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Abstract
Honeypot systems with a large number of instances pose new challenges in terms of

monitoring and analytics. They produce a significant amount of data and require the
analyst to monitor every new honeypot instance in the system. Specifically, current
approaches require each honeypot instance to be monitored and analysed individually.
Therefore, these cannot scale to support scenarios in which a large number of honeypots
are used. Furthermore, amalgamating data from a large number of honeypots presents
new opportunities to analyse trends.

This thesis proposes a scalable monitoring and analytics system that is designed to
address this challenge. It consists of three components: monitoring, analysis and visuali-
sation. The system automatically monitors each new honeypot, reduces the amount of
collected data and stores it centrally. All gathered data is analysed in order to identify
patterns of attacker behaviour. Visualisation conveniently displays the analysed data to
an analyst.

A user study was performed to evaluate the system. It shows that the solution has met
the requirements posed to a scalable monitoring and analytics system. In particular, the
monitoring and analytics can be implemented using only open-source software and does
not noticeably impact the performance of individual honeypots or the scalability of the
overall honeypot system. The thesis also discusses several variations and extensions,
including detection of new patterns, and the possibility of providing feedback when used
in an educational setting, monitoring attacks by information-security students.

Keywords honeypot, monitoring, logging, analytics, clustering, patterns
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1. Introduction

Honeypots collect important security information, which can be used for both

research and production purposes, helping to detect unauthorized access and

investigate the behaviour of users attacking the honeypot.

Honeypots differ from each other by their software and hardware implementa-

tion, emulation of different types of systems and management. However, their

main purpose is still being able to collect information about attacks. That makes

the collection of logs essential for all types of honeypots.

The further analysis of actions inside honeypots allows security analysts to take

decisions about the right defense against the detected attacks and to reveal new

types of attacks and vulnerabilities, producing value from the honeypots.

1.1 Problem overview

In a basic honeypot system, data is collected from one or a small amount of

honeypots. Scalability has been considered in the literature, however, the focus of

such discussion is typically in instantiation and routing, rather than monitoring.

Meanwhile, scalable honeypots systems, consisting of a large number of honeypots,

pose new issues to the monitoring and analytics.

First, every new honeypot instance should be configured to collect and route the

log data correctly. Second, running a large number of honeypots would produce

a significant amount of logging information, which means more traffic and more

storage space required. Furthermore, that would produce more noise with the

redundant information for the analysis, and make the process of the analysis

complicated and time-consuming for the analyst.

All these issues require a new approach for building the monitoring and analytics

system, without reducing the efficiency of using honeypots and their scalability.
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Introduction

1.2 Thesis process

To address the challenge described above, this thesis proposes a new scalable

monitoring and analytics system for honeypots. Specifically, it achieves this by:

• Defining a set of requirements for the monitoring and analytics system.

• Proposing the design of the system that meets these requirements.

• Describing the implementation of the system according to the proposed design.

• Evaluating the design and implementation against the defined requirements.

• Discussing the possible applications of the system, and comparing it against

related work.

1.2.1 Solution overview

In this thesis, the monitoring and analytics system is described, which has the

following features for solving the mentioned above issues.

The process of logging is customised to produce only logs of a certain malicious

activity and corresponding errors occurring inside a honeypot. This decreases the

amount of produced traffic, whilst retaining enough accurate data for the further

analysis and detection of patterns of attackers.

The monitoring system has a centralised gathering of logs, allowing running of

new honeypots without requiring to produce any changes in the configuration of

the system.

Analysis of accumulated data is automated to support the work of the analyst. A

new component, called the analytics engine, parses all data, divides it by the type

of the attack, adds labels to logs for which patterns are known by the occurring

error, and clusters remaining data.

The analysed data is visualised in a dashboard that displays identified patterns

of attacker behaviour.

1.3 Research scope and goals

The aim of this project is to investigate how to monitor and analyse data from a

large number of honeypots, without reducing the scalability of the system. The

2
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scope of the thesis does not cover the design of a honeypot system.

The research questions of the thesis are the following:

RQ1: What requirements should a scalable honeypot monitoring and analytics

system meet, and how should it be evaluated?

RQ2: What type of system architecture should the monitoring system use, and

how would this be implemented?

RQ3: How can the analytics engine effectively analyse large amounts of data?

RQ4: What are the possible real-world applications of the monitoring and analyt-

ics system?

This thesis uses an experimental methodology to answer the above research

questions.

1.4 Structure of the thesis

The remainder of the thesis is structured as follows: Chapter 2 describes the

background. Chapter 3 presents the system model and requirements to it. A real-

world case study is described in Chapter 4. The system design and implementation

are presented in Chapters 5 and 6 and the evaluation of the system in Chapter 7.

Chapter 8 discusses the solution and its possible extensions. Chapter 9 presents

related work. Chapter 10 contains the conclusion.
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2. Background

2.1 Honeypots

The idea of honeypots is not new and was first presented in 1986 by Clifford

Stoll [36]. He described a system that allows the intruder to access the resource

and records actions of the intruder instead of trying to prevent the access. Since

then a long history of research has been produced, providing several definitions of

the “honeypot” term. In the definition proposed by Pouget et al. [31] in 2003, “A

honeypot consists of an environment where vulnerabilities have been deliberately

introduced in order to observe intrusions”.

The way in which the honeypot is built and how information gained from it is

used define the role of the honeypot in the organisation. In general, honeypot

detects hackers and captures their actions. Its advantage is manifested in the

ability to record almost only malicious activity. The possibility of false negatives

tends to zero, as honeypots are configured such way that only intruders scanning

the network would try to access them. Honeypots also solve the issue with false

negatives, as they do not require knowledge of attacks signatures, recording all

activity of hackers, including new types of attacks. Thus, honeypots produce a

relatively small amount of information with high value to cyber security.

At the same time, there are some weaknesses inherent to honeypots. First,

honeypots can introduce additional risk to their environment. Once hacked, they

can be used to attack other systems. Second, honeypots are able to capture only

attacks directed against them. Furthermore, the existence of honeypots can be

disclosed by fingerprinting. That is, an attacker may discover that it is a honeypot

by observing certain behaviour or characteristic [35]. These features should be

taken into consideration when making a decision about deploying a honeypot in

an information system.
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2.1.1 Classification of honeypots

Honeypots can be classified by the purpose of usage to:

• research honeypots, honeypots that aims to explore the behaviour of an attacker

and to investigate new tools for exploiting vulnerabilities and new types of

attacks;

• production honeypots, used directly to improve the defence of an information

network in the organisation. They contribute in the detection of attackers and

their distraction from real resources [26].

By the level of interaction, honeypots are divided to:

• low-interaction honeypots that emulate the server to be attacked, but have no

real operating system to be accessed by the attacker. These honeypots often

appear as listeners and aim to detect the sources of unauthorized activity. They

are able to capture a narrow type of activity, introducing low level of risk to

the network where they operate. An example of a low-interaction honeypot

is the Monkey-Spider project, where a low-interaction honeyclient emulates a

web-browser to crawl web-sites to explore their threats to clients [17];

• medium-interaction honeypots that emulate some services in a more sophisti-

cated way than low-interaction honeypots but still do not provide full interaction

with the system. Compared to low-interaction honeypots that implement net-

work protocols, medium-interaction honeypots emulate application responses for

incoming requests;

• high-interaction honeypots that represent a fully functional systems that can

be compromised by an attacker. They aim to capture as much information

about the methods of attack as possible, introducing a high level of risk to an

organisation that uses them. This is the most sophisticated type of honeypots to

implement. For instance, HoneyBow collects autonomous spreading malware

using high-interaction honeypots [44].
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2.1.2 Docker

Docker is a program that performs virtualisation on a level of an operating system

running containers [9]. The scheme is presented in Fig. 2.1.

Figure 2.1. Docker on a physical Linux server (adapted from [11]).

Docker runs on most Linux distributions, minimises the usage of CPU and RAM

and isolates applications from each other. Docker allows running of independent

containers that are more portable and efficient than virtual machines (VMs),

avoiding the overhead of maintaining and starting VMs.

Docker Engine is an application with a client-server model, consisting of a three

components:

• daemon process (dockerd) that represents a server;

• REST API;

• command line interface (CLI) client.

The Docker client communicates with the Docker daemon using a REST API.

They can be run on the same server or be connected remotely. The Docker daemon

manages Docker containers (performing distributing, running and building) and

other Docker objects, including images, volumes and networks.

A Docker image is a template containing instructions for building Docker con-

tainers, allowing shipping and storage of applications. Images can be based on

other images with additional customisation.
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A Docker container is a runnable instance of a Docker image, which can be

created from the image and started with configuration options, stopped, and

deleted at any time. A Docker image can also be created from the current state of

a container.

The ability to run processes in isolation using lightweight containers makes

Docker suitable for building honeypot systems. This case is considered in a range

of literature [14,15,19] and, for instance, is implemented in elastichoney [40] that

is intended for catching attacks on vulnerabilities in the Elasticsearch service.

2.2 Logging

Logging automatically registers events in an operating system, covering different

levels, actions of users, conditions, transactions or some other information, which

is later written into a log file. Although there is not a unified logging standard,

logs typically contain additional information, including time stamp, category and

description.

Systematic collection of logs is critical for identifying security incidents, providing

information about unusual conditions, and occurring problems and failures both

on the hardware and software levels.

2.2.1 Syslog standard

Syslog is a common logging standard [20], described in RFC 5424. Conceptually,

it distinguishes identities that generate logs, forwards and gathers them, and is

designed to transport log messages from a generator to collector, utilising the User

Datagram Protocol (UDP). Log messages are often labelled with a facility code

and a severity label.

The facility code indicates the type of the software that generated a log. There

are 23 facilities, and some of them are presented in Table 2.1 [16]. Facilities codes

from 16 to 23 are reserved for local use.

Table 2.1. Facility code

Numerical Code 0 1 2 3 4
Facility kernel user mail system daemons security

A severity label represents the priority of a log message. It takes values from 0

to 7, for instance, including such severities as “emergency”, “error”, “informational”

and “debug”.
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2.2.2 Rsyslog

Rsyslog (the rocket-fast system for log processing [2]) is an open-source utility

implementing the basic syslog protocol, and it is used on most Linux distributions

as the default syslog daemon. It has content-based filtering, usage of TCP and

provides flexible configuration options. It supports a high number of messages

per second, direct logging into databases, security add-ons and data compression

during transactions [13]. Rsyslog is configured by putting rules, modules and

directives in the /etc/rsyslog.conf file. A filter in a rule specifies a subset of log

messages and an action that should be applied to this subset.

2.2.3 Logrotate

Logrotate is a system utility that automatically rotates and compresses files with

logs. A log rotation denotes the process of renaming the current log file by adding

a sequence number or date and creating a new log file instance. The old log file

also can be compressed, moved to an archive directory, deleted or mailed. This

process is used to prevent the storing of extremely large-sized files and outdated

log information.

Logrorate has extensive configuration options, including such parameters as a

periodicity of the log rotation, its conditions (for instance, the file size), the number

of log files to store, and performing a compression. These settings are defined in

the /etc/logrotate.conf configuration file.

2.2.4 Docker logging driver

Docker logging drivers are multiple logging mechanisms that provide informa-

tion from running containers and services. Currently, Docker offers 11 logging

drivers [1], including the default one and none when no logs from containers are

available. For instance, some other logging drivers are syslog that routes logs to

a syslog server, journald, fluentd and splunk. The default Docker logging driver is

json-file.

2.3 Cluster analysis

Data clustering is the task of splitting a given set of objects into disjoint subsets,

called clusters, so that each cluster consists of similar objects, and the objects

of different clusters differ significantly. The clustering algorithm is a function:

X −→ Y , which assigns a label of the cluster y ∈ Y to any object x ∈ X. The task

8
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of clustering belongs to a wide class of unsupervised learning tasks. Clustering

(unsupervised learning) differs from classification (supervised learning) by the

fact that the labels of cluster objects are not initially set, and even the set of

clusters itself may be unknown [37]. The task of clustering requires classifying

of objects only on the basis of their similarity with each other. The initial data

is the matrix of pairwise distances between objects. Cluster analysis is applied

in different fields, including machine learning, data mining, pattern recognition,

image analysis, text mining and web cluster engines [8].

Clustering tasks can target different objectives, for instance:

• identification of a cluster structure for a better understanding of data;

• data compression; when only the most typical representative from each cluster

is left, removing other samples to reduce the original data;

• novelty detection; detection of atypical objects that can not be assigned to any of

the previuosly existing clusters [7].

The solution of the clustering problem is fundamentally ambiguous. Different

quality criteria and heuristic algorithms lead to different clusterings. There is

no universal clustering algorithm, and each heuristic suits only a certain class of

tasks. Thus, clustering is an iterative process of knowledge discovery rather than

an automatic task.

2.3.1 Cluster analysis using Python

The Python language is widely used for computer science [28], and it includes

such libraries as NumPy, Pandas, SciPy, Scikit-learn and Matplotlib. Moreover,

the IPython command shell provides interactive computing, including convenient

visualisation of data and high-performance tools for parallel computing.

SciPy is a Python library for scientific and technical computing. It provides a

set of common numerical operations on top of the data structure of a numeric

array, realised by NumPy [25]. It contains a wide range of modules for common

tasks in science and engineering, including modules for linear algebra, integration,

optimisation and image processing. Apart from other sub-packages, it includes

the cluster package for performing clustering analysis. It implements such types

of clustering as hierarchical clustering, K-means and vector quantization.

9



3. System model and requirements

This chapter defines the system model and requirements for the monitoring and

analytics system of scalable honeypots.

3.1 System model

In the simple approach, logs from honeypots are gathered as presented in Fig. 3.1.

Figure 3.1. Component schema.

This default system model when using multiple honeypots is not scalable, as

explained in Chapter 1, and an analyst is forced to work with a large amount of

unstructured data. The default honeypot system can be improved by introducing

the monitoring and analytics subsystem that supports scalability.

The component schema of the proposed monitoring and analytics is shown in

Fig. 3.2. The monitoring and analytics system exists to support the work of an

analyst. The Analyst interacts with the system, receiving prepared analytics

data that is used to make decisions based on actions of honeypots users. The

term "user" is used to refer to anyone who uses the functionality provided by the

10
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Figure 3.2. Component schema.

honeypot (i.e. usually an attacker).

Actions of users are recorded as logs, which are collected together via a logging

system, and represent data that should be analysed.

The monitoring and analytics system itself consists of three components:

Logging is the first component, which centrally collect logs from the whole range

of honeypots. Gathered logs contain information about the behaviour of users

interacting with these honeypots and their attempts to find and exploit vulnera-

bilities.

An analytics engine is the second component. It reads logs collected by the first

component and separately classifies them into groups connected to certain types of

vulnerabilities. Conducting the analysis of this data, the analytics engine becomes

able to identify patterns of behaviour of users. The resulting data is used by the

analyst for making decisions.

A visualisation of data received from an analytics engine is the third component.

The work of an analyst requires interaction with analytics data. Visualisation pro-

vides a convenient way to present it to an analyst, showing structured information

about patterns of behaviour.

3.2 Realisation of system model

The monitoring and analytics system for honeypots may serve several purposes.

First, it can be used in organisations with honeypots that detect hackers, and

record and analyse their actions. In that case, the analytics data allows the

analyst to learn targeted features of the resource, which then can be defended

with a greater accuracy in the real system.

11
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Second, the monitoring and analytics system for honeypots can be used for study

purposes in, for instance, a university course of Information Security. Students

would interact with honeypots as a task to learn more about vulnerabilities and

ways to find them. In that case, data from the monitoring and analytics system can

be used to provide information to course staff about the most common approaches

of the students, trying to find weak places of a honeypot. Moreover, it can serve as

a source of feedback to students about their actions.

3.3 Requirements

The requirements are a foundation for a system design, its future evaluation and

making a decision whether the implementation has succeeded. Several categories

of requirements have been derived, answering RQ1.

3.3.1 Functional requirements

1.a. Completeness Log data must be collected from all containers created in the

system.

1.b. Structured representation Logs must be shown in a scalable way.

1.c. Analytics Analysis engine should identify patterns of behaviour of honeypot

users.

These requirements are essential in supporting the analysis of honeypot user

behaviour. In case of loss of logs from some containers, less information for

analysis will be gained, and correctness of identification of patterns would decrease.

Information coming from honeypots should be easy to use by analysts so that logs

of a certain user and for a certain kind of vulnerability can be shown. Identification

of patterns is aimed to support the work of an analyst to understand the behaviour

of users and to provide information on which vulnerabilities are the most targeted

ones.

3.3.2 Performance requirements

2.a. Scalability The number of honeypots must not be limited due to performance

bottlenecks in the logging system.

2.b. Reasonable performance Logging system should not significantly slow down

12
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the running honeypots.

As the monitoring and analytics subsystem is built over the honeypot functionality,

it should not produce a negative effect on it. The case study system that runs

honeypots does not limit the number of containers it can start. This is important

for measuring the activity of users and should not be diminished by the imple-

mentation of a monitoring subsystem. The slowdown of the system will lead to a

decrease in the usability for users and should be avoided.

3.3.3 Deployability requirements

3.a. Low resource cost The monitoring and analytics system should not signifi-

cantly increase the resource usage of the overall system.

3.b. Usage of open-source software The monitoring and analytics system should

use only open-source software.

The usage of additional resources and commercial software incur costs that

can be avoided by resorting to free software. Furthermore, if more resources are

required for the monitoring and analytics subsystem, fewer resources for running

honeypots would be available, which may lead to violation of requirement 2.a. The

wide range of free software in appropriate areas corresponds to the set goals at a

satisfactory level, providing all required functionality.

13



4. Case Study

The existing system with honeypots from the Information Security course at Aalto

University was chosen for the implementation of monitoring and analysis. It

matches with the system model and has the requirement for scalability to support

at least 200 students in the class.

This system allows students to experiment with concepts learned in the Infor-

mation Security field. They learn which types of vulnerabilities exist and how to

find and exploit them. At the same time, there is no risk that students will crash

any real system or interfere with each other’s work.

The used honeypot system is neither a production not research type of honeypot.

It is not a production type, as the main purpose of the system is not to defend the

internal network. The system may be connected with research type, however it

does not research the action of attackers, rather providing students the ability to

learn certain types of vulnerabilities through practical experience and examines

their actions inside honeypots. Thus, this type of honeypot can be categorised as

educational.

Education honeypot systems have a large number of attackers, allowing collec-

tion of lots of data in a short time. Therefore, they are beneficial in developing

monitoring techniques and data analysis. Although education honeypot systems

are not intended for detection of new attacks and vulnerabilities, they can help

to understand the approaches taken by attackers to find common vulnerabili-

ties. These systems assist in exploration how the attackers learn and how their

malicious behaviour evolves.

4.1 Exercises

There are currently three exercises on the Launcher to exploit the vulnerabilities

described above:
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The first exercise is about SQL Injection and provides a web-application honeypot

with the corresponding vulnerability.

The second exercise consists of bypassing of client-side validation, buffer over-

flow and server-side poisoning. This exercise on the Launcher runs two honeypots:

a web-application honeypot with the enabled server-side poisoning vulnerability

and an IoT device honeypot.

The third exercise is intended for XSS, both stored and reflected. It also runs a

web-application honeypot.

Therefore, during the Information Security course a user interacts with four

honeypot instances: three instances of the web-application honeypot and one IoT

device honeypot.

4.2 System overview

The scheme of the existing honeypot system is presented in Fig. 4.1.

Figure 4.1. Schema of the honeypot system with exercises.

First, users reach the launcher by a link. The launcher is presented as a web-site

that contains all types of exercises for the course. It is a Flask application running

on Apache2 on the first sever. Then, using the launcher, users choose an exercise to
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complete. Then, they are directed to the page where they can run a honeypot of the

corresponding type. Honeypots are running on the same server. A new honeypot

is created for every user for every exercise; a unique link to it is presented on the

launcher. The launcher has submit buttons for every exercise, which are clicked

by the student after finishing an exercise task. When solutions are checked, the

corresponding number of points goes to the MySQL DB with marks of students,

which is located on the second server.

4.3 Types of honeypots

Two types of honeypots exist in the system: web application and Internet of Things

(IoT) device. The web application honeypot presents a high-interaction type of

honeypot, providing a real operating system with fully functional services that

can be compromised by a user. The IoT device honeypot is related to a medium-

interaction type of honeypot that only emulates services, however providing fake

responses for requests of users.

The honeypots are implemented as docker containers, chosen for their ability

to require small amount of resources, so a relativity large number of lightweight

containers can exist in the system at the same time.

The Docker service is running on the same server with the launcher. It contains

images for the types of honeypots. Every time the user runs a new honeypot, a

new container is created, based on the corresponding image.

4.3.1 Web application

The web application docker container uses Node.js and sqlite3. It is emulating

a website with information about pot plants of different people. This honey-

pot provides several types of vulnerabilities, characteristic of common web-sites:

SQL injection, bypass of client-side validation, server-side poisoning, stored and

reflected cross-site scripting (XSS).

The search field in the application is intentionally made to be vulnerable to a

SQL injection by inclusion of a raw query in a SQL request, Listing 4.1.

Listing 4.1. SQL injection vulnerability.

var sql_query = ’SELECT name, color , planttype , potsize ,

shared FROM plants WHERE user_id = ’ + req . user . get ( ’ id ’ ) +

’ AND name LIKE "% ’ + plant + ’ % " ; ’ ;

The example of a client-side validation that can be bypassed by users is the

usage of javascript check of user input in the HTML code of the sign up page,
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shown in Listing 4.2, which is not rechecked on the server side.

Listing 4.2. Client-side validation.

$ ( document ) . ready ( function ( ) {

$ ( "# signup " ) . submit ( function ( event ) {

var username = $ ( ’ # username ’ ) . val ( ) ;

i f ( username . length > 20) {

$ ( ’ # preval idation_error ’ ) . show ( ) ;

$ ( ’ # preval idation_error ’ ) . html ( ’ Username cannot be

longer than 20 characters ’ ) ;

event . preventDefault ( ) ;

}

} ) ;

} ) ;

The server-side poisoning vulnerability is implemented by using a dangerous

eval() function in sorting, which executes a string parameter that can be changed

by the user, Listing 4.3.

Listing 4.3. Usage of eval() function.

var f i e l d = req . body . s o r t _ f i e l d ;

i f ( conf ig . code_ in jec t ion == ’ enabled ’ ) {

retPlants . sort ( function ( a , b ) {

var av , bv ;

with ( a ) {

av = eval ( f i e l d ) ;

} ;

with ( b ) {

bv = eval ( f i e l d ) ;

} ;

return av >= bv ;

} ) ;

}

In addition, the server is vulnerable to a stored XSS, as it does not execute

filtering of input of users that is stored on the server. The reflected XSS is

also enabled by the code for displaying an error page, which is decoding URI,

Listing 4.4.
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Listing 4.4. Vulnerability for reflected XSS.

$ ( document ) . ready ( function ( ) {

$ ( ’ . container ’ ) . html ( " Oops . Page " + decodeURI ( window .

locat ion . pathname + window . locat ion . search ) + " could

not be found : − ( " ) ;

} ) ;

Users are encouraged to exploit these vulnerabilities by executing the tasks,

following the instructions they receive during the course. The goal of the task

may be formulated as: “To submit your solution to this part, copy one plant name

from the other users to the Exercise Launcher” or “Your goal is to register with a

username that is longer than the limit” [12].

4.3.2 IoT device

The IoT device is simulated by a server written in C and executed on the docker

container running Ubuntu. It listens on a TCP port and receives commands

from users, which includes authentication code (HMAC-SHA256). The IoT device

honeypot contains a buffer overflow vulnerability, which is executed by sending

specially constructed command to a device. The HMAC input array is defined after

the keyphrase variable in the code, which is shown in Listing 4.5 [12]. Therefore,

the right length of the command overwrites the secret keyphrase. Thus, the goal of

the users is to make the device to execute an unauthorised command by exploiting

this vulnerability.

Listing 4.5. Buffer overflow vulnerability.

void handle_message ( int connectfd , char ∗msg) {

char ∗command_rec ;

char ∗user_rec ;

char ∗hmac_rec ;

unsigned char ∗hmac ;

char keyphrase [MAXKEYLEN+1] = { 0 } ;

char hmac_input [MAXHMACINPUTLEN+1] = { 0 } ;

char hex_hmac [HMACLEN∗2+1] = { 0 } ;

char reply [MAXREPLYLEN+1] = { 0 } ;

int keylen ;

int i ;

. . .

}
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4.4 Limitations of the system

As all tasks are checked automatically, the staff of the course do not need to

interact with honeypots, it is enough to check the number of points in the database.

However, this only indicates whether the task was successfully completed, but

not how it was done. This approach limits the ability of the staff to analyse how

students were executing tasks, which and how many attempts they have done and

what are common failed approaches to exploit vulnerabilities among students.

The implementation of the monitoring and analytics system integrated with this

existing honeypots system will remove these boundaries, collecting all necessary

data and providing some analysis to make the work of the personnel easier and

provide a better visualisation of data. With that new functionality students also

would benefit as the staff would have the possibility to react on their actions and

provide some additional information.
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5. Monitoring system design and
implementation

The monitoring and analytics system for scalable honeypots was built based on

the system model described in Chapter 3 to meet the requirements presented in

that chapter. The honeypot system introduced in the case study (Chapter 4) was

taken as a foundation. The description of the system is divided into monitoring,

analysis and visualisation parts.

The monitoring system is responsible for the collection of logs from honeypots,

their aggregation and deriving logs of malicious actions. It allows exploration

of the behaviour of users during their interaction with honeypots. It serves as a

foundation for the analysis subsystem, containing all attempts of users to exploit

vulnerabilities in one place, prepared for further analysis.

The monitoring system is described in this section, answering RQ2. An overview

of the monitoring system is shown in Fig. 5.1.

5.1 Logging inside application

To prevent honeypots from being black boxes for an analysist, it is important to

put logging inside them. As we consider honeypots with known vulnerabilities,

it is meaningful to log the exact actions that are trying to exploit these known

vulnerabilities. That would reduce the amount of stored data and provide accurate

structured information for the analysis.

5.1.1 Web application

Inside the web application, all possible input fields with vulnerabilities are logged,

covering SQL injections, server-side poisoning and stored XSS. This logging consid-

ers all potentially sensitive forms, including situations when data can be inserted

in inappropriate fields, for instance, changing of default values in options for sort-

ing results of a query. Thus, all attempts of users to exploit these vulnerabilities

are collected.
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Figure 5.1. Scheme of the monitoring system.

An example of logging of an input field with SQL injection vulnerability is

presented in Listing 5.1.

Listing 5.1. Logging of the input field.

router . post ( ’ / search ’ , function ( req , res ) {

var plant = req . body . plant ;

var successCallback = function ( plants ) {

i f ( plant ! = " " ) {

console . log ( ’ searchPlantsInput : ’ , plant ) ;

}

. . .

}

. . .

}

Among with data coming from users, it is useful to log errors appearing inside

a honeypot for a better understanding of processes on a server. In addition, this

information can be used later in the analysis indicating what types of errors are

typical for attempts of users to exploit vulnerabilities.

SQL errors and the queries which generated them are logged inside the honey-

pots. Therefore, logging of this field is done only when the SQL query is successful
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to prevent redundancy. This case covers both situations when the user has suc-

ceeded with the search and when the SQL injection was constructed incorrectly,

so the SQL parser has recognised it as a string. In addition to SQL errors, errors

appearing on a server during attempts to perform server-side poisoning are logged.

Bypass of HTML code conditions is done on the client side, so the success of that

attack is checked by the honeypot system, however, the exact details cannot be

recorded by server-side logging.

To check a reflected XSS, users leave the malicious link that steals cookies in a

special field on the launcher (not a honeypot), which is also logged. This additional

logging is not needed for general honeypot systems where users interact only with

a honeypot. Meanwhile, the considered system provides the launcher web-site for

students, and the further analysis will benefit from adding some extra logging on

it.

5.1.2 IoT device

All commands sent to the IoT device honeypot are printed into the standard error

(stderr) stream. Also we can log responses from the emulated IoT device, which

contains information whether the command from a user was accepted and the

reason of failure if not, to use it later for the analysis.

Thus, we have a collection of logs from the launcher and from each instance of

two types of honeypots. These logs should be gathered together in one place on

the server that runs them.

5.2 Logging in Docker

To receive information from running honeypots, the docker logging mechanism,

called logging driver, is used. The default logging driver stores logs in the json-file,

which can be viewed by docker logs command. Instead of that, syslog logging driver

was chosen, sending logs to a rsyslog server, which provides more possibilities for

routing and filtering logs. Rsyslog implements the basic syslog protocol with rich

capabilities and is already preinstalled in a variety of Unix systems, including

Ubuntu.

The configuration file for running honeypots on the launcher was enlarged with

information about the selected type of the logging driver and the syslog tag. The

syslog tag was chosen to consist of the daemon name and a container name, which

includes a student number and a name of the exercise. The information from the

configuration file is used as arguments while starting a new container; it also
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included such information as, name of the image and the port. Therefore, all

exercise containers will run with the chosen logging driver and tag.

5.3 Gathering of logs

The configuration of rsyslog was changed to route all logs from running honeypots

(both web application and IoT device) to a docker.log file. That was done by using

the daemon name from the syslog tag as a filter.

The monitoring and analytics system does not require all logs generated by the

honeypots. As the system provides customised logging that contains only malicious

actions, we do not need to create or store the file with all default logs (docker.log). It

was left in the system for debugging purposes, but can be removed later. However,

the honeypots systems that are intended to explore previously unknown types of

vulnerabilities would need this file for the analyses of new attacks. Such versions

of systems are considered later in the Discussion Chapter 8.

All customised logs were done in a way to contain a unique string for filtering

purposes. This refers to logs inside web application including errors, logs of

commands to the IoT device and its replies, and logs from the launcher. The string

“searchPlantsInput:”, for instance, is used for one user’s input inside the web

application; it can be seen in shown earlier Listing 5.1.

A small number of logs already contained a string by which they could be

easily identified and filtered, for instance, “SQLITE_ERROR” in SQL errors logs.

Therefore, such logs did not require manual adding of extra information in them.

Thus, all logs with such unique string sequences are derived by rsyslog and put

in a separate main.log file. This file is supposed to consist only of malicious actions

of users, as all users of honeypots are considered to be intruders.

Moreover, rsyslog was configured to monitor logs of the launcher in an apache2/

error.log file to derive users input with the link for stealing cookies. These logs

are also transmitted to the main.log file.

In addition, logs from docker containers of web application contain all GET

requests of users. To cover reflected XSS with a higher efficiency, along with

logging the special input for checking the malicious link, GET requests containing

“script” sequence are also derived and routed to the main.log file.

Thus, all logs about malicious actions of users in honeypots are collecting in one

place, allowing an analyst to review them or use later in the automated analysis.
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5.4 Log rotation

As the proposed monitoring and analytics system supports scalability, it should be

able to operate on significant amounts of log traffic from many honeypot instances.

The monitoring system already has all logs from honeypots gathered in one place,

as described in the previous section, however it should also take into account the

maximum size of the log file.

The issue of large-sized log files is solving by log rotation, when current log

files are automatically archived and replaced by new ones. The periodicity of log

rotation should be chosen according to the amount of traffic produced by honeypots.

In the considered case study, the logrotate utility was configured to rotate logs

every week, as during the Information Security course there is a large number of

honeypot users, but not enough to make the rotation daily. The logrotate stores

files for 3 months to cover the duration of the course. After that period, log files

are not deleted, but archived in a separate directory, so that information from

them can be used later for analysis or statistics purposes. Rotated log files are

marked with the current date to facilitate the file navigation.
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The analytics system is purposed to support the work of an analyst. It obtains data

collected by the monitoring system and conducts an automatic analysis on it. This

analysis groups the logs into clusters in order to help an analyst identify patterns

of user behaviour. The clusters and logs statistics are visualised to demonstrate

the information in a convenient way to an analyst.

6.1 Analysis

The analytics system is described in this section, answering RQ3. The scheme of

the analytics system is presented in Fig. 6.1.

Figure 6.1. The analytics system.
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Currently, we consider the education honeypot system with a known set of vul-

nerabilities that users are intended to exploit. In addition, the types of attacks are

divided into different exercises. These features and the implemented customised

logging allow us to analyse log entries more precisely, skipping the step of initial

grouping of logs by the type of the attack. Other versions of the proposed system

are discussed in Section 8.1

6.1.1 Preparation of data

To prepare logs for the analysis, information from the main.log file should be parsed,

removing extra information and aggregating logs by types of the attack.

Parsing of logs is executed by using regular expressions in Python. The type of

the vulnerability that users have tried to exploit can be derived by parsing the

syslog tag, introduced in Section 5.2, as it contains the name of the exercise, and

the unique string consequence in a log. Number of the student is also taken from

the tag. The example of a raw log is presented in Fig. 6.2.

Figure 6.2. Single log from the main.log file.

The derived types of the attacks from the existing in the honeypot system

exercises are: “SQL injection”, “Buffer overrun”, “Stored XSS”, “Reflected XSS”

and “Server-side poisoning”.

Along with logs of malicious activity of users, the monitoring system collects logs

of three types of errors occurring inside honeypots: SQL errors and errors from

the server during server-side poisoning – from the web application, and errors

emulated by fake responses of the IoT device.

To separate logs that have caused errors from the general ones, two extra types

of logs were added: “SQLi with errors” and “Poisoning with errors”.

“SQLi with errors” means logs with SQL injections received with SQL error.

These SQL errors can serve as ready labels for groups of SQL injections, so they

should not be analysed with general logs of SQL injections without labels and are

distinguished as a separate type. However, they still can be combined together
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to demonstrate the statistics of this attack. The same applies to “Poisoning with

errors” and “Server-side poisoning” types of logs.

All commands from users to the IoT device receive informational responses,

therefore there is no need to separate them into two groups of logs.

To store parsed data, the JSON format was chosen, because of its ability to store

key-value and set of values information that suits received data. In addition, it

can conveniently be converted into a Python dictionary for further analysis and

data visualisation.

After the parsing, data is stored in logs.json file and is presented in the fol-

lowing format: {student number : {type of the attack: [log, ...], ...}, ...}. In

this format logs can be accessed by the key, and this file can be used to explore the

statistics of actions of the users.

6.1.2 Labelling

As was mentioned in the previous subsection, there are 3 types of logs that already

have labels by which they can be grouped: “SQLi with errors”, “Poisoning with

errors” and “Buffer overrun”.

To store errors and the corresponding user actions, three new dictionaries are

created during the parsing of the main.log file along with the common dictionary for

logs. These dictionaries have the following format: { type of error: [log, ...],

...}. Thus, all logs of the same type with the same label can be easily accessed by

the key.

These dictionaries present logs that do not require a further machine learning

analysis, as they are already grouped by the same type of error. This classification

of logs supports the work of an analyst showing common patterns of users be-

haviour, specifically when users attempt to exploit a certain type of vulnerability,

with an informational label, explaining why they were grouped together.

6.1.3 Machine learning analysis

Besides the logs described above, there are logs that do not have any context. They

are “SQL injection” and “Server-side poisoning” types of logs that have not caused

any error, and “Stored XSS” and “Reflected XSS” logs that always come without

any additional information.

Thus, if these logs stay in the initial state without an additional handling, they

will be represented as unstructured data, and will be difficult to analyse. To

support an analyst in processing this type of data, the proposed system uses

machine learning techniques for data analysis.
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In particular, cluster analysis suits this task as it allows grouping of data in

unsupervised manner without knowledge of cluster labels. Therefore, the applying

of clustering to unlabelled logs in the system will provide an automated analysis,

enabling an analyst to skip manual aggregation of logs. Viewing clusters of logs

of the same type will assist in identifying of patterns of users behaviour inside

honeypots.

The process of the analysis can be divided into tokenisation, usage of metric and

clusterisation.

After parsing logs from the system and their preparation in the previous steps,

the execution of the analysis can be started. For that, the code aggregates the

logs of different users together by the type of the attack, handling the Python

dictionary received from the logs.json file. As was mentioned previously, labelled

logs are not analysed by machine learning techniques.

Tokenisation

As string characters are analysed, a tokeniser can be applied to them. To make

tokens from a string, it can be split on words. In the case of the honeypot, in this

step we can get rid of uninformative tokens to make the analysis more efficient.

Here is the example how logs with SQL injections are tokenised; first, we split

a log on words and non alphabetic characters. Then, all words are checked

whether they are SQL command words, if not, they are removed from the tokens.

Thus, tokens consists only of non alphabetic characters and SQL command words.

This step removes all data that is not meaningful for the analysis and should not

influence the clustering. For instance, when the analytics system is used to analyse

the structure of SQL injection attacks, the names of columns can be ignored. On

the other hand, if the analyst is trying to explore which data is targeted by the

attackers, the SQL commands can be ignored instead.

The example of the log with SQL injection before and after tokenisation is

presented in Fig. 6.3.

Figure 6.3. Tokens for SQL injection.

For other types of the attacks other commands words can be chosen for filtering,
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JavaScript or HTML, for instance. However, tokenisation of a log string is not

required for the further processing, it can be treated as a single unit. To a greater

extent this applies to the cases when in a honeypot system there are honeypots

without a known set of vulnerabilities or honeypots that aim to detect a new types

of attacks. In addition, it applies to the cases when a logged field in a honeypot is

vulnerable for several types of attacks.

Metric

Before performing the clustering, a string metric is applied to the logs to measure

the distance between them. For that purpose, the Levenshtein distance [22] is used

that refers to the edit distance class of string metrics family.

It allows measuarement of the distance between two strings by counting how

many iterations is needed to transform one string to another by using such opera-

tions as the removal, insertion, or substitution of a character in the string [42].

In Python, the Levenshtein distance function can take both a whole string and

an array of tokens. In the first case, it measures how many characters in a string

should be edited, while in the second case, it measures how many tokens in an

array should be changed, but not characters inside a token.

The Levenshtein distance is applied to arrays of logs that have already been

tokenised or left as strings. The distance between every two logs is measured,

thus creating a n× n matrix, where n is the number of logs.

Clustering

Unsupervised machine learning allows representation of a hidden structure of the

data that does not have labels [23]. We use clustering algorithms to find groups of

similar logs, based on distances calculated in the previous step.

One of the good approaches to perform clustering on the text data is the usage of

the agglomerative hierarchical clustering [3], which can be found in SciPy library.

It builds a hierarchy of clusters with a predetermined ordering from bottom to top

(every log is a separate cluster that later is recursively merged with the closest

one).

The usage of the hierarchical clustering does not require a priori knowledge of

the number of clusters. It is a valuable characteristic as the number of clusters is

undefined in the considered honeypot system.

To decide when to stop merging, the determination of the maximum permitted

distance between logs in a cluster is required. That can be done by obtaining a

dendrogram of the hierarchical clustering. The dendrogram is a tree diagram,

built on a matrix of proximity measures, frequently used to show the arrangement

of the clusters. The example of a dendrogram is presented in Fig. 6.4 where
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distances are presented along the Y-axis.

Figure 6.4. The dendrogram of hierarchical clustering. The x-axis represents indices of samples,
and the y-axis representes distance between clusters.

By looking at a dendrogram, the maximum distance can be defined visually, as

cutting a dendrogram at a certain level provides a set of clusters. The example

cutting of a dendrogram can be seen in Fig. 6.4, where the maximum distance is

presented by the blue horizontal line.

However, this parameter can not be defined once, it depends on an analysed

data and should be corrected manually. The maximum distance may be adjusted

after receiving the clusters if required accuracy was not achieved. For instance,

the maximum distance can be enlarged if some logs that represent the similar

behaviour of users were divided into separate clusters.

Along with the visual method, special coefficients measuring the accuracy of

clustering can be used to define the maximum distance. The Silhouette Coeffi-

cient [6] for a sample is calculated by b−a
max(a,b) equation, where a is a mean distance

between a sample and other samples in a cluster, and b is a distance between a

sample and samples from the nearest cluster.

Clustering returns the result as a set of numerical labels. For the convenient

storing and handling of the results, a dictionary is created with a label as a key

and an array of logs of the same cluster as a value.

Thus, along with labelled clusters, an analyst has all logs that have not caused

any errors inside honeypots clustered as well. Instead of viewing a long list of raw

logs and trying to group them manually, an analyst can concentrate on working

with prepared clusters that represent similar attempts to execute an attack in a

honeypot system. This assists in identifying the patterns of users behaviour and,

when considering an Information Security course, common failed approaches of

students to exploit vulnerabilities.
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6.2 Visualisation

The monitoring and analytics system handles a significant amount of data pro-

duced by honeypot instances. To present this data in a form convenient for an

analyst, it should be visualised.

For that purpose, the dashboard-type web-site was chosen. It provides an

acceptable level of interaction and the ease of use at the same time. The data that

is presented on the web-site can be seen in Fig. 6.5.

Figure 6.5. The scheme of data visualisation.

Visualisation of data is depends on the honeypot system we consider. Currently,

in the case study system there are two web-pages for demonstrating:

• logs of a specific user, as it is important to show attempts of a student to the

stuff of the course;

• received clusters of logs by the type of attack, to be able to analyse the common

failed approaches of students to exploit vulnerabilities.

For other honeypot systems that do not differentiate users of honeypots, the first

page can be replaced by the statistics page of general number of attacks by their

type or some other information, which may be useful for that type of the system.

The mentioned web-pages are implemented on the same site that contain the

Launcher of the exercises.

The web page with logs of students contains a field for the choice of logs by a

student number. It demonstrates the chosen logs by the type of the attack. The

structure of the web page with logs of students is presented in Fig. 6.6.

The web page with clusters is designed similarly, it has the choice of the type

of the attack and demonstrates the received clusters whether labelled (keys from

the dictionaries of labelled clusters) or with a numerical labels (“Cluster 1”, for
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Figure 6.6. The structure of web page with logs of students.

instance) if they were distinguished during the machine learning analysis.
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7. Evaluation

This chapter evaluates the implemented monitoring and analytics system, covering

the requirements described in Chapter 3. In addition, it presents the results of

the conducted user study.

7.1 Pilot user study

The pilot user study was conducted for testing the implemented monitoring and

analytics system and checking that the system fulfils the defined requirements.

A full user study is planned to be executed in the autumn semester during the

Information Security course. Then, the system will have a large number of users

to monitor and therefore, more data to analyse, learning attacker behaviour.

7.1.1 Method

To find participants for the user study, we have emailed current computer science

students, sending them a form with conditions of participation, including the

deadline and the reward (two movie tickets). Seven students who have filled

the form have participated in the user study. One of them is currently on the

bachelor level of study and others are masters. Six participants have some security

background, and only one of them has not previously attended any security courses.

The selection criteria of the involvement was the requirement that a participant

has not had a previous experience of executing tasks on this platform, so they

behave as typical students of the Information Security course.

Each participant received instructions about interaction with the exercise Launcher

and running honeypots, and a set of exercises of the Information Security course

that they should attempt to execute.

During the user study, the Launcher was set to communicate with a separate

database for testing, so the results of participants were not put in the same

database with real students of the Information Security course. The previously
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received logs were removed from the main.log file.

7.1.2 Received data

During the user study, 17,622 log entries in total were received. Among them

there are 8,920 logs of errors and 6,444 repeated (by the same user) logs of users

actions. These numbers are explained by the fact, that during the execution of

the Buffer overflow attack some students were using scripts that were repeatedly

sending commands to the IoT device, and it was replying back. The repeated logs

do not go to the dictionary of logs to prevent redundancy. The number of logs

that contains all unique attempts of every user to execute the tasks is 1,870. The

number of these logs per student is presented in Table 7.1. 388 logs that contain

only alphabetical characters coming from forms fields were not counted, as they

do not represent attempts to execute an attack, and do not go to the dictionary of

logs and the further analysis.

Table 7.1. The number of unique log entries of attacks per student

Student Unique logs with attacks

1 128
2 367
3 28
4 1020
5 58
6 148
7 121

The results of the user study were used to evaluate the fulfillment of functional

requirements of the system.

7.2 Functional analysis

The main goal of the project is to provide monitoring and analysis of data pro-

duced in a honeypot system with supporting of scalability. The evaluation of the

functionality of the proposed system and the accomplishment of the goal are based

on requirements presented in Section 3.3.1.

7.2.1 Completeness (1.a.)

In total, during the user study 28 honeypots were run, four honeypots per student

(this number is explained in the Section 4.1). To check honeypots run by a user,

docker ps -a command can be used that shows docker containers in the system. The

example of honeypots of one user shown by this command is presented in Table 7.2;
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some columns were removed from the table (e. g. “PORTS” and “COMMAND”).

Table 7.2. Docker containers of a user

CONTAINER ID IMAGE NAMES
7dbebd0a02dc mesarpe/exercise_server:v4 exercise1-47**25-www
13154da095b2 mesarpe/exercise_server:v4 exercise3-47**25-www
c1772d79ac99 aura/buffer_server:v1 exercise2-47**25-tcp
f566fe3df0be mesarpe/exercise_server:v4 exercise2-47**25-www

As the name of a container is included in the syslog tag, it is possible to check

whether logs from all honeypots of a user were received. The user study has

shown that we have collected logs from all 28 honeypots, which means that the

monitoring system covers all created in the honeypot system honeypots.

To check that all of the logs created by a single honeypot are recorded by the

implemented monitoring system, the automated test was run. The simulated

user was filling the form that has logging inside a web-application honeypot. The

amount of logs came from this test was checked in the log file of the system. The

results revealed that all 315 logs produced during the test were recorded.

Therefore, the monitoring system fulfills the requirement of the completeness,

as it records all logs from all running honeypots.

7.2.2 Structured representation (1.b.)

The system was implemented to store all data structurally, by using three types

of dictionaries with different types of keys. During the user study, the first

dictionary was filled with all received unique logs (1870). This dictionary allows

representation of logs by a user, including structure for a type of the attack.

The web-page on the dashboard web-site displays this data conveniently. It was

tested with data from the user study, and its visualisation is provided in Fig. 7.1,

showing logs of students (a reduced amount) from the dictionary.

Two other dictionaries demonstrate common users behaviour supporting the

structure of clusters, both labelled and numerical, and are visualised on the second

web page.

The labelled dictionaries were filled with errors and logs that caused them by

the type of the attack. The keys from a labelled dictionary of Buffer overrun logs

are presented in Listing 7.1.
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Figure 7.1. The web page with logs of students.

Listing 7.1. Example keys from a labelled dictionary.

[ ’ Authentication f a i l e d . Command not accepted . ’ , ’ Invalid

message . Username must be at least 3 characters . ’ , ’

Invalid message . Hexadecimal HMAC−SHA256 must be 64 hex

characters . ’ , ’Unknown user . ’ , ’ Invalid message . Should be

user ; command; hmac terminated with newline . ’ ]

The unlabelled dictionaries were filled with the results of clustering. Some

sample logs from the first three clusters of the SQL injection type of attack are

presented in Listing 7.2.

Thus, all data in the monitoring and analytics system has a structured represen-

tation.
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Listing 7.2. Clusters of SQL injections.

Cluster 1

; ’OR 1=1

OR 1=1

OR 1=1; ’

. . .

Cluster 2

" ; SELECT name, color , planttype , potsize , shared FROM plants ;

−−

" ; SELECT name, color , color , potsize , shared FROM plants ; −−

’ ; SELECT name, planttype AS color , planttype , potsize , shared

FROM plants ; −−

. . .

Cluster 3

" UNION SELECT 1 ,2 ,3 ,4 ,5 FROM users ; ’ #

" UNION SELECT username , salt ,3 ,4 ,5 FROM users ; ’ #

" UNION SELECT username , salt , password ,4 ,5 FROM users ; ’ #

. . .

The derived clusters allow exploration of learning steps of attackers. For in-

stance, Cluster 2 from Listing 7.1 shows a common failed approach of SQL injec-

tion execution when an extra semicolon is inserted in the query. That provides

an opportunity to give helpful feedback to students, assisting them in learning

vulnerabilities. Moreover, it provides an opportunity to detect attacks before

they succeed, as in non-education honeypot systems attackers frequently operate

blindly, attempting different approaches.

7.2.3 Analytics (1.c.)

The implemented monitoring and analytics system supports identification of

patterns of user behaviour by collecting logs of errors and users actions that

caused them, and by processing through machine learning analysis.

The patterns of users behaviour can easily be distinguished from the labelled

dictionaries as they contain reasons of grouping expressed in labels with errors.

To identify the patterns from other logs, a process of clustering was used.

To demonstrate the results of hierarchical clustering, the array with logs of SQL

injections is used. For that type of logs, it can be said that we should have at least
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two clusters, as it is known that users will try to perform SQL injections from two

different tables following the provided task. However, the resulting number of

clusters is unknown, as the system is purposed to find the common patterns of

attacks automatically.

The dendrogram for SQL injections logs is presented in Fig. 7.2, showing the

hierarchy of clusters.

Figure 7.2. The dendrogram of SQL injection logs.

To evaluate the results of the clustering, the silhouette coefficient was used. It

measures the quality of clustering in quantitative terms. Therefore, the number

of clusters that maximises the silhouette coefficient should be selected.

The silhouette coefficient was calculated for the wide range of distances, the

maximum distances and corresponding values of the coefficient are presented in

Fig. 7.3.

Figure 7.3. The silhouette coefficient for choosing the maximum distance.

The maximum value of the silhouette coefficient was gained at maximum dis-
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tance = 30 and is equal to 0.426. As the result of the agglomerative hierarchical

clustering with the selected maximum distance, 36 clusters were obtained.

The values of the silhouette coefficient and corresponding numbers of clusters are

shown in Fig. 7.4. The level of cutting the dendrogram of hierarchical clustering

on the selected distance is presented as a horizontal line in Fig. 7.2.

Figure 7.4. The silhouette coefficient and number of clusters.

A human inspection of 36 formed clusters revealed that they allow identification

of the patterns of users behaviour by putting similar attempts to produce an attack

in the same cluster. The logs from Listing 7.3. represent two similar attempts to

get columns from the DB table, after producing a clustering, both of them were

put in Cluster 7.

Listing 7.3. Clusters of SQL injections.

’ " AND 1 = 0 UNION SELECT username , salt ,3 ,4 ,5 FROM

users ;

’ " AND 1 = 0 UNION SELECT username , salt , password ,4 ,5 FROM

users ;

Meanwhile logs presented in Listing 7.4 demonstrate different patterns of be-

haviour, and they were put in two different clusters (Cluster 27 and Cluster

29).

Listing 7.4. Clusters of SQL injections.

’ %"; or 1=1’;−−

’%" ; UNION SELECT ∗ FROM users ; −−

By identifying user behaviour patterns, cluster analysis helps to understand

how the attackers think, how their attacks evolve and which data they target. The
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clustering produced by the system is useful for reducing the workload of a security

analyst (production and research honeypots) or a teacher (education honeypots).

7.3 Performance analysis

Along with functional analysis, the evaluation of the performance of the monitoring

and analytics system was produced. It was based on requirements presented in

Section 3.3.2.

7.3.1 Scalability (2.a.)

The implemented system does not limit the number of honeypots that can be run

in the system. Logging of the honeypot system was designed to be automatic, so

that after initialisation it does not require an additional configuration to support

running of a new honeypot instances.

Each of 28 honeypots that were run during the user study had a preset logging

driver that interacted with the monitoring system.

To check that the number of honeypots is not limited by the monitoring system,

a testing creation of a large number of honeypots with and without logging was

conducted. For that, a bash script was written that runs docker run command in a

cycle. For both cases, 400 honeypots were started and run simultaneously in the

system, as presented in Listing 7.5. The results shows that the monitoring does

not influence the amount of running honeypots.

Listing 7.5. Number of honeypots in the system, search is executed by a Docker image

$ docker ps | grep mesarpe / exerc ise_server : v4 | wc −l

400

Thus, only the amount of users in the system (for the considered case study) and

resources of the server defines how many honeypots can be run. The consumption

of resources by the system is discussed in Section 7.4.1.

Therefore, the proposed system supports scalability and can be embedded in

honeypot systems that operate with a changing number of honeypot instances.

7.3.2 Reasonable performance (2.b.)

The automated tests were performed to measure whether the implemented moni-

toring slows down running honeypots.

For that, a simulated user was programmed to perform 15 actions inside a

honeypot that required logging. Time that was consumed for performance of these

actions was automatically recorded. The simulated user interacted with its own
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honeypot, and no other users were interacting with any honeypots during the test.

The tests were divided into two groups, the first one was conducted over a

honeypot that contained logging as in the real system. The second one uses a

honeypot without logging.

The results are the following: the average time of tests without logging is 0.58

seconds with a standard deviation of 0.02. The average time of tests with logging

is 0.56 seconds. The deduction of two average values of performed tests is equals

to 0.02 seconds and is within the standard deviation.

Thus, it can be concluded that the implemented monitoring does not slow down

the honeypot system.

7.4 Deployability analysis

This section evaluates deployability of the presented solution based on require-

ments presented in Section 3.3.3.

7.4.1 Low resource cost (3.a.)

The implementation of the monitoring and analytics over the considered honeypot

system has not required an addition of supplemental resources.

Disk consumption

Disk consumption of the monitoring system depends on users’ activity inside

honeypots. However, the usage of customised honeypot logging allows significant

reduction of the size of log files. The tested recording of two honeypots during

three days showed that the main.log file with the malicious activity was 8,3 times

smaller in size than the docker.log file with all logs (these files were introduced in

Section 5.3).

During the user study, the system has created 2.62MB file with malicious logs

and 216 KB file with parsed logs. Files with clusters did not exceed 6 KB. Thus,

the system does not produce large files during parsing and analysis, and the size

of the log file is smaller than in the systems without a customised logging.

Memory consumption

Along with the disk consumption, a memory consumption by the id of the process

was measured. The execution of the parsing program on the data produced during

the user study has consumed 110.77MB of RAM. The execution of the clustering

program depends on the amount of logs of a certain type of attack in the system.

The memory consumption of SQL injection clustering (with a predefined maximum
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distance) described earlier required to 111.74MB of RAM.

Although the consumption during analysis can notably increase on large amounts

of data, the analysis does not need to be continuously executed. It exists to support

the work of an analyst, and can be run periodically during the identification of

patterns.

7.4.2 Usage of open-source software (3.b.)

During the implementation of the monitoring and analytics system, proprietary

software was not utilised. The monitoring system uses Rsyslog and Logrotate

system utilities and a logging driver provided by Docker. The analytics system

uses only open-source Python libraries, including SciPy and Scikit-learn. Thus, the

implementation of the system does not require additional costs for using non-free

software.

7.5 Meeting the research goals

This thesis defined and answered the following research questions:

RQ1: What requirements should a scalable honeypot monitoring and analytics

system meet, and how should it be evaluated?

This research question was answered in Section 3.3, by setting functional,

performance and deployability requirements that should be met by a monitoring

and analytics system supporting scalability. These requirements were used in

Chapter 7 to evaluate the implemented system.

RQ2: What type of system architecture should the monitoring system use, and how

would this be implemented?

Chapter 5 answered the question, describing a centralised monitoring system

that supports scalability and is able to collect data from a large number of

honeypot instances.

RQ3: How the analytics engine can effectively analyse large amounts of data?

The question was answered by Section 6.1 that describes the analytics system,

which supports the work of analyst by automatic deriving of patterns from

gathered logs.

RQ4: What are the possible real-world applications of the monitoring and analytics
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system?

As demonstrated by the case study, one clear use case for a scalable honeypot

monitoring and analytics system is to support a large number of educational hon-

eypots in a university course on Information Security. Other uses could include

the implementation of the monitoring and analytics in production and research

types of honeypot systems, considering variations and extensions discussed in

Chapter 8.
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8. Discussion

This chapter answers RQ4, discussing possible applications of the system.

8.1 Variations

The proposed solution was implemented over the educational honeypot system. It

considers a case with known vulnerabilities, defined types of attacks and with a

requirement for scalability. The implementation of the solution on other types of

honeypot systems may require additional changes.

If a honeypot system is purposed to find new types of vulnerabilities, it should

consider collection of all logs instead of customised logging as was mentioned in

Section 5.3. In addition, during the clustering, the filtration of noisy clusters

consisting of logs without attacks should be considered.

In cases when it is not possible for a system to differentiate logs by the type of

attack, the division of clustering on two steps can be considered: first step, when

clusters of attacks are received, and second step, when clusters of patterns are

derived from each attack cluster.

8.2 Extensions

8.2.1 Providing feedback

The provided system has a potential for providing a feedback for users in edu-

cational honeypot systems. It aims to allow students to receive additional infor-

mation after an attempt to exploit a vulnerability, and thus assists in studying

Information Security.

When an attempt causes an error on a server, the feedback easily can be provided

by forwarding this error to a student; in the considered case, to display it on an
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attacked web page or reply from an IoT device.

However, in the other case, the task of providing feedback becomes more com-

plicated. One possible direction to consider, taking into account the current

functionality of the monitoring and analytics system, is the following. An analyst

manually labels clusters, received after the analysis, with potential feedback.

Then for each log that has not caused an error, classification is applied.

For that, the distances between the received log and other logs of the same

type of attack are measured to get the sample attributes. Then the classification

algorithm (for instance, k-nearest neighbours) is trained with clusters received

after the initial clustering.

Finally, the appropriate cluster of the received log is predicted by the classi-

fication. If the probability of being related to the cluster is high enough, the

corresponding label with the feedback can be transmitted to the student.

In this approach, the clustering should be performed periodically when a suf-

ficient amount of new logs has been collected and reviewed by an analyst. The

classification runs automatically for every new log of the corresponding type in

the system.

8.2.2 Detection of new patterns

Another possible extension is the deriving of new patterns of attacks in the system.

If the system does not require a real-time response (probably, research honeypot

systems), that can be done during the clusterisation of data. If a sample log has a

significant distance from other logs of the same type of the attack or was clustered

as a separate cluster without other representatives, it may be concluded that a

new pattern was discovered. New patterns can be visualised on a separate page of

the dashboard.

For systems that require alerts when new patterns are discovered (probably,

the production honeypots), the possible solution is close to one described in the

feedback section, which combines clusterisation and classification. If during the

real-time classification the log can not be assigned to any cluster with a high

enough probability, the alert about discovery of the new pattern can be sent to an

analyst.

8.3 User study with analysts

Although the system was evaluated on users, the study with analysts was not

conducted. In the proposed solution, an analyst interacts with the dashboard,
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reviewing gained statistics and patterns of users behaviour. In addition, an analyst

is able to revise clustering by setting the value of the clustering parameter.

Performing the user study with analysts can evaluate the usability of the dash-

board and enable collection of data about what information should be shown. In

addition, the evaluation of the received patterns of users behaviour by an analyst

can assist in making decisions about implementation of the clustering process and

the most convenient way to provide the ability to change the clustering parameter

value.
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9. Related work

Honeypots are widely used [4,5,21,27,29,41,43] for studying adversary behaviour.

Thakar et al. [38] presented a monitoring and analytics solution for honeypots. It

consists of Data Capture, Data Analysis and Signature Extraction components.

The solution covers only monitoring of network traffic of a honeypot and does not

consider scalability.

The Data Analysis component provides a graphical interface for an analyst

that presents gathered information with statistics by port and IP. As customised

logging is not implemented in the system, the interface demonstrates all collected

logs that should be filtered manually on this step by the analyst.

The Signature Extraction component analyses filtered data to extract attack

signatures. This is done by applying the Longest Common Substring (LCS) al-

gorithm. Although it can result in high-quality signatures, LCS also identifies

a large number of impractical signatures of small strings or strings presenting

normal operations.

Cabaj et al. [10] proposed two solutions for monitoring and analytics, imple-

mented on different honeypot systems. The first solution applies data mining

techniques on gathered from a honeypot data for the automatic discovery of pat-

terns. It does not consider monitoring of honeypots and is focused on an analysis.

It only handles connections that reached a honeypot; they consist of such items

as source and destination IP address and port, and used protocol. The analy-

sis uses two types of patterns: frequent sets and jumping emerging patterns,

their application allows reduction of amount of data that should be revised by an

analyst.

A similar solution is presented by Pouget et al. [32] that identifies root causes

that can be associated to one attack tool by analysing ports sequence collected

from a honeypot. It applies association rule (AR) mining, specifically, the Apriori

algorithm.

In contrast, the second solution of Cabaj et al. implements monitoring of web-
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application honeypots. It proposed to collect details about data exchange in

application layer. It assumes that a PHP script for data capture is put into each

web page of a honeypot, and does not consider scalability and implementation of

the analysis.

Pawar et al. [30] presented a low-interaction honeypot that captures attacks on

the web applications layer, emulating the HTTP and Telnet service.

Although the solution does not provide an analysis, and the log traffic directly

goes to the production network, it implements the Graphical User Interface (GUI)

for an analyst. It displays gathered logs and related statistics, and is able to

provide additional information for the selected IP.

Roesch [33] has suggested the usage of Snort for a honeypot monitoring. It was

implemented in a range of honeypot systems, including a low-interaction Java

based honeypot presented by Maheswari et al. [24]. Snort is a packet sniffer

and logger that performs content pattern matching and can detect a wide range

of attacks. It consists of a logging and alerting component, packet decoder and

detection engine. However, this approach considers a honeypot only as an intrusion

detection mechanism.

Veerasamy et al. [39] presented an analytics system for honeypots. This solution

performs a data mining process on traffic, captured from honeypots. First, the

data is clustered by some attribute, for instance destination address, and then

labelled with meta-data. These clusters are divided into the training and the

validation sets. Further, the training set is used to generate the rules by applying

the rule induction algorithm. Thus, using a decision tree on the validation set, the

system is able to identify the attacks.

The need of data for training is the main limitation of this solution. In addition,

the system is aimed at detecting attacks, so it focuses on one type of malicious

activity and provides only binary decisions about data for an analyst. In contrast,

this thesis solution provides clusters of patterns for all gathered malicious activity.

In summary, previous work does not provide a full solution for the monitoring

and analysis of a honeypot system that would meet issues presented in the problem

overview section.
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10. Conclusion

The proposed system was designed to address the challenge of monitoring honeypot

systems with a large number of honeypot instances, meanwhile supporting the

work of an analyst with a significant amount of data. The solution consists of

three components: monitoring, which is responsible for the collection of logs

from all honeypot instances; analysis, which identifies patterns of attacks; and

visualisation, which displays the obtained data in a convenient way. Other existing

solutions propose systems for monitoring one or a small number of honeypots

without considering scalability, and generally analyse one type of attack.

After conducting a user study, it was observed that the monitoring system

automatically covers all honeypots in the system, collecting all required logs from

them, without reducing the number of honeypots that can be run in the system

and without a slowdown. Thus, it provides completeness and scalability of the

system. The analytics component clusters gathered data in both labelled and

unlabelled ways, identifying patterns of users behaviour with a minimal or no

participation of an analyst. Therefore, it allows reducing of the analyst load

and provides the ability to explore the actions of attackers, the evolution of their

attacks, the common techniques to exploit different types of vulnerabilities and the

data targeted by attackers. All data in the system has a structural representation

and can be visualised on the dashboard. The system does not have a high resource

cost and is implemented using open-source software.

While the solution was implemented on the existing honeypot system and con-

siders such system features as a known range of vulnerabilities and an ability

to automatically differentiate types of attacks and users in the system, it can be

reconfigured to be applied over systems without these features as discussed in

Section 8.1.

Possible extensions of the system were presented in Section 8.2. One of them

is adding of the functionality for detection of new patterns of attacks, both in the

general case and when real-time alerts are required. Considering the case study
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honeypot system, the future work can be focused on the feedback extension. It

should assist students of the Information Security course in gaining knowledge

about exploiting vulnerabilities provided by honeypots. This extended solution

can be applied to other educational systems, including ones presented by Irvine et

al. [18] and Cliffe Schreuders et al. [34].
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