
Master’s Programme in Security and Cloud Computing

Automatic Ownership Change
Detection for IoT devices

Artur Valiev

MASTER’S
THESIS

Aalto University
MASTER’S THESIS 2018

Automatic Ownership Change Detec-
tion for IoT devices

Artur Valiev

Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Technology.
Otaniemi, July 2, 2018

Supervisor: Professor N. Asokan, Aalto University
Associate Professor Livshitz I.I., ITMO University

Advisor: Dr. Samuel Marchal (Postdoc), Aalto University

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Artur Valiev

Title
Automatic Ownership Change Detection for IoT devices

School School of Science

Master’s programme Computer, Communication and Information Sciences

Major Security and Cloud Computing Code SCI3084

Supervisor Professor N. Asokan, Aalto University, Professor Livshitz I.I., ITMO Univer-
sity

Advisor Dr. Samuel Marchal (Postdoc), Aalto University

Level Master’s thesis Date July 2, 2018 Pages 64 Language English

Abstract

Considering the constant increases in Internet Of Things (IoT) smart home devices
prevalence, their ownership is likely to change. This introduces novel privacy issues.
Smart home devices store owner’s sensitive information, which needs to be handled
securely in case of change in device ownership. Currently employed smart home devices
cannot detect changes in their ownership, which raises a great number of privacy and
security issues. To address this problem, we propose a system called FoundIoT for
automatic detection of IoT device ownership change. FoundIoT provides a technique
to detect change of ownership based on device context, which is inferred by monitoring
wireless communication channels. Finally, we present a prototype implementation of
FoundIoT for the proposed automatic ownership change detection technique. We show
that FoundIoT achieves a satisfactory performance. The implementation is supported by
a wide range of IoT devices and demonstrates a high speed (up to 1 minute 39 seconds)
and 100% accuracy of ownership change detection.

Keywords Internet Of Things, Ownership Change, Smart Home

ii

Acronyms

AP Access Point

DHCP Dynamic Host Configuration Protocol

HIDs Human Interface Devices

IoT Internet Of Things

JSON JavaScript Object Notation

LAN Local Area Network

NFC Near field communication

NIC Network Interface Card

RFID Radio Frequency Identification

STA Wireless Station

WLAN Wireless Local Area Network

iii

Contents

Abstract ii

List of Acronyms iii

Contents iv

1. Introduction 1

1.1 Motivation . 1

1.2 Contributions . 1

1.3 Organization . 2

2. Background 3

2.1 Internet Of Things (IoT) . 3

2.2 Communication technologies . 4

2.2.1 WiFi . 4

2.2.2 Bluetooth . 4

2.3 Network Traffic Monitoring . 5

2.3.1 Network Card Operation Modes 5

2.3.2 Monitoring Tools . 6

2.4 Context Awareness . 7

2.5 chownIoT system . 8

2.6 Technical Background . 9

2.6.1 Raspberry Pi . 9

2.6.2 Bash scripting . 9

2.6.3 Python . 10

3. Problem Statement 11

3.1 Description . 11

3.2 Adversary Model . 12

3.3 Requirements . 13

iv

Contents

4. System Design 15

4.1 Solution Overview . 15

4.2 Design Choices . 17

4.2.1 Context Identification . 17

4.2.2 Data recording . 18

4.2.3 Multistage Ownership Change Detection 18

4.2.4 Statistical analysis . 18

4.3 Components . 19

4.3.1 WiFi context monitor . 19

4.3.2 Bluetooth context monitor 20

4.3.3 Time Series Generator 20

5. Ownership Change Detection 22

5.1 Time Series Analysis . 22

5.1.1 Jaccard Index . 23

5.1.2 Kullback-Leibler divergence 24

5.2 Captured Data Filtering . 26

5.3 Analysis Conclusions . 26

6. Implementation 29

6.1 Smart Home Device . 29

6.2 WiFi Context Monitoring . 30

6.3 Bluetooth Context Monitoring . 30

6.4 Time Series Generation . 30

6.5 Time Series Analysis . 31

7. Evaluation 32

7.1 Deployability . 32

7.2 Resource Constraints . 32

7.3 Performance . 35

7.3.1 Ownership Change Scenarios Description 35

7.3.2 Accuracy Evaluation . 41

7.3.3 Speed Evaluation . 44

7.4 Re-evaluation using AP Detection technique 45

7.4.1 Experiment setup . 45

7.4.2 Accuracy Evaluation . 46

7.4.3 Speed evaluation . 48

7.5 Security . 48

7.5.1 MAC Address Spoofing 48

v

Contents

7.5.2 Ownership Change Detection Delay 49

7.5.3 Susceptibility to Power Cuts 49

8. Related work 51

8.1 Smart Home Device Privacy . 51

8.2 Context Aware Security . 52

9. Conclusions 55

9.1 Summary of Contributions . 55

9.2 Future work . 56

Bibliography 57

List of Figures 62

List of Tables 64

vi

1. Introduction

1.1 Motivation

The IoT is considered as the next step in the evolution of connected devices after

personal computers and portable devices. These systems include Smart Home

devices, wearables, connected cars, industrial IoT and others.

With different IoT ecosystems widespread, critical security and privacy concerns

arise and need to be addressed. Certain IoT devices have an ability to collect

private and confidential information about their owners, which raises a variety

of privacy and security issues. Such information include sensitive data, such

as user profile data, authentication details, network configuration settings and

credentials.

The current extensive prevalence of Smart Home devices has raised an issue of

ownership change. Such situations might happen in case of selling, borrowing or

even theft of IoT devices.

Ownership change can lead to leakage of the previous owner’s sensitive informa-

tion stored on the IoT device, as a new owner gains full access to it. Additionally,

the previous owner of the IoT device could have remote access to it, which can lead

to leakage of the new owner’s data stored on the device or its cloud storage.

Therefore, a technique for an IoT device to detect on its own if its owner has

changed is required to handle such situations in a secure manner.

1.2 Contributions

The major contributions of this work are:

• An automatic ownership change detection system called FoundIoT :

- Developing an automatic technique that allows the IoT device to scan its

vicinity for surrounding connected devices and detect changes in context

1

Introduction

using wireless communication channels (presented in Chapter 4).

• Data mining techniques:

- Developing data mining techniques applied to the collected wireless com-

munication data (presented in Chapter 5).

• A prototype implementation of the system:

- Developing a prototype implementation of the proposed system on the

Raspberry Pi 3 (presented in Chapter 6). We use Python programming

language for data formatting and analysis, and Bash scripting for scheduling

and data collection.

• Evaluation:

- Providing the system evaluation in terms of its performance and security

(presented in Chapter 7). The implemented prototype is able to detect

ownership change with 100% accuracy and speed up to 1 minute 39 seconds.

The prototype can be realized on a wide variety of off-the-shelf IoT devices

and provides partial resilience to adversaries. The complete resilience can

be achieved with existing techniques described in Section 7.5.

1.3 Organization

The remainder of this manuscript is organized as follows: Chapter 2 provides an

overview of IoT and smart home devices, and technical background to introduce the

software and technologies used in our solution. Chapter 3 presents the adversary

model for IoT device ownership change. We also discuss the requirements for the

proposed system to protect against the specified adversary. Chapter 4 provides

an overview of the proposed solution and also discusses its design and components.

Chapter 5 describes the details of ownership change detection. Chapter 6

provides the implementation details of the proposed solution. Chapter 7 presents

the evaluation of the system, by measuring its accuracy and speed of detection.

Chapter 8 discusses the related work. Finally, in Chapter 9, we conclude the

work and share thoughts on future development of the system.

2

2. Background

2.1 Internet Of Things (IoT)

IoT represents a general concept for the ability of network devices to sense and

collect data from the world around them, and interact with the physical world.

IoT devices share data across the Internet where it can be processed and utilized

for various purposes. IoT provides connectivity across devices used in everyday

routine, such as smartphones, washing machine, television set, microwave and

coffee maker. Generally, they are connected to the Internet, however some IoT

devices can also act as a gateway for other devices and connect directly to them.

IoT is a giant network connecting almost everything.

The term "Internet of Things" was firstly mentioned by Kevin Ashton, co-founder

and executive director of the Auto-ID Center at MIT, in 1999. He anticipated a

major potential for IoT technology, including the ability of computer systems to

automatically collect and analyze data with much higher accuracy compared to

manual human operations. This leads to cost and human error reduction and

provides up-to-date information on the state of analyzed environment. Currently,

IoT is involved in a vast variety of industries, such as transportation, agriculture,

health-care, security solutions and entertainment. One of the IoT industries with

rapidly increasing prevalence is "smart home".

Smart home is a convenient home setup where appliances and devices, such as

door locks, thermostats, home monitors, cameras and lights, can be automatically

controlled remotely from anywhere in the world through the Internet. All these

devices generally operate in home environments. Therefore, they deal with sensi-

tive personal data about their owners on a daily basis. This raises a vast variety

of security and privacy concerns and makes smart home devices the target for

attacks from an adversary [1].

3

Background

2.2 Communication technologies

IoT devices can be enabled with a vast array of technologies available to vendors.

Devices can use Near field communication (NFC) and Radio Frequency Identi-

fication (RFID) for low range communication (up to 50 cm); and WiFi, ZigBee,

Bluetooth, Bluetooth LE [2], Z-Wave [3], IoTivity [4] and Homekit [5] for medium

range (up 100 m). Each mentioned communication standard provides sufficient

connectivity for a device independently, which means that an IoT device can use

one of them or several of them.

The following sections 2.2.1 and 2.2.2 describe two prevalent communication

technologies used in IoT devices currently.

2.2.1 WiFi

WiFi is a Wireless Local Area Network (WLAN) technology that uses radio waves

to transmit data. It is based on IEEE 802.11 standards [6]. The IEEE 802.11

standard describes two wireless network modes: infrastructure and ad hoc. In

case of ad hoc operation mode, devices establish peer-to-peer communication

and exchange data directly, without any intermediate node. On the contrary,

infrastructure mode requires a special node in the network called Access Point

(AP) that all devices in the network connect to. It also serves as a communication

bridge between devices in local network and other nodes in the Internet.

In general, IoT devices enable infrastructure mode during initial configuration

and await connection request from a control device, which could be a smartphone,

tablet or laptop. The IoT device creates a personal wireless AP, and the control

device gets connected to it for establishing the communication and credentials

exchange. The control device provides information on itself and the base wireless

AP. Once the connection is configured, the IoT device disables its own AP and

switches to managed mode to connect to the base AP.

2.2.2 Bluetooth

Bluetooth is a short-range wireless communication technology that uses radio

signals to send and receive data. It was originally designed as a replacement for

cable connection for various Human Interface Devices (HIDs) and soon became

a widely adopted wireless connectivity solution. Bluetooth operates in the 2.4

GHz industrial, scientific, and medical band. The technology is maintained by the

Bluetooth Special Interest Group (SIG).

IoT devices use Bluetooth in different scenarios. First, it can be used as the

4

Background

primary communication channel. Second, Bluetooth is used for initial configura-

tion routines. In this case, it serves as a secondary communication channel and

is used for initial connection establishment. The control device acts as a master,

and the IoT device joins the network as a slave. Once the initial Bluetooth pairing

process is successfully completed, devices can exchange the necessary information

for future communication, such as WiFi network and cloud service credentials. If

the IoT device plays the role of a gateway, the control device can instruct it to form

another network for additional devices. In this network, the IoT device acts as a

master and other modules are connected to the network as slaves.

A major benefit of Bluetooth pairing procedures is that they are performed only

once, during the initial connection. After that, devices from one network trust

each other and can connect automatically for later communications.

2.3 Network Traffic Monitoring

Network traffic monitoring is the process of analyzing traffic patterns used for as-

sessing network performance, resource availability and security. Network monitor-

ing incorporates packet sniffing and capturing techniques and generally requires

inspecting each incoming and outgoing packet.

In order to analyze traffic, the Network Interface Card (NIC) should support

specific operation modes. A NIC is an electronic component that connects a

computer to a network. The NIC provides communication using specific physical

and data link layer standards, such as Ethernet and WiFi. This provides a base

for full network protocol stack, allowing communication among small groups

of computers on the same Local Area Network (LAN) and large-scale network

communication through routable protocols, such as Internet Protocol (IP). The

NIC allows computers to communicate over a computer network, either by using a

wired or wireless connection.

2.3.1 Network Card Operation Modes

In general, manufacturers provide the support for several operation modes to the

NIC. The card mode depends on the current tasks assigned to it.

Most network cards support the following operation modes:

Managed

Managed mode is sometimes referred to as client mode. It is the most

commonly used and supported operation mode among network cards. The

interface in managed mode requires a master to operate. It joins the network,

5

Background

and the device gets associated with it. Nodes in managed mode do not

communicate with each other directly, but only via the associated master.

Master

Master mode enables a wireless station to operate as an AP. It allows other

nodes to connect to the station and join its network.

Ad-hoc

Another commonly supported mode is ad-hoc. In this mode, wireless stations

create a direct peer-to-peer communication. Ad-hoc mode is used for tempo-

rary connection establishing and data exchange in cases of AP unavailability

or inoperability.

Monitor & Promiscuous

Finally, wireless cards support promiscuous and monitor mode functionality.

In these modes, the network card stops transmitting the data and starts

listening on a specific channel or devices connected to a local network. The

major difference is that promiscuous mode operates only when connected

to a wired or wireless LAN. It allows the card to sniff frames sent by other

members of a local network. On the other hand, the monitor mode does not

require a connection to an AP. The network card sniffs frames sent in any

nearby network on a specified frequency. In networks, such as Ethernet and

IEEE 802.11, each frame includes source and destination MAC addresses. In

managed mode, the NIC only accepts incoming frames that are addressed to

its MAC address and broadcast/multicast frames. Other frames are dropped.

In promiscuous/monitor mode, however, the NIC accepts all frames, thus

allowing the node to read frames intended for other machines and network

devices. Thus, promiscuous and monitor modes are very useful in network

monitoring and troubleshooting tasks. They are used to locate malfunctions

and abnormal activity in the network.

2.3.2 Monitoring Tools

As it was mentioned earlier, traffic monitoring is performed for network analysis

and security assessment. In order to analyze network traffic, specialized tools are

required.

One of the most popular Internet frames capturing tools is Tcpdump [7]. Tcp-

dump is an open source command-line tool for monitoring (sniffing) network traffic.

It is one of the most powerful tools for analyzing network traffic. Tcpdump works

by capturing and displaying packet headers and matching them against a set

6

Background

of filters. It understands boolean search operators and can use host names, IP

addresses, network names, and protocols as arguments.

Tcpdump operates in two modes. First, it can analyze traffic flow in real time,

displaying all packets that match a specified filter. This mode is useful for live

traffic analysis when it is required to constantly monitor traffic and register

expected behavior as soon as it happens.

Another mode is used for offline traffic analysis. Tcpdump can capture packets

and save them to a .pcap file. This mode allows to analyze a captured stream of

frames in detail, apply different filters and extract the required data. This data can

be used for many purposes such as security & forensic analyses, troubleshooting

& network administration or to understand and learn the network.

As an alternative, it may be more suitable to look at graphical tools, such as

Wireshark [8]. Such tools often provide a more workable tool-set for looking at

larger volumes of traffic. Wireshark also provides human readable filter building

tools that can be a time saver. However, it is computationally less efficient than

Tcpdump and is not usually used for automated tasks.

2.4 Context Awareness

Context awareness can be defined as the ability for a system or its components to

gather information about its environment at any given time and adapt its behavior

accordingly. Context includes any information that is relevant to a given entity,

such as a person, a device or an application. As such, a wide range of categories

including time, location, device, identity, activity and nearby devices/users fall

into the term of contextual information.

With the rapid development of IoT, the amount of devices that provide sensing

capabilities has increased. Most smart home devices are equipped with various

sensors that allow them to measure temperature, humidity and pressure; identify

location and identity of the user who requests access. A smart home device with

temperature sensor can detect variations of room temperature. Whenever a change

is detected, the device sends a request for adjusting temperature to the home

automation system.

Another example is related to data security. The ConXsense framework [9]

provides a context-aware control system for mobile devices. It classifies contexts

automatically with the use of context sensing and machine learning techniques

and adjusts the security and privacy-related properties.

7

Background

Figure 2.1. chownIoT Flow Diagram [10]

2.5 chownIoT system

Contextual information can be used to improve the system security. IoT devices

used in households contain owner’s sensitive information, which can be leaked or

stolen during ownership change.

The chownIoT system developed by Khan [10] presents a technique for secure

handling of smart home device ownership change. The author proposes a pri-

vacy protocol to tackle the issues of authentication and provides data protection

techniques, such as data encryption, to ensure the owner’s privacy. The protocol

ensures data privacy during ownership change by preserving owner’s contexts on

the device with encryption. It does not rely on any specific hardware dependencies.

Therefore, the system can be implemented on a variety of off-the-shelf devices.

chownIoT also describes an owner’s profile management scheme to effectively

manages ownership during the IoT device life cycle. To access or retrieve the

profile, the user needs to present proper credentials. The scheme also provides a

simple and reliable technique to transfer device ownership. This could be useful

in case of device lending for a limited time.

Figure 2.1 describes the main steps of chownIoT. Once the system is set up, it

launches the ownership change detection procedure. If the ownership change is

detected, chownIoT tests the current context by searching for a trusted device in

the vicinity and sending a challenge to it.

If the system receives a valid response to the challenge, it creates a new context

for the current owner. Otherwise, chownIoT locks the profile and starts looking for

a new control device. Once it is found, the smart home device provides a list of

available profiles to it.

8

Background

When a new control device accesses the IoT device, chownIoT provides it with

a list of encrypted user profiles and an option to create a new profile. A new

user can choose an existing profile or create a new one. If the user attempts to

access an existing profile, the IoT device verifies it with the credential mechanism

set up by profile owner. The system support for trusted and new control devices

allows a convenient access to the IoT device and improves the usability. At the

same time, the differentiation between trusted and new control devices provides a

fine-grained access to the smart home device.

2.6 Technical Background

This section provides an overview of software and hardware solutions used in

implementation of the project.

2.6.1 Raspberry Pi

A Raspberry Pi [11] is a credit card-sized computer created by Eben Upton, the

founder of the Raspberry PI Foundation, and originally designed for education.

The creator’s goal was to help students improve programming skills and hardware

awareness. However, it became extremely popular among beginner developers,

enthusiasts and researchers thanks to its low price and small size.

The Raspberry Pi was originally designed for the Linux-based operating systems,

and many Linux distributions now have a version optimized for it. Two of the

most popular options are Raspbian and Pidora, which are based on the Debian

and Fedora operating systems, respectively.

The Raspberry Pi is a resource-constrained device, however it provides all

features of a common Linux machine. Several generations of Raspberry PI were

released to the market. The latest available one is the 3rd generation of Raspberry

PI. The major difference of current generation is the support of on board Bluetooth

and WiFi adapters, which are widely used in most IoT devices.

2.6.2 Bash scripting

Bash [12] is a command line interface for interacting with the operating system.

It is widely used on a vast variety of GNU/Linux distributions and Unix systems,

such as Mac OS X. Bash shell was created by the Free Software Foundation in the

late 1980s and was intended as a free software alternative to the Bourne shell. It

provided all the features of this shell and introduced new features, such as integer

arithmetic and job control.

9

Background

Bash provides several modes of execution to the user. In the interactive mode,

the shell gives immediate feedback for user input. In addition, Bash provides

command scripting mode, also known as Bash shell scripting. In this mode,

the user can create complex programs that consist of various commands and

constructs, including loops, conditions and functions.

Bash scripts are widely used in administrative and scheduling tasks as well.

These tasks can be launched automatically, depending on various conditions, such

as system boot, specific user input, system or network event.

2.6.3 Python

Python [13] is an object-oriented, high-level programming language. It provides

clean and readable syntax that makes it easy to learn.

Additionally, Python supports modularity and packaging. This allows to create

Python modules that can be used as external packages across various projects.

Python provides straightforward techniques for adding and integrating new mod-

ules to the existing applications.

Another benefit of Python is the free of charge availability of the interpreter

and standard libraries. Python and all necessary dependencies are available on

all major platforms. Thus, it is widely used in various projects by developers,

manufacturers and researchers for low-cost prototype development and research

projects.

10

3. Problem Statement

In this chapter, we specify the problem that we are aiming to solve. It relates

to various potential threats during the ownership change process. Section 3.1

gives the description of the problem, Section 3.2 outlines the adversary model and

finally, Section 3.3 specifies system requirements for mitigating identified threats.

3.1 Description

In Chapter 1, we mentioned the aspect of personal data handling by IoT devices.

Typically, smart home devices store various sensitive information, including device

readings, owner’s account preferences and network credentials. In most cases, this

sensitive information is stored in the device memory and on its cloud platform

with no proper security mechanisms [14]. This introduces various threats against

sensitive information related to the owner.

IoT device ownership might change if the current owner decides to sell or lend

it. Such situations raise a variety of security questions, such as the device ability

to detect ownership change and protect the previous owner’s data stored in its

memory and the cloud service. Device also needs to establish proper access control

rules for both parties: the previous owner and the new one.

Inadequate security measures for mitigating potential threats provide a possi-

bility for an attacker to gain access to the owner’s sensitive information. Thus,

an automatic ownership change detection algorithm is required for IoT devices.

Its primary objective is to detect the ownership change and take appropriate

measures for mitigating possible attacks on the previous owner’s personal data.

Potential attackers in ownership change situations are the previous owner and

a new owner of the device located in various environments. Hence, our solution

needs to differentiate and identify different ownership change scenarios to apply

proper threat mitigation in each case.

Ownership change could happen in three major scenario categories: selling a

11

Problem Statement

device, lending a device for a limited amount of time and device stealing. We specify

potential threats for the IoT device ownership change process by performing the

adversary modeling.

A system for secure handling of the contextual data stored on the smart home de-

vice has already been described by Khan in his MSc Thesis [10]. His work focused

on protecting the device owner’s privacy and specifying owner’s profile manage-

ment scheme to improve security of the device during its life cycle. Meanwhile,

our work is focused on another part in the device ownership management, the

detection of change in ownership. While Khan presented a simple detection tech-

nique in his thesis, we propose an advanced automatic mechanism for ownership

change detection to provide a proper level of security to the system.

3.2 Adversary Model

This section specifies the adversary model for smart home IoT device ownership

change by presenting attacker goals, attack surface and capabilities of a potential

attacker who is attempting to perform malicious activities targeted on the system.

Attacker goals: The primary objective of an attacker is to gather sensitive data

stored on the IoT device or its cloud storage. This data includes AP credentials

that are saved in the smart home device storage, and collected sensoric data that

is sent to the control device or a cloud storage.

Attack surface: Due to lack of proper security mechanisms, IoT devices provide

an extensive attack surface. We focus on the most critical part of it, which composes

the primary set of vulnerabilities.

Device Memory

Generally, IoT devices store sensitive owner’s data (usernames and pass-

words, third-party and network credentials, encryption keys, and information

collected by the device) in their local storage in an insecure manner and pro-

vide no tools for data integrity checking. Furthermore, smart home devices

are shipped with hardcoded credentials for ease of setup [15].

Cloud storage

Some smart devices provide cloud service functionality. Owners can access

data and control their smart home devices remotely. Cloud services that

provide basic security techniques leave the possibility for a great number of

remote web attacks open for adversaries.

Device Web Interface

Some IoT devices provide a web interface for accessing its features and local

12

Problem Statement

device management. Some web interfaces lack proper security mechanisms,

leading to the possibility of various vulnerabilities, including SQL injections,

cross-site scripting, username enumeration and account lockout. Costin et

al. [14] performed the analysis of popular IoT firmware distributions and

reported that 24% of the web interfaces provide serious vulnerabilities.

Attacker capabilities: Our threat model considers a new owner and the previ-

ous owner of the device as potential attackers. During ownership change, a new

owner receives full control on the acquired device. A new owner can attempt to

steal the data stored in the device memory, by simulating the previous owner’s

environment. This can be achieved by spoofing the wireless network settings and

mislead the system security mechanisms, which will result in the previous owner’s

sensitive data leakage. Due to direct physical access to the device, a new owner is

able to directly extract data stored in the local memory. Apart from these, a new

owner can intercept the device network activity and control its communication. In

contrast, the previous owner can access the data stored in the IoT device cloud

storage remotely, as he knows the cloud credentials of the device. In addition,

some IoT devices provide the functionality of remote management and control,

which can be exploited by the previous owner of the device.

3.3 Requirements

The prime objective of this project is to design a technique for automatic IoT device

ownership change detection. The proposed solution should automatically detect

ownership change and provide an adequate accuracy.

In this section, we set requirements for the proposed solution.

R1 - Deployability

The goal of the project is to develop a universal automatic ownership change

detection system for IoT devices. Thus, the proposed solution needs to be

supported by a wide range of IoT devices.

R2 - Efficient execution under resource constraints

Most IoT devices provide limited computing resources. The system should

operate on devices with limited resources and should not lead to high system

load. The set of minimum hardware specifications is listed below. They are

based on Tessel 2 development board [16].

• RAM: from 64 MB

13

Problem Statement

• CPU: from 500 MHz

• Persistent storage: from 32 MB

R3 - Performance

R3.1 - Accuracy

The system needs to detect ownership change with at least 95% accuracy

and false positive rate lower than 1%.

R3.2 - Speed

The solution needs to detect ownership change during the IoT device

initial setup process, which typically takes up to 2 minutes [17].

The specified performance criteria inversely correlate with each other. Achiev-

ing more accurate results will lead to decrease in speed. Thus, the proposed

solution should balance these criteria in order to provide adequate perfor-

mance.

R4 - Security

The proposed solution needs to be resilient to the adversary model described

in Section 3.2. The solution should prevent attacker attempts of detection

disruption, by mitigating spoofing of network settings and collected data

stored on the device.

14

4. System Design

4.1 Solution Overview

In Chapter 3, we identified security threats that might occur during ownership

change of an IoT device. In addition, we determined the requirements to achieve

proper system accuracy. Now, we describe a new system called FoundIoT (Owner-

ship Change Detection system) aimed to mitigate the security issues of ownership

change and reach the specified requirements. FoundIoT provides a reliable tech-

nique that detects device ownership change in an automatic manner. The complete

system consists of two components: FoundIoT and chownIoT [10]. FoundIoT pro-

vides the functionality of automatic ownership change detection for the IoT device.

chownIoT manages ownership change by ensuring data integrity and providing

user privacy enhancements.

FoundIoT is integrated in the IoT device itself. It allows the device to detect

change of its owner on its own. The device does not require any additional, external

tools to detect ownership change.

FoundIoT assumes changes in context to detect ownership change of an IoT

device. We define context as a set of active wireless nodes that send or transmit

data in the device vicinity. This wireless activity characterizes the IoT device

context.

The flow diagram of FoundIoT is depicted in Figure 4.1. During the first stage,

the system collects data about the IoT device context, it identifies every network

connected device in its vicinity. FoundIoT collects the contextual data periodically

and saves captured data in a time series format. Each observation consists of

timestamp and the collected context at the corresponding time.

Once the data is collected, the system proceeds to the next stage and applies

analysis on the captured data. The objective of this stage is to detect ownership

change of the IoT device based on changes of its context. IoT devices are usually

15

System Design

Figure 4.1. FoundIoT System Overview

deployed in a single physical location while they belong to a specific owner. The

IoT device context characterizes its location. If the IoT device is moved to another

location, its context will change. Therefore, the device context can be used to

detect change of its location, which in most cases means change of its ownership.

If the IoT device is moved to a new location while preserving the same owner,

the device owner will be at this new location and his other devices will likely be

there too, which means that the IoT device context will not change.

For each captured context, FoundIoT computes the value of a metric that char-

acterizes changes of the IoT device context. In case there is no ownership change,

the value of the metric stays above the detection threshold. Decision on ownership

change is made by detecting a continuous interval of metric values, lower than

the detection threshold. If ownership change is detected, FoundIoT sends a signal

to chownIoT to manage ownership change.

FoundIoT provides a multistage ownership change detection technique depicted

in Figure 4.2. The first phase consists in detecting contextual changes based on

Wireless Station (STA) in the device vicinity. If no change is detected, FoundIoT

starts the AP detection procedure. This provides information about the set of

active APs that announce their operation to STAs in the IoT device vicinity. The

final phase checks for changes in context among Bluetooth enabled devices.

16

System Design

Figure 4.2. FoundIoT Ownership Change Detection Flow Diagram

4.2 Design Choices

The detection of ownership change can be achieved with various tools and tech-

niques. This section presents the technologies and techniques chosen in FoundIoT

implementation.

4.2.1 Context Identification

Smart home devices are equipped with various sensors, which can be used for

scanning their environment. Smart thermostats use temperature and humidity

sensors, smart home security systems provide cameras and proximity sensors.

The proposed solution is intended to support a wide range of smart home devices.

Because of that, we cannot rely on uncommon sensor modalities and technologies

for our implementation. This design choice is dictated by requirement R1, which

is stated in Section 3.3.

To capture the context, the device needs to scan the network to detect connected

devices in its vicinity. In general, IoT devices support diverse communication tech-

17

System Design

nologies, which could be used for establishing a connection and detecting device

context. Some of the most widespread communication protocols are described in

Section 2.2.

We base our solution on WiFi and Bluetooth for context identification and own-

ership change detection. This provides support of wide range of IoT devices.

The choice to limit scanning techniques with these two specific communication

channels involves a trade-off between requirements R1 and R3.

4.2.2 Data recording

We store the collected data in a time series format. Time series implies having

data with timestamps for each observation. This format is useful for analysis of

processes that change over time.

When change of ownership happens, the system detects changes in the device

context. It is important to identify specific points in time when the changes take

place. Time series format can provide the system with required information, such

as the timestamp of ownership change happening. Thus, time series format is

beneficial for detection of ownership change.

4.2.3 Multistage Ownership Change Detection

FoundIoT provides a multistage protection scheme. This feature is implemented

for mitigation of adversary attacks to disrupt the system detection method. It is

rather easy for an adversary to spoof one of available ownership change detection

methods. That is why detecting changes, using one specific method, is unreliable

to make the decision on possible ownership change.

Figure 4.2 describes the multistage structure of FoundIoT . The system uses three

different sequential checks to detect ownership change. Therefore, it increases

FoundIoT resilience to adversary actions and provides more reliable assessment

of contextual changes. This choice is justified by requirement R3.1, declared in

Section 3.3.

4.2.4 Statistical analysis

Device contextual changes are analyzed using statistical techniques. Statistics

helps improve reliability of the technique, decreasing the number of false alarms

and mitigating adversary attempts to disrupt the system detection methods.

This design choice helps to achieve requirement R4.

18

System Design

4.3 Components

FoundIoT requires 4 components depicted in Figure 4.3.

WiFi context monitor

This component captures MAC addresses of STAs and APs in the device

vicinity. Its design is described in Section 4.3.1. WiFi context monitor

component generates a Tcpdump[7] pool of data, which is passed over to

Time Series Generator.

Bluetooth context monitor

This component captures MAC addresses of Bluetooth enabled devices in

device vicinity. Its design is described in Section 4.3.2. The list of captured

MAC addresses is passed over to Time Series Generator.

Time Series Generator

Time Series Generator component prepares the data for its analysis. Its

design is described in Section 4.3.3. The data gets converted into time series

format with timestamped labels and passed over to Ownership Change

Detection component.

Ownership Change Detection

The final component analyzes the time series data and detects ownership

change of the IoT device. Its design is described in Section 5. The analysis

is performed for each type of captured context: WiFi (STA and AP) and

Bluetooth. Finally, the results are sent over to chownIoT for ownership

change management.

Figure 4.3. FoundIoT Components

4.3.1 WiFi context monitor

The initial steps of WiFi context monitor are focused on scanning the device

vicinity and capturing wireless traffic of STAs. The component performs two types

of scanning procedures. At first, WiFi context monitor component scans the local

19

System Design

network in promiscuous mode. This scan identifies the MAC addresses of STAs

that operate in the same WiFi network as the IoT device.

Afterwards, the component makes another scan in monitor mode. It captures

wireless traffic and identify MAC addresses of STAs in the IoT device vicinity by

detecting network frames sent and transmitted by STAs on a specific frequency.

That is why WiFi context monitor component dynamically changes frequency of

the network card adapter to capture packets from every STA in the IoT device

vicinity. The set of frequencies is limited by the wireless channels supported by

the network card manufacturer.

Scans performed on each wireless frequency provide different insight on current

context. That is why the component performs each scan with distinct duration.

Different values of scan duration and their impact on detection accuracy and

system performance are evaluated in Chapter 7.

AP detection is performed via Beacon capturing. Beacon is a management frame

in IEEE 802.11 standard [6]. APs transmit these frames periodically to announce

their service to STAs. Beacons frames are extracted from monitor mode scan

results.

4.3.2 Bluetooth context monitor

Bluetooth context monitor component performs scans using standard Bluetooth

discovery features of the IoT device. It launches Bluetoothctl tool [18] to scan for

Bluetooth enabled devices in the vicinity.

Bluetoothctl provides basic mechanisms of Bluetooth pairing, establishing con-

nection between devices. It lists the devices that are discovered in the device

vicinity by recording their MAC addresses. Bluetooth context monitor component

stores the discovered MAC addresses with a timestamp of their discovery.

4.3.3 Time Series Generator

After the wireless activity capture procedure is complete, the system receives

unformatted data about captured WiFi and Bluetooth devices. It needs to be

transformed into a specific format to apply required analysis techniques.

FoundIoT transforms the captured stream of data to time series format. Each

observation is assigned with a unique identifier, the timestamp of when it was

discovered. This allows to put each observation on the timeline, analyze the

20

System Design

resulting sequence and extract its features.

{TS1 : [{TS1.1,MAC1.1} . . . {TS1.m,MAC1.m}],

TS2 : [{TS2.1,MAC2.1} . . . {TS2.k,MAC2.k}],
...

TSN : [{TSN.1,MACN.1} . . . {TSN.l,MACN.l}]}

(4.1)

The data is formatted according to the format depicted in Equation 4.1. Each

observation consists of several pairs of device MAC address and the timestamp of

its discovery.

As a result, Time Series Generator component creates 3 time series: TSSTA,

TSAP , and TSBluetooth for discovered STAs, APs and Bluetooth devices.

21

5. Ownership Change Detection

This chapter specifies the chosen techniques and algorithms for the analysis of

collected time series data structure. The output from these methods is used for

identifying points in time of possible device ownership change.

5.1 Time Series Analysis

Ownership Change Detection component receives 3 time series from Time Series

Generator component, described in Section 4.3.3. The first time series TSSTA

contains information about active STAs. We differentiate local and external

devices. We define local devices as those which are connected to the same (local)

WiFi network as the IoT device. Therefore, external devices do not belong to the

local network and are connected to other APs. Each examined observation consists

of two subsets: local and external devices, which are generated by promiscuous

and monitor scanning procedures, respectively.

The second time series TSAP contains information about nearby APs. As for

TSSTA time series, TSAP contains two types of devices: local and external APs.

The local AP is defined as the AP to which the IoT device is connected to. All other

discovered APs are defined as external ones.

The third time series TSBluetooth contains information about Bluetooth devices

in the IoT device vicinity.

All mentioned time series are analyzed, using a metric that evaluates similarity

of observations within each time series. To evaluate similarity of time series, we

need to choose an appropriate metric for our data. In the following sections 5.1.1

and 5.1.2, we describe two metrics that can be used for similarity evaluation of

our time series.

22

Ownership Change Detection

5.1.1 Jaccard Index

Jaccard Index [19] compares members of two sets to identify shared and distinct

members. It is a measure of similarity for two datasets in range [0, 1]. The higher

the value is, the more similar analyzed datasets are.

Several prior research works [20], [21] used Jaccard Index previously for wireless

context comparison. Jaccard Index is effective in calculating similarity of data

objects that have binary attributes, it can be applied to our collected data. Each

FoundIoT scan observation consists of the set of detected wireless devices. A

device could either be detected or not due to its wireless inactivity.

Jaccard Index provides proper results for sets of different cardinality. It is

achieved by normalizing the score by union of analyzed sets. Without this normal-

ization, small sets would always have very low scores, which negatively affects the

accuracy of similarity computations.

Jaccard Index of two sets A and B is expressed as:

JaccardIndex(A,B) =
|A

⋂
B|

|A
⋃
B|

(5.1)

FoundIoT performs the analysis of the collected contexts periodically, each 10

minutes. Each scan is assigned with the timestamp scantimestamp of when it was

performed.

On each analysis iteration, the value of Jaccard Index gets computed based on

the sets of all previous and the current scans. The system composes the union of

MAC addresses of devices discovered prior to the current scan. The resulted set,

Setprev, consists of unique MAC addresses of devices that were discovered during

[scantimestamp1 ...scantimestampN−1] scanning procedures.

Next, the system computes the intersection and union of Setprev with the set

Setcurr that contains MAC addresses of devices discovered during the current scan

scantimestampN . The Jaccard Index metric value for the current scan is computed,

according to the following equation:

JaccardIndexscantimestampN
=

|Setprev
⋂

Setcurr|
|Setprev

⋃
Setcurr| =

=
|∪

timestampN−1
i=timestamp1

scani
⋂

scantimestampN
|

|∪
timestampN−1
i=timestamp1

scani
⋃

scantimestampN
|

(5.2)

FoundIoT computes the Jaccard Index value for each observation within re-

ceived datasets. Computed values are added to TSJaccardIndex that represent the

similarity of TSSTA, TSAP , and TSBluetooth.

23

Ownership Change Detection

5.1.2 Kullback-Leibler divergence

The Kullback-Leibler divergence [22], [23] is a measure of how two probability

distributions diverge. Kullback-Leibler divergence gives a value in the range [0,

1]. The greater the value is, the more divergent distributions are. Low values of

Kullback-Leibler divergence indicate similar distributions.

The Kullback-Leibler divergence is used in a variety of fields, including mathe-

matical statistics, evaluating relative entropy in information systems, randomness

and similarity in time series sequences. Lee et al. [24] used KL Divergence metric

for time series clustering, and Liu [25] used it for change-point detection in time

series.

Kullback-Leibler divergence of two distributions P and Q is defined by Equation

5.3.

DKL(P ||Q) =
N∑
i=1

P (i) ∗ log Pi

Qi
(5.3)

The value of Kullback-Leibler divergence gets computed based on the same two

datasets, as the Jaccard index: Setprev, which consists of MAC addresses of all

discovered devices during [scantimestamp1 ...scantimestampN−1], and Setcurr with MAC

addresses from current observation.

During each analysis iteration, FoundIoT computes the number of occurrences of

each MAC address from the analyzed scan period [scantimestamp1 ...scantimestampN−1].

To compute the number of device occurrences, we define a function f(MACdevice,

SetMAC) in Equation 5.4, which takes two parameters. The first parameter is MAC

address of the analyzed device. The second parameter is a set of MAC addresses

SetMAC .

The function returns 1 if MACdevice is present in SetMAC . In other cases, the

function returns 0.

f(MACdevice, SetMAC) =

⎧⎪⎨⎪⎩1, if MACdevice ∈ SetMAC

0, else
(5.4)

During each scantimestampN , FoundIoT computes the sum of values of the function

defined in Equation 5.4 for each device from Setprev. The resulted value is divided

by the number of scans N − 1 to compute the device occurrence in Setprev.

The occurrence value is used to assign weight WeightMACdevice
for each discovered

24

Ownership Change Detection

device from Setprev:

WeightMACdevice
=

N−1∑
i=1

f(MACdevice, SetMACi)

N − 1
(5.5)

The first step of computing divergence between sets Setprev and Setcurr is the

computation of occurrence weights Weightoccurrence for each device from the inter-

section of the sets (Equation 5.6).

Weightoccurrence =
WeightMACdevice∑M
i=1WeightMACdevicei

, (5.6)

where M is the size of intersection |Setprev
⋂
Setcurr|.

We assign occurrence weights Weightoccurrence for each MAC address from the

intersection Setprev
⋂
Setcurr based on its occurrence in Setprev and normalized

weights Weightnormalized = 1
|Setprev

⋂
Setcurr| based on the size of the intersection.

The equation for Kullback-Leibler divergence for FoundIoT has the following

form:

DKL(Setprev||Setcurr)scantimestampN
=

∑M
i=1Weightoccurrencei ∗ log

Weightoccurrencei
Weightnormalized

(5.7)

We are using both described metrics for similarity evaluation of the IoT device

context to compare FoundIoT detection performance with each of them.

The main advantage of Kullback-Leibler divergence over Jaccard Index metric

is its ability to assign weights for each device, based on its occurrence. The higher

the device occurrence is, the greater its impact on the divergence value is. As

a result, devices that belong to a different context should significantly decrease

the similarity score. KL Divergence is supposed to provide more accurate results

and fit any scenario. However, it will require more computations to compute the

occurrence of each device compared to Jaccard Index, which does not take into

account the occurrence of devices.

On the contrary, Jaccard Index metric assigns equal weights to discovered

devices and computes the similarity score with lower number of computations. It

is supposed to provide more accurate results in case of contexts with devices with

stable occurrence. Therefore, both metrics has their advantages and disadvantages

due to their technique of the similarity score computation.

Chapter 7 provides a detailed evaluation of the impact of each similarity metric

on FoundIoT performance.

25

Ownership Change Detection

5.2 Captured Data Filtering

STAs do not use wireless communication channels constantly. The connection is

established per request from the device and stays open until the AP forces it to

renew the Dynamic Host Configuration Protocol (DHCP) lease.

It means that some STAs will not be present in the analyzed observation due to

their network inactivity or outdated DHCP lease. Such devices cause misleading

decreases of the similarity score.

That is why, FoundIoT sets the ignore limit ∆Ignore for STAs with low network

activity. These could be stationary devices, which require occasional network

activity for their operation or portable devices that are present in the network

for a short-term time. These devices get excluded from the analysis to reduce the

number of false alarms.

During each scantimestampN , FoundIoT computes the number of occurrences

of each device from period [scantimestamp1 ...scantimestampN−1]. If it is lower than

∆ignore, then it gets ignored during the current analysis iteration. Afterwards,

FoundIoT computes the sum of values of function depicted in Equation 5.4 for each

MACdevice from Setprev. The resulted value is divided by the number of scans N −1

to compute the occurrence of MACdevice in Setprev, which is depicted in Equation

5.8.

N−1∑
i=1

f(MACdevice, observationi)

N − 1
<= ∆ignore (5.8)

The parameter ∆ignore sets a lower bound for device occurrence. The higher it is,

the more devices with low network activity get excluded from analysis during the

current iteration.

5.3 Analysis Conclusions

Ownership Change Detection component studies the evolution of similarity metrics

changes over consecutive scans. It detects decreases of Jaccard Index values and

increases of KL divergence, which correspond to lower similarity. When the system

detects a long-term continuous interval of Jaccard Index similarity scores lower

than ∆JaccardIndex, it indicates a possible ownership change situation. For KL

divergence, we need to detect a long-term continuous interval with similarity

scores greater than ∆KL divergence.

To detect a continuous interval of low Jaccard Index similarity scores, we de-

fine a function f(ScoreJaccardIndex,∆JaccardIndex) in Equation 5.9. It returns 1 if

26

Ownership Change Detection

the passed Jaccard Index similarity score is lower than the detection threshold

∆JaccardIndex. In other cases, it returns 0.

f(ScoreJaccardIndex,∆JaccardIndex) =

⎧⎪⎨⎪⎩1, if ScoreJaccardIndex < ∆JaccardIndex

0, else
(5.9)

To detect a continuous interval of high KL divergence similarity scores, we define

another function f(ScoreKL Divergence,∆KL Divergence) in Equation 5.10. It returns 1

if the passed KL divergence similarity score is greater than the detection threshold

∆KL Divergence. In other cases, it returns 0.

f(ScoreKL Divergence,∆KL Divergence) =

⎧⎪⎨⎪⎩1, if ScoreKL Divergence > ∆KL Divergence

0, else
(5.10)

Ownership Change Detection condition is depicted in Equation 5.11. FoundIoT

detects change of ownership when the number of consecutive similarity scores

exceeds the window W .

N∑
i=1

f(Scoresimilarityi ,∆similarity) >= W (5.11)

The system consecutively analyzes each TS: TSSTA, TSAP and TSBluetooth, and

checks if Ownership Change Detection condition is respected. By analyzing TSSTA

and TSAP , FoundIoT checks for changes in local and external WiFi contexts

captured in each TS. By analyzing TSBluetooth, FoundIoT checks for changes in

Bluetooth context. In case the Ownership Change Detection condition is respected

during the analysis of one of TS, the system indicates the detection of ownership

change and does not check the remaining TS.

The parameters ∆similarity (Jaccard Index or KL Divergence metric) and W affect

the system detection accuracy. ∆similarity sets the detection threshold for similarity

score that indicates changes in device context, and therefore ownership change of

the IoT device.

W sets a window of low similarity scores used to filter out temporary decreases in

similarities between the observations. Thus, these parameters affect the number

of false alarms and detection sensitivity.

False Positive (FP)

A false alarm or false positive is an event, where FoundIoT detects ownership

27

Ownership Change Detection

change while it did not actually happen;

False Negative (FN)

A false negative is an event, where FoundIoT does not detect ownership

change while it actually happened;

True Positive (TP)

A true positive is an event, where FoundIoT detects ownership change while

it actually happened;

True Negative (TN)

A true negative is an event, where FoundIoT does not detect ownership

change while it did not actually happen.

The false positive rate is computed according to Equation 5.12, which presents

the ratio between the number of negative events incorrectly identified as positive

and the total number of actual negative events.

FPR =
FP

FP + TN
(5.12)

Detection sensitivity (also called the true positive rate) measures the propor-

tion of positives that are correctly identified as such. This metric evaluates the

FoundIoT efficiency. It gives the score of how many actual ownership change

events were detected correctly. The formula for true positive rate is presented in

Equation 5.13.

TPR =
TP

TP + FN
(5.13)

28

6. Implementation

In chapters 4 and 5, we have provided a detailed description of the design choices

and components of the proposed solution. This chapter provides an overview of

FoundIoT prototype implementation.

As it was mentioned in Section 4.3, FoundIoT requires WiFi context monitor,

Bluetooth context monitor, Time Series Generator and Ownership Change Detec-

tion components. Therefore, we need to implement WiFi and Bluetooth context

monitoring, time series generation and analysis techniques. Apart from these, we

also need a platform for implementing the smart home device functionality.

The following sections provide the implementation description for each FoundIoT

component and the prototype IoT device.

6.1 Smart Home Device

IoT devices are designed to implement various functionality. Because of that,

vendors provide diverse software and hardware specifications and capabilities to

manufactured IoT devices. In addition, most vendors do not provide open source

programming specifications with IoT devices due to business requirements.

To implement a prototype of FoundIoT , we need an IoT testbed device. We have

chosen Raspberry Pi 3 [11] development board running on Raspbian Jessie OS

[26] for our implementation as it represents a typical IoT device:

• It provides similar capabilities (WiFi and Bluetooth connectivity);

• It is a low cost device as most off-the-shelf IoT devices.

In addition, it supports a variety of modern programming languages, including

Python and command-line tools, such as Tcpdump [7] and Bluetoothctl, which are

used for the prototype implementation of FoundIoT .

29

Implementation

6.2 WiFi Context Monitoring

FoundIoT uses onboard WiFi chip capabilities to scan the IoT device vicinity

and monitor the WiFi context. One of the most popular traffic monitoring tools

is Tcpdump. It is widely supported in modern operating systems and provides

required functionality for capturing STAs wireless traffic. FoundIoT launches

the Tcpdump capture, monitors wireless activity and saves the collected network

trace to a .pcap [27] file. The resulted file contains network frames, including

source and destination MAC addresses of communicating nodes, timestamps and

encrypted data. Next, FoundIoT filters out source MAC addresses on outgoing

network frames and timestamps from the trace and saves them to a .txt file.

To capture APs in the IoT device vicinity, we use Linux standard iwlist [28]

utility. It invokes the device standard WiFi discovery mechanisms and prints out

all available nearby APs. FoundIoT extracts the list of MAC addresses of nearby

APs from iwlist output and saves it with the timestamp to a .txt file.

6.3 Bluetooth Context Monitoring

To capture the Bluetooth context, FoundIoT uses standard Bluetooth discovery

tools of the device. In our case, Bluetoothctl tool represents base functionality

of the IoT device Bluetooth discovery mode. Bluetoothctl provides the list of

nearby Bluetooth active devices and can be used on a variety of modern Linux

distributions.

FoundIoT launches Bluetoothctl to capture MAC addresses of Bluetooth devices

in the IoT device vicinity and saves the list of their MAC addresses to a .txt file.

6.4 Time Series Generation

After FoundIoT captures WiFi and Bluetooth contexts, it needs to format the data

to time series for analysis.

We use Python programming language for context formatting. It provides a vari-

ety of useful tools and libraries for transforming raw context data into JavaScript

Object Notation (JSON) structure that represents time series in our case.

We implement time series generation in Python using JSON library [29]. We

use collected WiFi and Bluetooth raw contexts with timestamps as the input

parameters. JSON library formats the collected contexts and generates a JSON

structure where timestamps represent keys of records and collected contexts -

records. The resulted structure represents collected WiFi and Bluetooth contexts

30

Implementation

in a time series format.

6.5 Time Series Analysis

The analysis of time series is performed using Python Scipy [30] and Scikit-learn

[31] libraries. These libraries provide implementations of Jaccard Index and KL

Divergence metrics used by FoundIoT for context similarity evaluation.

FoundIoT invokes jaccard_similarity_score function, which is a part of Python

Scikit-learn library during each scan iteration and passes sets of previously discov-

ered and current MAC addresses as input parameters to it. The value provided by

jaccard_similarity_score function represents the Jaccard Index similarity score of

sets of MAC addresses.

The computation of KL Divergence metric value is provided by Scipy library.

FoundIoT invokes scipy.stats.entropy function that calculates the entropy of a

distribution for given probability values. FoundIoT provides occurrence and

normalized weights of MAC addresses as input parameters to the entropy func-

tion. The resulted value represents the KL Divergence score of sets of previously

discovered and current MAC addresses.

31

7. Evaluation

The chapter evaluates the described system features and components based on

the identified requirements in Section 3.3. We evaluate deployability, resource

constraints, accuracy, speed and security of FoundIoT in detail.

7.1 Deployability

In this section, we evaluate the deployability of FoundIoT .

Software limitations: FoundIoT uses C++, Python and shell scripting to imple-

ments the main features of ownership change detection. These software packages

and technologies are widely supported by most modern operating systems. Thus,

the proposed system can be deployed in any modern operating system.

Hardware limitations: FoundIoT does not depend on any particular hardware

component. It uses wireless communication channels, such as WiFi and Bluetooth,

for its operation. It can be implemented on a wide range of devices that support

wireless communication, which is a required component for a smart home device.

Sensor limitations: FoundIoT uses wireless adapters for detection of own-

ership change. Currently, the system uses WiFi and Bluetooth adapters. The

set of supported adapters can be easily expanded for improving the accuracy of

ownership change detection on a specific device. Thus, the system can be deployed

on devices with any number of sensor modalities.

As a result, the implemented prototype of FoundIoT can be deployed on a wide

range of IoT devices, as it is based on widely supported software and hardware

solutions, and it does not depend on sensor modalities that are specific for a limited

number of IoT devices. The requirement R1 is fully met.

7.2 Resource Constraints

In this section, we evaluate the resource usage of FoundIoT on Raspberry Pi 3.

32

Evaluation

Usually, smart home devices are designed to perform a limited set of simple

actions. That is why, device manufacturers equip them with limited processing

power (CPU) and memory (RAM). To be properly supported by resource constrained

devices, we need to ensure that our solution operates efficiently and does not

generate too much overload. In this section, we evaluate the performance of

FoundIoT execution.

Some popular IoT boards are presented in Table 7.1. As we can see, all boards

provide a limited amount of resources. Raspberry Pi 3 is the most computationally

powerful device with 1.2 GHz CPU and 1 GB of RAM. In contrast, Tessel 2 is the

least powerful device among presented. It is equipped with only 580 GHz CPU

and 64 MB of RAM.

Board CPU RAM Disk
Tessel 2 [16] MediaTek MT7620n 580 MHz 64 MB 32 MB
C.H.I.P [32] Allwinner R8 1 GHz 512 MB 4 GB

Intel Edison [33] Atom Silvermont 500 MHz 1 GB 4 GB
Udoo Neo [34] ARM Cortex A9 1 GHz 1 GB up to 256 GB

Raspberry Pi 3 [11] ARM Cortex A53 1.2GHz 1 GB up to 256 GB

Table 7.1. Specifications of IoT Boards

The most resource consuming components of FoundIoT are WiFi and Bluetooth

context monitors and Ownership Change Detection. The amount of data stored

to analyze by Ownership Change Detection component depends on the number

of discovered devices by WiFi and Bluetooth context monitor components. The

captured data that is used for evaluation was recorded in environments with

different number of wireless devices. Thus, we evaluate the central processor and

memory usage required by FoundIoT .

The experiment setup consists of three main parts: the Raspberry Pi 3 as an IoT

testbed device, implementation of FoundIoT on the testbed device and the chosen

environment.

We evaluate CPU and RAM usage of traffic capturing component of FoundIoT

in a crowded environment with a large number of active wireless devices in the

device vicinity (Computer Science Department building of Aalto University). In

general, smart home devices are located in less crowded environments with a

lower number of devices.

We present resource usage of FoundIoT only in a very crowded environment to

show an extreme case of high system load on the IoT device. During one week of

periodic scans, the system detected 713 STAs, 77 APs and 604 Bluetooth devices.

Other environments will show approximately the same or lower load.

We measure CPU and RAM usage of WiFi and Bluetooth context monitors com-

ponent periodically, every 2 minutes during execution, using ps utility [35]. Table

33

Evaluation

7.2 presents the acquired measurements for monitor components of FoundIoT .

WiFi mon. Bluetooth mon.
STA AP Bluetooth

CPU usage, % 0.05%± 0.01% 0.05%± 0.01% 1.86%± 0.23%

RAM usage, % 0.28%± 0.04% 0.18%± 0.02% 0.89%± 0.03%

RAM average usage, MB 2.6 MB 1.6 MB 8.3 MB

Table 7.2. CPU and RAM usage of FoundIoT monitor components on the Raspberry Pi 3

Another component of FoundIoT , which needs to be evaluated, is Ownership

Change Detection. We evaluate CPU and RAM usage in the same crowded en-

vironment where data capture was measured. Table 7.3 presents the acquired

measurements for the Ownership Change Detection component of FoundIoT .

WiFi con. analysis Bluetooth con. analysis
STA AP Bluetooth

CPU av. usage, % 0.38%± 0.06% 0.35%± 0.02% 0.43%± 0.05%

RAM usage, % 0.67%± 0.05% 0.54%± 0.03% 0.48%± 0.02%

RAM av. usage, MB 6.2 MB 4.9 MB 4.4 MB

Table 7.3. CPU and RAM usage of FoundIoT Ownership Change Detection component on the
Raspberry Pi 3

As a result, the maximum total memory consumption of FoundIoT is 28 MB.

Figure 7.1 presents persistent storage usage of periodic network scans performed

by FoundIoT during one week in the same location, Aalto CS building. As we

can see from the figure, the system requires approximately 1 MB of persistent

storage to store the data captured during a week of scans. FoundIoT disk space

requirements are compliant with presented IoT boards in Table 7.1.

Figure 7.1. FoundIoT persistent storage usage over 1 week of scans

Thus, the minimum specification for supporting FoundIoT is 32 MB of RAM

and 16 MB of persistent storage. The total FoundIoT resource usage does not

create a significant overhead to any of IoT boards presented in Table 7.1. It can be

integrated to a wide range of IoT devices without consuming a noticeable amount

of resources and creating an overhead.

34

Evaluation

As a result, we can state that the prototype implementation of FoundIoT can

operate on IoT devices with limited resources and does not cause high system load.

Requirement R2 is fully met.

7.3 Performance

In this section, we evaluate the system performance by addressing two require-

ments. First, we determine ownership change scenarios and evaluate the accuracy

requirement R3.1 by computing true positive and false positive rates to find opti-

mal detection parameters. Second, we evaluate the speed requirement R3.2 by

comparing speed of detection with Jaccard Index and KL Divergence metrics.

7.3.1 Ownership Change Scenarios Description

In this section, we present different scenarios that need to be supported to detect

ownership change accurately. We used different IoT devices for testing FoundIoT

detection accuracy in ownership change scenarios. Table 7.4 presents IoT devices

and their identifiers used for scenario implementation.

Testing environment IoT device Identifier

1

Netatmo Thermostat #1 IoT 1.1
Xiaomi Gateway #1 IoT 1.2

Mobile Alerts Weather Station #1 IoT 1.3
eWeLink Smart Socket #1 IoT 1.4

Broadlink Environment Sensor #1 IoT 1.5

2

Netatmo Thermostat #2 IoT 2.1
Xiaomi Gateway #2 IoT 2.2

Mobile Alerts Weather Station #2 IoT 2.3
eWeLink Smart Socket #2 IoT 2.4

Broadlink Environment Sensor #2 IoT 2.5

Table 7.4. IoT devices identifiers used in ownership change scenarios

Each figure that represents a scenario depicts two distinct environments with

a local network (Local Network) and a set of external WiFi networks (Ext. Net.)

that operate in the IoT device vicinity.

FoundIoT performs the analysis of three time series TSSTA, TSAP and TSBluetooth

to detect ownership change. TSSTA and TSAP contain two subsets that represent

local and external STA and AP contexts similarity. These subsets provide time

series with Jaccard Index or KL Divergence similarity scores, which are evaluated

to detect ownership change.

Next, we present the description of ownership change scenarios that FoundIoT

needs to support for accurate detection of the IoT device ownership change.

35

Evaluation

Scenario 1 Selling IoT device to a person that lives in a different house.

During the IoT device life cycle, it could be sold to a different person, a new

owner, or it can be stolen by an adversary. Usually, a new owner lives in

a different environment, which implies a completely different IoT device

context. An example scheme of such scenario is depicted in Figure 7.2.

Figure 7.2 shows two testing environments without shared devices, which

implies the IoT device relocation to a new owner’s environment.

Figure 7.2. Scenario 1 - Selling device or the device theft (new owner in a different location).

Scenario 2 Selling IoT device to a person that lives in vicinity of the previous

owner (neighbor).

This scenario describes a less common IoT device selling situation. In this

case, a new owner lives close to the previous owner, an adjacent apartment.

An example scheme of the scenario is depicted in Figure 7.3.

Figure 7.3 shows two environments with shared devices in external STA and

AP contexts due to their close location.

Scenario 3 Selling smart home with an integrated IoT device.

Another ownership change scenario happens in case of selling a smart home

with integrated IoT device. An example scheme is depicted in Figure 7.4.

In the previously discussed scenarios, the IoT device is taken from one

environment and placed in another. This scenario implies changes in context

without changing the location of the IoT device itself.

Figure 7.4 shows two environments with shared devices in local contexts due

36

Evaluation

Figure 7.3. Scenario 2 - Selling IoT device to a neighbor.

Figure 7.4. Scenario 3 - Selling smart home with integrated IoT device

to devices that were left by the previous owner and the external contexts

because the location of the IoT device has not changed.

Next, we present Jaccard Index metric observations for each analyzed context in

ownership change scenarios 1-3.

In the first scenario, FoundIoT does detect any previously discovered devices

that represented the previous owner’s context after the ownership change. A new

37

Evaluation

owner has completely different devices that are connected to his WiFi network,

which indicates significant contextual changes within the local network. External

WiFi networks also have completely different devices, compared to the previous

owner’s external context.

Figures 7.5, 7.6 and 7.7 present the observation of Jaccard Index metric over one

week of scans for Scenario 1. Figure 7.5 illustrates the observation for TSSTA by

showing a chart with two lines: blue - for representing similarity of local context,

orange - in external context. Figure 7.5 shows a drop in similarity for local and

external contexts during the 580th scan. The drop is caused by change of device

location to a different environment. The ownership change happened when the

similarity for both contexts experienced a significant drop.

Figures 7.6 and 7.7 illustrate the system analysis results for TSAP and TSBluetooth

using Jaccard Index metric. The metric can clearly distinguish two environments

by showing continuous zero percent similarity in the transition area.

Figure 7.5. Scenario 1. TSSTA observation by Jaccard Index metric (ownership changed during the
580th scan).

Figure 7.6. Scenario 1. TSAP observation by Jaccard Index metric (ownership changed during the
81st scan).

Figures 7.8, 7.9 and 7.10 present the observation of Jaccard Index metric over

one week of scans in case of Scenario 2. As Figure 7.8 illustrates, the Jaccard

Index metric can differ previous and new owner’s local contexts by showing a

significant drop during 580th scan.

However, the previous and new owner’s external contexts have shared devices,

38

Evaluation

Figure 7.7. Scenario 1. TSBluetooth observation by Jaccard Index metric (ownership changed
during the 470th scan).

because of their close location. Jaccard Index metric does not show a significant

drop in Figure 7.8, as there are previously discovered devices along with some new

ones after ownership change.

Figures 7.8 - 7.10 show clear distinction in local contexts in two different environ-

ments. This distinction is caused by different devices that are connected to local

networks in both environments. On the contrary, Jaccard Index metric analysis

shows resemblance in external WiFi and Bluetooth contexts without significant

drops in similarity. Similarity between these contexts is present because of close

location of the environments.

Figure 7.8. Scenario 2. TSSTA observation by Jaccard Index metric (ownership changed during the
580th scan).

Figure 7.9. Scenario 2. TSAP observation by Jaccard Index metric (ownership changed during the
96th scan).

Figures 7.11, 7.12 and 7.13 present the observation of Jaccard Index metric for

Scenario 3.

39

Evaluation

Figure 7.10. Scenario 2. TSBluetooth observation by Jaccard Index metric (ownership changed
during the 370th scan).

Jaccard Index metric shows some changes in local context in Figure 7.11, as

a new owner connects new devices to the local network during the 460th scan.

Meanwhile, there are no significant changes in external context, as the location of

the IoT device did not change.

Figure 7.11 depicts Jaccard Index metric observations for TSSTA for Scenario 3.

As we can see, the metric did not observe a significant drop in context similarity,

as there were still previously detected devices in the network.

FoundIoT supports Scenario 3 by implementing the multi-stage detection scheme.

In case ownership change is not detected by analyzing TSSTA, the system will try to

detect contextual changes in TSAP . Figure 7.12 shows Jaccard Index observations

for TSAP . The metric shows significant drop during the 98th scan after a new

owner connects to a new WiFi access point.

Figure 7.11. Scenario 3. TSSTA observation by Jaccard Index metric (ownership changed during
the 460th scan).

Figure 7.12. Scenario 3. TSAP observation by Jaccard Index metric (ownership changed during
the 98th scan).

40

Evaluation

Figure 7.13. Scenario 3. TSBluetooth observation by Jaccard Index metric (ownership changed
during the 370th scan).

7.3.2 Accuracy Evaluation

As it was previously stated in Section 5.3, values of detection threshold ∆similarity

and window W affect the system accuracy. We evaluate accuracy in terms of TPR

and FPR. According to requirement R3.1, the system needs to detect ownership

change with at least 95% accuracy and false positive rate lower than 1%.

We produce experimental data from two datasets of collected contexts that

represent two distinct environments described in Ownership Change Scenarios.

Each dataset consists of 7 days of scans. We mix the days to achieve several

consecutive ownership changes. The resulted experimental dataset is depicted

in Figure 7.14. Each pair of days represent ownership change. As a result, the

system needs to detect 13 consecutive ownership changes to achieve the highest

accuracy.

Figure 7.14. Experimental Data Generation

For example, Figure 7.15 presents FoundIoT accuracy evaluation for TSSTA

41

Evaluation

in case of Scenario 1 using Jaccard Index metric. Blue labels specify the used

detection threshold for local context similarity and window, red labels - detection

threshold for external context similarity and window. As we can see, each combi-

nation of detection threshold and window has a unique impact on system accuracy.

The system achieves the highest accuracy with TPR of 100% and FPR of 0% using

the window W of 12 scans and 0.7 and 0.3 as the values of detection thresholds for

local and external context similarity, respectively.

Figure 7.15. Scenario 1. Accuracy Evaluation for TSSTA using Jaccard Index in terms of TPR and
FPR

Table 7.5 presents the highest accuracy values of FoundIoT detection using

Jaccard Index achieved in case of each ownership change scenario.

Analyzed TS 1st scenario 2nd scenario 3rd scenario

TSSTAloc

TPR:100%, FPR:0%
12 scans (1h43m)

TPR:100%, FPR:0%
12 scans (1h43m)

TPR:72%, FPR:22%
12 scans (1h43m)

TSSTAext

TPR:100%, FPR:0%
12 scans (1h43m)

TPR:82%, FPR:14%
12 scans (1h43m)

TPR:73%, FPR:23%
12 scans (1h43m)

TSAPloc

TPR:100%, FPR:0%
9 scans (1h6m)

TPR:100%, FPR:0%
9 scans (1h6m)

TPR:100%, FPR:0%
9 scans (1h6m)

TSAPext

TPR:100%, FPR:0%
9 scans (1h6m)

TPR:78%, FPR:1%
9 scans (1h6m)

TPR:72%, FPR:2%
9 scans (1h6m)

TSBluetooth
TPR:100%, FPR:0%
10 scans (1h24m)

TPR:79%, FPR:14%
10 scans (1h24m)

TPR:70%, FPR:20%
10 scans (1h24m)

Table 7.5. Performance Evaluation of FoundIoT Detection Using Jaccard Index Metric for
Analyzed TS

Jaccard Index metric shows the highest accuracy with TPR of 100% and FPR of

0% for each TS with similarity scores for each analyzed context in case of Scenario

1. To achieve the highest accuracy for each TS, Jaccard Index metric requires

12 scans, which takes 1 hour 43 minutes. Jaccard Index metric is able to detect

ownership change very accurately because of completely different environments

that represent Scenario 1. As a result, Jaccard Index metric can detect changes

in the IoT device WiFi and Bluetooth contexts in Scenario 1 and achieves the

accuracy required by R3.1.

In case of Scenario 2, Jaccard Index metric provides the highest accuracy with

42

Evaluation

TPR of 100% and FPR of 0% only for TSSTAloc
and TSAPloc

because of different

local WiFi networks of the previous and new owners and no overlap in the devices

that are connected to them. Jaccard Index metric requires a window of 12 scans to

achieve the required accuracy, which takes 1 hour 43 minutes. In case of TSSTAext ,

TSAPext and TSBluetooth, Jaccard Index metric achieves lower accuracy with TPR of

78% - 82% and FPR of 1% - 14% because of overlap in the devices that are located

in the IoT device vicinity due to close location of the new owner in Scenario 2. As

a result, we can rely only on Jaccard Index metric values for local WiFi (TSSTAloc

and TSAPloc
) context to achieve the accuracy required by R3.1.

Finally, in case of Scenario 3, Jaccard Index metric achieves the highest accuracy

with TPR of 100% and FPR of 0% only for TSAPloc
because of a new AP in the local

network. The requried accuracy is achieved by using a window of 9 scans, which

takes 1 hour 6 minutes. Lower accuracy values with TPR of 70% - 73% and FPR

of 2% - 23% for other time series are caused by a large overlap in devices from

the previous owner and new owner contexts due to unchanged location of the IoT

device. As a result, Jaccard Index metric provides the accuracy required by R3.1

only for TSAPloc
.

To conclude Jaccard Index metric accuracy evaluation, we can state that it

achieves the accuracy required by R3.1 only for TSAPloc
in each scenario. Analysis

of other time series provides lower accuracy due to an overlap in the previous

owner and new owner contexts. As a result, to detect ownership change accurately

using Jaccard Index metric, we need to use TSAPloc
and disregard other contexts.

Next, we present the evaluation of FoundIoT detection accuracy using KL Di-

vergence. Table 7.6 presents achieved accuracy values in case of each ownership

change scenario.

Analyzed TS 1st scenario 2nd scenario 3rd scenario

TSSTAloc

TPR:100%, FPR:0%
9 scans (1h6m)

TPR:100%, FPR:0%
9 scans (1h6m)

TPR:74%, FPR:19%
9 scans (1h6m)

TSSTAext

TPR:100%, FPR:0%
9 scans (1h6m)

TPR:83%, FPR:12%
9 scans (1h6m)

TPR:75%, FPR:21%
9 scans (1h6m)

TSAPloc

TPR:100%, FPR:0%
7 scans (48m)

TPR:100%, FPR:0%
7 scans (48m)

TPR:100%, FPR:0%
7 scans (48m)

TSAPext

TPR:100%, FPR:0%
7 scans (48m)

TPR:76%, FPR:1%
7 scans (48m)

TPR:75%, FPR:2%
7 scans (48m)

TSBluetooth
TPR:100%, FPR:0%

8 scans (57m)
TPR:75%, FPR:11%

8 scans (57m)
TPR:73%, FPR:18%

8 scans (57m)

Table 7.6. Performance Evaluation of FoundIoT Detection Using KL Divergence Metric for
Analyzed TS

As we can see from Table 7.6, KL Divergence metric achieves similar accuracy

values to Jaccard Index. It achieves the accuracy required by R3.1 only for TSAPloc

in each scenario. For other contexts, KL Divergence shows lower accuracy and

43

Evaluation

does not reach required accuracy. The main advantage of KL Divergence is that it

requires a lower window of scans to achieve the required accuracy compared to

Jaccard Index, which leads to the increase in detection speed by 25-30 minutes on

average for each analyzed context.

To conclude the accuracy evaluation, we can state that the system meets the

requirement R3.1 for each ownership change scenario using Jaccard Index and

KL Divergence metrics when analyzing TSAPloc
, which represents the similarity

of local APs in the IoT device vicinity. Both metrics show worse accuracy when

analyzing other contexts due to overlap in discovered devices and cannot be used

for ownership change detection as they do not meet requirement R3.1.

7.3.3 Speed Evaluation

The speed of ownership change detection depends on the parameter W , which

sets the window of consecutive scans with similarity metric lower than ∆similarity.

Delays in detection speed lead to the increase of the window for an attack to occur.

The current implementation of FoundIoT sets a delay of 10 minutes between the

scans. The final value of detection speed includes this delay. Different values of

window W cause a unique impact on the accuracy of detection. For example, Figure

7.16 presents the speed comparison chart with detection speed using Jaccard Index

and KL Divergence metrics for TSSTA in Scenario 1. KL Divergence shows higher

detection speed by 37 minutes compared to Jaccard Index.

Figure 7.16. Scenario 1. Detection speed comparison of Jaccard Index and KL Divergence metrics
for TSSTA. The speed of detection is 1 hour 43 minutes and 1 hour 6 minutes for

Jaccard Index and KL Divergence metrics, respectively.

Tables 7.5 and 7.6 present the highest speed values achieved in each ownership

change scenario. In case of Scenario 1, Jaccard Index and KL Divergence metrics

require 12 (1 hour 43 minutes) and 9 (1 hour 6 minutes) consecutive scans to

achieve TPR of 100% and FPR of 0% for TSSTA analysis, respectively. In case

TSAP analysis, Jaccard Index metric and KL Divergence require 9 (1 hour 6

44

Evaluation

minutes) and 7 (48 minutes) scans, respectively. And finally, in case of TSBluetooth

analysis, Jaccard Index metric and KL Divergence require 10 (1 hour 24 minutes)

and 8 (48 minutes) scans, respectively. As a result, KL Divergence provides higher

detection speed than Jaccard Index, which allows the system to detect ownership

change faster.

For Scenario 2, Jaccard Index and KL Divergence metrics provide the same

speed values as for Scenario 1. Jaccard Index and KL Divergence metrics require

12 (1 hour 43 minutes) and 9 (1 hour 6 minutes) consecutive scans for TSSTA, 9 (1

hour 6 minutes) and 7 (48 minutes) scans for TSAP , and 10 (1 hour 24 minutes)

and 8 (57 minutes) scans for TSBluetooth, respectively. The speed values that are

provided by KL Divergence metric are consistently higher compared to Jaccard

Index.

Finally, for Scenario 3, Jaccard Index and KL Divergence metrics provide con-

sistent speed values as for the previously evaluated scenarios. KL Divergence

metric provides higher speed compared to Jaccard Index for each analyzed context.

However, the achieved detection speed does not meet requirement R3.2.

As a result, we can state that KL Divergence provides higher detection speed

compared to Jaccard Index by 25-30 minutes on average for all analyzed contexts

in each scenario. However, the current implementation does not meet requirement

R3.2 that was set in Section 3.3.

7.4 Re-evaluation using AP Detection technique

Sections 7.3.2 and 7.3.3 presented the accuracy and speed evaluation of the

current implementation of FoundIoT . According to the gathered results, FoundIoT

achieves the highest accuracy with TPR of 100% and FPR of 0% and highest speed

of 48 minutes using KL Divergence metric. However, it does not meet the speed

requirement set in Section 3.3 due to delay of 10 minutes between the scans and

the multi-stage ownership change detection scheme.

According to accuracy evaluation presented in Section 7.3.2, TSAPloc
provides

the highest accuracy in each examined scenario. That is why, we have limited the

ownership change detection scheme with AP Detection technique. In this section,

we re-evaluate the system performance by making new experiments.

7.4.1 Experiment setup

The setup is composed of our IoT testbed device connected to a WiFi AP, which is

called local, and external APs. The testbed device invokes iwlist utility to scan

45

Evaluation

for APs in its vicinity periodically, each 30 seconds. Each scan takes on average 3

seconds. As a result, each scan generates two time series: local and external APs.

The scans are performed in different locations to check the system performance

for all ownership change scenarios described in Section 7.3.1.

We also change the number of scans used for generation of set of previously

discovered devices Setprev. Setprev is used in the computation of the similarity

score by Jaccard Index and KL Divergence metrics. In the initial implementation

evaluated in Sections 7.3.2 and 7.3.3, we generate Setprev based on all prior scans.

In our new experiment setup, we use only 10 previous scans to generate Setprev.

7.4.2 Accuracy Evaluation

In this section, we evaluate the system detection accuracy.

As it was mentioned earlier in Section 5.3, the accuracy of detection depends

on two parameters: detection threshold ∆similarity and window W . To evaluate

the accuracy of KL Divergence metric, we use the approach described earlier in

Section 7.3.2 to generate experimental dataset with mixed data from different

contexts.

For example, Figures 7.17 and 7.18 present the accuracy and speed evaluation

of FoundIoT detection for Scenario 3. The system reaches the highest accuracy

with TPR of 70% and FPR of 1% for TSAPext in 3 scans, which takes 1 minute 39

seconds. KL Divergence cannot identify changes in the IoT device TSAPext context

accurately due to unchanged location of the IoT device, which leads to low TPR

values.

The system meets requirement R3.2; however, it does not meet requirement

R3.1 due to low TPR values. As a result, this means that KL Divergence for

TSAPext can be used as a supplementary technique for detection of ownership

change.

Table 7.7 presents the highest accuracy values of FoundIoT detection using

KL Divergence achieved in case of each ownership change scenario in our new

experiment.

Analyzed TS 1st scenario 2nd scenario 3rd scenario

TSAPloc

TPR:100%, FPR:0%
1 scan (33sec)

TPR:100%, FPR:0%
1 scan (33sec)

TPR:100%, FPR:0%
1 scan (33sec)

TSAPext

TPR:100%, FPR:0%
1 scan (33sec)

TPR:100%, FPR:0%
2 scans (1min6sec)

TPR:70%, FPR:1%
3 scans (1min39sec)

Table 7.7. Performance Evaluation of FoundIoT Detection Using KL Divergence Metric for TSAPloc

and TSAPext

KL Divergence metric reaches the accuracy required by R3.1 in all ownership

change scenarios. However, due to unchanged location of the IoT device and

46

Evaluation

Figure 7.17. Scenario 3. Detection Threshold and Window Parameters Evaluation for
TSAPextusing KL Divergence metric.

Figure 7.18. Scenario 3. Detection speed evaluation using KL Divergence metric for TSAPext .

large overlap of devices that belong to the previous and new owner contexts, KL

Divergence cannot accurately identify difference in the external contexts TSAPext

in Scenario 3 and reaches only TPR of 70% and FPR of 1%. For TSAPloc
, KL

Divergence provides the required accuracy because of different APs used by the

previous owner and a new owner. As a result, we can use external and local

TSAP for ownership change detection because both of them does not cause FPR

higher than 1% as required by R3.1. In case the system does not detect ownership

change in the external context, it switches to the local context, which provides the

required TPR.

It is worth mentioning that in our new experiment, KL Divergence is able to

achieve the required accuracy with a significantly higher speed. This can be

explained by the reduced number of scans used for generation of Setprev. Thus, KL

Divergence performs better on sets with the lower number of devices and achieves

the required accuracy under 2 minutes.

As a result, we can state KL Divergence metric provides the accuracy required

by R3.1 in each ownership change scenario.

47

Evaluation

7.4.3 Speed evaluation

The evaluation of accuracy presented in Section 7.4.2 showed that KL Divergence

metric can detect ownership change with highest accuracy using the window of 3

scans. Due to delay of 30 seconds between the scans, the lowest speed of FoundIoT

detection is 1 minute 39 seconds, which satisfies our speed requirement R3.2.

As a result, we can state the described technique fully meets the requirement

R3.2.

7.5 Security

7.5.1 MAC Address Spoofing

One of security issues of the current approach is related to MAC address spoofing

attack. FoundIoT detects and identifies wireless context in the device vicinity

during capturing phase. The identification is based on MAC address of device

network card. This information could be easily spoofed by an adversary.

One possible solution for MAC address spoofing is device fingerprinting. J.

Franklin et al. [36] described a passive device driver fingerprinting technique that

is based on different network card 802.11 implementations by vendors. With the

use of developed technique, authors were able to reliably identify 802.11 chipsets

and even specific version of network card driver. The authors’ general idea of

the fingerprinting relies on different IEEE 802.11 [6] implementations by device

manufacturers, which could lead to the identification of a device driver, firmware

or even user applications that use the network channel. 802.11 implementation

implies an active scanning procedure, which is used by a device to scan its vicinity

for an AP. A device sends a specific management frame called the probe request.

If an AP is compatible with the scan parameters of a device, it sends a probe re-

sponse to acknowledge received request. Due to different 802.11 implementations,

devices from different vendors send management frames with varying frequency.

This feature helps to differentiate the device vendor. One of the most important

features of 802.11 fingerprinting is that the implementation is mainly controlled

by hardware. It means that in most cases it is impossible to mimic a network

card 802.11 implementation and spoof the context by an adversary. However, the

fingerprinting approach cannot be used for our system, as it requires scans with a

long duration to collect statistical data for accurate fingerprint generation. This

prevents the system from respecting the speed requirement R3.2.

Sheng et al. [37] and Chen et al. [38] proposed solutions that analyze the signal

48

Evaluation

strength of the monitored station. The algorithm detects a spoofed station based

on the difference of signal strength of reply frames sent back from the genuine and

spoofed stations. This approach is feasible for the IoT device ownership change

scenario as it does not require a lot of scans to identify the signal strength of

nearby wireless stations.

Bharti et al. [39] proposes a security association approach for MAC address

spoofing prevention. The idea implies sharing a secret key that is associated with

a specific AP. During data transmission, the AP sends a packet that is encrypted

using the secret key to the node. In case the node cannot decrypt the packet,

the AP is assumed to be fake. This approach is more secure than the previously

described techniques as an adversary does not know the pre-shared secret and

cannot spoof the AP. However, it requires more computational power because

it involves encryption. This approach can be used for the IoT device ownership

change scenario to ensure the authenticity of the local AP and mitigate MAC

address spoofing attacks.

7.5.2 Ownership Change Detection Delay

FoundIoT involves AP Detection technique to detect ownership change. As it was

shown in Section 7.4.3, FoundIoT is able to detect ownership change with the use

of AP Detection technique with the lowest speed of 1 min 39 seconds.

This technique detects change of the IoT device ownership during its initial con-

figuration, and therefore does not let the device and sensitive information stored on

it become vulnerable to attacks from an adversary. Mitigation of adversary actions

is very important, as he has full control over the device during ownership change.

An adversary can try to extract previous owner’s sensitive information stored

on the device, which includes account and network credentials, and information

collected by the IoT device during its operation once it is configured.

7.5.3 Susceptibility to Power Cuts

Since most smart home devices do not have their own power source, they are

susceptible to power cuts. In such cases, devices stop operating and turn off com-

pletely. Upon power restoration, the device re-initializes itself. Re-initialization

includes initiating detection of ownership change, restoring Internet connection,

and connecting to the control device.

In case of power cut during operation of FoundIoT , the execution will be contin-

ued as soon as power is restored. If the monitor component completes its scan, the

collected contextual information will be saved and used for analysis during next

49

Evaluation

iteration. If the detection condition is respected during the scan after power is

restored, the system will transfer the control to chownIoT for secure data handling.

While the IoT device is turned off, an adversary can try to launch a physical

attack to manipulate the collected context saved on the IoT device storage and

disrupt the detection technique. Currently, there is no direct protection against

physical attacks. One possible solution to mitigate this attack is computation of

checksums for saved contexts. In case the system detects the checksum mismatch,

it initiates the secure data handling by chownIoT.

50

8. Related work

Recently, several researchers have focused on ensuring sensitive information

privacy and providing security improvements for IoT devices. Our proposed

solution is primarily focused on detecting change of IoT device ownership by

registering context changes to further ensure the privacy of sensitive data stored

on smart home devices.

We organize Chapter 8 in the following way: Section 8.1 discusses alternative

solutions that provide smart home device privacy. In Section 8.2, we discuss

research works related to context aware security.

8.1 Smart Home Device Privacy

The prevalence of smart home devices is increasing exponentially, which allows

to execute daily routines more conveniently. However, it is also introducing

new unique challenges for preserving the owner’s privacy in the smart home

environment. Therefore, recent studies have been focusing on ensuring privacy of

smart home device owners. Several of these works are described below.

Song et al. [40] proposed a solution that helps to preserve privacy during

communication between smart home appliances and the control device. The

authors mainly focused on eavesdropping prevention from an outside adversary

by proposing a secure communication protocol for smart home devices. In the

proposed protocol, data is encrypted before the transfer to achieve confidentiality.

To ensure data integrity, the protocol appends Message Authentication Code (MAC)

to messages for detection of tampering and data modification by an adversary.

Finally, the protocol uses MAC for two-way authentication. Smart home devices

ensure that a received message comes from a certain control device and a control

device can prove that a message comes from a legitimate smart home device. As

a result, authors described an architecture for a smart home system to ensure

user’s data security and privacy. However, the proposed solution does not cover

51

Related work

situations of ownership change. If the smart home device is sold to a different

owner or stolen, the previous owner’s sensitive information will be accessible to a

new owner or an adversary.

Sivaraman et al. [41], Liu et al. [42] and Yoshigoe et al. [43] studied the oper-

ation of popular smart home appliances, identified several security and privacy

issues, and proposed an approach for improving security system of the smart home

device and mitigating privacy threats. The solution operates on the network level

and blocks any suspicious activities for the current environment. It provides a

capability to the owner to specify a set of permitted actions for a certain environ-

ment. The system can either grant or prohibit an action, which the device tries

to execute, based on the current environment. However, the proposed solutions

do not take into account ownership change situations, which introduce unique

challenges to preserve data privacy.

Lee et al. [44] presented a different approach for preserving privacy for smart

home devices based on a cloud platform. The proposed solution describes a special

node, central home controller, that provides data-hiding and data analytical access

control capabilities in the cloud. The system enables easy access and understand-

ing for users and manufacturers that collect diagnostic data about the device

operation for service improvement. Therefore, it ensures device owner’s privacy

and data availability for manufacturers. However, authors do not examine issues

related to change in the smart home device ownership. The proposed solution does

not provide mechanisms for preserving privacy in case the owner of the device has

changed or the device was stolen. Home central controller will reveal information

stored in its memory or the cloud storage to an adversary or a new owner.

The described works are ensuring privacy of smart home device owner without

considering privacy issues during ownership change. The solutions that focus

on preserving data privacy for IoT devices need to act differently based on their

context as most IoT smart home devices are portable and can be easily taken to

a different location by an adversary. On the contrary, our solution is focused on

addressing privacy issues related to ownership change of smart home devices to

further ensure privacy of data stored on the IoT device.

8.2 Context Aware Security

During the last 10 years, the number of mobile devices and their adoption rate

have been constantly increasing. These devices include smartphones, tablets,

smart watches and smart home IoT devices. These devices are equipped with a

variety of different sensor modalities that can detect their context.

52

Related work

The contextual information can be used for various tasks and provide context

aware services. Some services provide security solutions that use contextual

information to improve security of IoT devices. Some of the recent research works

focused on context aware security are presented below.

The idea of providing context based access control has been a rather popular area

of research in recent years. Several works have described techniques for applying

context to provide access control. Wullems et al. [45] proposed an authorization

architecture for providing access control to resources based on host context, such as

its location, network topology, host security (OS patches, firewall rules, filesystem

permissions). Chung et al. [46] suggested a context-aware security model based

on user and network environment changes. In [47], Hu et al. developed a context-

aware framework for health care systems that is aimed to provide access control to

hospital resources based on user context and trust level assigned by the hospital

administrator. Shebaro et al. [48] and Das et al. [49] introduced similar solutions

that provide access control based on user’s location and his activities. The proposed

systems monitor access requests from applications on a mobile device and grants

or deny access using rule policy for the current context. In [50], Cantali et

al. presented a context-aware security system for providing Internet access.

The authors include properties, such as wireless security protocols, encryption

algorithms, user’s location and authentication protocols, for context identification.

As a result, the security system rates wireless networks in uncontrolled public

spaces with a low assessment criteria, which does not let the mobile device to

connect to them. Satoh [51] introduced a model for context-aware access control

executed on the cloud computing side. The model treats user’s location as the

primary factor for providing access to control smart home appliances only for

residents that are located in the same room with them. Gupta et al. [52] proposed

a context-based framework for access control. The proposed solution collects GPS,

Bluetooth and WiFi data to detect current context and computes its familiarity

and safety scores. The context-based framework has been integrated with a

device locking application. The software is able to accurately detect contextual

changes and adjust the safety level accordingly. Covington et al. [53] described an

advanced model for securing context-aware environments and providing flexible

access control. The model supports context-aware authorization, which means that

access could be restricted based on contextual factors, such as subject’s location,

room temperature or the time of day. Another feature of the model is related to

non-intrusive user authentication based on voice and face recognition.

The concept of non-intrusive user authentication was also discussed by Truong

et al. [20] when developing a context-aware zero-interaction authentication (ZIA).

53

Related work

ZIA refers to an approach that supports user authentication without any inter-

action with a verifier (terminal). The authors used different sensor modalities

(WiFi, Bluetooth, GPS and audio) for device and verifier co-presence detection

and experimentally proved that WiFi is the module that provides the most ef-

fective resistance to relay attacks. The major contributions of the paper are the

context detection evaluation of different sensor modalities and the use of multiple

modalities to improve resilience against relay attacks without degrading usability.

Ashibani et al. [54] introduced a context-aware authentication framework for

smart home environment. The proposed solution treats contextual information,

such as user’s location, profile and request time to grant or deny access. The frame-

work provides user authentication in a non-intrusive manner, it bases completely

on contextual information without requiring the user to provide credentials.

Previously mentioned works focused on authentication and authorization tasks

to either control access to a resource or ensure authenticity of the user. In contrast,

Al-Rabiaah et al. [55] described a mechanism that validates the device sensor

(context collector) and ensures integrity of collected context information.

Besides access control and user authentication, in another work, Harb et al.

[56] proposed a solution for secure group key management based on contextual

information. The main motivation for the proposed solution is IoT devices re-

source constraints. Due to limited resources, authors suggest to rely on multicast

communication to transmit data to several receivers. To secure the transmission,

the data needs to be encrypted. The proposed solution shares the group key used

by sender and the receivers based on collected context on each communication

member. The contextual information includes wireless network details (WiFi, 3G,

Zigbee), device geographical location and the multicast group to join.

All previously mentioned works use context to provide access control, user

authentication, authorization or to establish secure communication and eventually

improve device security. In our work, we use contextual information to detect

change of the IoT device ownership. None of the works prior ours have used context

of a device to detect change of its ownership. The use of contextual information to

detect ownership change provides the capability to a smart home device to take

necessary security measures and ensure data privacy automatically.

54

9. Conclusions

9.1 Summary of Contributions

Automatic ownership change detection system: We have presented a system

called FoundIoT that detects ownership change of the IoT device based on con-

textual changes. The proposed solution uses the device WiFi sensor modality for

context identification. It associates changes of the collected device context with

change of its ownership.

Data mining techniques: We have developed and presented data mining tech-

niques based on Jaccard Index and KL Divergence metrics that are applied to the

collected wireless communication data. FoundIoT relies on these techniques for

ownership change detection.

A prototype implementation: We have presented a prototype implementation

of the proposed system. We have used the Raspberry Pi board for deploying

the system and evaluating its performance. The system operates completely

autonomously on the device and does not require any additional external depen-

dencies.

The implementation also helps identifying practical requirements and overall

system performance.

Evaluation: We have provided the system performance evaluation, by measuring

speed and accuracy of the IoT device ownership change detection. The imple-

mented prototype is able to detect ownership change with high accuracy and low

number of false alarms. The system can achieve TPR of 100% and FPR of 1% with

speed up to 1 minute 39 seconds. High speed of ownership change detection helps

the system to mitigate adversary attacks to some extent. However, the current

implementation is vulnerable to MAC address spoofing attack. This problem

55

Conclusions

has been discussed by several works and lightweight solutions were proposed to

mitigate this attack.

9.2 Future work

Protection against spoofing: The current implementation of FoundIoT relies on

context identification using WiFi communication channel. The system captures

MAC addresses of active APs in the vicinity of the IoT device. As it was discussed

in Section 7.5.1, these readings can be spoofed by an adversary to manipulate

the context. Therefore, mitigation of this security fault is one of the main future

development directions for the project.

One of the techniques that should not create system overload and significantly

decrease the speed of ownership change detection is device fingerprinting. This

technique is based on the device specific features that cannot be spoofed.

Developing a communication protocol with chownIoT: Currently, FoundIoT oper-

ates independently and provides a response of whether ownership change was

detected or not. To ensure sensitive data privacy on the IoT device during own-

ership change, we need to develop a communication protocol for FoundIoT and

chownIoT.

The protocol needs to provide a capability to FoundIoT to communicate with

chownIoT when ownership change of the IoT device is detected. As a result, chown-

IoT needs to activate ownership change management, which includes ensuring

privacy of the previous owner’s sensitive information with encryption, preparing

the device for using by a new owner and restoring the context when the device is

returned to the previous owner.

The complete system deployment on the IoT testbed device: Currently, both com-

ponents of the complete system, FoundIoT and chownIoT, have a prototype im-

plementation on the testbed IoT device based on the Raspberry Pi board. Both

components have been individually evaluated in terms of their system load and per-

formance. It has been shown that each component operates effectively. However,

we need to ensure the complete system performance.

56

Bibliography

[1] Thien Duc Nguyen et al. “DÏoT: A Crowdsourced Self-learning Approach

for Detecting Compromised IoT Devices”. In: CoRR abs/1804.07474 (2018).

arXiv: 1804.07474. URL: http://arxiv.org/abs/1804.07474.

[2] The Bluetooth SIG. BluetoothLE. Version 4.0. 2010. URL: https : / / www .

bluetooth.com.

[3] Zensys. Z-Wave. 2001. URL: http://www.z-wave.com.

[4] Open Connectivity Foundation. IoTivity. Version 1.3.1. Dec. 18, 2017. URL:

https://www.iotivity.org.

[5] Apple Inc. HomeKit. Sept. 2014. URL: https://developer.apple.com/homekit/.

[6] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specification. Piscataway, NJ, 2012.

[7] The Tcpdump team. Tcpdump. Version 4.9.2. Sept. 3, 2017. URL: https:

//tcpdump.org.

[8] Gerald Combs, The Wireshark team. WireShark. Version 2.4.5. Feb. 24, 2018.

URL: https://wireshark.org.

[9] Markus Miettinen et al. “ConXsense: automated context classification for

context-aware access control”. In: Proceedings of the 9th ACM symposium on

Information, computer and communications security. ACM. 2014, pp. 293–

304.

[10] Md Khan et al. “Enhancing Privacy in IoT Devices through Automated

Handling of Ownership Change”. In: (2017).

[11] Raspberry. https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/.

Accessed: 2018-05-08.

[12] Brian Fox. Bash. Version 4.4.18. Jan. 30, 2018. URL: www.gnu.org/software/

bash/.

57

Bibliography

[13] Python Software Foundation. Python. Version 3.6.5. Mar. 28, 2018. URL:

https://www.python.org.

[14] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. “Automated dy-

namic firmware analysis at scale: a case study on embedded web interfaces”.

In: Proceedings of the 11th ACM on Asia Conference on Computer and Com-

munications Security. ACM. 2016, pp. 437–448.

[15] Daniel Fraunholz et al. “Investigation of cyber crime conducted by abus-

ing weak or default passwords with a medium interaction honeypot”. In:

Cyber Security And Protection Of Digital Services (Cyber Security), 2017

International Conference on. IEEE. 2017, pp. 1–7.

[16] Tessel 2. https://tessel.io/blog/113259439202/tessel- 2- hardware- overview.

Accessed: 2018-05-08.

[17] Markus Miettinen et al. “IoT Sentinel: Automated device-type identifi-

cation for security enforcement in IoT”. In: Distributed Computing Sys-

tems (ICDCS), 2017 IEEE 37th International Conference on. IEEE. 2017,

pp. 2177–2184.

[18] Serkan Polat. Bluetoothctl. Version 1.1.0. July 31, 2017. URL: https : / /

bitbucket.org/serkanp/bluetoothctl.git.

[19] Paul Jaccard. “Distribution de la flore alpine dans le bassin des Dranses et

dans quelques régions voisines”. In: Bull Soc Vaudoise Sci Nat 37 (1901),

pp. 241–272.

[20] Hien Thi Thu Truong et al. “Using contextual co-presence to strengthen zero-

interaction authentication: Design, integration and usability”. In: Pervasive

and Mobile Computing 16 (2015), pp. 187–204.

[21] Olivier Dousse, Julien Eberle, and Matthias Mertens. “Place learning via

direct WiFi fingerprint clustering”. In: Mobile Data Management (MDM),

2012 IEEE 13th International Conference on. IEEE. 2012, pp. 282–287.

[22] Solomon Kullback and Richard A Leibler. “On information and sufficiency”.

In: The annals of mathematical statistics 22.1 (1951), pp. 79–86.

[23] Solomon Kullback. Information theory and statistics. Courier Corporation,

1997.

[24] Taiyeong Lee et al. “Clustering Time Series Based on Forecast Distributions

Using Kullback-Leibler Divergence”. In: Web. 2014.

[25] Song Liu et al. “Change-point detection in time-series data by relative

density-ratio estimation”. In: Neural Networks 43 (2013), pp. 72–83.

58

Bibliography

[26] Raspbian Jessie operating system for Raspebrry Pi. Accessed: 2018-05-27.

URL: https://www.raspberrypi.org/downloads/raspbian/.

[27] Reference Manual Pages (3PCAP). Accessed: 2018-06-13. URL: https://www.

tcpdump.org/manpages/pcap.3pcap.html.

[28] Jean Tourrilhes. Iwlist. Version 29.0. Sept. 17, 2007. URL: https://hewlettpackard.

github.io/wireless-tools/Tools.html.

[29] JSON encoder and decoder. Accessed: 2018-05-27. URL: https://docs.python.

org/3/library/json.html#module-json.

[30] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source

scientific tools for Python. Accessed: 2018-05-27. 2001–. URL: http://www.

scipy.org/.

[31] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

[32] Next Thing Co. C.H.I.P. personal single-board computer. 2016. URL: https:

//getchip.com/pages/chip (visited on 03/15/2018).

[33] Intel Edison. https://ark.intel.com/en/products/84572/Intel-Edison-Compute-

Module-IoT. Accessed: 2018-05-08.

[34] Udoo Neo. https://www.udoo.org/udoo-neo/. Accessed: 2018-05-08.

[35] ps - report process status. http://man7.org/linux/man-pages/man1/ps.1.html.

Jan. 13, 2018.

[36] Jason Franklin et al. “Passive Data Link Layer 802.11 Wireless Device

Driver Fingerprinting.” In: USENIX Security Symposium. Vol. 3. 2006,

pp. 16–89.

[37] Yong Sheng et al. “Detecting 802.11 MAC layer spoofing using received

signal strength”. In: INFOCOM 2008. The 27th Conference on Computer

Communications. IEEE. IEEE. 2008, pp. 1768–1776.

[38] Yingying Chen, Wade Trappe, and Richard P Martin. “Detecting and localiz-

ing wireless spoofing attacks”. In: Sensor, Mesh and Ad Hoc Communications

and Networks, 2007. SECON’07. 4th Annual IEEE Communications Society

Conference on. IEEE. 2007, pp. 193–202.

[39] Abhishek Kumar Bharti and Manoj Chaudhary. “Prevention of Session

Hijacking and Ipspoofing with Sensor Nodes and Cryptographic Approach”.

In: International Journal of Computer Applications 76.9 (2013).

[40] Tianyi Song et al. “A privacy preserving communication protocol for IoT

applications in smart homes”. In: IEEE Internet of Things Journal 4.6 (2017),

pp. 1844–1852.

59

Bibliography

[41] Vijay Sivaraman et al. “Network-level security and privacy control for smart-

home IoT devices”. In: Wireless and Mobile Computing, Networking and

Communications (WiMob), 2015 IEEE 11th International Conference on.

IEEE. 2015, pp. 163–167.

[42] Jianqing Liu, Chi Zhang, and Yuguang Fang. “EPIC: A Differential Privacy

Framework to Defend Smart Homes Against Internet Traffic Analysis”. In:

IEEE Internet of Things Journal 5.2 (2018), pp. 1206–1217.

[43] Kenji Yoshigoe et al. “Overcoming invasion of privacy in smart home environ-

ment with synthetic packet injection”. In: TRON Symposium (TRONSHOW),

2015. IEEE. 2015, pp. 1–7.

[44] Ying-Tsung Lee et al. “Privacy-preserving data analytics in cloud-based

smart home with community hierarchy”. In: IEEE Transactions on Con-

sumer Electronics 63.2 (2017), pp. 200–207.

[45] Chris Wullems, Mark Looi, and Andrew Clark. “Towards context-aware

security: An authorization architecture for intranet environments”. In: Per-

vasive Computing and Communications Workshops, 2004. Proceedings of the

Second IEEE Annual Conference on. IEEE. 2004, pp. 132–137.

[46] Mokdong Chung et al. “Context-Aware Security Services in DAA Security

Model”. In: Advanced Language Processing and Web Information Technology,

2008. ALPIT’08. International Conference on. IEEE. 2008, pp. 424–429.

[47] Junzhe Hu and Alfred C Weaver. “A dynamic, context-aware security infras-

tructure for distributed healthcare applications”. In: Proceedings of the first

workshop on pervasive privacy security, privacy, and trust. Citeseer. 2004,

pp. 1–8.

[48] Bilal Shebaro, Oyindamola Oluwatimi, and Elisa Bertino. “Context-based

access control systems for mobile devices”. In: IEEE Transactions on De-

pendable and Secure Computing 12.2 (2015), pp. 150–163.

[49] Prajit Kumar Das, Anupam Joshi, and Tim Finin. “Personalizing context-

aware access control on mobile platforms”. In: Collaboration and Internet

Computing (CIC), 2017 IEEE 3rd International Conference on. IEEE. 2017,

pp. 107–116.

[50] Gokcan Cantali et al. “Lightweight context-aware security system for wire-

less Internet access”. In: Communications and Network Security (CNS),

2015 IEEE Conference on. IEEE. 2015, pp. 765–766.

60

Bibliography

[51] Ichiro Satoh. “Toward Access Control Model for Context-Aware Services

Offloaded to Cloud Computing”. In: Reliable Distributed Systems Workshops

(SRDSW), 2016 IEEE 35th Symposium on. IEEE. 2016, pp. 7–12.

[52] Aditi Gupta, Markus Miettinen, and N Asokan. “Using context-profiling

to aid access control decisions in mobile devices”. In: Pervasive Comput-

ing and Communications Workshops (PERCOM Workshops), 2011 IEEE

International Conference on. IEEE. 2011, pp. 310–312.

[53] Michael J Covington et al. “A context-aware security architecture for emerg-

ing applications”. In: Computer Security Applications Conference, 2002.

Proceedings. 18th Annual. IEEE. 2002, pp. 249–258.

[54] Yosef Ashibani, Dylan Kauling, and Qusay H Mahmoud. “A context-aware

authentication framework for smart homes”. In: Electrical and Computer

Engineering (CCECE), 2017 IEEE 30th Canadian Conference on. IEEE.

2017, pp. 1–5.

[55] Sumayah Al-Rabiaah and Jalal Al-Muhtadi. “Consec: Context-aware secu-

rity framework for smart spaces”. In: Innovative Mobile and Internet Services

in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on.

IEEE. 2012, pp. 580–584.

[56] Hussein Harb et al. “Multicast security model for Internet of Things based

on context awareness”. In: Computer Engineering Conference (ICENCO),

2017 13th International. IEEE. 2017, pp. 303–309.

61

List of Figures

2.1 chownIoT Flow Diagram [10] . 8

4.1 FoundIoT System Overview . 16

4.2 FoundIoT Ownership Change Detection Flow Diagram 17

4.3 FoundIoT Components . 19

7.1 FoundIoT persistent storage usage over 1 week of scans 34

7.2 Scenario 1 - Selling device or the device theft (new owner in a

different location). 36

7.3 Scenario 2 - Selling IoT device to a neighbor. 37

7.4 Scenario 3 - Selling smart home with integrated IoT device . . . 37

7.5 Scenario 1. TSSTA observation by Jaccard Index metric (owner-

ship changed during the 580th scan). 38

7.6 Scenario 1. TSAP observation by Jaccard Index metric (ownership

changed during the 81st scan). 38

7.7 Scenario 1. TSBluetooth observation by Jaccard Index metric (own-

ership changed during the 470th scan). 39

7.8 Scenario 2. TSSTA observation by Jaccard Index metric (owner-

ship changed during the 580th scan). 39

7.9 Scenario 2. TSAP observation by Jaccard Index metric (ownership

changed during the 96th scan). 39

7.10 Scenario 2. TSBluetooth observation by Jaccard Index metric (own-

ership changed during the 370th scan). 40

7.11 Scenario 3. TSSTA observation by Jaccard Index metric (owner-

ship changed during the 460th scan). 40

7.12 Scenario 3. TSAP observation by Jaccard Index metric (ownership

changed during the 98th scan). 40

7.13 Scenario 3. TSBluetooth observation by Jaccard Index metric (own-

ership changed during the 370th scan). 41

62

List of Figures

7.14 Experimental Data Generation . 41

7.15 Scenario 1. Accuracy Evaluation for TSSTA using Jaccard Index

in terms of TPR and FPR . 42

7.16 Scenario 1. Detection speed comparison of Jaccard Index and

KL Divergence metrics for TSSTA. The speed of detection is 1

hour 43 minutes and 1 hour 6 minutes for Jaccard Index and KL

Divergence metrics, respectively. 44

7.17 Scenario 3. Detection Threshold and Window Parameters Evalua-

tion for TSAPextusing KL Divergence metric. 47

7.18 Scenario 3. Detection speed evaluation using KL Divergence

metric for TSAPext . 47

63

List of Tables

7.1 Specifications of IoT Boards . 33

7.2 CPU and RAM usage of FoundIoT monitor components on the

Raspberry Pi 3 . 34

7.3 CPU and RAM usage of FoundIoT Ownership Change Detection

component on the Raspberry Pi 3 34

7.4 IoT devices identifiers used in ownership change scenarios . . . 35

7.5 Performance Evaluation of FoundIoT Detection Using Jaccard

Index Metric for Analyzed TS . 42

7.6 Performance Evaluation of FoundIoT Detection Using KL Diver-

gence Metric for Analyzed TS . 43

7.7 Performance Evaluation of FoundIoT Detection Using KL Diver-

gence Metric for TSAPloc
and TSAPext 46

64

	Abstract
	List of Acronyms
	Contents
	Introduction
	Motivation
	Contributions
	Organization

	Background
	Internet Of Things (IoT)
	Communication technologies
	WiFi
	Bluetooth

	Network Traffic Monitoring
	Network Card Operation Modes
	Monitoring Tools

	Context Awareness
	chownIoT system
	Technical Background
	Raspberry Pi
	Bash scripting
	Python

	Problem Statement
	Description
	Adversary Model
	Requirements

	System Design
	Solution Overview
	Design Choices
	Context Identification
	Data recording
	Multistage Ownership Change Detection
	Statistical analysis

	Components
	WiFi context monitor
	Bluetooth context monitor
	Time Series Generator

	Ownership Change Detection
	Time Series Analysis
	Jaccard Index
	Kullback-Leibler divergence

	Captured Data Filtering
	Analysis Conclusions

	Implementation
	Smart Home Device
	WiFi Context Monitoring
	Bluetooth Context Monitoring
	Time Series Generation
	Time Series Analysis

	Evaluation
	Deployability
	Resource Constraints
	Performance
	Ownership Change Scenarios Description
	Accuracy Evaluation
	Speed Evaluation

	Re-evaluation using AP Detection technique
	Experiment setup
	Accuracy Evaluation
	Speed evaluation

	Security
	MAC Address Spoofing
	Ownership Change Detection Delay
	Susceptibility to Power Cuts

	Related work
	Smart Home Device Privacy
	Context Aware Security

	Conclusions
	Summary of Contributions
	Future work

	Bibliography
	List of Figures
	List of Tables

