modules by
LXC makes it stand out [72]. In this thesis, we use the LXC implementation
of containers to achieve our goal of creating a serverless environment. Next,
we describe the key enabling Linux kernel functionalities of LXC.

Control groups

Control groups6, also called as cgroups, enable LXC to control resources.
These resources include memory, CPU, block I/O, devices and traffic con-
troller [72]. It provides a mechanism for aggregating sets of processes into
hierarchical groups and controls the allocation of resources per cgroup [80].
Each groups inherits from its parent. As shown in Figure 2.3, each process
belongs to a node in the hierarchy which is arranged as a tree and each node
can have multiple processes sharing the same set of resources. Cgroups as-
sociate these sets of processes to one or more subsystems. Subsystems are
controllers which control access to the underlying resource. For example, the
memory controller keeps track of pages used by each group. Each cgroup
also has a virtual file system associated with it. Cgroups are configurable
allowing for dynamic allocation of resources. Thus, cgroups are responsible
for accounting and limiting how many resources a set of processes in a cgroup
can access.

Namespaces

Namespaces7 allow different processes to have their own view of the system
resources and are used by containers to provide resource isolation. Changes
made to the resource in a namespace are only visible within the same names-

2http://linux-vserver.org
3http://www.openvz.org
4http://www.virtuozzo.com
5https://linuxcontainers.org
6https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
7http://man7.org/linux/man-pages/man7/namespaces.7.html

CHAPTER 2. BACKGROUND 16

Figure 2.3: cgroup hierarchical structure.

pace. This makes the process have their own isolated instance of global
resources. The Linux kernel has seven different namespaces:

• Cgroup namespaces are responsible for virtualizing the view of process’s
cgroup. Each cgroup namespace has its own cgroup root directories.

• Interprocess Communication (IPC) namespaces isolate IPC resources,
such as System V IPC objects and Posix message queues. Each IPC
namespace has its own set of IPC resources and their visibility is limited
to the namespace to which they belong.

• Network namespaces isolate the networking resources, such as network-
ing devices, IPv4 and IPv6 protocol stacks, routing tables, firewalls,
and so on. A physical device is visible in only one network namespace.
Networking between namespaces can be done by creating tunnels using
a virtual Ethernet interface.

• Mount namespaces8 isolate the list of mount points in each namespace
instance, thereby restricting the processes in each mount namespace
instance to see distinct directory hierarchies.

• PID namespaces9 isolate the processID, resulting in processes in differ-
ent PID namespaces having the same PID number. This functionality

8http://man7.org/linux/man-pages/man7/mount namespaces.7.html
9http://man7.org/linux/man-pages/man7/pid namespaces.7.html

CHAPTER 2. BACKGROUND 17

allows a container to suspend or resume a set of processes within it
and then migrate the container to a new host, retaining the same PID
number.

• User namespaces10 isolate security-related identifiers and attributes,
such as user ids, group ids, root directory, keys and capabilities. For
example, a process can have full privileges inside a user namespace, but
at the same time be unprivileged outside the user namespace.

• Unix Time Sharing (UTS) namespaces isolate two system identifiers:
the hostname and the domain name. This allows a single system to
appear to have a different host name and domain name to different
processes.

Containers have been challenging hypervisor-based virtualization for adop-
tion by cloud computing providers [64]. There are many reasons for this.
Unlike VMs, containers share the same Linux kernel. Hence, container im-
ages are not full-fledged operating systems like VMs. This makes containers
very light-weight, scalable and easy to port. Containers are faster to boot
when compared to VMs [52]. In fact, the performance of containers is near
native in comparison to hypervisor-based virtualization [64]. Since contain-
ers have the ability to return unused resources to the host machine or other
containers, resource utilization is better than hypervisor-based virtualization
wherein resources are locked for each VM [80]. However, since containers
on the same host share the same Linux kernel, they provide less isolation as
compared to VMs.

2.2 Docker

Docker11 is an open source platform for building, shipping and deploying
containers. It uses the resource isolation features provided by the Linux
kernel, such as cgroups and namespaces [38]. Docker-based applications can
be deployed faster than traditional non-containerized applications. Moreover,
Docker allows developers to configure many infrastructure components, such
as memory, CPU and networking, through a Dockerfile (described later) or
the command line. This allows developers to manage infrastructure similar
to how they manage applications. Ultimately, it helps developers in reducing
the time to market [31]. Docker provides a platform to run almost any

10http://man7.org/linux/man-pages/man7/user namespaces.7.html
11https://docs.docker.com/

CHAPTER 2. BACKGROUND 18

Figure 2.4: Docker architecture [60].

application in a secure and isolated manner in a container. This security
and isolation allows Docker to run multiple containers simultaneously on top
of a single host. Docker provides all the tooling required to manage the
containers [70]. Developers can develop applications and its components by
using containers. These containers can then be packaged, distributed and
deployed by using Docker. The lightweight nature of Docker further helps
the distribution.

Docker architecture

Docker consists of Docker Engine12 which is responsible for creating and
running Docker containers. Docker engine is based on a client-server archi-
tecture. Users interact with the Docker engine by using the Docker client.
Figure 2.4 illustrates the Docker architecture. We describe the components
of the Docker platform next.

• The Docker client is the primary interface that is used by Docker users
to interact with the Docker platform. It is a command line interface

12https://docs.docker.com/engine/

CHAPTER 2. BACKGROUND 19

by which the users send commands. The client then sends these com-
mands to the Docker daemon which executes them. The client uses
a Representational State Transfer (REST) Application Programming
Interface (API) to interact with the Docker daemon. The client and
daemon need not be on the same host.

• The Docker daemon is responsible for managing Docker containers on
the host system. It runs on the host machine and waits for Docker API
requests from the Docker client. Users cannot interact with the Docker
daemon directly.

• Docker images are read-only templates with the source code for cre-
ating and running containers. These are the primary building blocks
of Docker containers. Every Docker image contains libraries and bi-
naries that are necessary to build applications. Developers can build
their own image or download images built by other developers. To
create their own image, developers write instructions in a Dockerfile
(described next). Each step in the Dockerfile creates a layer in the
image and the layers are combined by using a file system called Union
file system (UnionFS). Whenever a change is made to the image, a new
layer containing only the changes is added on top of the existing layers.
This allows for the layers to be used as a cache which can be reused.
The layers are read only in nature. Whenever developers make any
small change to their code, Docker uses the image from the cache and
create a new layer on top of the image with just the necessary changes.
This also makes the process for rebuilding images fast [38].

• Dockerfile13 is a text file that contains all the information needed to
build a Docker image. User can use the docker build command to
build an image from a Dockerfile. The Dockerfile is composed of vari-
ous instructions which are based on a simple syntax and are executed
in sequence. Docker goes through the Dockerfile and executes each
instruction in the order specified. While executing the instructions,
Docker checks if it can reuse an image from the cache instead of cre-
ating a new duplicate image. A Dockerfile must start with a ‘FROM’
instruction, which specifies the base image from which to build the im-
age. The base image can also be SCRATCH, which instructs Docker
to start with an empty filesystem as the base. The subsequent lines in
the Dockerfile adds, deletes and modifies files or configurations.

13https://docs.docker.com/engine/reference/builder

CHAPTER 2. BACKGROUND 20

Figure 2.5: Multiple Docker containers using the same image.

• Docker registries are used to store images. They can be either public or
private. Developers can build images and store them in these registries
to make the distribution of the images easy. Users can then access and
download Docker images from these registries by using Docker client.
These registries behave similar to source code repositories [59]. One of
the most popular and largest public Docker registries is Docker Hub14.
Developers can also create private repositories and thus control access
to the images.

• Docker containers are the runnable instances of the Docker images.
They are created, started, stopped and deleted through the Docker
client. Multiple instances of containers can be created from the same
Docker image on the same host. Each of these containers run in com-
plete isolation of each other. Users can attach persistent storage and
network to the containers. As shown in Figure 2.5, when a container is
created, a new writable layer called the “container layer” is created on
top of the underlying images. Changes made in the running container
are written to this container layer (unless the changes are targeted
towards the persistent storage). When multiple containers are created
from the same image, they create their own writable container layer [1].
When a container is stopped, the changes made in the writable con-
tainer layer are lost.

14https://hub.docker.com

CHAPTER 2. BACKGROUND 21

Figure 2.6: Docker Swarm architecture.

2.3 Container orchestration

As discussed earlier, containers, specifically Docker, make it easy to package,
port and deploy applications. These features allow distributed systems to
scale up and down easily. Moreover, in a distributed architecture, it is criti-
cal that multiple containers can interact among themselves. As the number of
containers grow, it becomes very important to automate the whole container
management process. This automation is achieved by a container orchestra-
tion framework. The primary jobs of a container orchestration framework
are to provision hosts, start containers, stop containers, provide resilience,
link containers, scale containers, update containers, expose containers to the
external world, and so on. Of the many orchestration frameworks available
in the market, the most popular are Docker Swarm and Kubernetes.

2.3.1 Docker Swarm

Docker Swarm15 is a container orchestration tool which provides native Docker
clustering and scheduling capabilities. The swarm mode is built into Docker
Engine v1.12 and later. Swarm commands are also executed through the
Docker command line interface and Docker Engine API. Hence, a swarm can
be set up with minimal configuration and with very few commands. This
makes swarm one of the simpler docker orchestration frameworks available.
Some of the key components of Docker swarm are as follows:

• Nodes. A swarm consists of multiple Docker hosts, each of them run-
ning in swarm mode. The hosts are referred to as nodes. As shown

15https://docs.docker.com/engine/swarm/key-concepts/

CHAPTER 2. BACKGROUND 22

in Figure 2.6, the nodes act as a manager, a worker or both. Man-
agers are responsible for carrying out cluster management tasks, such
as maintaining cluster state, scheduling services, and serving HTTP
API endpoints for swarm mode. When an application is ready to be
deployed to the Docker swarm, the service definition is submitted to
the manager node. The manager node then dispatches tasks to the
worker nodes. A swarm can also have multiple manager nodes for fault
tolerance. When there are multiple manager nodes, a single leader is
elected to carry out the swarm management tasks. Worker nodes are
responsible for executing tasks received from manager nodes. Manager
nodes can also act as a worker node and take on the responsibility of
executing containers. By default, all managers are workers. A sched-
uler running on the leader decides which tasks are assigned to a worker.
A worker can be in any of the three states, Active, Pause and Drain.
A worker in the active state can be assigned to run tasks. If a node
is in pause state, new containers cannot be scheduled on it although
existing containers will continue to run. If a node is in drain state, no
new containers can be scheduled on it and the existing containers are
rescheduled on a worker in active state. Node also can have label meta
data which can be used as a criteria for scheduling containers on them.
For example, special containers needing fast storage can run on nodes
labeled as SSD [18].

• Service. Swarm services are used to deploy containers on a swarm. The
service definition contains the state of the service (application). Ad-
ditionally, it contains other information such as the image name and
tag, number of containers, ports to be exposed (if any), node placement
preference, and if the service should start automatically when Docker
starts. The node manager parses the service definition and maintains
the state accordingly. For instance, if the service definition states that
there should be 5 containers running at all times, the manager ensures
this state is reached. Thus, if a container shuts down, it is the responsi-
bility of the manager to start a new container. Services can be deployed
in two modes, global and replicated. In the global deployment mode, a
task is scheduled to run in every available node of the cluster. In case
of replicated deployment mode, services define the total count of tasks,
and the scheduler distributes the same on various workers taking into
consideration any special placement criteria mentioned in the service
definition [19].

• Task. Tasks in the swarm are execution units which get assigned to

CHAPTER 2. BACKGROUND 23

a node and run on the node till completion. Their state is declared
in the service and the swarm realizes the desired state by scheduling
tasks [19]. For example, if a service is defined to have three instances of
a specific application, the scheduler creates three tasks. Each of these
tasks is realized through exactly one container. Each task goes through
various states16, such as new, pending, assigned, accepted, preparing,
starting, running, complete, failed, shutdown, rejected and orphaned.

2.3.2 Kubernetes

Google has long been running containers in its data center [44]. Almost all the
applications at Google are run on containers. These containers were managed
through an internal container cluster management system called Borg. Once
many external developers started getting interested in container technology
and Google developed its public cloud infrastructure, it developed a new
container management system called Kubernetes17 based on Borg [44, 79].
Kubernetes is developed as an open-source product18. Kubernetes can be
used to deploy, manage and scale containerized applications [35]. Some of
the key components of Kubernetes are as follows.

• Pods19 are groups of one or more containers. They are the basic build-
ing blocks in Kubernetes. All containers in a pod share the same set of
resources, such as storage, IP address, port space. All the containers
are tightly coupled, i.e., they are always co-located and co-scheduled.
Kubernetes assigns a unique IP address to a pod. Inside a pod, the
containers communicate among themselves via localhost. Containers in
two different pods communicate via the pod IP addresses. This makes
the pod behave like a VM. Kubernetes schedules and orchestrates pods
and not individual containers. This allows developers to develop inde-
pendent components and package them into a pod. Kubernetes sees a
pods as single working units and scales them accordingly. Pods lack
durability and can be evicted at any point of time. Hence, it is impor-
tant for developers to keep their pods stateless.

• Master and nodes. Kubernetes components can be categorized as mas-
ter and node components. Nodes are worker machines (such as a VM or
physical machine) which run the pods and are managed by the master

16https://docs.docker.com/engine/swarm/how-swarm-mode-works/swarm-task-states/
17http://kubernetes.io/
18https://github.com/kubernetes/kubernetes
19https://kubernetes.io/docs/concepts/workloads/pods/pod/

CHAPTER 2. BACKGROUND 24

Figure 2.7: Kubernetes architecture.

components. Previously, nodes used to be called minions. Although
master components can be run on any node, they are typically started
on a single machine, referred to as the master. Nodes and masters are
collectively known as a cluster. Master components provide the control
plane layer in Kubernetes. They are responsible for managing contain-
ers and respond to various cluster events. Figure 2.7 shows the master
components, such as the API Server, controller manager, scheduler,
etcd, cloud controller manager and add-ons [27]. They are described in
detail below.

– The API server exposes the Kubernetes API through which all
communications in the cluster are done. It is also used by develop-
ers to connect to Kubernetes cluster and manipulate Kubernetes
object. The APIs are versioned and are designed to scale horizon-
tally. Developers can communicate with the API server by using
REST API calls or through command line tools, such as kubectl20

and kubeadm21, which, in turn, use the API server. Moreover,
all communication between the master and node components are
handled by the API server [71].

20https://kubernetes.io/docs/reference/kubectl/overview/
21https://kubernetes.io/docs/admin/kubeadm/

CHAPTER 2. BACKGROUND 25

– The controller manager runs controllers. Controllers are control
loops that run on the master, check the state of the cluster through
the API server and move the current state of the Kubernetes ob-
ject to the desired state. There are multiple controllers running in
a master. Some of the examples of controllers are replication con-
troller, endpoint controller, node controller and service account
controller. The replication controller is responsible for maintain-
ing the desired number of pods. The endpoint controller joins the
services and pods. The node controller keeps track of the avail-
ability of nodes. Finally, the service account controller creates
default accounts and API access tokens [27].

– A scheduler is responsible for placing pods to appropriate nodes.
This is done by taking into account various factors, including the
current resource utilization and availability on a node and con-
straints specified by pods. The scheduler may evict a pod from a
node based on the overall state of the cluster [27].

– etcd22 is a distributed, lightweight, consistent and highly available
key-value data store. It is used to store the configuration and state
information of the Kubernetes cluster. It is a open source project
and part of the CoreOS23 project and uses the Raft consensus
algorithm [68] to maintain high availability.

– The cloud controller manager24 is a component introduced in Ku-
bernetes v1.6 as an alpha release [26]. It is a cloud specific con-
trol loop which runs alongside other master components. Vari-
ous cloud providers abstract provider-specific code into the cloud
specific controller manager so as to follow an independent de-
velopment lifecycle. The cloud controller manager allows cloud
provides to run cloud-specific code alongside the Kubernetes con-
troller. Some of the popular public cloud vendors, such as Amazon
Web Services, Azure, Digital Ocean, Google Compute Engine and
Oracle have implemented cloud controller managers for their re-
spective cloud platforms.

– Add-ons are pods and services that extend the functionality of
Kubernetes. An add-on manager is responsible for creating and
managing the add-ons. An example of an add-on is a Web UI
dashboard25 for managing Kubernetes objects.

22https://github.com/coreos/etcd
23https://coreos.com/
24https://kubernetes.io/docs/concepts/architecture/cloud-controller/
25https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

CHAPTER 2. BACKGROUND 26

Node components provide the run time environment for the pods. Fig-
ure 2.7 illustrates that node components run on every node. The main
node components are kubelet and kube-proxy [27].

– Kubelet26 is the most important node component with the respon-
sibility to manage pods and containers in the nodes. It responds
to instructions received from the master to create, monitor and
destroy containers running on the node [71]. It also reports the
status of nodes to the cluster. The kubelet is mainly dependent on
PodSpec which is a document in YAML or JSON format that de-
scribes the pod. This document is generally served to the kubelet
by the API server. It also can be an HTTP endpoint or a file path
which the kubelet periodically checks for updates.

– Kube-proxy27 is a network proxy that maps the individual con-
tainers to a service and provides load balancing. These proxies
run on all nodes. They do not understand HTTP and can do
simple TCP and UDP stream forwarding or do round robin load
balancing across a set of backends.

• Replication Controller28. To handle huge load and for fault tolerance,
multiple instances of the same pod need to run at the same time. Each
copy of the pod is called a replica. These replicas are managed by
the replication controller based on a set of rules defined in a template
known as pod template. Based on this template, the replication con-
troller ensures that a certain number of pods are always running in the
cluster. The controller will create or delete replicas as the need may
be [71]. Killing a replication controller does not kill the pods managed
by it. Although it is possible to create pods without assigning it to a
replication controller, it is advised not to do so (even if only a single
replica of a pod is to be run). This is because pods may terminate
or get destroyed unexpectedly. Attaching them to a replication con-
troller ensures that a specified number of pods are always running in
the cluster.

• Services29. While the replication controller ensures that the desired
number of pods are always running in the cluster, the services make
sure that the pods are accessible by the users. As discussed earlier,

26https://kubernetes.io/docs/reference/generated/kubelet/
27https://kubernetes.io/docs/reference/generated/kube-proxy/
28https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
29https://kubernetes.io/docs/concepts/services-networking/service

CHAPTER 2. BACKGROUND 27

pods have IP addresses assigned to them. However, as the replication
controller can create or evict pods, there is no guarantee that a pod will
retain its IP address. Changes in IP addresses make it difficult for users
or applications to connect to the pods. Kubernetes solves this issue
with the use of services. A Kubernetes service is an abstraction of a set
of pods and defines a policy describing how to access them. The pods
are normally discovered by using the label selector30. However, services
can also be used without label selectors by mapping the service to a
specific endpoint (in the form of an IP address or DNS name). Services
are REST objects and are assigned IP address. Kubernetes also offers
an endpoints object which is updated whenever pods linked in a service
changes. When a service is created, it also creates a corresponding
endpoint object which contains details of the pod based on the label
selector mentioned in the service template.

2.4 Microservices

Figure 2.8: Monoliths and microservices [54].

The microservice architecture has been getting a lot of traction among
software developers. Many leading companies, such as Amazon and Net-
flix, have adopted the microservice architecture in their products, which has
further fueled the interest of software developers [36]. Figure 2.8 contrasts

30https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

CHAPTER 2. BACKGROUND 28

the traditional monolithic software architecture to microservices. In mono-
lithic applications, the complete application logic is encompassed in a single
unit. The application may consist of several libraries and components but
is deployed as a single unit [50]. On the other hand, in the microservices
paradigm, an application is composed of many small, independent services.
These services communicate by a lightweight mechanism, often an HTTP
API [54, 56]. Monolithic applications can be scaled by deploying multiple
copies of the same application. However, the biggest drawback of a mono-
lithic application is that it is difficult to understand and modify. This be-
comes more apparent as the size and complexity of the application grows.
Even a small change in the application requires the complete application to
be rebuilt and redeployed. Since the monolithic application’s code base is
generally huge, the build time is generally long. Moreover, it follows the
principle of “one size fits all” for the different modules which could compro-
mise resource requirements. For example, certain modules may need more
memory whereas the others may need more CPU. However, all modules are
deployed together in one environment. Additionally, the architecture bears
the burnt of technology lock-in, forcing the developer to use a single language
and framework [51]. On the other hand, in the case of microservices, each
service can be designed, developed, built, deployed and scaled independently.
Each service can have its own programming language and framework. Thus,
developers can chose the most suitable environment for each service. Mi-
croservices has been identified as a solution to efficiently build and manage
complex software systems [75].

Despite the long list of benefits provided by the microservice architecture,
it has many challenges. Since the architecture is distributed in nature, it can
be difficult to identify and isolate errors [59]. The distributed nature also
brings in dependence on the network for inter-service communication. The
assumption of a reliable, homogeneous and secure network are some of the
fallacies of distributed computing [21]. Moreover, the dependence on network
communication can have an adverse impact on performance as network calls
are slower than in-memory calls [51]. In the microservice architecture, as an
application becomes bigger, so does the number of services. This increase
in the number of services can make an application more fault prone [51].
Microservices lead to smaller and independent services resulting in improved
service level testability. However, integration testing can become complex,
especially when the system consists of a large number of services [51, 59].

CHAPTER 2. BACKGROUND 29

2.5 Serverless computing

Traditionally, apart from writing code, software developers had to manage
the operational concerns of deploying their application to production. When
applications are deployed to a bare metal server, developers have to manage
the physical servers, networking, storage, load balancers, operating systems,
run times and the application itself. In this scenario, a physical server is the
unit of scale and it could take days to order and deploy a new server. Thus,
over-provisioning is necessary to meet peak traffic demand. The advent of
virtualization automated many of these concerns and with a few mouse clicks
new virtual machines could be provisioned. However, developers still need to
manage the network, load balancers, operating systems and runtimes. Fur-
thermore, scaling of the VMs takes a few minutes. The subsequent evolution
of virtualization technology, i.e., containers, abstracted away many operat-
ing concerns from developers. Container-based applications could be scaled
in a matter of seconds. This also spurred the growth of the microservice
architecture, wherein large applications are decomposed into multiple inde-
pendent container-based services. A natural extension of this approach is to
decompose applications into multiple independent stateless functions. This
is known as the serverless computing paradigm. Here, almost all operat-
ing concerns are abstracted away, allowing the developers to just write code
and deploy their stateless functions on the serverless platform. The plat-
form takes care of executing the functions, storage, server, operating system,
container infrastructure, networking, scalability and fault tolerance. Addi-
tionally, unlike for bare metal or virtualized instances, the serverless platform
takes care of scaling. Thus, serverless computing is a higher form of managed
services wherein the smallest unit of computing is a function. Hence, server-
less computing is also sometime referred to as function-as-a-service (FaaS).
Computing resources required to execute a function are provisioned only on
demand and thus, the containers need not be running at all times. The func-
tions can be kept active (hot) for a certain duration to improve performance
but they are not perpetually active.

Serverless computing is actually a marketing jargon and it does not mean
the complete absence of servers. It simply implies that developers do not
have to manage the underlying servers and network infrastructure. When
serverless computing is provided by cloud providers, customers are billed only
for the duration of code execution. Serverless computing has been increasing
in popularity recently. Figure 2.9 shows the increased interest on “serverless”
in the last 2 years as reported by Google Trends.

CHAPTER 2. BACKGROUND 30

Figure 2.9: Google Trends of “serverless” in last five years.

Figure 2.10: Developer control in different computing paradigms [40].

2.5.1 Definition

Serverless computing is still an evolving computing paradigm and does not
have a clear definition which is accepted by the industry or academia. Hence,
we review some definitions from the literature. Baldini et al. [40] define
serverless computing based on the level of control a developer has over in-
frastructure. As illustrated in Figure 2.10, the authors have placed serverless
computing between IaaS (Infrastructure as a Service) and SaaS (Software as
a Service). In IaaS, the developer is responsible for provisioning and main-
taining both the infrastructure and application. They have to customize how
applications are deployed and scaled. In SaaS, the developers do not have any
knowledge or control over the infrastructure. They also have little flexibility
in terms of the packages and components provided by the SaaS platform.
However, in a serverless computing paradigm, the developers have complete
control over the code that is deployed. The serverless platform takes care of
the operational aspects of the server, network, load balancing and scaling.
Developers have to write stateless code and deploy the functions to the plat-

CHAPTER 2. BACKGROUND 31

form. The platform may run zero to thousands of instances of the function
based on demand and the developers are billed only for the duration their
functions run. Castro et al. [45] describe serverless computing as a cloud-
native paradigm which is suitable for short duration stateless functions. The
functions are mostly event driven in nature. The platform can respond to
bursty workloads by scaling out the functions and scaling in when there is
fall in demand. Developers relinquish infrastructure design, quality of ser-
vice, scaling and fault tolerance to the platform provider. The Cloud Native
Computing Foundation (CNCF) defines serverless computing as a concept of
building and running applications where server provisioning, maintenance,
updates, scaling and capacity planning are abstracted away for developers
leaving them to focus on writing code. It also identifies that the serverless
platforms provide a big advantage to the consumers by not charging them
when their code is idle [5].

2.5.2 Existing platforms

All the major cloud service providers have a serverless computing platform
in their offering. Amazon Web Services (AWS) has AWS Lambda that lets
developer run code without provisioning any servers. They also provide AWS
Greengrass31 to run AWS lambda functions on edge devices. AWS Step
Functions32 provide a state machine for lambda functions, allowing lambda
functions to be run in step-by-step manner. Microsoft Azure provides Azure
Functions33, a serverless computing platform which allows developers to run
their code as functions on Azure infrastructure. IBM also has a serverless
computing platform called IBM Cloud Functions34 which is built on top of
Apache OpenWhisk35 (described in detail in the next chapter). Google Cloud
Functions36 allows developers to run Node.js code as event-driven serverless
functions.

All the above serverless offerings require the functions to be written or
deployed in a certain way, resulting in vendor lock-in. Thus, there are several
open source FaaS frameworks which allow to run serverless computing on pri-
vate infrastructure, thereby avoiding any form of vendor lock-in. Some of the

31https://aws.amazon.com/greengrass
32https://aws.amazon.com/step-functions/
33https://azure.microsoft.com/en-us/services/functions/
34https://www.ibm.com/cloud/functions
35https://openwhisk.apache.org/
36https://cloud.google.com/functions/

CHAPTER 2. BACKGROUND 32

popular ones are Kubeless37, OpenFaaS38, Fission39 and Apache OpenWhisk.
We describe these in detail in the next chapter.

2.5.3 Use cases

Serverless computing is ideal for workloads which have sporadic demands.
They are ideal for workloads that are short, asynchronous or event-driven and
concurrent work loads [5]. We identify the following use-cases as particularly
suited for serverless computing.

• Database triggers. Event driven computing was one of the main drivers
behind serverless computing. Functions as a service can be used to
respond to changes in database, such as insert, update and delete op-
erations. For instance, serverless functions can be used to write entries
into an audit table whenever a record gets updated in the database.
AWS Lambda is used alongside AWS DynamoDB40 to create database
triggers [11].

• Serverless computing at edge. Edge computing is described as a key
driver for the serverless computing trend [55, 67]. IoT devices generate
a large volume of data which need to be processed in real-time. Server-
less functions at the edge can react to events, such as changes in temper-
ature and water levels, without having to send all the data to the cloud.
Amazon provides AWS Greengrass to run lambda functions at the edge
on local connected devices. These functions can also run when the de-
vices are not connected to the Internet. Deploying the functions on
the edge can improve the utilization of resource-constrained devices at
the edge. Furthermore, by abstracting away the infrastructure details
from the developers, code can be deployed on multiple devices. Various
Content Delivery Network providers, such as AWS (Lambda@Edge41)
and Cloudflare (Cloudflare Workers42) provide serverless computing at
their edge infrastructure. Developers can use this to perform tasks such
as to modify headers, to carry out A/B testing, to inspect authorization
tokens and so on.

37http://kubeless.io/
38https://www.openfaas.com/
39http://fission.io/
40https://aws.amazon.com/dynamodb/
41https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
42https://www.cloudflare.com/products/cloudflare-workers/

CHAPTER 2. BACKGROUND 33

• Media processing. In media processing, an input file goes through vari-
ous processing stages before it is ready to be served to the end user. For
instance, when a raw image is uploaded by a user, a thumbnail of the
same is to be generated which is then copied to a blob storage, followed
by updating a database. The image might also be further processed for
image recognition and other meta data extraction. All these steps are
small processes but they need to run asynchronously and in parallel.
Hence, serverless computing is ideal for this use case as the functions
need to run only when an image is uploaded.

2.5.4 Benefits and Challenges

This section summarizes the benefits and challenges of serverless computing.
First, we describe the benefits.

• The serverless computing platform abstracts away the server and its
management from software developers. It also manages the scaling of
functions on-demand [55].

• With the operating procedures abstracted away, developers can focus
on writing code. Thus, they can deliver features at a faster rate and
iterate faster. Moreover, development teams can be smaller as they
need not have individuals working on the infrastructure. Moreover,
with developers not having to manage infrastructure and scalability,
the operational cost reduces significantly.

• In the case of bare metal servers and virtual servers, the practice is to
reserve computing capacity, network bandwidth and storage. Develop-
ers would then deploy their applications on top of this infrastructure
and were billed for the duration the infrastructure is reserved. The
serverless computing model gets rid of computing capacity reservation.
Developers only have to pay for the duration their code runs. Devel-
opers need not pay anything when the functions are idle. This brings
a major cost benefit for developers [37].

• As discussed in Section 2.4, a monolithic application is broken down to
smaller services known as microservices. This architecture pattern is
very similar to serverless computing wherein an application is broken
down to functions. Hence, serverless computing is complementary to
the microservice architecture and shares many of its advantages.

While the advantages are many, serverless computing is still in a nascent
stage. Some of the drawbacks are discussed next.

CHAPTER 2. BACKGROUND 34

• Cold start is one of the major drawbacks of a serverless platform. Since
functions are not always running, there can be increased latency in
serving the first request as the container has to come online. Moreover,
the container may also have to first install application dependencies.
To avoid this effect, the serverless platform might keep the function
running for some time so that it can handle subsequent requests and
finally shut it down if there is no demand. Developers get around this
by constantly invoking the function with a dummy execution path every
few seconds to keep the function warm [20].

• When using a public cloud’s serverless platform, the functions are ex-
pected to be written in certain way. This makes it difficult to switch
service providers easily, resulting in vendor lock-in [47]. Moreover, be-
cause of the statelessness and event-driven feature of the functions, the
functions need to use other services (such as queuing and database)
provided by the cloud service provider.

• Serverless computing is in a nascent stage and it lacks standardization
and maturity [5].

• Development and Operations (DevOps) practices in serverless comput-
ing have not evolved yet. Since each function is small, an application
might result in hundreds (if not thousands) of functions. Each of the
functions are versioned separately and hence, need to have their own
deployment pipeline. To add to the complexity, all functions need not
use the same runtime. This makes it difficult for the operations team
to operate and monitor the services.

Chapter 3

Open source serverless frameworks

This chapter presents a feature evaluation of open source frameworks for
implementing serverless computing. The goal of this chapter is to identify
promising frameworks for our prototype implementation. Section 3.1 outlines
the criteria used for comparing the frameworks. Section 3.2 discusses popular
open source frameworks based on the criteria defined in Section 3.1. Finally,
Section 3.3 provides some concluding remarks on selecting a framework.

3.1 Evaluation criteria

The features identified for comparing the serverless frameworks are described
next.

• Open source license. The selected framework should be an open source
implementation so that developers can customize features. Specifically,
the license should allow to freely access, use, modify and distribute
(both in modified and unmodified form) code to others.

• Strong developer community. The selected framework should have a
strong and thriving developer community. This is evaluated by analyz-
ing the code commit frequency, pull requests/merge requests frequency,
reputation, availability of support platforms (such as web-based forums,
mailing lists, Slack channel) and commercial support.

• Programming language support. The selected solution should have sup-
port for multiple languages. There should be out of the box support for
popular languages, such as Go, Python and Node.js [30]. Additionally,
it should be possible to add support for more languages. This would
enable developers to also upgrade the version of a language if required.

35

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 36

• Auto scaling. Serverless functions are expected to serve infrequent and
sporadic demands [5]. Thus, the framework must support scaling in
order to efficiently utilize the underlying hardware even with varying
incoming traffic. We also consider whether the framework supports
multiple or configurable scaling criteria, such as requests per second/-
queries per second (QPS), CPU and message queue size.

• Support for multiple orchestrators. Support for container orchestrators
apart from Kubernetes (such as Docker Swarm, Nomad, etc.) provides
more flexibility for both the development and operations team.

• Function triggers. The selected solution should support both HTTP
(synchronous) and event-based (asynchronous triggers).

• Availability of monitoring tools. It is important that the framework
has an integrated monitoring tool which can help the operations team
to monitor the performance metrics of a deployed function, such as the
number of invocations and execution time.

• CLI interface. Availability of a command line interface will greatly ease
the management of functions. This will also allow for better integration
with third party tools for actions, such as event-driven triggers.

• Ease of deployment. It should be easy to deploy the selected frame-
work with minimal configuration changes. The steps and complexity of
deployment helps evaluate how quickly a new Kubernetes cluster with
the framework can be set up. This can be evaluated by following the
“Getting Started” guide of each framework.

3.2 Frameworks

We choose four frameworks for evaluation: Kubeless, OpenWhisk, Fission
and OpenFaaS. The frameworks were selected based on the number of GitHub
stars, a mark of appreciation from users. We selected the solutions which
had at least 3000 stars. This section briefly describes each framework and
evaluates them based on the criteria discussed in Section 3.1.

3.2.1 Kubeless

Kubeless [24] is a Kubernetes-native serverless framework. It is an open
source project from Bitnami1 and is available under the Apache 2.0 license.

1https://bitnami.com

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 37

Figure 3.1: High-level architecture of Kubeless.

As shown in Figure 3.1, Kubeless uses Custom Resource Definitions (CRD) [10]
to extend the Kubernetes API and create a function custom object in the
Kubernetes API. This allows developers to use native Kubernetes APIs to
interact with the functions as if they are native Kubernetes objects. Func-
tion runtimes are made available by using Deployment/Pods. Config maps
are used to inject a function’s code in the runtime. Services expose func-
tions outside a pod. Function dependencies are installed by using an init
container. The Kubeless controller continuously watches for any change to
function objects and takes necessary action to maintain its desired state.

Currently, Kubeless supports Python (v2.7.x), NodeJS (v6.x and v8.x)
and Ruby(v2.4.x). Furthermore, Kubeless allows multiple function trig-
gers: HTTP, publish-subscribe (event-based or asynchronous) and scheduled.
Event-based invocations are achieved through the use of Apache Kafka2 and
Zookeeper3. Kubeless uses Prometheus4 for monitoring functions. The lan-
guage runtimes are designed to generate metrics for each of the function.
Autoscaling in Kubeless is achieved by using the Kubernetes Horizontal Pod
Autoscaler [25] which can scale functions based on CPU usage or other cus-
tom metrics. These custom metrics are monitored by Prometheus and sent
to the autoscaler. Kubeless provides both a UI and CLI interface to inter-
act with functions. It is simple to deploy and can be setup in a matter of
minutes by using the official documentation [25]. In terms of community

2https://kafka.apache.org
3http://zookeeper.apache.org
4https://prometheus.io

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 38

Figure 3.2: OpenWhisk: high level architecture [3].

support, Kubeless has an active open source community. The community is
active on GitHub, Slack5 and Twitter (@kubeless sh).

3.2.2 Apache OpenWhisk

Apache OpenWhisk [2] is an open source, serverless computing framework
initially developed by IBM and later submitted to Apache Incubator. It is
available under the Apache 2.0 license. Apache OpenWhisk is also the under-
lying technology behind the Functions as a Service6 product on IBM’s public
cloud, Bluemix7. Figure 3.2 illustrates the high level architecture of Open-
Whisk. The OpenWhisk programming model is based on three primitives:
action, trigger and rule [41]. Actions are stateless functions that execute
code. Triggers are a class of events that can originate from different sources.
Finally, rules associate a trigger with an action.

Figure 3.3 shows the system architecture of OpenWhisk. OpenWhisk
relies on the following components: Nginx, Controller, CouchDB8, Kafka,
Invoker and Consul9. Nginx acts as a proxy for forwarding requests to the
controller. The controller is a REST API gateway for all the actions a user
carries out, including CRUD actions on OpenWhisk entities. A CouchDB
instance is used for authentication. Once the requester is authenticated,

5https://kubernetes.slack.com
6https://www.ibm.com/cloud/functions
7https://www.ibm.com/cloud/
8http://couchdb.apache.org/
9https://www.consul.io/

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 39

Figure 3.3: OpenWhisk system architecture [3].

the controller loads the action saved in CouchDB and passes it to the in-
voker. The action record mainly contains the action code, default parameters
merged with the one passed and restrictions (if any). The controller and in-
voker communicate through Kafka. The invoker picks the action and spawns
a new Docker container and injects the function code. The response is re-
turned to the user and is also saved in the CouchDB. Consul is a distributed
key-value store, which is used to manage the state of the OpenWhisk instal-
lation. The invoker decides whether to reuse an existing container (hot), to
start a paused container (warm) or to launch a new container (cold) based
on the state of containers in Consul.

OpenWhisk supports functions written in JavaScript, Swift, Python, PHP,
Java and any binary executable. Additionally, it allows to run any custom
code packaged inside a Docker container. It supports synchronous, asyn-
chronous and schedule-based triggers for functions. Each of the components
in the architecture (discussed previously) runs as a Docker container and can
be scaled in real-time. OpenWhisk can be setup to run by using any container
orchestrator, such as Kubernetes or Docker Swarm. However, the scalability
of functions is directly managed by the OpenWhisk controller and it does
not rely on native Kubernetes support. Monitoring of functions can be done
by integrating statsd10. OpenWhisk provides CLI, REST API endpoints and
iOS sdk to interact with OpenWhisk cluster. In terms of community sup-
port, OpenWhisk has an active community on GitHub11, Slack12, Twitter
(@openwhisk) and mailing lists13.

10https://github.com/etsy/statsd
11https://github.com/apache/incubator-openwhisk
12https://openwhisk-team.slack.com
13http://openwhisk.incubator.apache.org/contact.html

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 40

Figure 3.4: Fission system architecture [14].

3.2.3 Fission

Fission [13] is an open source, serverless computing framework for Kubernetes
from Platform914 and is available under the Apache 2.0 license. Fission is
built specifically for Kubernetes and uses many Kubernetes native concepts.
Figure 3.4 illustrates the system architecture of Fission. The key compo-
nents in Fission are: controller, environment, executor, router, kubewatcher,
and logger. The controller contains the CRUD APIs for functions, HTTP
triggers, Kubernetes event watches and environments. Environment con-
tainers are language-specific containers. Each environment container must
contain an HTTP server and a loader for functions. The executor is respon-
sible for creating function pods. There are two types of executor: poolmgr
and newdeploy. Poolmgr creates a set of generic pods as soon as an envi-
ronment is created. These are called warm containers. When a function is
invoked, one of the pods is taken from the environment and used for execu-
tion. After a certain period of inactivity, the pod is cleaned up and returned
to the pool. A poolmgr is ideal for low latency but cannot be auto scaled.
On the other hand, newdeploy supports auto scaling. It creates a Kuber-
netes deployment along with a service and a Horizontal Pod Autoscaler for
function execution. The router is responsible for forwarding HTTP requests
to function pods. Kubewatcher watches the Kubernetes API and invokes
functions linked with the watches. The logger is responsible for forwarding
function logs to a centralized location. Currently, Fission stores logging on

14https://platform9.com/

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 41

InfluxDB15. For monitoring, Fission recommends Istio16 which can be inte-
grated with Prometheus and Grafana17. Fission has both a web-based UI
and a command line interface for observing and managing Fission [15].

Fission allows developers to write functions in Python, NodeJS, Ruby,
Perl, Go, Bash, C# and PHP. It also allows to run custom containers. Fission
supports three types of triggers: HTTP trigger, time-based trigger and Mes-
sage Queue (MQ) trigger. An HTTP trigger can invoke functions through in-
coming HTTP requests, including GET, POST, PUT, DELETE and HEAD.
Time-based triggers are similar to cron jobs and are triggered periodically.
MQ triggers are for asynchronous function calls. Here functions listen to a
topic and invoke a function whenever a message arrives. Currently, nats-
streaming18 and azure-storage-queue19 are supported message queues. Fis-
sion also provides a workflow-based serverless composition framework called
Fission Workflows which creates a flowchart of functions allowing multiple
functions to be composed together. This is in active development now and
not stable yet [16]. Fission uses the Horizontal Pod Autoscaler (HPA) to
scale function based on CPU utilization. Custom metrics are not supported
at the moment. In terms of community support, Fission has an active open
source community. The community is active on GitHub20, Slack21 and Twit-
ter (@fissionio).

3.2.4 OpenFaaS

OpenFaaS [28] is an open source, serverless computing framework for Kuber-
netes and is available under the MIT license. It recently received the backing
of VMWare [33]. OpenFaaS is built with focus on ease of use, portability,
simplicity and openness. As shown in Figure 3.5, OpenFaaS is composed of
two key components: an API Gateway and a function watchdog. Prometheus
is used for recording metrics. This framework supports multiple container
orchestrators, including Kubernetes, Docker Swarm and Nomad. It can be
easily extended to support other Docker orchestrators. Figure 3.6 illustrates
how the components of OpenFaaS interact with each other. The API gateway
is a RESTful microservice that provides an external route for a function. The

15https://www.influxdata.com/
16https://github.com/istio/istio
17https://github.com/grafana/grafana
18https://nats.io/documentation/streaming/nats-streaming-intro/
19https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-

and-service-bus-queues-compared-contrasted
20https://github.com/fission/fission
21https://fissionio.slack.com

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 42

Figure 3.5: OpenFaaS system architecture [29].

API gateway relies on native functionalities provided by the chosen Docker
orchestrator. For this, the API gateway connects with respective plugin for
the chosen orchestrator, for example, faas-netes22 for Kubernetes. The gate-
way also records various function metrics in Prometheus. It is also responsible
for scaling functions based on alerts received from Prometheus through an
AlertManager. The function watchdog is packaged together with the function
and is the entry point for every function call.

OpenFaaS allows developers to write functions in any programming lan-
guage of their choice. The functions have to be packaged in a Docker im-
age. For ease of use, OpenFaaS has templates for C#, Go, NodeJS, Python
and Ruby. However, developers can create their own templates. Two types
of function triggers are supported: HTTP and event-based. The event-
based trigger uses nats-streaming. Development is underway for integration
with Kafka. In terms of community support, OpenFaaS has an active open
source community. The community is active on GitHub, Slack23 and Twitter
(@openfaas). OpenFaaS has a distributed architecture and each component
has its own repository, which can be accessed from the main GitHub reposi-
tory24.

22https://github.com/openfaas/faas-netes/
23https://openfaas.slack.com
24https://github.com/openfaas

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 43

Figure 3.6: OpenFaaS: interaction between components [17].

3.3 Summary and comparison

In this section, we summarize the discussion of the open source serverless
frameworks based on the criteria described in Section 3.1. Table 3.1 presents
a summary of the features of the frameworks. All four solutions are open
source under either the Apache 2.0 or MIT license. Given the number of
GitHub stars and forks, OpenFaaS has the largest developer community.
The other three solutions also have a relatively solid developer community
base. The considered frameworks support the popular languages as well as
custom containers. However, OpenFaaS architecture is not designed around
runtimes. All the functions are packaged by using templates25 which are com-
pletely customizable [8]. Templates contains function templates which are
used to initialize function code. They also contain a Dockerfile which is used
to build and package functions as a Docker image. Templates are just wire-
frames around which OpenFaaS functions are built and can be completely
customized. This approach makes it easy for developers to design their own
templates with any language and dependencies. The templates can then
be shared across multiple teams. As for scaling of functions, Fission cur-

25https://github.com/openfaas/templates

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 44

rently supports auto scaling based on CPU utilization, whereas OpenWhisk
supports scaling based on number of requests. On the other hand, Kube-
less and OpenFaaS allow auto scaling based on custom metrics. Kubeless
and Fission are completely Kubernetes-native solutions and do not support
any other container orchestrator. On the other hand, OpenWhisk does not
rely on native features of any orchestrator. OpenFaaS supports multiple
container orchestrators (Kubernetes, Docker Swarm, Nomad) and uses the
native functionalities of the chosen orchestrator. Kubeless, OpenWhisk and
Fission support HTTP, event and schedule-based function triggers. Open-
FaaS currently supports HTTP and event-based triggers; however, support
for schedule-based triggers is in the pipeline. Deploying OpenFaaS, Fission
and Kubeless frameworks on Kubernetes v1.9.6 (latest version available at
the time of this thesis work) was easy. On the other hand, deploying Open-
Whisk on the same Kubernetes version was cumbersome. We tried deploy-
ing OpenWhisk by following the “Installation Guide” guide but encountered
errors a few minutes into the installation process [22]. Kubeless and Open-
FaaS have native Prometheus integration. This gives access to a rich set of
monitoring parameters. On the other hand, OpenWhisk and Fission have
recommended integration with statsd [23] and Istio [12] respectively. All the
frameworks provide a CLI to interact with functions.

In conclusion, Kubeless has the simplest architecture and makes use of
Kubernetes features natively as much as possible. OpenFaaS is highly ex-
tendable and supports mutiple container orchestrators, thus providing a lot
of flexibility.

CHAPTER 3. OPEN SOURCE SERVERLESS FRAMEWORKS 45

Feature Kubeless OpenWhisk Fission OpenFaaS

Open source Yes Yes Yes Yes

License Apache 2.0 Apache 2.0 Apache 2.0 MIT

Programming
languages

Python, NodeJS,
Ruby, PHP and
custom runtimes

JS, Swift, Python,
PHP, Linux binary
and custom con-
tainers

Python, NodeJS,
Ruby, Perl, Go,
Bash, C#, PHP
and custom con-
tainers

Any language that
can be executed
from bash

Auto scaling Yes Yes Yes Yes

Auto scaling
metric

CPU, QPS and
custom metrics

QPS, managed by
OpenWhisk

CPU utilization CPU, QPS and
custom metrics

Container or-
chestrator

Kubernetes native No orchestrator re-
quired, Kubernetes
supported

Kubernetes native Kubernetes,
Docker Swarm,
Nomad, extend-
able to other
orchestrators

Function trig-
gers

HTTP, event,
schedule

HTTP, event,
schedule

HTTP, event,
Kubernetes watch,
schedule

HTTP, event

Message queue
integration

Kafka Kafka NATS, Azure stor-
age queue

NATS, Kafka

Recommended
monitoring tool

Prometheus statsd Istio Prometheus

CLI Support Yes Yes Yes Yes

Industry sup-
port

Bitnami IBM, Adobe, Red-
Hat and Apache
Software Founda-
tion

Platform9 VMWare

GitHub stars 3036 3312 3425 10674

GitHub forks 278 630 278 766

GitHub contrib-
utors

62 120 65 68

Table 3.1: Overview of features supported by serverless frameworks.

Chapter 4

Evaluation

The goal of this chapter is to evaluate the performance of the serverless com-
puting frameworks presented in the previous chapter. Section 4.1 describes
the methodology used to evaluate the frameworks. Section 4.2 describes the
development and deployment experience on Fission, Kubeless and OpenFaaS.
Section 4.3 evaluates the different modes of invoking function in OpenFaaS.
Section 4.4 compares the performance of the three different serverless frame-
works.

4.1 Methodology

This section outlines the experiments used to evaluate the serverless frame-
works, Kubeless, Fission and OpenFaaS. We no longer consider OpenWhisk
due to issues faced in setup and its almost minimal dependence on Kuber-
netes for container orchestration. Furthermore, a performance evaluation of
OpenWhisk is presented in [74]. We carry out the following experiments.

• First, we evaluate the developer experience; in particular, we outline
how to develop, deploy and manage functions on Fission, Kubeless and
OpenFaaS. To this end, we design a simple function and then deploy
the function to a Kubernetes cluster for each considered framework.

• OpenFaaS uses three different (watchdog) modes for invoking a func-
tion: HTTP, serializing and streaming. First, we evaluate the perfor-
mance of these modes to find the best performing mode. Specifically,
we measure the response time for a client request in each mode under
different workloads. To this end, we write a simple function and deploy
the function by using each watchdog mode. The function simply takes
a string as input and prints the same as the response. This function was

46

CHAPTER 4. EVALUATION 47

selected so as not to add any performance overhead owing to function
logic. The code for the functions used in the experiments are listed in
Appendix D. We use Apache Benchmark1 to send concurrent requests
to the functions. In each experiment run, we send 50,000 requests with
either 1, 2, 5 or 10 concurrent users. We also describe the monitoring of
functions and reading of logs with each mode. Monitoring and logging
are important aspects in ensuring the stability of a system. Develop-
ers need to constantly monitor the state of a system through various
metrics to ensure that the system is healthy. They also need access to
application and system logs for debugging and auditing.

• Finally, we evaluate the performance of function invocation in Open-
FaaS, Fission and Kubeless. Specifically, we measure the response time
and the ratio of successful responses (those with HTTP 2xx response
code) under different workloads. To this end, we write a simple func-
tion that returns the input string (similar to the previous experiment)
and deploy the function on each framework. Again, we represent dif-
ferent workloads by using Apache Benchmark to send 10,000 requests
with either 1, 5, 20, 50 or 100 concurrent users. We disable auto scaling
of the functions in order to analyze the performance of each framework
architecture without the impact of scaling, i.e., the possible increase
in response time when creating a new container or pod. Thus, a fixed
number of function replicas (1, 2, 5 or 10) is used in each experiment.
Since this experiment requires more computing resources than avail-
able in the previous experimental setup, we run these experiments on
Google Kubernetes Engine2 (GKE). The deployment on GKE is similar
to running the framework on a custom Kubernetes cluster.

4.2 Ease of development

As discussed in Section 2.5, one of the important benefits of serverless com-
puting is that it allows developers to focus on writing code and delivering fea-
tures at a faster rate. Hence, in this section, we describe the steps needed to
develop and deploy a new function in each framework. We developed simple
functions in Go programming language and deployed it on each framework.

Fission provides a CLI tool fission to interact with the Fission APIs.
This makes it easy and convenient to build and deploy functions. First, we

1https://httpd.apache.org/docs/2.4/programs/ab.html
2https://cloud.google.com/kubernetes-engine/

CHAPTER 4. EVALUATION 48

create a function as shown in Appendix A.1. The function has very less boiler-
plate code. The next step is to create an environment for Go. Environments
contain the information related to language and runtime for our function.
Next, we create the function using the environment created in the previous
step. While creating an environment, we can also use the option of builder,
which is used for building from source code [13]. The commands discussed
here are listed in Appendix A.2. Fission also provides a mechanism to create
a declarative specification for creating all the components [32]. This allows
to manage Fission components using a yml file instead of CLI commands.
This is better than scripting using the CLI tool fission. Furthermore, the
availability of the CLI and the declarative syntax makes it easy to design
and build a CI/CD (continuous integration/continuous delivery) pipeline.

OpenFaaS provides a CLI tool openfaas-cli to interact with the Open-
FaaS APIs. This makes it easy and convenient to build and deploy functions
to an OpenFaaS cluster. First, a function template is generated by using
the openfaas-cli (Appendix C.1). This step generates a source file with
a simple function that can be edited to add the actual business logic. The
function has very less boilerplate code. This step also generates a yml file
with the function configuration, which can be used to deploy and manage
functions (Appendix C.1.2). Once the business logic is written, the function
is deployed in the Kubernetes/OpenFaaS cluster by using the openfaas-cli

commands: build, push and deploy. The exact commands are listed in Ap-
pendix C.2. These commands build Docker images, push them to the image
repository (listed in the yml file) and deploy them to the Kubernetes cluster.
The CLI tool also makes it easy to design and build a CI/CD pipeline. Single
line commands can be used to build, push and deploy functions.

Kubeless also provides a CLI tool kubeless to interact with the Kubeless
components. First, we create a function as shown in Appendix B.1. Here
too, the function has very less boilerplate code. The next step is to deploy
the function. This is done by running a single line command (listed in Ap-
pendix B.2). Unlike OpenFaaS and Fission, Kubeless does not have a native
declarative specification. Finally, the kubeless CLI can be integrated with
a CI/CD pipeline.

Finally, secrets are an important component of application development
and management. In Kubernetes, secrets are of two types: application se-
crets and ImagePullSecrets3. Application secrets are sensitive information
used by the application logic, such as database credentials, API keys, etc.
ImagePullSecrets are used to authenticate to a private Docker registry to
pull images. All the three frameworks provide a mechanism to handle these

3https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER 4. EVALUATION 49

CPU 2 cores
RAM 2000 MB
Operating System Ubuntu 16.04.04 LTS
Kubernetes Version 1.10.1
Docker Version 1.11.2

Table 4.1: Configuration of Kubernetes nodes.

secrets by interacting with Kubernetes secrets objects. Users can refer to
Kubernetes secrets while deploying functions.

All the considered frameworks simplify the software development process
for developers by allowing them to quickly develop and deploy functions to
the production environment.

4.3 Comparison of Watchdog modes in Open-

FaaS

Next, we compare the response time of functions with the three different
watchdog modes in OpenFaaS.

4.3.1 Setup

The complete system architecture of the prototype system is outlined in Fig-
ure 4.1. As shown in the figure, the system comprises of 3 virtual machines.
One of the VMs is the Kubernetes master node and the other two are the
worker nodes. The virtual machines (nodes) are setup by using the Virtual-
Box software4. Table 4.1 illustrates the configuration of each of the nodes.
The host machine has a 2.3 GHz 4-core CPU, 16 GB RAM and runs macOS
10.13.5. Calico v2.05 is used for pod networking in the Kubernetes cluster.

Kubernetes installation

We use Kubeadm6 for creating the Kubernetes cluster. The Kubeadm toolkit
provides an easy and secure way to bootstrap a Kubernetes cluster. The
kubeadm init command is used to quickly bootstrap the master node. This
creates the necessary components (pods) required for the master and gen-
erates the token required by the worker nodes to connect to cluster. This

4https://www.virtualbox.org/
5https://docs.projectcalico.org/v2.0/getting-started/kubernetes
6https://kubernetes.io/docs/tasks/tools/install-kubeadm/

CHAPTER 4. EVALUATION 50

Figure 4.1: System architecture of OpenFaaS on a Kubernetes cluster.

process also generates the necessary configuration file (/etc/kubernetes/ad-
min.conf) required to connect to the API server. Then Calico7 is installed
on the cluster. Calico is required to provide pod networking within the
Kubernetes cluster. Calico etcd and Calico controller are installed on the
master node and Calico containers are installed on all the nodes. Once this
is done, individual worker nodes are configured. The worker nodes join the
Kubernetes cluster by using the token generated by the master node. For
our implementation, two worker nodes are configured in the cluster.

OpenFaaS installation

Next OpenFaaS is installed on the Kubernetes cluster. The core components
of OpenFaaS are the following:

• The gateway is the main entry point for clients to interact with the

7https://docs.projectcalico.org/v2.0/getting-started/kubernetes/

CHAPTER 4. EVALUATION 51

Component Version
Gateway 0.7.9
faas-netes 0.5.1
Prometheus 2.2.0
Alert Manager 0.15.0-rc.0
Nats streaming Server 0.6.0
Queue Worker 0.4.3
Faas-cli 0.6.9

Table 4.2: OpenFaaS core components deployed on Kubernetes.

functions (deploy, scale, remove and invoke).

• faas-netes enables Kubernetes to be used as the backend.

• Prometheus is used for saving various metrics required for monitoring
OpenFaaS.

• AlertManager sends alerts to Gateway to scale functions based on usage
data saved in Prometheus.

As shown in Figure 4.1, all the components are deployed with a replica
count of 1. The gateway and Prometheus are both exposed outside the Ku-
bernetes cluster through NodePort8. For asynchronous function invocation9,
a nats-streaming server and queue worker are deployed. All the compo-
nents are installed by using the Kubernetes YAML file provided at faas-netes
GitHub project10. Additionally, the faas-cli tool was installed for accessing
OpenFaaS APIs. This allows functions to be created and deployed by using
the OpenFaaS CLI. The Gitlab CI pipeline is used for managing the CI/CD
(continuous integration and deployment) pipeline. All OpenFaaS functions
are deployed in openfaas-fn namespace. Table 4.2 details the version of each
component in our setup.

Functions in OpenFaaS run inside a container (or pod in Kubernetes).
Along with the function code or binary, a function container contains an
OpenFaaS component called a watchdog. The watchdog is the entry point
for all function calls. It invokes the actual function, parses the response
received from the function and finally sends it back to the client.

8https://kubernetes.io/docs/concepts/services-networking/service/
9Event driven programming is at the heart of serverless computing and this can be

achieved by asynchronous function invocation.
10https://github.com/openfaas/faas-netes/tree/master/yaml

CHAPTER 4. EVALUATION 52

Figure 4.2: OpenFaaS watchdog modes [34].

CHAPTER 4. EVALUATION 53

The watchdog can be configured with four different modes: serializing,
HTTP, streaming and Afterburn11. These modes affect how the functions are
invoked. In both the serializing (classic) and streaming mode, the watchdog
forks one process per incoming request. This process can be a function binary
or a language runtime (for instance, Python or Node.js). In the serializing
mode, the watchdog reads the entire request into memory and then passes it
to the function. It then reads the stdout and serializes this as a response to
the client. On the other hand, in the streaming mode, the function input is
directly linked to stdin and the stdout to the response. The function reads
the stdin and writes the response to stdout. The watchdog then makes the
response available to the client as soon as it is available in stdout. In the
HTTP mode, a process is forked as soon as the function container comes
up and the watchdog starts. Function requests are sent to a specific port
being listened to by the function. As shown in Figure 4.2, both the function
and watchdog run as servers and interact over HTTP. The main difference
between HTTP mode and previous two modes is that HTTP mode does not
fork a process per request.

In our experiments, we use different watchdog binaries for different modes.
The original watchdog binary does not support streaming and HTTP modes.
For these two modes, we use the new watchdog binary12 and for serializing
we use the original watchdog binary13. Hence, we also refer to the serializing
mode as classic mode. Figure 4.2 illustrates the different modes.

4.3.2 Results

We evaluated three different watchdog modes of OpenFaaS: serializing (or
classic), HTTP and streaming. Our goal is to find the best performing
watchdog mode. Figure 4.3 shows the average response time of the OpenFaaS
function with these modes. The figure reports the average values obtained
from ten runs as well as the corresponding standard deviations, shown as
whiskers in the plots. We observe that response time is lowest for the HTTP
mode. This is due to a process being forked for each incoming request in the
classic and streaming mode. Forking a process is a resource intensive task.
On the other hand, in HTTP mode a new function fork is created only when
the function container is launched. Subsequent requests are served through
the same forked process and the communication between watchdog and the
function is done over HTTP.

11Afterburn is being deprecated and hence we do not discuss it further
12https://github.com/openfaas-incubator/of-watchdog
13https://github.com/openfaas/faas/tree/master/watchdog

CHAPTER 4. EVALUATION 54

1 2 5 10
Concurrent Users

0

5

10

15

20

25

30
Av

g.
 R

es
po

ns
e

Ti
m

e
(m

s)
classic
http
streaming

Figure 4.3: Average response time (in ms) for different OpenFaaS watchdog
modes.

Figure 4.4 shows the distribution of response times for 1, 2, 5 and 10
concurrent users across different watchdog modes. The results are from a
single experimental run of 50,000 requests made for each mode. We remove
the top 15 response time values (0.03%) from each mode. We consider the
top 0.03% of response times as outliers. The reason for the outliers can be
attributed to sufficient replicas not being available to process the requests.
The plots show that the response times are mostly around the median and
within a narrow range of values. This is because OpenFaaS automatically
scales functions as the volume of requests per second increases. This shows
that the scalability provided by OpenFaaS platform along with Kubernetes
is able to handle the volume of requests and ensure that response latency
does not increase unreasonably.

OpenFaaS is tightly integrated with Prometheus. Prometheus is used to
record various metrics, such as response time, number of function replicas,
number of function invocations and response codes. Prometheus can be
further integrated with dashboard tools, such as Grafana14 to give a rich
dashboard of the OpenFaaS functions.

By default OpenFaaS logs are not written to container logs. This can

14https://grafana.com

CHAPTER 4. EVALUATION 55

http classic streaming
Modes

5

10

15

20

25

30

35

Re
sp

on
se

 T
im

e
(m

s)

(a) 1 concurrent user

http classic streaming
Modes

0

10

20

30

40

50

Re
sp

on
se

 T
im

e
(m

s)

(b) 2 concurrent users

http classic streaming
Modes

0

20

40

60

80

100

Re
sp

on
se

 T
im

e
(m

s)

(c) 5 concurrent users

http classic streaming
Modes

0

50

100

150

200

250

300
Re

sp
on

se
 T

im
e

(m
s)

(d) 10 concurrent users

Figure 4.4: Density of response time for different watchdog modes in Open-
FaaS.

be enabled by setting write debug environmental variable to true. Logs can
also be checked by using the kubectl logs command of Kubernetes. The logs
discussed so far are system level logs. Additionally, developers would like
to write and analyze application level logs. Here the choice of the watchdog
mode is important. In the classic mode, anything written to stderr by the
function is returned back to the client. On the other hand, in the other two
modes, application logs are recorded and written to the container logs.

4.4 Performance of the different frameworks

In this section, we evaluate the performance of functions deployed on Kube-
less, Fission and OpenFaaS.

CHAPTER 4. EVALUATION 56

4.4.1 Setup

We evaluate the performance of the three serverless frameworks with con-
currency as high as 100 and the function replica count as high as 50. The
function replica counts are kept fixed and no scaling is used. The setup used
in the previous experiment was not sufficient for this experiment. Thus, we
use GKE with the necessary computing resources.

GKE Setup

In GKE, we use Kubernetes version 1.10.4-gke.2 (latest version available at
the time of the experiment). Three worker nodes are used in the cluster, each
node having 2 vCPUs and 7.5 GB memory. We use Container-Optimized OS
as the operating system for the worker nodes. This operating system is opti-
mized for running containers and Kubernetes on Google Cloud Platform [6].
The cluster is setup in the europe-north1 15 region and all the nodes are lo-
cated in zone a. We also set up a VM instance to invoke the functions
deployed on the GKE cluster. The instance is setup in the same zone as
the GKE cluster to minimize network latency. The instance has 2 vCPUs,
7.5 GB memory and ran Debian GNU/Linux 9.4 (stretch) OS.

OpenFaaS installation

We follow the same steps as described in Section 4.3.1 for deploying Open-
FaaS. However, we use only the HTTP watchdog mode. This is motivated by
the results in Section 4.3.2 which indicate that HTTP mode performs better
than the other modes.

Kubeless installation

We follow the steps outlined in the official Kubeless Quick Start16 for in-
stalling Kubeless on GKE. We deploy Kubeless v1.0.0-alpha.6 with Role
Based Access Control (RBAC) enabled. First, we create the kubeless names-
pace and install the kubeless controller. Following this, we install components
required for exposing Kubeless function outside the GKE cluster. Kube-
less uses Kubernetes Ingress17 to provide routing for the functions. We use
the Nginx Ingress controller by following the instructions in the Installation
Guide18. Next the functions are deployed and they are scaled to a fixed

15https://cloud.google.com/compute/docs/regions-zones
16https://kubeless.io/docs/quick-start/
17https://kubernetes.io/docs/concepts/services-networking/ingress/
18https://kubernetes.io/docs/concepts/services-networking/ingress/

CHAPTER 4. EVALUATION 57

replica size. Finally, triggers19 are created for the functions to expose them
outside the GKE cluster.

Fission installation

We follow the steps outlined in the official Fission Installation Guide20 for
installing Fission on GKE. We then create an environment for Go, pack-
age, route and the actual function. Environments contains the information
related to language and runtime for our function. The package provides a
mechanism to build the function from source code [13]. Routes are created to
invoke Fission functions through HTTP. Finally, the functions are created by
defining the appropriate minscale and maxscale. Though we can use either
pool based executor and newdeploy, we chose the newdeploy executor [7] as
this supports autoscaling of functions.

4.4.2 Results

Figure 4.5 shows the average response time of the functions in the three
considered frameworks. The figure reports the average values obtained from
ten iterations as well as the corresponding standard deviations, shown as
whiskers in the plots. We observe that the response time is lowest for Kube-
less and highest for Fission. The difference in the response time increases
with more load, i.e., as the concurrency of requests increases. We believe the
lower performance of Fission is due to the router component through which
all HTTP requests are routed. On the other hand, Kubeless relies on native
Kubernetes components wherever possible. For instance, Kubeless uses Ku-
bernetes ingress for exposing function outside the Kubernetes cluster. Our
experiments indicate that the performance using an ingress is better than
the other approaches. The response time for OpenFaaS is larger than that
of Kubeless. However, they are very close to each other. Moreover, Open-
FaaS is not affected by the performance degradation seen in Fission at higher
loads, specifically for 50 and 100 concurrent users.

We also monitor the response codes returned by the function invoca-
tions. Since the functions are invoked by using HTTP triggers, we track
all responses with a response code of 2xx as successful. This information is
obtained from the Apache benchmark tool. Table 4.3 presents the success
ratio of all function invocations for the scenarios described above. We note
that Kubeless has a 100% success ratio across all scenarios (i.e., all HTTP
responses were successfully received). The success rate for OpenFaaS is less

19https://kubeless.io/docs/http-triggers/
20https://docs.fission.io/0.8.0/installation/installation/

CHAPTER 4. EVALUATION 58

1 5 10 20 50 100
Concurrent Users

0

50

100

150

200

250

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

Function Replicas - 1
Fission
Kubeless
OpenFaas

(a) 1 replica

1 5 10 20 50 100
Concurrent Users

0

50

100

150

200

250

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

Function Replicas - 5
Fission
Kubeless
OpenFaas

(b) 5 replicas

1 5 10 20 50 100
Concurrent Users

0

50

100

150

200

250

300

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

Function Replicas - 25
Fission
Kubeless
OpenFaas

(c) 25 replicas

1 5 10 20 50 100
Concurrent Users

0

50

100

150

200

250

300
Av

g.
 R

es
po

ns
e

Ti
m

e
(m

s)

Function Replicas - 50
Fission
Kubeless
OpenFaas

(d) 50 replicas

Figure 4.5: Average response time (in milliseconds) for different serverless
frameworks with 1, 5, 25 and 50 function replicas.

than 97% for 100 concurrent users for 5, 25 and 50 function replicas. We
also note that for OpenFaaS with 50 and 100 concurrent users, the success
ratio with 1 function replica is higher than with 5, 25 or 50 function replicas.
This may be attributed to the design of OpenFaaS. Every function call has
to go through the gateway, faas-netes, watchdog before reaching the func-
tion. This introduces multiple hops and multiple points of failure. When
there are more function replicas, the gateway and faas-netes may introduce
bottlenecks leading to the observed increase in failed responses. Fission has
a stable success ratio across all concurrent users and replica counts. Though,
the success rate has decreased with the increase in concurrent users, the dif-
ference is minimal. In comparison to OpenFaaS, its performance in case of
50 and 100 concurrent users have been better. This may be because Fission
has fewer hops during function invocation in comparison to OpenFaaS.

CHAPTER 4. EVALUATION 59

Concurrent users
rep. 1 5 10 20 50 100

Kubeless

1 100.00 100.00 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 100.00 100.00
25 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00

Fission

1 100.00 99.90 99.84 99.78 99.54 99.32
5 100.00 99.89 99.84 99.78 99.64 99.45
25 100.00 99.89 99.85 99.77 99.48 99.19
50 100.00 99.88 99.81 99.79 99.61 99.31

OpenFaaS

1 99.95 99.99 99.91 99.58 98.73 98.27
5 100.00 99.99 99.93 99.61 97.66 96.23
25 100.00 100.00 99.92 99.67 97.76 96.04
50 100.00 100.00 99.93 99.61 97.48 96.52

Table 4.3: Success ratio (in %) of all requests for different serverless frame-
works.

Chapter 5

Conclusion

Over the years, server-side computing has evolved from bare metal servers
to virtualization and most recently to serverless computing. In this thesis,
we presented a serverless computing framework based on Kubernetes. We
discussed various use cases where serverless computing is ideal. Our main
motivation for this work has been to set up a custom serverless computing
infrastructure instead of using the solutions provided by public cloud service
providers. This can help to bring the many benefits of serverless computing to
the private cloud. We carried out a feature evaluation of open source server-
less computing solutions: Kubeless, OpenWhisk, Fission and OpenFaaS. In
terms of features, we found OpenFaaS to be the most flexible in terms of
support for multiple container orchestrators and multiple languages. It also
has the largest GitHub community based on the number of stars and forks.

Next, we evaluated a few serverless computing frameworks based on Ku-
bernetes. To this end, we set up three different solutions: OpenFaaS, Kube-
less and Fission. We evaluated the ease of developing and deploying functions
on these frameworks. We also discussed how the cluster can be monitored
through both system and application logs. We then evaluated the different
modes of invoking functions in OpenFaaS. We concluded that the HTTP
mode has the lowest response time and used this mode in the rest of the
evaluation. Finally, we compared the performance of the three considered
serverless frameworks. We found that Kubeless has the best performance
among the three frameworks, both in terms of response time and ratio of
successful responses.

The concepts presented in this thesis can be extended in the following
ways.

• In our experiments, we have a maximum of three worker nodes and a
single master node. This can be extended with more master nodes and
worker nodes to provide high availability and more processing power.

60

CHAPTER 5. CONCLUSION 61

An interesting avenue for future research would be a performance com-
parison with commercial solutions from cloud providers.

• OpenFaaS provides functionality for asynchronous function calls and
event based processing. The frameworks can be extended to support
Cloud Events. Cloud Events is a specification by Cloud Native Com-
puting Foundation with an aim to standardize event description so that
it can be consumed across multiple platforms [4].

• Our work can be extended to IoT gateways which is an interesting
use case for serverless computing. In fact, IoT gateways have limited
computing capability and need to serve bursty workloads. Serverless
computing can efficiently manage this kind of workload [5]. The ar-
chitecture used in this thesis can be replicated on an IoT gateway.
Moreover, serverless computing can be used along with gateway as a
service [65], where serverless computing can be used to deploy various
functions as services on an IoT gateway. Thus, a proof of concept can
be developed for a serverless computing framework on an IoT gateway.

Bibliography

[1] About storage drivers — docker documentation. https://docs.

docker.com/storage/storagedriver/#images-and-layers. (Accessed on
02/26/2018).

[2] Apache openwhisk is a serverless, open source cloud platform. https:

//openwhisk.apache.org/. (Accessed on 04/27/2018).

[3] apache/incubator-openwhisk: Apache openwhisk is a serverless event-
based programming service and an apache incubator project. https:

//github.com/apache/incubator-openwhisk. (Accessed on 03/21/2018).

[4] Cloudevents. https://cloudevents.io/. (Accessed on 06/17/2018).

[5] CNCF serverless whitepaper v1.0. https://github.com/cncf/wg-

serverless/tree/master/whitepaper. (Accessed on 02/18/2018).

[6] Container-optimized os — google cloud. https://cloud.google.com/

container-optimized-os/. (Accessed on 07/05/2018).

[7] Controlling function execution :: Serverless functions for kubernetes.
https://docs.fission.io/0.8.0/concepts/executor/. (Accessed on
07/05/2018).

[8] Create functions - openfaas. https://docs.openfaas.com/cli/

templates/. (Accessed on 06/27/2018).

[9] Create functions - openfaas. https://docs.openfaas.com/cli/

templates/#43-use-your-own-templates. (Accessed on 06/14/2018).

[10] Custom resources - kubernetes. https://kubernetes.io/docs/

concepts/extend-kubernetes/api-extension/custom-resources/. (Ac-
cessed on 06/27/2018).

62

https://docs.docker.com/storage/storagedriver/#images-and-layers
https://docs.docker.com/storage/storagedriver/#images-and-layers
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://github.com/apache/incubator-openwhisk
https://github.com/apache/incubator-openwhisk
https://cloudevents.io/
https://github.com/cncf/wg-serverless/tree/master/whitepaper
https://github.com/cncf/wg-serverless/tree/master/whitepaper
https://cloud.google.com/container-optimized-os/
https://cloud.google.com/container-optimized-os/
https://docs.fission.io/0.8.0/concepts/executor/
https://docs.openfaas.com/cli/templates/
https://docs.openfaas.com/cli/templates/
https://docs.openfaas.com/cli/templates/#43-use-your-own-templates
https://docs.openfaas.com/cli/templates/#43-use-your-own-templates
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

BIBLIOGRAPHY 63

[11] Dynamodb streams and aws lambda triggers - amazon dy-
namodb. https://docs.aws.amazon.com/amazondynamodb/latest/

developerguide/Streams.Lambda.html. (Accessed on 06/27/2018).

[12] Enabling istio on fission :: Serverless functions for kubernetes. https://
docs.fission.io/0.8.0/tutorial/enabling-istio-on-fission/. (Ac-
cessed on 06/27/2018).

[13] Fission :: Serverless functions for kubernetes. https://docs.fission.

io/. (Accessed on 06/26/2018).

[14] Fission: a faas for kubernetes @ scale16x // speaker deck.
https://speakerdeck.com/soamvasani/fission-a-faas-for-

kubernetes-at-scale16x. (Accessed on 03/27/2018).

[15] fission/fission: Fast serverless functions for kubernetes. https://github.
com/fission/fission. (Accessed on 03/26/2018).

[16] fission/fission-workflows: Workflows for fission: Fast, reliable and
lightweight function composition for serverless functions. https://

github.com/fission/fission-workflows. (Accessed on 03/26/2018).

[17] Gateway - openfaas. https://docs.openfaas.com/architecture/

gateway/. (Accessed on 05/26/2018).

[18] How nodes works. https://docs.docker.com/engine/swarm/how-swarm-
mode-works/nodes/. (Accessed on 26/01/2018).

[19] How swarm works. https://docs.docker.com/engine/swarm/how-

swarm-mode-works/services/. (Accessed on 26/01/2018).

[20] How to keep your lambda functions warm ? a cloud guru.
https://read.acloud.guru/how-to-keep-your-lambda-functions-

warm-9d7e1aa6e2f0. (Accessed on 06/27/2018).

[21] I heard about the 8 fallacies of distributed computing few years ago.
https://www.rgoarchitects.com/Files/fallacies.pdf. (Accessed on
06/27/2018).

[22] incubator-openwhisk-deploy-kube/readme.md at mas-
ter · apache/incubator-openwhisk-deploy-kube. https:

//github.com/apache/incubator-openwhisk-deploy-kube/blob/

0bc2e16478f5bceffc717a82ce581f82a2549344/README.md#setting-

up-kubernetes. (Accessed on 06/27/2018).

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
https://docs.fission.io/0.8.0/tutorial/enabling-istio-on-fission/
https://docs.fission.io/0.8.0/tutorial/enabling-istio-on-fission/
https://docs.fission.io/
https://docs.fission.io/
https://speakerdeck.com/soamvasani/fission-a-faas-for-kubernetes-at-scale16x
https://speakerdeck.com/soamvasani/fission-a-faas-for-kubernetes-at-scale16x
https://github.com/fission/fission
https://github.com/fission/fission
https://github.com/fission/fission-workflows
https://github.com/fission/fission-workflows
https://docs.openfaas.com/architecture/gateway/
https://docs.openfaas.com/architecture/gateway/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://read.acloud.guru/how-to-keep-your-lambda-functions-warm-9d7e1aa6e2f0
https://read.acloud.guru/how-to-keep-your-lambda-functions-warm-9d7e1aa6e2f0
https://www.rgoarchitects.com/Files/fallacies.pdf
https://github.com/apache/incubator-openwhisk-deploy-kube/blob/0bc2e16478f5bceffc717a82ce581f82a2549344/README.md#setting-up-kubernetes
https://github.com/apache/incubator-openwhisk-deploy-kube/blob/0bc2e16478f5bceffc717a82ce581f82a2549344/README.md#setting-up-kubernetes
https://github.com/apache/incubator-openwhisk-deploy-kube/blob/0bc2e16478f5bceffc717a82ce581f82a2549344/README.md#setting-up-kubernetes
https://github.com/apache/incubator-openwhisk-deploy-kube/blob/0bc2e16478f5bceffc717a82ce581f82a2549344/README.md#setting-up-kubernetes

BIBLIOGRAPHY 64

[23] incubator-openwhisk/metrics.md at ee2dd9719ff09818adffd3a02707ca24118b8afa
· apache/incubator-openwhisk. https://

github.com/apache/incubator-openwhisk/blob/

ee2dd9719ff09818adffd3a02707ca24118b8afa/docs/metrics.md. (Ac-
cessed on 06/27/2018).

[24] Kubeless. http://kubeless.io/docs/architecture/. (Accessed on
03/18/2018).

[25] Kubeless. http://kubeless.io/docs/. (Accessed on 03/18/2018).

[26] Kubernetes cloud controller manager - kubernetes. https:

//kubernetes.io/docs/tasks/administer-cluster/running-cloud-

controller/. (Accessed on 06/26/2018).

[27] Kubernetes components. https://kubernetes.io/docs/concepts/

overview/components/. (Accessed on 02/02/2018).

[28] Openfaas. https://docs.openfaas.com/. (Accessed on 06/26/2018).

[29] openfaas/faas: Openfaas - serverless functions made simple for docker
& kubernetes. https://github.com/openfaas/faas. (Accessed on
03/27/2018).

[30] Serverless by the numbers: 2018 report. https://serverless.com/

blog/serverless-by-the-numbers-2018-data-report/. (Accessed on
06/26/2018).

[31] Serverless computing.pdf. https://www2.deloitte.com/content/

dam/Deloitte/tr/Documents/technology-media-telecommunications/

Serverless%20Computing.pdf. (Accessed on 06/27/2018).

[32] Source code organization and your development workflow :: Serverless
functions for kubernetes. https://docs.fission.io/0.8.0/tutorial/

developer-workflow/. (Accessed on 07/05/2018).

[33] Vmware + openfaas - one month in - vmware open source
blog. https://blogs.vmware.com/opensource/2018/03/20/vmware-

openfaas-alex-ellis/. (Accessed on 06/27/2018).

[34] Watchdog - openfaas. https://docs.openfaas.com/architecture/

watchdog/. (Accessed on 05/27/2018).

[35] What is kubernetes? https://kubernetes.io/docs/concepts/

overview/what-is-kubernetes/. (Accessed on 01/11/2017).

https://github.com/apache/incubator-openwhisk/blob/ee2dd9719ff09818adffd3a02707ca24118b8afa/docs/metrics.md
https://github.com/apache/incubator-openwhisk/blob/ee2dd9719ff09818adffd3a02707ca24118b8afa/docs/metrics.md
https://github.com/apache/incubator-openwhisk/blob/ee2dd9719ff09818adffd3a02707ca24118b8afa/docs/metrics.md
http://kubeless.io/docs/architecture/
http://kubeless.io/docs/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://docs.openfaas.com/
https://github.com/openfaas/faas
https://serverless.com/blog/serverless-by-the-numbers-2018-data-report/
https://serverless.com/blog/serverless-by-the-numbers-2018-data-report/
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/technology-media-telecommunications/Serverless%20Computing.pdf
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/technology-media-telecommunications/Serverless%20Computing.pdf
https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/technology-media-telecommunications/Serverless%20Computing.pdf
https://docs.fission.io/0.8.0/tutorial/developer-workflow/
https://docs.fission.io/0.8.0/tutorial/developer-workflow/
https://blogs.vmware.com/opensource/2018/03/20/vmware-openfaas-alex-ellis/
https://blogs.vmware.com/opensource/2018/03/20/vmware-openfaas-alex-ellis/
https://docs.openfaas.com/architecture/watchdog/
https://docs.openfaas.com/architecture/watchdog/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

BIBLIOGRAPHY 65

[36] Who is using microservices? http://microservices.io/articles/

whoisusingmicroservices.html. (Accessed on 02/25/2018).

[37] Adzic, G., and Chatley, R. Serverless computing: economic and
architectural impact. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (2017), ACM, pp. 884–889.

[38] Anderson, C. Docker [software engineering]. IEEE Software 32, 3
(2015), 102–c3.

[39] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., et al. A view of cloud computing. Communications of the ACM
53, 4 (2010), 50–58.

[40] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R.,
Slominski, A., et al. Serverless computing: Current trends and
open problems. In Research Advances in Cloud Computing. Springer,
2017, pp. 1–20.

[41] Baldini, I., Castro, P., Cheng, P., Fink, S., Ishakian, V.,
Mitchell, N., Muthusamy, V., Rabbah, R., and Suter, P.
Cloud-native, event-based programming for mobile applications. In Pro-
ceedings of the International Conference on Mobile Software Engineering
and Systems (2016), ACM, pp. 287–288.

[42] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and
the art of virtualization. In ACM SIGOPS operating systems review
(2003), vol. 37, ACM, pp. 164–177.

[43] Bellard, F. Qemu, a fast and portable dynamic translator.
In USENIX Annual Technical Conference, FREENIX Track (2005),
pp. 41–46.

[44] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and
Wilkes, J. Borg, omega, and kubernetes. Queue 14, 1 (2016), 10.

[45] Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A.
Serverless programming (function as a service). In Distributed Com-
puting Systems (ICDCS), 2017 IEEE 37th International Conference on
(2017), IEEE, pp. 2658–2659.

http://microservices.io/articles/whoisusingmicroservices.html
http://microservices.io/articles/whoisusingmicroservices.html

BIBLIOGRAPHY 66

[46] Che, J., Shi, C., Yu, Y., and Lin, W. A synthetical performance
evaluation of openvz, xen and kvm. In Services Computing Conference
(APSCC), 2010 IEEE Asia-Pacific (2010), IEEE, pp. 587–594.

[47] Claburn, T. Lambda and serverless is one of the worst forms
of proprietary lock-in we’ve ever seen in the history of human-
ity. https://www.theregister.co.uk/2017/11/06/coreos_kubernetes_

v_world/, Nov 2017. (Accessed on 02/21/2018).

[48] Cockcroft, A. Evolution of business logic from monoliths through
microservices, to functions. https://read.acloud.guru/ff464b95a44d,
2017. (Accessed on 01/11/2017).

[49] Creasy, R. J. The origin of the vm/370 time-sharing system. IBM
Journal of Research and Development 25, 5 (1981), 483–490.

[50] Dmitry, N., and Manfred, S.-S. On micro-services architecture.
International Journal of Open Information Technologies 2, 9 (2014).

[51] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. Microservices: yester-
day, today, and tomorrow. arXiv preprint arXiv:1606.04036 (2016).

[52] Dua, R., Raja, A. R., and Kakadia, D. Virtualization vs con-
tainerization to support paas. In Cloud Engineering (IC2E), 2014 IEEE
International Conference on (2014), IEEE, pp. 610–614.

[53] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. An up-
dated performance comparison of virtual machines and linux containers.
In Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On (2015), IEEE, pp. 171–172.

[54] Fowler, M., and Lewis, J. Microservices. https://martinfowler.

com/articles/microservices.html. (Accessed on 02/09/2018).

[55] Fox, G. C., Ishakian, V., Muthusamy, V., and Slominski, A.
Status of serverless computing and function-as-a-service (faas) in indus-
try and research. arXiv preprint arXiv:1708.08028 (2017).

[56] Garriga, M. Towards a taxonomy of microservices architectures. In
International Conference on Software Engineering and Formal Methods
(2017), Springer, pp. 203–218.

https://www.theregister.co.uk/2017/11/06/coreos_kubernetes_v_world/
https://www.theregister.co.uk/2017/11/06/coreos_kubernetes_v_world/
https://read.acloud.guru/ff464b95a44d
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY 67

[57] Goldberg, R. P. Architectural principles for virtual computer sys-
tems. Tech. rep., HARVARD UNIV CAMBRIDGE MA DIV OF EN-
GINEERING AND APPLIED PHYSICS, 1973.

[58] Honeycutt, J. Microsoft virtual pc 2004 technical overview. Mi-
crosoft, Nov (2003).

[59] Jaramillo, D., Nguyen, D. V., and Smart, R. Leveraging mi-
croservices architecture by using docker technology. In SoutheastCon,
2016 (2016), IEEE, pp. 1–5.

[60] Javed, A., et al. Container-based iot sensor node on raspberry pi
and the kubernetes cluster framework.

[61] Joy, A. M. Performance comparison between linux containers and vir-
tual machines. In Computer Engineering and Applications (ICACEA),
2015 International Conference on Advances in (2015), IEEE, pp. 342–
346.

[62] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and Ghal-
sasi, A. Cloud computing?the business perspective. Decision support
systems 51, 1 (2011), 176–189.

[63] McGrath, G., and Brenner, P. R. Serverless computing: Design,
implementation, and performance. In Distributed Computing Systems
Workshops (ICDCSW), 2017 IEEE 37th International Conference on
(2017), IEEE, pp. 405–410.

[64] Morabito, R., Kjällman, J., and Komu, M. Hypervisors vs.
lightweight virtualization: a performance comparison. In Cloud Engi-
neering (IC2E), 2015 IEEE International Conference on (2015), IEEE,
pp. 386–393.

[65] Morabito, R., Petrolo, R., Loscŕı, V., and Mitton, N. En-
abling a lightweight edge gateway-as-a-service for the internet of things.
In Network of the Future (NOF), 2016 7th International Conference on
the (2016), IEEE, pp. 1–5.

[66] Muller, A., and Wilson, S. Virtualization with vmware esx server.

[67] Nastic, S., Rausch, T., Scekic, O., Dustdar, S., Gusev, M.,
Koteska, B., Kostoska, M., Jakimovski, B., Ristov, S., and
Prodan, R. A serverless real-time data analytics platform for edge
computing. IEEE Internet Computing 21, 4 (2017), 64–71.

BIBLIOGRAPHY 68

[68] Ongaro, D., and Ousterhout, J. K. In search of an understandable
consensus algorithm. In USENIX Annual Technical Conference (2014),
pp. 305–319.

[69] Popek, G. J., and Goldberg, R. P. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM
17, 7 (1974), 412–421.

[70] Preeth, E., Mulerickal, F. J. P., Paul, B., and Sastri, Y.
Evaluation of docker containers based on hardware utilization. In Con-
trol Communication & Computing India (ICCC), 2015 International
Conference on (2015), IEEE, pp. 697–700.

[71] Rensin, D. K. Kubernetes-scheduling the future at cloud scale.

[72] Reshetova, E., Karhunen, J., Nyman, T., and Asokan, N.
Security of os-level virtualization technologies. In Nordic Conference on
Secure IT Systems (2014), Springer, pp. 77–93.

[73] Robin, J. S., Irvine, C. E., et al. Analysis of the intel pentium’s
ability to support a secure virtual machine monitor. Proceedings of the
9th USENIX Security Symposium, Denver, CO.

[74] Shillaker, S. A provider-friendly serverless framework for latency-
critical applications. http://conferences.inf.ed.ac.uk/EuroDW2018/

papers/eurodw18-Shillaker.pdf. (Accessed on 06/30/2018).

[75] Singleton, A. The economics of microservices. IEEE Cloud Comput-
ing 3, 5 (2016), 16–20.

[76] Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and Pe-
terson, L. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. In ACM SIGOPS
Operating Systems Review (2007), vol. 41, ACM, pp. 275–287.

[77] Sugerman, J., Venkitachalam, G., and Lim, B.-H. Virtualizing
i/o devices on vmware workstation’s hosted virtual machine monitor. In
USENIX Annual Technical Conference, General Track (2001), pp. 1–14.

[78] Velte, A., and Velte, T. Microsoft virtualization with Hyper-V.
McGraw-Hill, Inc., 2009.

[79] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D.,
Tune, E., and Wilkes, J. Large-scale cluster management at google

http://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Shillaker.pdf
http://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Shillaker.pdf

BIBLIOGRAPHY 69

with borg. In Proceedings of the Tenth European Conference on Com-
puter Systems (2015), ACM, p. 18.

[80] Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C.,
Lange, T., and De Rose, C. A. Performance evaluation of container-
based virtualization for high performance computing environments. In
Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on (2013), IEEE, pp. 233–240.

Appendix A

Fission

A.1 Function code

package main

import (
” fmt”
” net / http ”

)

// Handler i s the entry po in t f o r t h i s f i s s i o n func t i on
func Handler (w http . ResponseWriter , r ∗http . Request) {

body , := i o u t i l . ReadAll (r . Body)
message := fmt . S p r i n t f (” He l lo world , input was : %s ” , string (

body))
w. Write ([] byte (message))

}

A.2 Examples of Commands

Below script creates a new go environment.

$ fission env create --name go --image fission/go-env:0.8.0 –builderfission/go-
builder:0.8.0

Below script creates a new function using the environment created above.

$ fission function create --name hello --env go --src hello.go --entrypoint
Handler --minscale 5 –maxscale 5 –executortype newdeploy

70

Appendix B

Kubeless

B.1 Function code

package kube l e s s

import (
” fmt”

” github . com/ kube l e s s / kube l e s s /pkg/ f u n c t i o n s ”
)

func Handler (event f u n c t i o n s . Event , context f u n c t i o n s . Context)
(string , error) {

var e r r error
message := fmt . S p r i n t f (” He l lo world , input was : %s ” , event .

Data)
return message , e r r

}

B.2 Examples of Commands

Below script creates a new function.

$ kubeless function deploy hello --runtime go1.10 --handler hello.Handler
--from-file hello.go

71

Appendix C

OpenFaaS

C.1 Create a new function

The below script is used to create a new function environment. In the below
script, faas-cli is the command, helloworld is the name of the function and go
is the language. In OpenFaaS, the language is defined by a template. User
can build their own custom templates and give it a custom name. OpenFaaS
also has a predefined set of templates [9].

$ faas-cli new helloworld --lang go

C.1.1 Auto generated function code

Below is an example of a code generated by use of the above script.

package main

import ”fmt”

func main () {
fmt . Println (” He l lo World ! ”)

}

72

APPENDIX C. OPENFAAS 73

C.1.2 Sample yml file for OpenFaaS functions

prov ide r :
name : f a a s
gateway : http : // 172 .42 .42 .102 :31112/

f u n c t i o n s :
fun1 :

lang : go−streaming
handler : . / fun1
image : images . example . com/ fun1
s e c r e t s :
− image−reg
environment :

wr i te debug : fa l se
read debug : fa l se

l a b e l s :
”com . openfaas . s c a l e . min” : ”1”
”com . openfaas . s c a l e . max” : ”100”

f u n c t i o n s :
fun2 :

lang : go
handler : . / fun2
image : images . example . com/ fun2
s e c r e t s :
− image−reg
environment :

wr i te debug : fa l se
read debug : fa l se

l a b e l s :
”com . openfaas . s c a l e . min” : ”1”
”com . openfaas . s c a l e . max” : ”100”

C.2 Deploy function

Functions in OpenFaaS are deployed by using the below three commands.

The build command builds the Docker image in the local system or the CI
build server as may be the case.

$ faas-cli build -f template.yml

The push command pushes the Docker image to the image repository.

$ faas-cli push -f template.yml

APPENDIX C. OPENFAAS 74

The deploy command deploys the image as a function.

$ faas-cli deploy -f template.yml

Appendix D

Function Code

D.1 Serializing Function - Classic

package f unc t i on

import (
” fmt”

)

// Handle a s e r v e r l e s s r e que s t
func Handle (req [] byte) string {

return fmt . S p r i n t f (” Hel lo , Go . You sa id : %s ” , string (req))
}

D.2 HTTP Function

package f unc t i on

import (
” fmt”
” net / http ”

” github . com/ openfaas−incubator /go−funct ion−sdk”
)

// Handle a func t i on invoca t i on
func Handle (req handler . Request) (handler . Response , error) {

var e r r error

message := fmt . S p r i n t f (” Hel lo , Go . You sa id : %s ” , string (req
. Body))

75

APPENDIX D. FUNCTION CODE 76

return handler . Response{
Body : [] byte (message) ,
StatusCode : http . StatusOK ,

} , e r r
}

D.3 Streaming Function

package f unc t i on

import (
” fmt”

)

// Handle a s e r v e r l e s s r e que s t
func Handle (req [] byte) string {

return fmt . S p r i n t f (” Hel lo , Go . You sa id : %s ” , string (req))
}

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure of thesis

	2 Background
	2.1 Virtualization
	2.1.1 Hypervisor-based virtualization
	2.1.2 Container-based virtualization

	2.2 Docker
	2.3 Container orchestration
	2.3.1 Docker Swarm
	2.3.2 Kubernetes

	2.4 Microservices
	2.5 Serverless computing
	2.5.1 Definition
	2.5.2 Existing platforms
	2.5.3 Use cases
	2.5.4 Benefits and Challenges

	3 Open source serverless frameworks
	3.1 Evaluation criteria
	3.2 Frameworks
	3.2.1 Kubeless
	3.2.2 Apache OpenWhisk
	3.2.3 Fission
	3.2.4 OpenFaaS

	3.3 Summary and comparison

	4 Evaluation
	4.1 Methodology
	4.2 Ease of development
	4.3 Comparison of Watchdog modes in OpenFaaS
	4.3.1 Setup
	4.3.2 Results

	4.4 Performance of the different frameworks
	4.4.1 Setup
	4.4.2 Results

	5 Conclusion
	A Fission
	A.1 Function code
	A.2 Examples of Commands

	B Kubeless
	B.1 Function code
	B.2 Examples of Commands

	C OpenFaaS
	C.1 Create a new function
	C.1.1 Auto generated function code
	C.1.2 Sample yml file for OpenFaaS functions

	C.2 Deploy function

	D Function Code
	D.1 Serializing Function - Classic
	D.2 HTTP Function
	D.3 Streaming Function

