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Software verification is considered to be a hard computational problem vul-
nerable to the state explosion problem. Concurrent software verification raises
the complexity of the problem to a power determined by all the possible in-
terleavings of states of the system. Moreover, the architecture of a modern
shared-memory multi-core processor and optimisations performed by a com-
piler can cause program behaviour that is unexpected from the point of view of
traditional concurrency. The guarantees that an execution environment can
provide to a programmer are formalised in its Weak Memory Model (WMM).
Over the last decade, weak memory models were defined for multiple hard-
ware architectures and programming languages. This opens new challenges in
software verification with respect to a weak memory model.

Most existing tools that perform memory model-aware software analysis tools
examine behaviours of the program against a single memory model. The first
tool that analyses the portability of a concurrent program from one platform to
another is Porthos [PFH+17a] released in April 2017. Porthos can verify that the
program is portable from the source platform S to the target platform T by
checking that the program has no extra states under T . For that, it performs an
SMT-based bounded reachability analysis by encoding the constraints of the
program and two memory modelsMS andMT into a single SMT-formula.

Although the approach has been proven to be efficient, the tool accepts as
input the small C-like toy language. Current thesis aims to rework Porthos
by extending its input language, so that it is able to process real-world C
programs. However, current implementation of Porthos can be considered
hardly extensible, which raises the need to redesign its whole architecture in
order to increase the robustness, transparency, efficiency and extensibility. The
result of the work is PorthosC, a framework for SMT-based memory model-aware
analysis.

Keywords: Weak memory models, concurrent programming, software
verification, portability analysis, bounded reachability analy-
sis, SMT-encoding
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Chapter 1

Introduction

1.1 Problem statement

Most modern computer systems contain large parts that operate concur-
rently. Although the parallelisation of a system can drastically improve
its performance, it opens numerous of problems regarding correctness,
robustness and reliability, which makes the concurrent program design
one of the most difficult problems of programming [McK]. In this work, we
consider only Symmetric Multiprocessor (SMP) parallelism (systems with
multiple processors connected to a single shared memory), leaving aside
the discussion on distributed concurrency (systems with autonomous nodes
that communicate with each other by passing messages through the net-
work). This thesis discusses mostly the questions on the memory consistency

rather than performance benefits of the concurrency since inconsistent
memory operations can create new program behaviours, unexpected from
the programmer’s point of view (as well as the loss of expected behaviours),
which all can be considered as a security flaw.

Traditionally, studies related to concurrent programming focus on more
fundamental theoretical questions of designing race-free and lock-free
parallel algorithms, asynchronous data structures and synchronisation
primitives of a programming language [Ben06]. Unfortunately, when it
comes to real-world concurrent programs, the algorithmic level of abstrac-
tion is not enough for guaranteeing their correctness. The reasons of this
fact lie in the code optimisations that both compiler and hardware perform
in order to increase performance of the system [AG96].

As an example, consider two x86 assembly programs in Figure 1.1 (such
little code examples that explain specific behaviour of the concurrent execu-

1



CHAPTER 1. INTRODUCTION

{ x=0; y=0; }

P0 P1

MOV [x],1 MOV [y],1

MOV EAX,[y] MOV EBX,[x]

exists (P0:EAX=0, P1:EBX=0)

x86-TSO: allowed

(a)Without synchronisation

{ x=0; y=0; }

P0 P1

MOV [x],1 MOV [y],1

MFENCE MFENCE

MOV EAX,[y] MOV EBX,[x]

exists (P0:EAX=0, P1:EBX=0)

x86-TSO: forbidden

(b)With synchronisation

Figure 1.1: Store buffering (SB): A litmus test illustrating the write-read

reordering allowed by the x86-TSO memory model

tion environment are called litmus tests). Two programs are the same, except
the right-hand side program uses the synchronisation instruction MFENCE

after the store to the shared memory. In both programs, the process P0
writes the value 1 to the shared variable x and reads a value of the shared
variable y, and the process P1 writes to the y and reads the x.

Taking into account all possible interleavings of the read and write
instructions, both litmus tests allow the following final states:

• (P0:EAX=0, P1:EBX=1),
• (P0:EAX=1, P1:EBX=0),
• (P0:EAX=1, P1:EBX=1).

However, the non-synchronised litmus test in Figure 1.1a allows the state
‘(P0:EAX=0, P1:EAX=0)’ on the x86 architecture as x86 processors may
cache the writes to the shared memory into their local store buffers so
that the updated value does not immediately become visible by processes
running on other cores. This behaviour is known as Store Buffering (SB). For
preventing such a behaviour, the x86 architecture offers the synchronisation
instruction MFENCE that flushes the store buffer of the process. In Figure 1.1b,
this instruction is inserted for both processes after the store instructions,
thus once it is executed in one process, the other process will read the
updated value of this shared memory location. The work [McK10] gives
a comprehensive review of common hardware architectures from the
perspective of the structure of their caches and write buffers, that determine
the effect of memory operations, and memory barriers they provide.

The formal way to define the semantics of memory operations and
synchronisation primitives of a parallel execution environment (hardware,
programming language, compiler, database, operation system, etc.) is to

2



CHAPTER 1. INTRODUCTION

define its memory model. There are two main types of formal memory
models. Models of the first type characterise the behaviour of the system (its
operational semantics) in terms of the abstract machine executing the code,
as it was done for the SB example above. Models of the second type define
the axiomatic semantics of the system by specifying a set of assertions over
states of the program. Although the former type of memory models may be
easier to describe and interpret, existing numerous formal verification tools
and methods address the research towards axiomatic memory models.

Chronologically the first memory model for a concurrent system was
formulated by Leslie Lamport back in 1979 [Lam79]. This memory model,
called the Sequential Consistency (SC), allows only those executions that
produce the same result as if the operations had been executed in an
interleaved fashion in a single process1. This means that the order of
operations executed by a process is strictly defined by the program (the
code) it executes. The SC model does require the write to a shared variable
performed in one process to become visible by all other processes instantly
as each process writes directly to the sharedmemory, without local buffering.
Another important requirement of the SC memory model is that it forbids
reordering of memory operations within a single process (the order is
strictly defined by the program). Originally, the operational semantics was
defined for the SC model, however there exist axiomatic specifications for
it [MGZ15].

The SC model is considered to be a strong memory model in the sense that
it provides firm guarantees regarding the ordering and effect of memory
operations. Weakening of the guarantees (such as memory operations
reordering, write buffering, etc.) is called relaxation of the memory model.
The relaxations of the SC model lead to Weak Memory Models (WMMs)

that specify how processes interact through the shared memory, when
a write becomes visible to processes running on other cores, and what
value a read operation can get. Thus, WMMs serve as a set of guarantees
made by designers of an execution environment to programmers on which
behaviours of their concurrent code they can rely on.

1In order to prescind from the implementation details while discussing the memory
models theory, we avoid the use of the software-specific term thread and the hardware-
specific term processor. Instead, we adhere the terminology of the theory of concurrency
employed by Ben-Ari [Ben06] by naming a concurrent piece of code the process.

3



CHAPTER 1. INTRODUCTION

1.2 Related work

Research on weak memory models firstly aims to formalise an approach
of understanding programs with respect to weak memory models, which
is systematic, sound and complete. One of the most well-known frame-
works for weak memory model-aware analysis was formalised by J. Alglave
in 2010 [Alg10]. It is the event-based non-deterministic model without
global time (see Section 2.1 for details).

In addition to developing the theoretical basis, researchers work on
extracting the memory models for hardware architectures from existing
implementations or from the specifications, which are written in natural
language and thus suffer from ambiguities and incompleteness. Over
the last decade, memory models have been defined for most mainstream
multiprocessor architectures, such as x86-TSO and Sparc-TSO (for Total
Store Order) model for x86 and Sparc architectures [OSS09], much more
relaxed memory model for Power and ARM architectures [AFI+09; SSA+11;
AMT14], etc. There are projects for validating hardware architectures wrt. a
memory model as well, e.g., [LPM14; LSM+16].

Most modern high-level programming languages rely on relaxed mem-
ory models as well. Thus, the memorymodel for Java is based on the happens-
before principle [Lam78] and was introduced in J2SE 5.0 in 2004 [MPA05].
The transformations valid under the Java memory model are discussed
in [Šev09]. The weak memory model for C and C++ was defined the C++11
standard [ISO11]. The standard introduced a set of hardware-independent
synchronisation fences and atomic operations, which were formalised in
the work [BOS+11]. The native support for the synchronisation primitives
by the programming language, defined in the standard, has replaced the
library-based approach for concurrency, therefore the compiler became
aware of the concurrent parts of the code. Nonetheless, in 2015 some com-
mon compiler transformations were shown to be invalid under the C11
memory model [VBC+15].

Weak memory models are being formalised for even more abstract soft-
ware environments. The notable project in this area is the project on formal-
ising the Linux kernel memory model, which is under active development
nowadays [AMM+18; MAM+17; MSH+17]. This project has also an influence
on the C language: the revision P0124R4 of the C standard [MWP+17]
compares the Linux kernel and C11 memory models (including variable
access, memory barriers, locking and atomic operations).

4



CHAPTER 1. INTRODUCTION

Furthermore, there exists a wide range of tools that perform memory
model-aware analysis.

• A state-of-the-art tool is diy (do it yourself ), developed by researchers
from INRIA institute, France and University of Cambridge, UK. The diy2

is a software suite for designing and testing weak memory models. It is
firstly released back in 2010, and since that time it remained to be the
only tool for testing weak memory models. The diy consists of several
modules: the litmus tests generators diy, diycross and diyone, the litmus
test concrete executor litmus that runs tests on a physical machine and
collects its behaviours, and the weak memory model simulator herd that
implements reachability analysis for exploring states reachable under
the specified WMM.

• Some tools that perform the weak memory model-aware program ver-
ification and model checking. The notable examples are the stateless
model checkers RCMC [KLS+17], CHESS [MQ08], Nidhugg [AAA+17],
Trencher [BDM13], and others.

• Some tools tackle the problem of automated synthesis of the synchro-
nisation primitives, such as the automatic fence insertion tool muske-
teer [AKN+14a], and the automatic verification and fence inference tool
blender [KVY11].

• Along with synthesis of synchronisation primitives, some tools were
designed to perform the automatic synthesis of litmus tests for the
weak memory model, for example litmustestgen by the NVidia Re-
search [LWP+17].

• The framework Alloy [WBS+17] can be used for understanding WMMs;
it can automatically generate conformance tests between two memory
models, distinguish two WMMs, and check monotonicity and compiler
mappings of a program.

• Some other tools perform static instrumentation of concurrent C pro-
grams and encode the WMM into the program representation so that it
can be model-checked by standard tools. The examples are:
◦ the instrumenting compiler goto-cc which is a part of CBMC model

checker [KT14],
◦ the tool that performs the sequentialisation of concurrent pro-

grams [AKN+13],
◦ the tool Weak2SC generates weak memory model descriptions
of the program, which can be fed into standard model checking

2The diy project web site: http://diy.inria.fr/

5
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CHAPTER 1. INTRODUCTION

tools (such as SPIN [Hol97] or NuSMV [CCG+00]) for performing
memory model-aware analysis [TW16].

All the tools listed above consider only a single memory model, however,
in real life we face serious engineering problems involving more than one
execution environment. One of these problems is the portability analysis of
the program from one hardware architecture to another. A program written
in a high-level language is compiled for different hardware architectures.
Even if all the compiler optimisations were disabled (which is a rare case
nowadays), the behaviour of two compiled versions of the same program
may differ due to differences between hardware memory models. As the
result, a program compiled for the platform T can reach states that are
unreachable on the platform S , which is a portability bug from the source
platform S to the target platform T [PFH+17a].

The very first tool that performs the WMM-aware portability analysis is
Porthos3 introduced in April 2017 [PFH+17a]. This tool reduces described
problem to a bounded reachability problem, which can be solved via an
SMT-solver (see Section 3.2). This approach allows to capture symbolically
the semantics of analysing program and both weak memory models into
a single SMT-formula, augmented by the reachability assertion. As most
modern SMT-solvers are efficient enough to be able to operate the state space
of size millions of variables bounded by millions of constraints ([MZ09]),
the used method can be applicable in solving the real-world problems.

1.3 Task specification

The current work aims to rework the proof-of-concept tool Porthos by
extending the input language, which currently represents the minimum
subset of C, and revising the general architecture of the tool in order to
enhance performance, extensibility, reliability and maintainability. One of
the directions of development was the ability to process the kernel litmus

tests written in C [MSH+17]. For that, in addition to supporting the C syntax
(augmented by litmus-style definitions such as initialisation or assertion
statements), the tool must be able to recognise kernel-specific functions and
macros (such as the macro ‘READ_ONCE’ that guarantees memory read) and
be easily extensible for defining new functions (have the separate module
for the purpose of a knowledge base).

3The Porthos v1 project repository: http://github.com/hernanponcedeleon/Dat3M

6
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CHAPTER 1. INTRODUCTION

As the general architecture and almost all components of Porthos were
to be redesigned, the tool received a new name PorthosC 4. Considering the
enhancements of the architectural design, PorthosC represents a generalised
framework for SMT-based memory model-aware analysis, which can not
only perform the reachability and portability analysis, but serve as a basis
for other kinds of static analysis of concurrent programs.

1.4 Thesis structure

The thesis is organised as following. Chapter 2 gives a general view on the
weak memory model-aware analysis. Chapter 3 examines the portability
analysis as an bounded reachability problem that can be encoded into
an SMT-formula in order to be solved automatically by an SMT solver.
Chapter 4 delves into the description of architectural solutions and imple-
mentation details of the PorthosC framework. Chapter 5 gives a comparison
of key features of PorthosC and Porthos v1 by providing examples of the
compilation and the unrolling stages; and it provides some performance
benchmarks of PorthosC in both reachability and portability analysis modes.
Chapter 6 summarises results of the work and proposes possible directions
for future work.

4Hereinafter with the names Porthos and Porthos v1 we refer to the tool Porthos of
version 1, whereas the new implementation of Porthos is called PorthosC.

7



Chapter 2

Memory model-aware analysis

The main idea behind the memory model-aware program analysis is that
the set of all possible executions of the concurrent program (the anarchic se-
mantics) can be specified by the axiomatic constraints of the memory model
that filter out executions inconsistent in particular architecture (the analytic
semantics) [ACM16]. The anarchic semantics of the program is a truly paral-
lel semantics with no global time that describes all possible computations
with all possible communications. However, the analytic semantics captures
the program behaviours on a certain execution environment more precisely.

2.1 Event-based program representation

The classical approach for analysing concurrent programs is to model it
as the set of sequentially consistent programs, obtained by enumerating
all possible interleavings. These models are deterministic as they include
the notion of the global time. Although these models are easy to build
and analyse, the number of all possible interleavings grows exponentially
(known as the combinatorial explosion), which affects the completeness of an
analysis method in general case.

One way to fight the combinatorial explosion is to exclude the global
time from the model and treat executions from one equivalence class
together in a non-deterministic fashion. For instance, such an equivalence
class can be the set of computations performed by a processor locally that
do not affect the global state. This idea is used in the event-based model,
that represents the program as a directed graph of events (the event-flow
graph) [Alg10; AMT14]. The vertices of such a graph represent events (see
Section 2.1.1), and edges represent basic relations (see Section 2.1.2). The

8



CHAPTER 2. MEMORY MODEL-AWARE ANALYSIS

graph represents the set of executions (sequences of events; see Section 2.1.3)
defined by the non-deterministic guesses of certain relations on some states.

There are three main types of sources of non-determinism in concurrent
programs [MQ08]:

1. input non-determinism, which is a standard undecidable problem for
all static analysis methods: to resolve the user input, system call from
the environment, unresolved function calls, etc.;

2. scheduling non-determinism, caused by the interleavings, which in turn
are caused by the scheduler activity; and

3. memory-model non-determinism, caused by hardware and compiler
relaxations.

The event-based program model is able to emulate effectively the second
and the third types of sources of non-determinism, while the first one can
be coped by standard static analysis methods [Lan92; BCD+18].

2.1.1 Events

An event is a fact of executing the low-level primitive atomic operation
such as memory access, threads synchronisation, computation over the
local-memory, control-flow jump, etc.

A memory event em ∈ E represents the fact of access to the memory. Only
memory events change the state of an abstract machine executing the code,
since it is completely determined by values stored in its memory. Since
memory is the crucial low-level resource shared by multiple processes,
most relations are defined over memory events. The processes can access a
shared memory location (denoted by li , for location), or a local one (denoted
by ri , for register). A memory event can access at most one shared memory
location, high-level instructions that address more than one shared variable
must be transformed into a sequence of events. A memory event is specified
by its direction with respect to the shared variable, its location loc(em), its
processor label proc(em), and a unique event label id(em) [Alg10].

The set of memory events M is divided into write events W (that
write values to shared-memory locations) and read events R (that read
values stored in shared-memory locations). We add a restriction that
each memory event uses at most one shared location, so that the write
instruction i = write(l1, l2), that encodes the write from the shared loca-
tion l2 to the shared location l1, is represented as two consequent events
‘e1 = load(r1 ← l2); e2 = store(l1 ← r1)’. Also, it is important to separate

9
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the set of initial write events IW ⊆ W that perform initialisation of
program variables.

A computation event ec ∈ C ⊆ E, represents a low-level assembly compu-
tation operation performed solely on local-memory arguments. An example
of computation event may be the event ec = r1← add(r2,1) that writes the
sum of values stored in register r2 and constant 1 (which is modelled as a
register as well) to the register r1. For modelling branching statements, we
define the set Cg ⊆ C of guard computation events (also called as branching
events), that are evaluated to a boolean value.

Synchronisation instructions (fences) cause barrier events, which do not
perform any computation or memory value transfer, instead, they the set
of program behaviours by adding barrier relations to the program model.
Functionally, a fence may be a synchronisation barrier or a instruction for
flushing memory caches into the main memory, etc. For instance, the mfence
instruction of the x86 assembly flushes the store buffers of the thread, and
thus does not allow the rf -relation to hold (see Section 2.1.2).

2.1.2 Relations

The relation r ⊆ E × E is a set of pairs of events (a subset of Cartesian
product of two sets of events). There are two kinds of relations between
events: basic relations that capture the semantics of the program, and derived

relations that are defined from the basic relations and events in the weak
memory model specification. Constraints over relations that are specified by
weak memory models are defined as requirements of acyclicity, irreflexivity
or emptiness of specific relations [ACM16].

The basic relations are the following [Alg10]:

• The control-flow of a program is defined by the program-order relation
po ⊆ E × E, which represents the total order of events of same
process. For instance, if the instruction i1 generates the event e1 and
the instruction i2 follows i1 and generates the event e2, then e1

po
→ e2.

• The data-flow of a program is defined by communication relations:

◦ the read-from relation rf ⊆ W × R that maps each write event
to the read event that reads the value written by write event; and
◦ the coherence-order relation co ⊆ W × W that defines the total
order on writes to the same location across all processes (also
called the write serialisation, ws-relation).

10
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• Events from the same process are related by the scope relation

sr ⊆ E × E. In contrast to the herd tool, PorthosC does not use
hierarchy of scopes (depicted as the scope tree); instead, it uses simple
labels that indicate which process has produced certain event.

Below we enumerate some derived relations [Alg10]:

• the from-read relation fr ⊆ R × W that maps a read event to all write
events succeeding the write event from which the read event gets its
value:
r

fr
→ w , (∃w′.w′

rf
→ r ∧w′

co
→ w);

• the communication relation poover memory events, that fully describes
the data-flow of a program:

m1
com
→ m2 , ((m1

rf
→m2)∨ (m1

co
→m2)∨ (m1

fr
→m2));

• the external (and internal) from-read relations that restrict the fr-
relation to the different (respectively, same) processes:

w
fre
→ r , (w

fr
→ r ∧ proc(w) = proc(r)),

w
fri
→ r , (w

fr
→ r ∧ proc(w) , proc(r));

• the po-loc relation that is the po -relation over events that access to
the same shared variable:
m1

po-loc
→ m2 , (m1

po
→m2 ∧ loc(m1) = loc(m2)); and

• the semantics of fences (memory barriers) specific for different archi-
tectures may be defined as derived relations.

2.1.3 Executions

The semantics of a concurrent program is represented as the set of allowed
executions. An execution is a path in the event-flow graph defined by po-
and rf-relations and set of final writes to a given memory location that
is valid under certain memory model [AMT14]. It can be interpreted as a
sequence of guesses which event is to be executed next. A candidate execution

is an execution that is not yet constrained by a memory model.
Figure 2.1 illustrates four possible candidate executions for the litmus

test Example 1.1 (the pictures are generated by the herd7 tool, version 7.47).
Since there are no conditional jumps, the po -relation is defined and we do
not need to guess it. Since each thread performs a single write followed

11
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by a single read, the co -relation is also defined (it relates the initial write
event with the write event to the same location).

(a) Final state:
(P0:EAX=1, P1:EAX=1)

(b) Final state:
(P0:EAX=1, P1:EAX=0)

(c) Final state:
(P0:EAX=1, P1:EAX=1)

(d) Final state:
(P0:EAX=0, P1:EAX=0)

Figure 2.1: Candidate executions for the litmus test in Example 1.1

Thus, there are only four possible executions defined by the choice
of rf-relation. The candidate executions pictured in Figures 2.1a–2.1c
are consistent both under strong memory model SC and under relaxed
memory models x86-TSO, Power, ARM, and some others. However, the
execution shown in Figure 2.1c is still consistent under relaxed-memory
architectures, but it becomes inconsistent under SC architecture as it forbids
cycles over fr ∪ po .

2.2 The CAT language

Weak memory models are defined via CAT language [ACM16]. It is a do-
main specific language for describing consistency properties of concurrent
programs. The language combines expressive power of a functional lan-
guage (being inspired by OCaml, it adopts the OCaml types, first-class
functions, pattern matching and some other features) with concepts of
memory models (sets of events, relations, operations and assertions over
relations). In CAT, new relations can be defined via the keyword let and
the following operators over relations [ACM16].

Below we enumerate pre-defined operations over relations and sets of
events:

12
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1. Unary operations:

• the complement of a relation r is ~r,

• the transitive closure of a relation r is r+,

• the reflexive closure of a relation r is r?,

• the reflexive-transitive closure of a relation r is r*, and

• the inverse of a relation r is r-1.

2. Binary operations:

• the union of two relations r1 and r2 is r1 | r2,

• the intersection of two relations r1 and r2 is r1 & r2,

• the difference of two relations r1 and r2 is r1rr2, and

• the sequence of two relations r1 and r2 is r1;r2, which is defined
as the set of pairs (x,y) such that there exists an intervening z,
such that (x,z) ∈ r1 and (z,y) ∈ r2.

For instance, the fr-relation is defined as a sequence of inverted rf-
relation and co -relation: fr = (rf-1;co). As an example of memory model
definition in CAT language, Figure 2.2 presents the excerpt from the x86-
TSO memory model [AM10]. This memory model specification asserts
acyclicity of the communication relation (the union of rf-, fr- and co-
relations), po-loc -relation, mfence-relation and some other derived rela-
tions [OSS09].

...

let po_ghb = WW(po) | RM(po)

let implied = PA(poWR) | WR(po)

let GHB = mfence | implied | po_ghb | rfe | fr | co

let com = rf | fr | co

empty atom & (fre;coe)

acyclic po-loc | com

acyclic GHB

Figure 2.2: Excerpt from the x86-TSO memory model in the CAT language
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Chapter 3

Portability analysis as an SMT
problem

As it was discussed in Chapter 1, a concurrent program may behave differ-
ently when compiled for different hardware architectures. This may cause
the portability bugs, the behaviour that is allowed under one architecture
and forbidden under another. This Chapter provides the short introduction
into the general model checking and reachability analysis problem, after
which it describes of the concurrent software portability analysis stated as
a bounded reachability problem, which in turn can be reduced to an SMT
problem [PFH+17b].

3.1 Model checking and reachability analysis

Themodel checking is the problem of verifying the system (themodel) against
a set of constraints (the specification) [DKW08]. As the state machine is the
most widespread mathematical model of computation, most classical model
checking algorithms explore the state space of a system in order to find
states that violate the specification.

The general scheme of model checking is the following. The analysing
system is represented as a transition system, a directed graph with labelled
nodes representing states of the system. Each state corresponds to the
unique subset of atomic propositions that characterise its behavioural
properties. Once the model has been constructed, it can be checked for
compliance to the specification, a set of constraints.

Usually, the specification defines temporal constraints over the system
properties. For instance, the specification can assert that the property always

14
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holds (the safety property) or the property will eventually hold (the liveness
property). Commonly, the Linear Temporal Logic (LTL) or Computational Tree

Logic (CTL) (along with their extensions) is used as a specification language
due to the expressiveness and verifiability of their statements [CGP99].

In the described scheme, the model checking problem is reducible to the
reachability analysis, an iterative process of a systematic exhaustive search
in the state space. This approach is called Unbounded Model Checking (UMC).
However, all model checking techniques are exposed to the state explosion
problem as the size of the state space grows exponentially with respect
to the number of state variables used by the system (its size). In case of
modelling concurrent systems, this problem becomes much more serious
due to the exponential number of possible interleavings of states. Therefore,
over past 30 years the research in model checking has been fighting the
state explosion problem mostly by optimising search space, search strategy
or basic data structures of existing algorithms [CGJ+01].

One of the first techniques that optimises the search space con-
siderably is the symbolic model checking with Binary Decision Dia-

grams (BDDs) [BCM+92]. Instead of processing each state individually,
in this approach the set of states is represented by the BDD, a data struc-
ture that allow to perform operations on large boolean formulas effi-
ciently [CKN+12]. The BDD representation can be linear of size of variables
it encodes if the ordering of variables is optimal, otherwise the size of BDD
is exponential. The problem of finding such an optimal ordering is known
as NP-complete problem, which makes this approach inapplicable in some
cases.

The other idea is to use satisfiability solvers for symbolic exploration of
state space [CBR+01]. In this approach, the state space exploration consists
of the sequence of queries to the SAT-solver, represented as boolean formulas
that encode the constraints of the model and the finite path to a state in
the corresponding transition system. This technique is called Bounded

Model Checking (BMC) as the search process is being repeated up to the
user-defined bound k, which may result to incomplete analysis in general case
(not all the state space has been checked). However, there exist numerous
techniques for making BMC complete for finite-state systems (e.g., [Sht00]).

At present time, satisfiability solvers are behind the numerous veri-
fication and bounded model checking tools. Although, as most modern
programming languages are typed, a SAT-formula that encodes the con-
straints of a program must include non-boolean constraints encoded as
boolean variables, which is ineffective, therefore most software analysis
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and verification tools use Satisfiability Modulo Theories (SMT) solvers, that
integrate first-order reasoning with the background theory reasoning [KS08].
For example, the Integer theory includes operators ‘+’, ‘−’, ‘>’ and others).
Most modern SMT-solvers support integer arithmetic, real arithmetic, fixed-
size bit-vectors, arrays, and other theories. The direction of the development
of SMT-solvers is provided by the SMT-LIB standard [BFT17], which pro-
vides definition of the unified language for defining SMT-formulas, and
description of most common underlying logics and theories.

In general, a BMC problem aims to examine the non-reachability of the
"undesirable" states of a finite-state system. Let ~x = (x1,x2, ...,xn) be a vector
of n variables that uniquely distinguishes states of the system; let Init(~x) be
an initial-state predicate that defines the set of initial states of the system;
let Trans(~x,~x ′) be a transition predicate that signifies whether there the
transition from state ~x to state ~x ′ is valid; let Bad(~x) be a bad-state predicate

that defines the set of undesirable states. Then, the BMC problem, stated as
the reachability of the undesirable state withing k steps, is formulated as
following: SAT(Init(~x0)∧Trans(~x0, ~x1)∧ ...∧Trans(~xk−1, ~xk)∧Bad(~xk)).

3.2 Portability analysis as a bounded

reachability problem

A portability analysis problem may be stated as a reachability problem,
where the undesirable state is one reachable under the targetMT memory
model and unreachable under the source memory modelMS . Consider the
function consM(P) which calculates the set of executions of the program P
that are consistent under the memory modelM. The program P is called
portable from the source architecture (memory model)MS to the target
architectureMT if all executions consistent underMT are consistent under
MS [PFH+17a]:

Definition 3.2.1 (Portability). LetMS ,MT be two weak memory models.
The program P is portable fromMS toMT if consMT (P) ⊆ consMS (P)

Note that the definition of portability requirements against executions
is strong enough, as it implies the portability against states (the state-

portability) [PFH+17b]. The result SMT-formula φ that encodes the porta-
bility problem should contain both encodings of control-flow φCF and
data-flow φDF of the program, and assertions of both memory models:
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φ , φCF ∧φDF ∧φMT ∧φ¬MS . If the formula is satisfiable, there exist a
portability bug.

3.2.1 Encoding for the control-flow

The control-flow of a program can be represented by the control-flow

graph, a directed acyclic connected graph with a single source and one
or multiple sink nodes. Each control-flow edge contains the label that
denotes the transition predicate called guard. The empty guard (a true

predicate) is denoted as ‘ǫ’. A guard represents a variable or a computational
expression over local variables. As a guard depends on the data-flow of the
program, it is liable to the weak memory model relaxations. The branching
expressions that support more than two outgoing control-flow edges may
be useful for describing non-deterministic transition systems, where the
guards are not necessarily mutually exclusive. However, as the C language
supports only binary logic (if-then-else branching), PorthosC builds only two
possible outcomes of evaluating a computation (the primary and alternative

transitions), see Section 4.3.1.2 for details.
While working on PorthosC, we have applied some modifications to the

encoding scheme for the control-flow. These changes were motivated by
the need to process an arbitrary control-flow produced by conditional and
unconditional jumps of the C language. For that, we compile the Abstract
Syntax Tree (AST) of the parsed C-code to the plain event-flow graph. The
new encoding is to be smaller than the old one used in Porthos since it
does not produce new variables for each high-level statement of the input
language.

For instance, Porthos v1 uses the encoding scheme where the control-
flow of the sequential instruction i1 = i2; i3 is encoded recursively as
φCF(i2; i3) , (cfi1 ⇔ (cfi2 ∧ cfi3))∧φCF(i2)∧φCF(i3), and the control-flow
of the branching instruction i1 = (c ? i2 : i3) was encoded recursively as
φCF(c ? i2 : i3) , (cfi1⇔ (cfi2 ∨ cfi3))∧φCF(i2)∧φCF(i3). In contrast, the new
encoding scheme implemented in PorthosC firstly compiles the recursive
high-level instructions into the linear low-level event-flow graph, which
is then encoded into an SMT-formula. A guard in the event-flow graph is
a value of conditional variable on the branching event, which is encoded
as a data-flow constraint (see Section 3.2.2). In general, the new encoding
scheme follows the one proposed in [EH08, Chapter 5.1.2] for encoding
Petri-nets.
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ei

ei+1

ǫ

(a) Sequence of events (seq)

ek

...ei ei+j

gi,k gi+j,k

(b) Conditional branching (br)

ei ... ei+j

ek

gi,k

(c) Branch merging (mer)

Figure 3.1: Possible mutual arrangements of events in an event-flow graph

Let x : E → {0,1} be the predicate that signifies the fact that the event
has been executed (and, consequently, has changed the state of the system).
Consider the possible mutual arrangements of nodes in an event-flow graph
presented in Figure 3.1. For these cases, we propose the encoding scheme
that uniquely encodes each node of graph and at the same time allows to
encode partially executed program:

φCFseq , x(ei+1)⇒ x(ei) (3.1)

φCFbr , [x(ei)⇒ x(ek)] ∧ · · · ∧ [x(ei+j)⇒ x(ek)]

∧ [x(ei)∧ x(ek)⇒ gi,k] ∧ · · · ∧ [x(ei+j)∧ x(ek)⇒ gi+j,k]

∧ · · ·

∧ (
∨

el∈ succ(em)

∨

en∈ succ(ek)
en,em

¬[x(em)∧ x(en)] ) (3.2)

φCFmer
, x(ek)⇒ (

∨

ep∈ pred(ek)

x(ep)) (3.3)

Equation 3.1 shows the encoding for the sequential control-flow repre-
sented in Figure 3.1a and reflects the fact that the event e2 can be executed
iff the event e1 has been executed. Equation 3.2 shows the encoding for
the branching control-flow depicted in Figure 3.1b, that considers both
transitions and guards. Also, adding negations of pairwise conjunctions over
all successors of the branching node, the encoding forbids the execution
of two branches simultaneously. Equation 3.3 shows the encoding for the
control-flow of a merge-point represented in Figure 3.1c: the event ek is
executed if either of its predecessors has been executed, regardless the type
of the transition. Note that the sequential control-flow is a special case of
branching with the only transition guard ǫ (that is encoded as true).
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e1

e2

e3

−→

e1

e2 enop

e3

Figure 3.2: Transformation of the forward-jump control-flow

e1

e2

enop1

e3 enop2

e4

ǫ
g1,4

ǫ

g2,3

ǫ

g2,4

ǫ

φCF , [x(e2)⇒ x(e1)]

∧ [x(e3)⇒ x(e2)]

∧ [x(enop1)⇒ x(e1)]

∧ [x(enop2)⇒ x(e2)]

∧ [x(e4)⇒ (x(enop1)∨ x(e3)∨ x(enop2))]

∧ [x(enop1)∧ x(e1)⇒ g1,4]

∧ [(x(e3)∧ x(e2))⇒ g2,3]

∧ [(x(enop2)∧ x(e2))⇒ g2,4]

∧¬[x(e2)∧ x(enop1)]

∧¬[x(e3)∧ x(enop2)]

Figure 3.3: Example of encoding for the control-flow of the X-graph

For sake of correctness and simplicity of the encoding, we require all
branches to have at least one event. Thus, for branching statements that
do not have any events in one of the branches (such branch represents a
conditional jump forward), we add a synthetic nop-event as it is shown in
Figure 3.2.

As an example of the control-flow encoding, consider the event-flow
graph in Figure 3.3, which has two branching points and one merge point
with three incoming transitions. To illustrate the correctness of the encoding,
consider the path e1→ e2→ e4. This means, in the formula φCF , the SMT-
variables x(e1), x(e2) and x(e4) should be assigned to 1, and the variable
x(e3) should be assigned to 0.

Note that the generalised encoding scheme does not require the branch-
ing transitions to be mutually-exclusive (for instance, consider two branch-
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ing transitions from the event e2, both labelled by non-epsilon guards g2,3
and g2,4). Next, consider the path e1→ e3→ e4, which is not allowed by the
control-flow graph. The corresponding model x(e1) = 1, x(e2) = 0, x(e3) = 1
and x(e4) = 1 does not satisfy the formula φCF . The proposed encoding for
the control-flow works also for encoding the partial graph. For example,
the assignment x(e1) = 1, x(e2) = 1, x(e3) = 0 and x(e4) = 0, which encodes
the path e1→ e2, satisfies φCF .

3.2.2 Encoding for the data-flow

To encode the data-flow constraints, we use the Static Single-

Assignment (SSA) form in order to be able to capture an arbitrary data-flow
into a single SMT-formula. The SSA form requires each variable to be
assigned only once within entire program. In contrast, Porthos v1 uses
the Dynamic Single-Assignment (DSA) form, that requires indices to be
unique only within a control-flow branch. Although the number of variable
references (each of which is encoded as unique SMT-variable) on average
is logarithmically less in the case of the DSA form than the SSA form, the
result SMT-formula still needs to be complemented by same number of
equality assertions when encoding the data-flow of merge points [PFH+17a].

Following [PFH+17b], the indexed references of variables are computed
in accordance with the following rules: (1) any access to a shared variable
(both read and write) increments its SSA-index; (2) only writes to a local
variable increment its SSA-index (reads preserve indices); (3) no access
to a constant variable or computed (evaluated) expression changes their
SSA-index. These rules determine the following encoding of load, store and
computation events within a single thread:

φDFe=load(r←l)
, [x(e)⇒ (ri+1 = li+1)] (3.4)

φDFe=store(l←r)
, [x(e)⇒ (li+1 = ri)] (3.5)

φDFe=eval(·) , [x(e)⇒ v(e)] (3.6)

In Equation 3.6, the function v : C → R evaluates the computation
event (the value is determined by co- and rf- relations). To convert the
program into SSA form, for each event each variable that is declared so far
(either local or shared) is mapped to its indexed reference; this information
is stored in the SSA-map "event to variable to SSA-index". The SSA-map is
computed iteratively while traversing the event-flow graph in topological
order as it is described in Algorithm 1.
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Algorithm 1 Algorithm for computing the SSA-indices
Input: The event-flow graph G = 〈N,E〉 where V is the set of nodes (events),
E is the set of control-flow transitions, e0 is the entry node
Output: The SSA-map of the form "{ event : { variable : index }}"
1: function Compute-SSA-Map(G)
2: S← empty map; S[e0]← empty map
3: for each event ei ∈ G.N in topological order do
4: for each predecessor ej ∈ pred(ei) do
5: S[ei]← copy(S[ej])
6: for each variable vk ∈ set of variables accessed by ei do
7: S[ei][vk]← max(S[ei][vk], S[ej][vk])
8: if need to update the index of vk then ⊲ cases (1)-(2)
9: S[ei][vk]← S[ei][vk] + 1

The time of described algorithm is linear of the event-flow graph size as
the algorithm performs only a single graph traverse.

As it has been described before, the rf-relation links data-flow be-
tween events. The encoding of this linkage has been left untouched as it is
implemented in Porthos v1:

φDFmem
(e1, e2) , [rf(e1, e2)⇒ (li = lj)] (3.7)

where the variable of location l is mapped to the SSA-variable li for
event e1, and to the SSA-variable lj for event e2; and the predicate rf(e1, e2)

is encoded as a boolean variable, which itself equals true if e1
rf
→ e2 (i.e., if

e2 reads the shared variable that was written in e1).

3.2.3 Encoding for the memory model

The basic scheme for encoding the memory model was proposed
in [PFH+17a]. The encoding consists of two parts: encoding of the de-

rived relations and encoding of the memory model assertions.
In the SMT-formula, a relation x

r
→ y is represented by a boolean

variable r(x,y) that indicates whether the relation holds. Derived rela-
tions are encoded by fresh boolean variables according to the following
rules [PFH+17b]:

r1 ∪ r2(e1, e2) , r1(e1, e2)∨ r2(e1, e2);
r1 ∩ r2(e1, e2) , r1(e1, e2)∧ r2(e1, e2);
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r1rr2(e1, e2) , r1(e1, e2)∧¬r2(e1, e2);
r−1(e1, e2) , r(e2, e1);
r∗(e1, e2) , r+(e1, e2)∨ (e1 = e2);
r1;r2(e1, e2) ,

∨
ek∈E

r1(e1, ek)∧ r2(ek , e2); and

r+(e1, e2) , tc⌈log |E|⌉(e1, e2), where

tc0(e1, e2) , r(e1, e2), and
tci+1(e1, e2) , r(e1, e2)∨ (tci(e1, e3);tci(e3, e2)).

Note that CAT language allows mutually-recursive definitions of rela-
tions (for example, ‘r1 = r2∪ (r1;r1)’). The basic idea of using the Kleene fix-
point iteration for encoding such relations was also proposed in [PFH+17a]:
for any pair of events e1, e2 ∈ E and relation r ⊆ E ×E, we encode a new
integer variableΦr

e1,e2 that represents the round of Kleene iteration on which
the variable r(e1, e2) has been set.

The memory model can assert acyclicity, irreflexivity of emptiness of a
relation or a set of events. As it has been proposed in [PFH+17a], encoding
the acyclicity assertion uses numerical variable Ψe ∈ N for each event
e in the relation to be asserted: acyclic(r) , (r(e1, e2) ⇒ (Ψe1 < Ψe2)). The
irreflexivity assertion as irreflexive(r) ,

∧
ek∈(E)

¬r(ek , ek).
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Chapter 4

PorthosC: The implementation

The main call for commencing the work on PorthosC was the need for
processing real-world C programs, which, at first, requires the input lan-
guage to be extended. This implies the support not only for new syntactic
structures of the C language (such as the switch statement or the postfix
increment operator i++), but also for its fundamental concepts and fea-
tures (such as types, pointer arithmetic or first-order functions), which
requires revision of the whole architecture of the tool. Yet far from all
the C language is supported, which, taking into account its complexity
and numerous pitfalls, goes far beyond current thesis1, we consider the
accomplished work as a step towards it. The PorthosC repository is located
at https://github.com/ajuszkowski/PorthosC.

4.1 General principles

The Porthos v1 does not distinguish the event-based program model from
the high-level AST, and they both are encoded into a single SMT-formula
(see classes of package ‘dartagnan.program’ of Porthos v1). Moreover, the
syntax tree is implemented in Porthos v1 as a mutable data structure, which
is being modified at all stages of the program (for instance, see the methods
‘dartagnan.program.Program.compile(...)’ of Porthos v1 that recursively
compute some properties of the AST and change its state). We are inclined to
consider the old architecture to be fast to develop, but difficult to maintain

1To ensure this, one merely has to look at existing C compiler implementations, for
instance, the open-source gcc compiler, which uses the C parser written in more than 18.5
thousand lines of code; see https://github.com/gcc-mirror/gcc/blob/master/gcc/
c/c-parser.c.
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(since it is difficult to guarantee the correctness of the program) and extend
(since adding the support for a new high-level instruction requires changing
multiple components of the program, from parser to encoder).

Therefore, while working on the new design of PorthosC, we clearly sep-
arated the high-level intermediate code representation (the AST structure)
from the low-level event-based representation (the event-flow graph). Such
a modular architecture will allow to support multiple input languages2 by
parsing them and converting parsed syntax trees to a simplified AST.

All data-transfer objects (DTOs) used by PorthosCmust be immutable, so
that it is possible to guarantee the correctness of the program by controlling
preservation of its invariants. The immutability in PorthosC is implemented
via final fields that are assigned by the immutable-object values (either a
primitive type, or another user-defined immutable object, or an immutable
collection provided by the library Guava by Google3).

During the development of PorthosC, we mainly followed the KISS prin-

ciple, which can be exhaustively described in 17 Unix Rules of Eric Ray-
mond [Ray03]. The following list summarises the main rules we followed
during the development of PorthosC:

1. Robustness:

1.1. completeness of the analysis,

1.2. modular architecture: each module can be tested independently,

1.3. use of software design patterns where necessary, and

1.4. use of immutable data structures for all DTOs.

2. Transparency:

2.1. following the principles of simplicity and readability,

2.2. clear and informative program output, and

2.3. following the clear code style.

3. Efficiency:

3.1. keeping the trade-off between execution time and memory usage.

4. Extensibility:

4.1. clear modular architecture.
2Apart from the C language, PorthosC should be able to analyse litmus tests in different

assembly languages and, as a compatibility mode, the input language of Porthos v1.
3The Guava project repository: https://github.com/google/guava/
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Robustness of the analysis is the main criterion of PorthosC as a verifica-
tion tool. Although it makes the analysis more sensitive to the combinatorial
explosion, it preserves the completeness of analysis, which is necessary for
a model-checking tool. As a robust and transparent tool, PorthosC must
adhere to the strategy of aborting its work on any unexpected outcome (for
instance, if a parser failed to parse the string and the recovery algorithm is
not described). One of the transparency principles is following the clear
code style. This mainly means the clear and informative naming of classes,
functions and fields. It also implies the unified ordering of methods in
classes, minimised size of methods code, clear tabulation, etc.

As its predecessor, PorthosC is written in Java, firstly, in order to be
able to reuse some parts and concepts of Porthos also written in Java, and
secondly, because the authors find the concepts of Object-Oriented Pro-
gramming (OOP) inherent in Java suitable for modelling the programming
languages. Although Java does not show the best results in performance
benchmarks (for example, compared to C++ [Hun11]), the performance
cornerstone of PorthosC (as well as any other SMT-based code analyser) is
the phase of solving the SMT-formula, which is left to the third-party SMT-
solver Z34 by Microsoft Research [DB08], which is invoked by PorthosC
via a Java API. However, considering the perspective of using PorthosC
as a static analyser for real-world programs, the memory optimisation
problem must also be taken into account during both encoding and solving
stages. For the reasons of simplicity, PorthosC is not a concurrent program,
however, we believe that due to its modular architecture it can be easily
parallelised on the level of program modules if necessary.

Currently, PorthosC can operate only in the intra-procedural analysis
mode (not supporting invocations of the user-defined functions), assuming
that each function defined in the input file is being executed in a separate
thread. However, the redesigned architecture of PorthosC can be easily
extended to support the inter-procedural (cross-function) analysis by in-
lining user-defined functions calls and binding variable contexts. In this
mode, instead of analysing a single source code file, the tool can process
the whole code project, where the functions to be executed in parallel are
specified separately by the user. Also, the tool can be extended to detect the
concurrent parts of the code automatically at the pre-compilation stage. For
that, the pre-compiler should recognise functions that commence a new
process (such as pthread\_create from pthread.h) and resolve the argument

4The Z3 project repository: https://github.com/Z3Prover/z3
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that points to the thread function. This functionality is left beyond current
thesis.

4.2 Program input

Both Porthos v1 and PorthosC use the ANTLR parser generator5 [Par13]
for creating the input-language parsers. The ANTLR takes as input the
user-defined grammar of the target language in a BNF-like form and
produces the LL(*)-parser and optionally some auxiliary classes (such
as listeners and visitors for the syntax tree). Although this parser may not
be as efficient as a hand-written language-optimised parser, it reduces the
overhead of implementing the parser significantly. Among other advantages
ANTLR, it has a rather large collection of officially supported grammars.
Nonetheless, the intuitive syntax for defining grammars and numerous of
tools for debugging grammars make the ANTLR an attractive instrument
for processing languages.

Figure 4.1 represents the grammar sketch in BNF syntax of the input
language used by Porthos v1. The input language parser used by Porthos v1
suffers from several disadvantages. Firstly, it contains the parser code inlined
directly into the grammar, so that the grammar serves as a template for the
parser code (which is called semantic actions in ANTLR). Such a combining
of two expressive languages makes the code hardly understandable and,
therefore, poorly maintainable. In PorthosC, we clearly separated the parser
(generated from the grammar file ‘<grammar>.g4’) from converting the
ANTLR syntax tree to the AST, that is one for all languages of an input
program.

Secondly, Porthos resolves the semantics of operations syntactically (it
was defined in the ANTLR grammar), whereas it should be resolved by a
separate module operating on the AST level, so that it does not require to
change the grammar for encoding the semantics of a new function. As the
reader might have noticed from the grammar sketch in Figure 4.1, different
kinds of memory operations of of the Porthos v1 input language vary
syntactically as well. For example, the assignment of a local computation
to a register uses the symbol ‘<-’, the atomic non-relaxed load operation
is denoted by ‘<:-’, atomic non-relaxed store operation is denoted by ‘:=’,
and the semantics of relaxed load and store is resolved syntactically by
matching the function name and arguments. Moreover, only the operator ‘<-’

5The ANTLR project repository: https://github.com/antlr/antlr4
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〈program〉

: 〈initialisation〉 〈thread〉+ 〈assertion〉
;

〈thread〉

: thread 〈thread−id〉 〈instruction〉

;
〈instruction〉

: 〈atom〉

| ‘{’ 〈instruction〉 ‘}’
| 〈instruction〉 ‘;’ 〈instruction〉
| ‘while’ ‘(’ 〈bool−expr〉 ‘)’ 〈instruction〉
| ‘if’ 〈bool−expr〉 ‘{’ 〈instruction〉 ‘}’ 〈instruction〉
;

〈atom〉

: 〈register〉 ‘<−’ 〈expression〉
| 〈register〉 ‘<:−’ 〈location〉
| 〈location〉 ‘:=’ 〈register〉
| 〈register〉 ‘=’ 〈location〉 ‘.’ ‘load’ ‘(’ 〈atomic〉 ‘)’
| 〈location〉 ‘=’ 〈register〉 ‘.’ ‘store’ ‘(’ 〈atomic〉 ‘)’
| (‘mfence’ | ‘sync’ | ‘lwsync’ | ‘isync’)
;

〈bool−expr〉

: ‘true’
| ‘false’
| 〈expression〉 (‘and’ | ‘or’) 〈expression〉
| 〈expression〉 (‘==’ | ‘!=’ | ‘〉’ | ‘〉=’ | ‘<’ | ‘>=’) 〈expression〉
;

〈expression〉

: [0−9]
| 〈register〉

| 〈expression〉 (‘*’ | ‘+’ | ‘−’ | ‘/’ | ‘%’) 〈expression〉
;

Figure 4.1: Sketch of the input language grammar used by Porthos v1

accepts an expression as the source of data, which means that expressions
could be assigned only to registers. In PorthosC, the semantics of the data-
flow operation is determined according to the types of operands, that are
determined during the pre-compilation stage (see Section 4.3.2.4). The
semantics of the functions also being resolved during the compilation stage
via the invocation hooking mechanism (see Section 4.3.2.5).

Thirdly, the grammar used by Porthos v1 accepts only a restricted set of
operations. For example, the computation expressions can use only local
variables. Thus, in the assignment expression ‘r <- (x + 1);’, the variable x

will be parsed as a local variable even though it can be used as a shared
variable in other parts of the program, which may lead to the inconsistency
of analysis. In PorthosC, all shared variables involved into a computation
expression are tentatively copied to temporary local variables.
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Fourthly, Porthos v1 supports only integer constants and expressions.
In PorthosC, we extended support for primitive types supported by the
Z3 solver (32-bit integers are encoded as Ints of Z3, floats are encoded
as Reals). Although the Z3 supports the array theory (characterised by
the select-store axioms [MB11]), the complexity of pointer analysis for the
arrays of non-constant size moves the full support of arrays and pointers
out of the scope of current thesis.

Finally, the grammar used by Porthos has the following minor drawbacks.
The operators are non-associative (expressions of the form ‘1 + 2 * 3’ can
not be parsed). Comparing to C statements, which must end with the
semicolon punctuator ‘;’, statements defined in the grammar of Porthos v1
use the semicolon as a separator between statements (the final statement
must not end with semicolon). The litmus test-specific syntax for variables
initialisation is used only for declaring the shared variables (all of them are
initialised with default value 0), however, this syntax should be used as an
initial assignment of both shared and local variables with arbitrary values.

PorthosC uses the C language grammar of proposed in the C11 stan-
dard [ISO11], that was extended by litmus test-specific syntax such as
initialisation and final-state assertion statements. The original ANTLR
grammar can be found in the official repository containing the collection of
ANTLR v4 grammars6. Current version of PorthosC does not recognise C
processor directives (it ignores them), however, in future it can be extended
to support them.

4.3 Architecture

The general processing scheme of the old tool Porthos v1 is the following.
The input program is parsed to the AST, where leaves are the events.
The control-flow of the program is encoded into an SMT-formula as
it was discussed in Section 3.2.1, and the data-flow (po- and rf- rela-
tions) and some derived relations are encoded by the single function
(‘dartagnan.wmm.Domain.encode’) that loops over all events, checks their
properties (the kind of event, the operands of the memory event, the control-
flow properties such as condition level, etc.) and adds the assertions of
corresponding relations to the formula. Encoding all the relations (the
program domain encoding) in a single large function is an error-prone and
hardly manageable approach. Moreover, the events, that constitute the ele-

6The ANTLR grammars repository path: https://github.com/antlr/grammars-v4
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Figure 4.2: The general architecture of PorthosC
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ments of a composite data structure, carry the information about it (such as
the condition level, which is the property of the control-flow graph), while
it should be carried by the data structure itself. In addition, the program
domain encoding function does not consider the memory model, therefore
the result formula can contain relations that are not constrained by the
memory model specified by the user and thus are redundant (for instance,
the TSO memory model does not contain Power-specific relations ii, ic, ci,
etc., that are always encoded regardless the memory model). In PorthosC, we
moved the encoding logic into a separate module (see Section 4.3.2.8) that
accepts the input program and the user-defined memory model, therefore
does not add constraints over unused relations to the result SMT-formula.

The high-level architecture of PorthosC is presented in Figure 4.2.
The program takes as input the program to be analysed and one (the
reachability analysis mode) or two (the portability analysis mode) memory
models. However, instead of parsing memory models from the CAT file, the
tool may operate with pre-defined memory models (SC, TSO, PSO, RMO,
Alpha, Power, ARM; this feature is inherited from Porthos v1). The parsed
program syntax tree is then converted (Section 4.3.2.3) to a program AST
called Y-tree7(Section 4.3.1.1), which then is being preprocessed at the pre-
compilation stage (Section 4.3.2.4) in order to collect information necessary
for the compilation. The Y-tree then is being compiled (Section 4.3.2.5) to
an X-graph representation (Section 4.3.1.2). The compiled X-graph then is
being converted to an acyclic form (Section 4.3.2.6) in order to be encoded
into a Z-formula (Section 4.3.1.4). Apart from that, the memory-model
constructor (Section 4.3.2.2) constructs the abstract syntax tree of derived
relations of the weak memory model W-model (Section 4.3.1.3). Thereafter,
W-model and acyclic X-graph are encoded (Section 4.3.2.8) to a Z-formula
representation (a wrapper over an SMT-formula), which then is translated
to an SMT-formula, which then is solved by the SMT-solver (note, current
implementation of PorthosC excludes the Z-formula as at the moment it is
enough for PorthosC to use only a single SMT-solver).

7In order to avoid confusion between different internal representations, we prefix the
names of elements of each internal representation with a letter. For instance, we picked the
letter ‘Y’ to denote the AST code representation as drawing of this letter resembles the tree
branching; with letter ‘X’ we prefix elements of the event-flow graph as the events are to be
executed; and with letter ‘W’ we prefix elements of the weak memory model AST.
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4.3.1 Internal representations

For keeping the architecture transparent, we build all abstraction levels
with interfaces, even if some of them does not add any new functionality.

4.3.1.1 Y-tree

The first internal representation used by PorthosC is the Y-tree, which rep-
resents an untyped high-level recursively defined AST8 . The Apendix A.1
presents the file tree of the main classes that constitute the Y-tree hierarchy
(as the inheritance tree might be obvious for the C-like AST, we confine
ourselves to presenting the classes file tree only, which we tend to retain
clearly structured).

The abstract syntax tree, Y-tree, is an abstraction level suitable for com-
piling the program to a low-level representation (in the case of processing
low-level assembly code, it may be directly converted to the X-graph rep-
resentation). In terms of Porthos v1, the Y-tree is the level of instructions.
However some details of the syntax might have been abstracted away
(for instance, array operations may be emulated by functions invocations,
see [Gri12, Chapter 5]), we find this level of abstraction suitable enough for
modelling a high-level language.

Each Y-tree element implements the interface YEntity and carries the
Origin (original code coordinates) instance that contains information about
the coordinates of the input text that has generated the Y-tree element. The
origin can be translated to the code citation by the CitationService.

Following the C11 standard [ISO11], we distinguish a statement ("an ac-

tion to be performed") from an expression ("a sequence of operators and operands
that specifies computation of a value, or that designates an object or a func-

tion, or that generates side effects, or that performs a combination thereof").
All Y-tree expressions implement the YExpression interface. Although the
pointer arithmetic is not fully supported by PorthosC, the Y-tree contains
information about the pointer level of an expression (which is modelled as
an integer number). We distinguish the subset of expressions that imply no
side-effects, they implement the interface YAtom and can be global or local
(which is determined syntactically).

The Y-tree expressions are the following:

8Hereinafter we use the term recursive data structure (also called inductive data structure)
to refer a complex data type that can contain elements of the same type.
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• YBinaryExpression that model the C binary operator (relative operator
that compares two expressions of any type, logical that processes two
boolean expressions, and numerical that processes two integer or real
expressions);

• YUnaryExpression that model the C unary expression (logical nega-
tion, numeric prefix and postfix increment and decrement, bitwise
complement);

• YMemberAccessExpression that has an arbitrary expression of type
YExpression as its base expression (it will be resolved during the
compilation stage, see Section 4.3.2.5);

• YIndexerExpression and YInvocationExpression that as arbitrary ex-
pression as its base or arguments (strictly speaking, the indexer ex-
pression is an unary-function invocation, but as the SMT-solver we
use supports the constant-array theory, we can maintain the array
type);

• YAssignmentExpression that assigns an YExpression to an YAtom;

• YVariableRef that stores the untyped "reference" to a variable (viz.,
the name only);

• YLabeledVariableRef that represents the litmus-specific local variable
reference for a certain the process (e.g., ‘P0:x’ which means the local
variable x of the process P0);

• YParameter that represents a typed variable (the type was declared,
similarly to the variable definition); and

• YConstant that represents an untyped non-named constant.

Similarly to expressions, all Y-tree statements implement the YStatement
interface. The statements are the following:

• YBranchingStatement representing the if-then-else statement;

• YLoopStatement representing both while- and for- loops;

• YJumpStatement representing unconditional jump (goto-jump to a
label and loop-jumps break and continue);

32



CHAPTER 4. PORTHOSC: THE IMPLEMENTATION

• YCompoundStatement (block statement) representing sequence of N
statements grouped into one syntactic unit;

• YLinearStatement representing a single expression; and

• YVariableDeclarationStatement containing the information about
the variable type during the variable declaration.

On the Y-level of abstraction, we define the YType as a reference for the
type (since the Y-tree is not typed, the YType is used for storing the type
information on variables or types declarations). It consists type modifiers
and qualifiers, that will be converted to the X-type by the Y2XTypeConverter
during the pre-compilation stage (see Section 4.3.2.4).

According to the C standard, "any statement may be preceded by a prefix

that declares an identifier as a label name". The Y-tree statements of follow
this rule, however they these labels are symbolic, and they need to be
resolved at the pre-compilation stage. Apart from the set of statements
listed before, we define the YFunctionDefinition and its inheritor a litmus-
specific definition YProcessDefinition used in intra-procedural analysis
mode. The function definition contains the YCompoundStatement body and
the YMethodSignature signature (method name and types of formal param-
eters), which is used in the function resolution during the pre-compilation
stage. The other litmus-specific definitions are YPreludeDefinition that
carries the list of YStatement initial writes, and YPostludeDefinition that
carries the YExpression binary expression to be asserted by the litmus test.

The syntax tree that contains set of definitions (e.g., litmus-initialisations,
function definitions, litmus-asserts) is modelled by the class YSyntaxTree.

4.3.1.2 X-graph

The Y-tree is compiled into the low-level event-based program representa-
tion called X-graph. The mathematical structure of event-flow graph was
discussed in Section 2.1. The nodes of the graph are events, and the edges
are basic relations: the control-flow relation po and the data-flow relations
co and rf . Hereinafter, we denote the X-graph with only control-flow
edges as X-graphCF, the X-graph with only data-flow edges as X-graphCF.
The complete X-graph is X-graphCF+DF = X-graphCF ∪ X-graphDF. The UML
diagram in Figure 4.3 represents the class hierarchy9of main interfaces of
the X-abstraction level. The full list of classes that constitute the X-graph

9Hereinafter all class diagrams are generated by IntelliJ IDEA Ultimate.
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Figure 4.3: The inheritance tree of interfaces of X-graph

hierarchy can be found in Appendix A.1. Internally, the graph is represented
by an adjacency matrix (to be exact, by multiple adjacency matrices that
store edges of different kinds, see more details in Section 4.3.1.2).

All elements of X-graph implement the interface XEntity. There are two
main kinds of X-entity: events that implement the XEvent interface, and
memory-units that implement the XMemoryUnit interface.

Following the format of litmus tests, we distinguish three types of
X-graph: one for the parallel processes, one for the litmus-initialisation
block and one for the assertion statement. However, all three types of
the X-graph are modelled by the same graph structure XProcess with
certain restrictions complied by the corresponding type of X-interpreter
that constructs the graph. This simplifies drastically the processing of
different types of code blocks as they all are modelled by the same data
structure. The examples of restrictions on X-graphs are the following: the
initialisation block can not have branchings, fence events; the process cannot
have assertion events; the assertion block can not have shared-memory
events or fence events. We discuss the interpretation of different types of
statements in more detail in Section 4.3.2.5.

Memory units. An X-memory unit is a memory cell of an abstract ma-
chine executing the code (that represents the X-graph). The abstract ma-
chine has infinite number of arbitrary-sized registers (local memory units)
and locations (shared memory units). Local memory units extend the
XProcessLocalElement interface, that stores the ID of the owning process.
Figure 4.4 represents inheritance hierarchy of memory units.

Following the terminology of the C standard, we distinguish the r-value
and l-value memory units (unlike r-values, the l-values may be assigned
a new value). As r-values cannot change their value, they can be seen as
the value itself (therefore the XComputationEvent is modelled as an local
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Figure 4.4: The inheritance tree of X-graph memory units

r-value memory unit, see more detailed discussion further in the current
Section).

Each memory unit has an XType associated with it. The X-type is a
symbolic representation of the C primitive type10 that is easily convertible
to an SMT-type (modelled by ZType). All X-memory units carry the boolean
flag that indicates whether it has been resolved correctly by the X-memory
manager.

The memory units are created and stored by the XMemoryManager, which
provides interface for accessing memory units during compilation stage.
For more detailed description of memory management see Section 4.3.2.5.

Events. An X-event represents the fact of executing the primitive opera-
tion, which is independent from other events. Each X-event implements the
XEvent interface and is carries the information about the process generated
them and a unique event label, which is modelled by an immutable structure
XEventInfo. Each event should carry the reference to the Y-instruction that
has generated it (this information can be useful for the unrolling discussed

10Here we should note that PorthosC can eventually evolve to be able to analyse programs
written in an OOP language (for instance, in C++). In this case, the XType will have more
complex structure than a simple enumeration, which it has when we need to emulate only
primitive types of C language. See more detailed discussion on input language type system
in Section 4.3.2.4.
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in Section 4.3.2.6, however currently each X-event contains the reference to
the original code location, similarly to Y-instructions discussed above).

The following interfaces model basic kinds of events (see Figure 4.3):

• XMemoryEvent

The memory event defines the transfer of the value from one memory
unit to another. There are four types of memory events (the arrow
denotes the direction of the data-flow):

◦ XRegisterMemoryEvent:
(XLocalLvalueMemoryUnit)← (XLocalMemoryUnit),

◦ XLoadMemoryEvent:
(XLocalLvalueMemoryUnit)← (XSharedMemoryUnit),

◦ XStoreMemoryEvent:
(XSharedLvalueMemoryUnit)← (XLocalMemoryUnit), and

◦ XInitialWriteEvent:
(XLvalueMemoryUnit)← (XRvalueMemoryUnit).

• XComputationEvent

We distinguish two types of computation events:

◦ XUnaryComputationEvent that encodes bit negation and no-
operation; and

◦ XBinaryComputationEvent that encodes numeric operations
(such as addition, multiplication, etc.), bit vector operations (such
as bit-and, bit-xor, etc.), relative operations (such as greater-then
comparison, equality comparison, etc.), and logical operations
(such as conjunction and disjunction).
The computation event class implements both XEvent and
XMemoryUnit. This is a model-level optimisation, which is pos-
sible because a computation event performs computation over
local-only memory and does not change value of any memory
unit. Thus, the computation abstraction (as the CPU time spent
for the computation itself) can be safely removed from the model,
and the computation event can be seen as a zero-time operation
that produces the value. For analysing large expressions this
optimisation is sensible because it considers the whole expres-
sion as a single computation event, encoded therefore as a single
SMT-variable.
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Note, for the purpose of simplifying the X abstraction level,
computation events may have been modelled as invocations of
bodiless functions (for instance, the operation ‘x + y’ may be
modelled as the invocation of the function ‘+’ with the argu-
ments x and y). However, current version of PorthosC maintains
the XComputationEvent as the operators are supported by the
SMT-solver.

• XControlFlowEvent

The control-flow event indicates a non-linear jump in the code. We
distinguish two kinds of control-flow events:

◦ XJumpEvent that performs no computation and no data operation,
it can be safely removed from the model as an optimisation; and

◦ XFunctionCallEvent that models function invocations. The func-
tion call also implements the XLocalMemoryUnit since it repre-
sents the computed value returned by the function call. Currently,
PorthosC only supports invocations of the method calls regis-
tered in its knowledge base (see invocation hooking mechanism
described in Section 4.3.2.5). For interpreting known function
invocations, PorthosC must perform three steps: bind actual
arguments to the formal parameters (treated as temporary reg-
isters as in the fastcall calling convention), push the called
XFunctionCallEvent onto the call stack, and the perform the
control-flow jump to the function body. The call stack must be
bounded by the user-defined parameter; once the stack is full, the
interpretation should continue without jumping to the body of
the invoked function (such cases must be properly logged). Each
return statement must create the assignment of the function
call event that is on the top of call stack. Note, this approach
will work for recursion as well, and the recursive calls together
with loops must be unrolled up the user-defined boundary (see
Section 4.3.2.6). The discussion on how to set up the po -relations
in the event-flow graph with recursive function calls can be found
in [AKN+14b].
If the function has not been resolved, it can be safely assumed to
be a no-operation function (with proper logging). In other words,
we suppose that the knowledge base of PorthosC is complete
and the tool can resolve all memory-operation functions and
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fence instructions. Although this can affect the completeness of
the analysis, it is safe to make such an assumption as the user
can check the log file and manually analyse the semantics of an
unresolved call and add it to the knowledge base if necessary.

• XFenceEvent

The fences are implemented as an enumeration XBarrierEvent. Cur-
rent implementation of PorthosC supports all fences supported
by Porthos: mfence, sync, optsync, lwsync, optlwsync, ish, isb, and
isync.

• XFakeEvent

The fake events are the auxiliary elements of X-graph.

◦ XEntryEvent, the per-process unique source event in the event-
flow graph,

◦ XExitEvent, the process sink event,

◦ XNopEvent, the no-operation event (a jump to the next event),
used for correct encoding in case when the control-flow branch
does not have any event (see Figure 3.2), and

◦ XAssertionEvent, the reachability assertion made at the postlude
statement of the program. An assertion is modelled as an event
for the purpose of encoding the postlude statement as a separate
process that is compatible with the Z-encoder.

Edges. As the graph is represented by an adjacency matrix, its edges are
stored in immutable hash-maps. We distinguish the following kinds of
edges:

• the control-flow edges:

◦ the primary edges, that denote both ǫ-labelled transitions (in
case of linear sequence of events) and conditional transition that
evaluates the conditional event (the source of the transition) to
the true, and

◦ the alternative edges, that denote conditional transitions for which
the conditional event (the source) was evaluated to the false; and

• the data-flow edges:

◦ the co -relation edges, and

◦ the rf -relation edges.
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Graph invariants. Once being constructed, the graph must conform the
following requirements (see also Section 2.1.1):

1. the graph must have a single source with no ingoing edges, and two
sinks of different kinds without outgoing edges,

2. the graph must be connected,
3. each node of the graph can have either one or two direct control-flow

successors,
4. only nodes of type XComputationEvent can have two direct control-

flow successors,
5. a co -edge connects two writes, an rf -relation edge connects a write

and a read,
6. all write-event nodes except initial write-nodes must have exactly one

co -predecessor, and
7. all write-event nodes except final write-nodes must have exactly one

co -successor.

4.3.1.3 W-model

The W-model represents a recursive AST of computation over relations and
assertion expressions defined by the memory model. The atomic elements of
W-model are the basic relations (po , rf and co ; see Section 2.1.2) and sets
of events (R, W, IW, etc.; see Section 2.1.1). The expressions of W-model
are unary (such as complement, transitive closure, etc.) and binary opera-
tions (such as union, intersection, etc.) over relations or sets of events; see
Section 2.2. Each element of W-model implements the interface WModel,
and for the sake of transparency contains the origin location in the model
file. As the W-model hierarchy almost completely follows the mathematical
structure discussed in Sections 2.2 and 3.2.3, we skip the details of its
implementation.

4.3.1.4 Z-formula

The Z-formula representation is supposed to be a wrapper over an SMT-
formula used as an additional abstraction level to increase the transparency
of the architecture, simplify the debugging process and ease the support
of different SMT-solvers. However, currently PorthosC skips this internal
representation and both the program and memory models directly into the
SMT-formula via Java API offered by the Z3 solver.
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The Z-abstraction level should model the logical formulas (definitions
and assertions) that are put on the assertion stack of the SMT-solver. Gen-
erally, a Z-formula should represent the S-expression-based syntax of the
SMT-LIB language [BFT17]. Currently, the Z-formula is supposed to rep-
resent definitions and assertions over variables and binary and unary
expressions. However, for the purpose of improving the encoding scheme,
it may be extended to support function symbols and binders (existen-
tial and universal quantification, pattern matching and functional type
construction).

All expressions of a Z-formula must be typed (or sorted, in terms of SMT-
LIB standard). Basically, the Z-type must support boolean and numeric
(integer, bitvector, real) expressions. The typing of a Z-formula is necessary
for checking the basic validity of its expressions and converting it to a typed
SMT-formula. For the sake of transparency, each element of a Z-formula
should contains the origin location as the reference to the X-element that
produced current Z-element.

4.3.2 Processing units

This section describes program units that construct, transform and analyse
internal representations described above.

The construction of the X-graph is performed in three stages. Firstly,
the Y-tree is compiled to a cyclic control-flow event-based graph X-graphCF.
Then, this graph is unrolled to an acyclic control-flow event-based graph
X-graphU

CF. After that, the compiler is able to perform the data-flow analysis
over the X-graphU

CF and produce the full event-based graph X-graphU
CF+DF,

which remains to be CF-acyclic (no cycles among control-flow edges).
Most data structures are processed by units that implement the visitor

pattern [PJ98]. This is a behavioural pattern that separates the program
logic from the object implementation by specifying handling methods for
each element of the object. The general structure of the visitor pattern
is illustrated by the pseudo-java code in Figure 4.5. The visitor pattern
performs the double-dispatching, a mechanism for decreasing the cohesion
between the DTO (the visitee) and the processor class (the visitor): the
visitee implements the acceptingmethod that gets the visitor as an argument
and invokes its visitingmethod with itself as an argument. Thus, the method
call resolution is performed statically at compile-time without any overhead
at run-time.
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interface Element {

<T> T accept(Visitor<T> visitor);

...

}

class AnElement implements Element {

@Override

<T> T accept(Visitor<T> visitor) {

return visitor.visit(this);

}

...

}

class Visitor<T> {

T visit(AnElement e) {

// visiting logic

...

// continue recursively

e.getChild().accept(this);

}

T visit(AnOtherElement e) {

...

}

...

}

Figure 4.5: Illustration of the visitor pattern

We consider the visitor pattern as the most natural way for operating
the hierarchical data structures such as AST. However, we use its double-
dispatching capabilities to reduce cost of multiple type casting performed
while traversing the elements of a non-recursive data structure. The operator
instance, instead of having a single method that handles and element of the
instance, extends the visitor interface and splits the handler method into
multiple methods, one for each type of element.

For traversing plain data structures (such as graphs), we mostly follow
the iterator pattern: the special object Iterator, that has access to elements
of the data structure, iterates over them in some order (for example, in
topological order as it is implemented for X-graph). The construction of
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immutable data structures is performed by units that follow the builder
pattern. A builder is a mutable object that contains methods for "filling"
it with the elements that will constitute the result complex object. The
methods contain basic validity checks of the elements. Once a builder has
been built, it cannot be modified.

4.3.2.1 Input parsers

As it was discussed in Section 4.2, both input-language and input-model
parsers are implemented via ANTLR parser generator. Currently, PorthosC
does not consider C preprocessor instructions (it ignores them). For im-
plementing the inter-procedural mode of Porthos, it is crucial to support
inclusion of header files (the #include preprocessor directive). Next step
would be implementing the support of macros and conditional compilation
directives, that are used often in C code. As preprocessor statements may
appear in arbitrary place of a program, the preprocessor must be a stateful
processing unit that reads the token stream and dynamically instrument
the program by interpreting directives and expanding macros.

The input memory model language CAT is discussed in Section 2.2. The
ANTLR grammar for CAT language was extracted from the parser used by
herd tool11 written in OCaml.

4.3.2.2 W-model constructor

The W-model representation is constructed by the stateless vis-
itor Cat2WmodelConverterVisitor from the ANTLR syntax tree
CatParser.MainContext of the memory-model defined in CAT lan-
guage. Currently, the visitor supports the small subset of CAT language,
which constitutes only non-functional declarative expressions of the
language as the support for functional-style expressions requires imple-
menting the full interpreter for OCaml-like language. However, some most
commonly used functional-style expressions may be supported by mapping
them syntactically to corresponding W-elements directly in the W-model
constructor.

Following the principle of transparency, the W-model constructor aborts
its work with the NotSupportedException if met the unsupported syntax
construction (in contrast to the Porthos v1 approach in which the null value
was produced in all exceptional states).

11The herd project repository: https://github.com/herd/herdtools7
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4.3.2.3 Y-tree constructor

The Y-tree is constructed by the stateless visitor C2YtreeConverterVisitor
from the ANTLR syntax tree C11Parser.MainContext of the
C language. The Y-tree constructor aborts its work with the
YParserNotImplementedException once it meets an unsupported syntax
construction. A syntax exception YParserException is thrown if the
converted syntax tree contains semantic errors that prevent it to be
converted to the Y-tree.

As a Y-tree constitutes a generic AST, the Y-tree constructor expands the
syntactic sugar expressions and statements (for example, a switch-statement
is converted to the equivalent if-statement).

4.3.2.4 X-graph pre-compiler

The precompiler traverses the Y-tree and collects information necessary for
its compilation into an X-graph.

The label resolution. The label resolution is necessary for establishing
links to labelled statements. In C, labelled statements are declared via the
colon-syntax ‘<label> : <statement>’, and the labels are referenced by the
jump-statement ‘goto <label>’. The label resolution algorithm traverses
the Y-tree and collects all declared labels into a map JumpsResolver that
points a label to the labelled statement. This information is used during
compilation to set up unconditional jumps.

Type analysis. C language has a static (resolved at compile-time) manifest
(all types are declared explicitly) type system. Comparing to languages that
use type inference, the type analysis of a C program constitutes a simple
propagating the type information (obtained from variables declarations)
to all expressions. Being carried at Y- and X- representation levels, the
type is converted to a Z-type at the stage of the Z-formula encoding (see
Section 4.3.2.8).

Currently, PorthosC handles only the primitive C types (such as int, char,
float, etc.), which are modelled on the X-level by the enumeration XType.
The type analysis algorithm should consider the type aliases supported by
C language (defined by the typedef instruction), which is not implemented
yet. For resolving the type aliases, the precompiler should make an extra
traverse of the Y-tree before the pre-compilation stage and build up a
symbol map.
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Variable kind analysis. On the compilation stage, once the compiler
meets the reference to a variable, it should know whether it refers to a local
or global variable. The kinds of variables have to be determined on the
pre-compilation stage.

The following types of variables are detected as global variables:
• a variable was declared as a pointer;
• a variable whose address was accessed by any process;
• a variable declared as a parameter of the process function; and
• a variable exported by the extern keyword (in the kernel-analysis
mode, the functions ‘EXPORT_SYMBOL’ and ‘EXPORT_SYMBOL_GPL’ also ex-
port symbols for dynamic linking [Agr16]).

4.3.2.5 X-graph compiler

The X-compiler is the main component that transforms the recursive Y-tree
data structure to the plain X-graph representation. It is a complex process-
ing unit; Figure 4.6 illustrates the relationship between main components
of the X-compiler in the UML language.

The main class representing the X-compiler is Y2XConverter. It receives
as input the Y-tree, the memory model kind and user settings (for instance,
the interpreter mode defining the set of invocation hooks enabled during the
analysis run). The Y2XConverter creates an instance of the stateless visitor
Y2XConverterVisitor that traverses the Y-tree while invoking the stateful
interpreter XInterpreter. The XInterpreter carries the X-graph-builder
and provides action methods for changing its state and thus the filling
in the builder. The interpreter has additional modules XMemoryManager,
XHookManager and XTypeManager that provide specialised functionality.

We distinguish three types of interpreters (each implementing the
XInterpreter interface):

• the program interpreter XProgramInterpreter that is the composi-
tional element that dispatches calls to currently maintained process
interpreter;

• the prelude process XPreludeInterpreter (to be executed before all
other processes) that allows only declaration of local or shared vari-
ables, computations and memory operations;

• the postlude process XPostludeInterpreter (to be executed after all
other processes) that allows only declaration of local variables,memory
operations, computations and assertions;
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Figure 4.6:Main components of the X-compilation processing unit

• the process XProcessInterpreter (to be executed in parallel) that
allows all X-compiler interface operations except declaration of shared
variables and program assertions (i.e., it allows declarations of local
variables, computations, barriers, unconditional jumps, non-linear
branching statements, and method calls).
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As the prelude process can declare shared variables, its compilation
must go first. The first event of each process must be the XEntryEvent and
the last events must be events of type XExitEvent.

Memory manager. The X-graph abstract machine model disposes in-
finitely many memory units, both local and shared (see Section 4.3.1.2). The
X-compiler accesses all memory units via the XMemoryManager, which by the
end of pre-compilation stage is already initialised (has registered all shared
memory units). However, the memory manager is a stateful component
of the compiler as it offers the methods for declaring and removing local
memory units dynamically at the compilation time.

The interface methods exposed by the XMemoryManager are presented in
Figure 4.7. At each time of the compilation process, the XMemoryManager

can resolve the memory unit by its name. Following the C standard,
local memory units have higher priority over global ones (the method
getDeclaredUnitOrNull returns the first memory unit found, either a global
one or a local one, or null if no memory units with requested name have
been registered). Since C language allows use of variables that have the
same name to be declared in nested contexts, the XMemoryManager should
carry the stack of block contexts for local variables (which is not currently
implemented).

interface XMemoryManager {

XLocation declareLocation(String name, XType type);

XRegister declareRegister(String name, XType type);

XRegister declareTempRegister(XType type);

XLvalueMemoryUnit declareUnresolvedUnit(String name, boolean global);

XLvalueMemoryUnit getDeclaredUnitOrNull(String name);

XRegister getDeclaredRegister(String name, XProcessId processId);

}

Figure 4.7: X-memory manager public interface
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Invocation hookingmanager. The invocation hooking module serves as a
compiler knowledge base that stores the semantics of high-level functions in
terms of low-level event-flow graph elements. For example, the C11 sequen-
tially consistent load operation ‘l.store(memory_order_seq_cst, r)’ whould
be compiled for the x86 architecture as the write instruction ‘MOV l, r’
followed by the fence instruction ‘MFENCE’, whether for the Power archi-
tecture this code would be compiled as the ‘hwsync’ followed by the store
instruction. This is called the compiler mapping. While the X-graph is the ab-
stract (hardware-agnostic) low-level program representation, the compiler
mapping is the only component of the compiler that produces differences
between two versions of the same program compiled for different architec-
tures.

The function invocation mechanism works as follows. Once the X-
compiler meets the function invocation, it calls the XHookManager, which
tries to match the function signature (in the case of program in C lan-
guage – only the function name) across all signatures it stores. If the
signature matches, the hook manager intercepts the function call and in-
terprets the hook action instead of invoking the function directly. The
hook manager enables only invocation hooks that are compliant with the
language of the input program. All invocation hooks implement the inter-
face XInvocationHook. The result of an invocation hook interception is the
XInvocationHookAction, a delayed operation implemented on the top of
lambda functions of Java. The hook action is invoked with actual arguments
and returns an arbitrary XEntity as the result of invocation.

Current version of PorthosC contains two invocation hooks, the
XLegacyInvocationHook for intercepting the compatibility-mode functions
of the PorthosC input language, and XKernelInvocationHook for describing
the Linux kernel-specific functions. The same mechanism (with minor
modifications) can be used for processing assembly language calls. An
invocation hook can model any type of operations (memory, fence, compu-
tational, etc.). For instance, the XKernelInvocationHook intercepts the in-
vocation ‘WRITE_ONCE(dst_shared, src_local)’ and replaces it with the hook
action shown in Appendix A.2 (as the functions ‘READ_ONCE’, ‘WRITE_ONCE’,
and ‘ACCESS_ONCE’ may be modelled as volatile ‘memory_order_relaxed’ ac-
cesses [MWP+17], this invocation hook simply emits a memory event
without emitting any synchronisation events).

Interpreter. The X-program interpreter is invoked by the
Y2XConverterVisitor which recursively walks down the Y-tree. The
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calls to the X-program interpreter are dispatched to currently maintained
X-process interpreter. To be able to properly recognise nested statements of
the Y-tree, the X-process interpreter needs to have stacks. On any semantic
error, the X-interpreter throws an XInterpretationError.

The interface methods of the XInterpreter are presented in Ap-
pendix A.4. Note the clear modular independence of the X-interpreter: it
knows nothing about Y-tree or other internal representations, all its inter-
faces use only X-level elements (all conversion with Y-entities is done by
the Y2XConverterVisitor).

All interface methods of the X-interpreter can be divided into two
groups. The first group constitute methods that emit events. These
methods construct an event object (as events contain the XEventInfo

structure that stores information about the owning process, all events
must be created by the process constructor, i.e. X-interpreter) and
change the state of interpreter considering the newly created event.
Note that the methods createComputationEvent do not emit a computa-
tion event but only create one. This is an optimisation that removes un-
used computations from the model (otherwise, for instance, the assign-
ment ‘x = 1 * (2 + 3)’ would be compiled into two consequent events
‘eval(2 + 3); write(register <- eval(1 * eval(2 + 3)));’ instead of a sin-
gle event ‘write(register <- eval(1 * eval(2 + 3)));’). Note, if the compu-
tation event has not been used at all (for example, in the following C code:
‘foo(); 1; bar();’ the execution event ‘eval(1)’ is skipped by the model), it
is also removed from the event-graph (see justification in Section 4.3.1.2).
The second group of X-interpreter methods consists of the methods for defin-
ing non-linear statements (branchings and loops). These methods change
the state of the interpreter and set up additional non-linear control-flow
edges.

As a high-level (Y-level) instruction may be compiled into a sequence of
low-level instructions (for example, a computation that involves shared
variables should firstly load them into the localmemory and then process the
computation event over local-only memory), the interpreter must maintain
the stack of contexts and remember the previous event to be able to correctly
process nested non-linear statements of C language. The context is a data
structure that carries the state and some additional information in the case
of processing non-linear statements (e.g., conditional event, first and last
then- and else-branch events for binding, etc.). Once the new event has
been emitted, the interpreter sets up control-flow edges w.r.t. state of the
context on the top of the stack. The context stack is always non empty: the
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bottom context is the linear one that sets up the primary edge from the
previous-event (last processed) to the currently processed one and updates
the previous-event. The context state is an enumeration of the following
values:

• WaitingAdditionalCommand: the interpreter is in the state of defining
the complex (non-linear) statement and is not able to process any new
event (will throw an exception if any) until the state is not changed;

• WaitingFirstConditionEvent: the first next emitted event will be
accepted as the first event of the condition evaluation (later, the loop
edges will be set to this event);

• WaitingLastConditionEvent: the next event must be of type
XComputationEvent; it will be saved as the conditional branching
event;

• WaitingFirstSubBlockEvent: the first next emitted event will be ac-
cepted as the first event of the branch (later the interpreter will set up
jumps to that event);

• WaitingNextLinearEvent: the default interpreter state for processing
next linear event, and

• Idle: the interpreter does not set up the edge from the previous event
to the new event.

Each new event emitted by the interpreter is processed considering the
state of the context stack: the interpreter iterates over the context stack
and sets up the edges by the graph builder depending on the state of each
stack. The state WaitingFirstConditionEvent is necessary for correctly
interpreting the branching conditions, which shared variables are involved
in. If the non-linear statement is a loop statement, the loop back-edges will
be set to this event.

Once interpretation of the (non-linear) branch is completed, its
non-linear context is being popped out of the context stack (by inter-
preter method startBlockBranchDefinition) and added to the queue of
almostReadyContexts. The almost-ready-context becomes a ready-context
(i.e., it moves to the queue readyContexts) once the non-linear statement
definition has finished (the method finishNonlinearBlockDefinition).

Before processing a newly emitted event, the interpreter checks whether
the queue readyContexts is not empty. If so, it iterates over all ready-
contexts and sets up control-flow edges considering that the newly emitted
event is an exit-event" of the non-linear context (e.g., for a branching context
the interpreter adds primary edges from condition-event to the first-true-
branch-event and from the last-true-branch-event to the exit-event, the
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same is done with alternative edges for the false-branch). For the sake of
simplicity of the interpretation and encoding, jump events (no-computation
events) are present in the flow-graph, however they can be removed from it
with rebinding ingoing and outgoing edges. As an example of usage of the
interpreter, consider the code of the Y2XConverterVisitor for processing
if-then-else statement of the Y-tree in Appendix A.3.

4.3.2.6 X-graph unroller

In order to be encoded into an SMT-formula, the compiled graph needs to be
acyclic [PFH+17b]. For that, we perform the unrolling (also called unwinding)
transformation: all cycles are unrolled so that the result number of events
in a trace of the X-graph does not exceed the user-defined bound k12 . This
definition of the unrolling bound differs from one used by Porthos v1, where
each cycle was executed k times. The meaning of a bound was changed
in order to increase predictability of the size of the result SMT-formula.
Note that recursive function calls create unconditional back-jumps in the
event-flow graph, which can also be recognised as a loop and be affected by
the unrolling algorithm (however, currently not supported).

Considering the new meaning of the unrolling bound, the execution in
the unrolled graph can be completed (the loop has been executed a whole
number of times) or uncompleted (the unrolling bound has triggered on
not-the-last event of the loop), which can be modelled by two types of the
sink events. The user may need this information for understanding how the
PorthosC interprets the cyclic program. However, current implementation
loses this information by having only one sink event. Figure 4.8 illustrates
the unrolling for the left-hand side cyclic control-flow graph (the square
node S+ denotes the sink node for completed executions, and the S− denotes
the sink for uncompleted executions).

12The original specification of PorthosC stated that the unrolling bound k must be
interpreted as the maximum number of instruction in the original code (technically, the
number of expressions in the ANTLR syntax tree). Nonetheless, current implementation
of the X-graph unroller counts the X-level events as it is much simpler to implement
(the questions about how to count complex expressions that involve multiple shared
variables and method invocations are left open for the future versions of PorthosC). For
now, the information about the element of the ANTLR tree that corresponds to the X-
event or Y-tree element is being lost during the transformations. Instead, we use the
CitationService discussed in Section 4.3.1.1 that in perspective may be extended for
providing this information along with the text citation of the original code.
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Figure 4.8: Example of the flow graph unrolling up to bound k = 6

The unrolling procedure is performed by the XFlowGraphUnroller. For
unrolling the flow-graph, we perform the Deep-First Search (DFS) while
counting the X-events (for the unrolling bound) and keeping track of the
depth stack (for detecting back edges needed for determining the type of
sink node). Back-edges are determined via the depth stack (each next event
is pushed onto the stack; if the new event is present in the stack, the last
processed edge is a back-edge). Also, during the unrolling each next event
increments the unrolling depth counter – the non-zero integer event reference-
ID stored by each X-event (only events of a non-unrolled graph can have the
zero-valued reference-ID) As an X-event is immutable, it has the method
‘XEvent asNodeRef(int refId)’ that clones it with new value of reference-
ID. The methods hashCode and equals consider the reference-ID as the
uniqueness field for all events except sink and source events (considering
the use of HashMap and Guava’s ImmutableMap for storing events, proper
setting of the hash-code methods is a crucial programming task).

4.3.2.7 X-graph data-flow constructor

Once the graph is unrolled, it can be augmented by data-flow edges. As it
was discussed in Section 4.3.1.2, the data-flow edges can represent either
rf- or co-relation. The rf-edges join each write event to all read events
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that access the same location; the co-edges join write events to the same
location.

4.3.2.8 Z-formula encoder

The Z-formula encoder accepts as input the unrolled X-graph and the input
memory models. It visits the recursive memory model AST and each its
derived relation definition (recall the ‘let’ keyword of the CAT language) it
transforms to the set of SMT-clauses, generated on the basis of the program
events with respect to the encoding scheme described in Chapter 3. As the
Z-formula representation is not yet implemented, the Z-formula encoder
encodes the X-graph and W-model directly into the SMT-formula via Java
API of the Z3 solver (the program domain encoding is currently a part of
the Z-formula encoder until the full X-graphCF+DF is implemented).

4.3.3 Program output

The result of execution of PorthosC is the verdict modelled by the class
AppVerdict. This is a structure that contains the result of analysis and aux-
iliary information such as collected errors and time of execution (separately
for each stage of computing). The app verdict may be rendered to any
format convenient for the user.
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Evaluation

5.1 Comparison with Porthos v1

Consider two equivalent functions t0 in Figure 5.1: in the C language (left)
and in the Porthos v1 input language (right). The functions contain three
nested while-loops and thus can serve as an illustration of differences in
the program compilation and unrolling processes between Porthos v1 and
PorthosC.

void t0(int &x) {

int a = 1;

int c = 1;

while (a == 1) {

int b = 1;

while (b == 1) {

while (c == 1) {

x = c;

}

x = b;

}

}

x = a;

}

(a) An example in the C language

{ x }

thread t0 {

a <- 1;

c <- 1;

while (a == 1) {

b <- 1;

while (b == 1) {

while (c == 1) {

x := c

};

x := b

};

};

x := a

}

(b) An example in the Porthos v1 input language

Figure 5.1: Example: A demonstrative cyclic function
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The functions are analysed for reachability of the final state by PorthosC
and modified version Porthos v1 which is able to render the program AST
to an event-based control-flow graph (for that, branching statements, while-
loops and sequence statements are expanded recursively, and the head and
the tails of each complex statement are bound while processing the parent
instruction). The graph generation is performed via the open-source library
Graphviz [EGK+01]).

5.1.1 Compilation

Figure 5.2 illustrates the data structure which the functions in Figure 5.1
are compiled to. The left-hand side picture represents the non-unrolled
X-graphCF generated by PorthosC, and the right-hand picture represents the
AST generated by Porthos v1.

In both pictures, the writes are denoted with the left-directed arrow ‘<-’,
and the functions load and store denote the type of the shared memory
event. The primary transitions that denote unconditional jumps or if-true-
transitions are pictured with solid lines, and the alternative transitions
that denote if-false-transitions are pictured with dotted lines. The graphs
contain a single source event and a single sink event represented by the
dark-grey triangles (in fact, the graph produced by Porthos v1 does not have
sink and source nodes, but they were added to the picture for demonstrative
purposes). For clarity, all branching events, that in current example serve as
the conditional events of loops, are highlighed with light-grey colour.

Note that two compiled graphs are equivalent up to the extra nop-events
in the PorthosC graph, that are necessary for correct encoding as it was
discussed in Section 3.2.1, and skip-events in Porthos v1 graph. However,
the unrolled graphs presented in Figure 5.3 are different as the tools use
different unrolling algorithms. The labels of events in the left-hand side
picture (produced by PorthosC) are augmented by the unrolling depth
number, which is separated from the event label by comma.

5.1.2 Unrolling

The unrolling algorithm used by Porthos v1 (right-hand side picture) unrolls
all loops k times (where k is the unrolling bound), and the unrolling
algorithm of PorthosC unrolls loops so that not more than k events are
executed. As it is illustrated by the picture, the new algorithm produces
a better set of program executions (for example, the unrolled graph of
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(a) The compiled X-graph of the function in Figure 5.1a (b) The compiled AST of the function in Figure 5.1b

Figure 5.2: The control-flow graphs of the functions represented in Figure 5.1

Porthos v1 does not contain executions of the inner loops more than k = 2
times in a raw, which makes the old unrolling algorithm not complete). As
the new unrolling algorithm is based on the DFS algorithm, it discovers all
possible paths, therefore the result graph contains all possible executions
and thus the program analysis performed on this graph can be complete up
to bound k.

Note that the unrolled graph produced by PorthosC does not necessarily
become a tree after removing the sink node. Some branches of the graph are
merged when the executions have the same event with the same unrolling
depth number. For example, primary transitions of both events ‘[b <- 1, 8]’
and ‘[store(x <- b), 8]’ (produced by executions of the first iteration of
the while loop) lead to the same event ‘[eval(b == 1), 9]’ (the first event of
the second iteration of the second loop).

As another example of program liable for analysis consider the Dekker’s
algorithm for mutual exclusion of two processes, originally described by
Dijkstra [Dij62]; the program is presented in Appendix A.5. For testing
Porthos v1,we used the same file in old Porthos input language (dekker.pts),
which was used in evaluation tests in the original paper [PFH+17a]. For
performing tests, PorthosC was slightly modified in the branch ay/test-
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(a) The unrolled X-graph of the function in Figure 5.1a

(b) The unrolled AST of the
function in Figure 5.1b

Figure 5.3: The unrolled control-flow graphs of the functions represented in

Figure 5.1
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(a) The graph unrolled by PorthosC (b) The graph unrolled by Porthos v1

Figure 5.4: Dependency of number of events in the unrolled Dekker’s algorithm

on the unrolling bound

timing1 for printing detailed timing information and statistics about number
of events (commit f8a6c97f) and writing this information in strict json
format so that it can be easily processed later by a script that analyses and
prints the results (commit 48ba7161). The version of PorthosC used for the
tests is actual up to commit 01dde6b1 of the PorthosC GitHub repository.
Both Porthos v1 and PorthosC are run in the state reachability mode for
TSO memory model (see sample output of PorthosC in Appendix A.6).

Figure 5.4 illustrates the dependency of overall number of events in all
unrolled event-flow graphs of the thread t0 on the unrolling bound k for
the Dekker test (the left-hand side picture illustrates the case for PorthosC,
and the right-hand side picture illustrates the case for Porthos). The solid
lines denote dependency of number of unrolled events on the unrolling
bound, when the dashed lines denote the number of events in non-unrolled
graphs. The blue line depicts the dynamics of the overall number of events
in the graph (including memory events, nop events, etc.). Initially, the
thread t0 has 22 events. As in the unrolling scheme of Porthos v1, each
loop is executed exactly k1 times, therefore if k1 = 6, the loop has been
executed at least 6 times by producing around 300 events. Nonetheless, in
the new unrolling scheme used by PorthosC, the same number of events is
produced by the unrolling bound k2 = 34, which contains approximately
1.5 executions of the 22-event loop. Therefore, according to rough estimates
the new encoding scheme produces 6/1.5 = 4 times more events than the
older one.

1The modifications were pushed into the Porthos v1 repository github.com/

hernanponcedeleon/Dat3M
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The same dynamics can be seen with shared memory events (yellow
lines). However, the new algorithm produces much more local memory
events (green line on the left-hand side picture), which grow exponentially
with the unrolling bound, when the number of local memory events pro-
duced by the old algorithm (green line in the right-hand side picture) grows
relatively slowly. This can be explained by the need to copy all shared
variables to local ones when performing computation over them. On the
other hand, the right-hand side picture reveals exponential-like growth of
the number of nop- (or skip-) events, that are necessary for implementing
the control-flow as an AST, however constitute a redundant part of the
model (in the new unrolling scheme, the number of nop-events remains to
be relatively constant).

As the new unrolled graph has all possible executions unlike the older
one, by default PorthosC uses the new unrolling scheme. However, in some
applications the older unrolling mode may be useful (for example, where
the user can use other instruments to prove the limitations on the number
of executions of a loop), thus the user should be able to change configure
the unrolling algorithm (support for the older algorithm is left to a future
work).

5.2 Performance evaluation

Performance evaluation has also been performed on the example of the
Dekker test. For time benchmarking we ran the tools 5 times and computed
the median of the encoding time. Benchmarking was performed on the
Linux machine, 8 Gb RAM, 8 cores Intel(R) Core(TM) i7-3632QM CPU @
2.20GHz, running under Java(TM) SE Runtime Environment (build 1.8.0_-
161-b12) (Java virtual machine was configured by default parameters with
maximum heap size 1982 Mb). The time was measured by the tool itself via
the native Java method System.currentTimeMillis.

5.2.1 State reachability analysis

The sample output of PorthosC in the state reachability analysis mode is
presented in Appendix A.6. The output includes detailed time measure-
ments for each stage of the analysis, and optionally statistical information
about the unrolled program (number of events, transitions, etc.)
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(a) Encoding of the graph unrolled by PorthosC (b) Encoding of the graph unrolled by Porthos v1

Figure 5.5: Dependency of program domain encoding time (in seconds) on the

unrolling bound

As the unrolling algorithm has been changed, the number of events
after unrolling differs considerably, therefore the correct performance
comparison with Porthos v1 is not manageable as the performance of the
tools depends directly on number of events.

Figure 5.5 illustrates the dependency of the time spent for the pro-
gram domain encoding (for the process t0) on the unrolling bound. Since
the program domain encoding time is heavily dependent on the number
of events (specifically, shared and local memory events as the encoding
function contains several multiple nested loops over memory events), the
dependency graph follows the results presented in Figure 5.4 and resembles
exponential relationship between encoding time and unrolling bound.

An example with detailed execution time information for PorthosC
can be found in Appendix A.6 (part ‘timers’ of the output). Note that
the time spent for the interpretation (0.222 sec) and unrolling (0.088 sec)
stages remains negligible comparing to the full execution time (40.679 sec).
Therefore, we conclude that the new architecture implies no performance
overhead comparing to the previous version of the tool.

5.2.2 Portability analysis

For evaluating the tool working in the portability analysis mode, we used
the same files Dekker.c and Dekker.pts tested for the state-portability from
TSO to SC: As the portability analysis requires compiling the program
under two memory models, the overall program domain encoding time
72.744 sec with unrolling bound k2 = 27 is almost double as the same time
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in reachability analysis mode (Porthos v1 shows program domain encoding
time 41.027 sec with the bound k1 = 3).

5.2.3 New features

Current section demonstrates some new features of PorthosC, which is hard
or impossible to implement on the top of its predecessor Porthos v1 (see
detailed discussion in Chapter 4).

5.2.4 Interpretation of a code with an arbitrary

control-flow

The following example in Figure 5.6 illustrates the interpretation of the pro-
gram that contains continue, break and two goto instructions (both forward
and backward), that can produce an arbitrary control-flow graph. As an
addition, the example illustrates the interpretation of complex expressions
that involve shared variables (such as the condition of the while-loop in the
function thread_0). Note that the entry event of the loop is not necessarily
the guard computation event. In the case when a computation event in-
volves shared variables, all of them need to be copied to a register before
the computation event is emitted. The first event that performs such a copy
becomes an entry event of the while-loop, which the loop back edge and all
continue-jumps point to.

The four flow-graphs for the code in Figure 5.6 are shown in Figure 5.7.
There are two small linear flow-graphs for prelude (litmus-specific variables
initialisation and shared variables declaration) and postlude (assertion)
definitions. As the initialisation statement assigns value only to one shared
variable, its flow-graph has only a single event (although variable dec-
larations change the state of the interpreter while compilation, they do
not produce events). The postlude has shared variables involved into the
assertion, therefore they need to be copied into local registers beforehand.
Note how the unconditional jump instructions goto, continue and break

are compiled in the event-flow graph for processes thread_0 and thread_1.

5.2.5 Extensible compiler mapping

Apart from redesigning the tool architecture and extending the input
language, we added support for basic constructions used in Kernel litmus

tests [AMM+18]. Although, current version of PorthosC only supports some
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{

int x = 1, *y; //initialisation

}

void thread_0(int &x, int &y) {

L0: x = 0; //labelled statement

int r;

while (x * (5 + 4 / 2) % 3 == 1) {

if (x != 0) {

goto L0; //backward jump

}

if (y > 6) {

continue; //jump to the loop entry

}

else if (++y > 7) {

r = r + 10;

break; //jump to the loop exit

}

else {

goto L1; //forward jump

}

r = 11;

}

y = x + 1;

L1: x = r; //labelled statement

}

void thread_1() {

while (true) {

if (x > 7)

break;

}

y = x;

}

exists (y == x + 1 && thread_0:r > 21)

Figure 5.6: Example: A litmus test in C with an arbitrary control-flow
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Figure 5.7: Control-flow components of the event-flow graphs for the code in

Figure 5.6

basic macros of the Linux kernel (such as ‘READ_ONCE’ and ‘WRITE_ONCE’ for
atomic load and store with relaxed memory ordering) as the support for
kernel-specific memory barriers goes out of the scope of current thesis.
Note that, comparing to the Porthos v1, adding support for new functions
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in PorthosC does not require changing the input language grammar, this is
carried by invocation hooking mechanism described in Section 4.3.2.5.

As an example, consider the Store Buffering litmus test for the Linux
kernel in Figure 5.8 (which is similar to the one presented in Figure 1.1).
When verifying this litmus test by PorthosC in the state reachability mode,
the test passes for TSO memory model and fails for SC model.

{ int x = 0; int y = 0;}

P0(volatile int& y, volatile int& x) {

int r0;

WRITE_ONCE(x,1);

r0 = READ_ONCE(y);

}

P1(volatile int& y, volatile int& x) {

int r0;

WRITE_ONCE(y,1);

r0 = READ_ONCE(x);

}

exists(x == 0 && y == 0)

Figure 5.8: SB litmus test for the Linux kernel memory model
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Summary

6.1 Solved tasks and contributions

During the work on this thesis, we solved the following research and
engineering problems:

1. We have studied existing weak memory model-aware analysis ap-
proaches, tools and frameworks to gather deep understanding of the
problem (Sections 1.2 and 3.1 and Chapter 2).

2. Then, we explored existing implementation of the portability analysis
tool Porthos and designed the new tool PorthosC that accepts as input
the larger subset of the C language and supports its fundamental con-
cepts by design, has modular architecture and disposes the extensible
knowledge base of the domain-specific functions. The key aspects of
the architectural design and implementations are the following:

a. The first stumbling block in extension of the input language was
the Porthos v1 program input parser, which performs the full
semantic analysis of the program. Although it works for a small
subset of the C language, the rich and expressive language such
as C requires several stages of analysis before the compilation
stage. To handle this, we implemented the processing units that
analyse the AST of the program on the pre-compilation stage (see
Section 4.3.2.4).
As an example, the variable kind analysis (determining whether
they are shared or local) is performed by Porthos v1 syntactically,
depending on the operator or the function that uses the variable.
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In contrast, PorthosC traverses the program AST and collects
information of all variables accessed in the program during the
pre-compilation stage (see Section 4.3.2.4). Currently, PorthosC
considers a variable to be shared if it was declared as a pointer,
or its address is accessed at least once by the code of any process,
or it was declared as a parameter of the function that defines a
process, or it was exported by extern keyword or an exporting
function.

b. In addition, PorthosC supports new syntactic constructions of the
C language: break and continue jumps, function invocations,
multiple-variable declarations (as ‘int a, b=2, z;’), arbitrary
expressions allowed by the C11 standard [ISO11], and some
others (see Section 4.2).

c. As the C language supports unconditional goto-jumps, the
control-flow graph can have an arbitrary structure, which can
not be modelled solely by the program AST, therefore PorthosC
compiles the AST to the low-level hardware-agnostic program
representation X-graph. For that, we implemented the full C in-

terpreter discussed in Section 4.3.2.5.

d. Originally, the control-flow instructions were encoded directly
into the SMT-formula [PFH+17a]. In contrast, PorthosC encodes
the low-level X-graph representation in accordance with the
new control-flow encoding scheme that in general follows the
one proposed in [EH08, Chapter 5.1.2] (see Section 3.2.1). As
the new encoding scheme does not add new variables to every
control-flow instruction, the number of variables in the result
SMT-formula is expected to be smaller.

e. Since PorthosC compiles the program AST to the X-graph before
encoding it into the SMT-formula, we decided to change the
unrolling algorithm from unwinding all loops k times (where k is
the user-specified unrolling bound) to the DFS-based algorithm
that explores all possible executions that the program can produce
within k steps (see discussion on the unrolling in Sections 4.3.2.6
and 5.1.1). On the other hand, it is shown in Section 5.1.2 that the
implementation of the new unrolling algorithm does not produce
exponentially many dummy nop-events as the implementation
of the old unrolling algorithm does. Another benefit of the new
unrolling scheme is that it is much more configurable (i.e., the
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number of events grows gradually as the unrolling bound is
being increased, see Figure 5.4).
Although the new unrolling algorithm produces considerably
more executions than the old one and thus requires more time for
analysis, PorthosC uses the new unrolling algorithm by default
as it is complete (finds all possible executions).

f. For ease of adding support for new domain-specific functions
(for example, the Kernel-specific atomic write function atomic_-

store), we implemented the invocation hooking, a flexible mecha-
nism for intercepting the compilation process without changing
the interpreter. The invocation hooking mechanism serves as a
knowledge base for the program domain, that is to be filled and
extended in future. Invocation hooks are defined in Java and thus
are flexible, though their extension and modification requires
some knowledge of the internals of the tool. We illustrate this
mechanism with the basic support for Linux kernel litmus tests
(see Sections 4.3.2.5 and 5.2.3).

3. As the tests show, the performance overhead of the new architecture
is negligible (see Section 5.2), therefore we consider the applied
architectural decisions to be acceptable.

6.2 Limitations and directions for future work

Current implementation of PorthosC has the following limitations, that
might possibly define the direction of the future work.

• One of the major limitation of PorthosC as a software verification tool
is its sensitivity to the combinatorial explosion of the state space. As
it was shown in Section 5.2, the number of events of the unrolled
program grow rapidly as the user increases the unrolling bound. One
possible way to reduce the number of the program states might be
applying some traditional techniques that target the state explosion
problem (such as concrete execution as a part of concolic execution [MS07]
before the unrolling stage). However, this must be done carefully and
with taking into account the analysing weak memory model, because
otherwise it can lead to the loss of states and thus to incorrect analysis
results. Nonetheless, the small-size litmus test-like programs (containing
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hundreds of events after the unrolling) remain to be handleable by
PorthosC within reasonable time.

• For justifying the correctness of the verification that bases on the result
of the input program unrolling (via the new unrolling scheme discussed
in Section 4.3.2.6), one might want to be aware whether the execution in
the unrolled event-flow graph has run the loop a whole number or it was
interrupted on non-last event of the loop. This can be modelled with
two kinds of sink events (completed and uncompleted) of the event-flow
graph as it was discussed in Sections 3.2.1 and 4.3.2.6.

• Extending the knowledge base of domain-specific functions to model
synchronisation primitives (the compiler mapping) can be considered
as the main future research direction. Thus, to be able to process most
Linux kernel litmus tests, PorthosC needs to know the semantics of the
barrier and memory operation functions that are specific for the Linux
kernel in order to be able to compile them into the X-graph and later
encode them into the SMT-formula. Due to modular architecture of
PorthosC, the extension of the knowledge base can be done by modifying
solely the invocation hooking mechanism. Note that the flip side of
the flexibility of invocation hooks is their complexity: being written
in Java, in addition they require from the user some knowledge of
general architecture of the tool, the interface methods provided by the
interpreter, the class hierarchy of the X-graph elements, etc.

• The wide range of existing litmus tests may require PorthosC to support

new input languages. The first candidates for being supported are the
LISA language (Litmus Instruction Set Architecture) [ACM16] and as-
sembly languages of most common architectures (x86, Power, Alpha,
etc.). Note that the programs in low-level languages can be easily com-
piled to the X-graph representation by existing compiler architecture
since low-level assembly-like languages can be considered as the sub-
set of the C language, that restricts the set of non-linear control-flow
instructions to the conditional and unconditional jumps (which are
supported by the current X-graph compiler of PorthosC).

• Although PorthosC has an extended support for primitive data types
(integers, reals, booleans), it still is not able to handle the complex data

types. However, as the Z3 solver supports the theory of constant-size
arrays, it might be relatively easy to extend the support for constant-
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size arrays (declared as ‘int arr[10];’), enumerations and structures.
Nevertheless, pointers and variable-size arrays (allocated in the heap by
functions malloc, calloc, etc.) require a stronger pre-processing analysis
before being encoded into an SMT-formula.

• Currently, PorthosC can operate only in the intra-procedural analysis
mode by assuming that each function provided by the user represents a
separate thread (so-called litmus test-mode). One future direction of the
work could be adding the inter-procedural analysis mode for scanning a
code project instead of a separate file (see the discussion in Section 4.1).
Although, processing large programs may require serious memory
optimisations (for instance, in storing the full unrolled graph data
structure), which can possibly lead to worsening the overall performance.
In addition, when processing large code projects, PorthosC might need
the memory-guarding module that tracks the memory consumption of
the tool and aborts its work if necessary.

• As it was mentioned in Section 3.2.1 devoted to the encoding for the
control-flow of the program, the new encoding scheme used by PorthosC
allows to analyse partial functions. Although the current PorthosC inter-
preter infrastructure is not configured to perform a partial analysis, it
can be easily supported.

• During the implementation of PorthosC, we have only done limited
testing of the tool. Thus, in order to increase the stability of PorthosC, we
need to cover its code by unit- and functional tests.

• One might want to compare the performance of PorthosC in cases of
usage the different SMT-solvers. For that, the Z-formula abstraction
layer will be useful as new SMT-solvers can be easily added (the general
way to support multiple SMT-solvers is to convert the Z-formula to an
SMT-LIB formula [BFT17], that can be passed as input to the SMT-solver
run as an external process).

The new tool PorthosC with the extensible program domain knowledge
base can be considered as a generalised framework for SMT-based memory
model-aware analysis, which can not only perform the reachability and
portability analysis, but also serve as a basis for other kinds of static analysis
of concurrent programs.
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A.1 File trees of Y-tree and X-graph representations

ytree/

definitions

YDefinition.java

YFunctionDefinition.java

expressions

accesses

YIndexerExpression.java

YInvocationExpression.java

YMemberAccessExpression.java

assignments

YAssignmentExpression.java

atomics

YAtom.java

YConstant.java

YLabeledVariableRef.java

YParameter.java

YParameterListBuilder.java

YVariableRef.java

operations

YBinaryExpression.java

YBinaryOperator.java

YPointerUnaryExpression.java

YUnaryExpression.java

YUnaryOperator.java

ternary

YTernaryExpression.java

YEmptyExpression.java

YExpression.java

YOperator.java

litmus

YPostludeStatement.java

YPreludeStatement.java

YProcessStatement.java

statements

jumps

YJumpLabel.java

YJumpStatement.java

YBranchingStatement.java

YCompoundStatement.java

YLinearStatement.java

YStatement.java

YUnlabeledStatement.java

YVariableDeclarationStatement.java

YWhileLoopStatement.java

types

YMethodSignature.java

YType.java

YEntity.java

YSyntaxTree.java

xgraph/

events

barrier

XBarrierEvent.java

computation

XAssertionEvent.java

XBinaryComputationEvent.java

XBinaryOperator.java

XComputationEvent.java

XOperator.java

XTypeDeterminer.java

XUnaryComputationEvent.java

XUnaryOperator.java

controlflow

XEntryEvent.java

XExitEvent.java

XJumpEvent.java

XNopEvent.java

memory

XInitialWriteEvent.java

XLoadMemoryEvent.java

XLocalMemoryEvent.java

XMemoryEvent.java

XRegisterMemoryEvent.java

XSharedMemoryEvent.java

XStoreMemoryEvent.java

XEventInfo.java

XEvent.java

memories

XConstant.java

XLocalLvalueMemoryUnit.java

XLocalMemoryUnit.java

XLocation.java

XLvalueMemoryUnit.java

XMemoryUnit.java

XRegister.java

XRvalueMemoryUnit.java

XSharedLvalueMemoryUnit.java

XSharedMemoryUnit.java

process

XCyclicProcessBuilder.java

XCyclicProcess.java

XProcessBuilder.java

XProcessId.java

XProcess.java

XProcessKind.java

program

XCyclicProgramBuilder.java

XCyclicProgram.java

XProgramBuilder.java

XProgram.java

types

XMockType.java

XType.java

XEntity.java
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A.2 Example of the invocation hook for intercepting the

Linux kernel-specific functions

class XKernelInvocationHook extends XInvocationHookBase

implements XInvocationHook {

...

@Override

public XInvocationHookAction intercept(String functionName) {

switch (functionName) {

case "WRITE_ONCE": {

return new XInvocationHookAction((receiver, arguments) -> {

if (arguments.length != 2 || receiver != null) {

return null; // do not intercept

}

XMemoryUnit destUnit = arguments[0];

if (!(destUnit instanceof XSharedLvalueMemoryUnit)) {

throw new XMethodInvocationError(methodName,

"arg 1: not a shared l-value memory unit: " + destUnit);

}

XSharedLvalueMemoryUnit dest =

(XSharedLvalueMemoryUnit) destUnit;

XMemoryUnit srcUnit = arguments[1];

if (!(srcUnit instanceof XLocalMemoryUnit)) {

throw new XMethodInvocationError(methodName,

"arg 2: not a local memory unit: " + srcUnit);

}

XLocalMemoryUnit src = (XLocalMemoryUnit) srcUnit;

return program.emitMemoryEvent(dest, src);

});

}

case "READ_ONCE": {

...

}

}

}
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A.3 Excerpt from the Y-to-X converter for interpreting

branching statements

public class Y2XConverterVisitor implements YtreeVisitor<XEntity> {

...

@Override

public XEvent visit(YBranchingStatement node) {

program.startBlockDefinition(XInterpreter.BlockKind.Branching);

program.startBlockConditionDefinition();

XEntity conditionEntity = node.getCondition().accept(this);

XComputationEvent condition = tryEvaluateComputation(conditionEntity);

program.finishBlockConditionDefinition(condition);

program.startBlockBranchDefinition(XInterpreter.BranchKind.Then);

node.getThenBranch().accept(this);

program.finishBlockBranchDefinition();

YStatement elseBranch = node.getElseBranch();

program.startBlockBranchDefinition(XInterpreter.BranchKind.Else);

if (elseBranch != null) {

elseBranch.accept(this);

}

else {

program.emitNopEvent(); // needed for encoding

}

program.finishBlockBranchDefinition();

program.finishNonlinearBlockDefinition();

return null; //statements return null

}

}
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A.4 Public interface methods of the X-interpreter

public interface XInterpreter {

XProcessId getProcessId();

void finish();

XProcess getResult();

// emitting new events:

XEntryEvent emitEntryEvent();

XExitEvent emitExitEvent();

XBarrierEvent emitBarrierEvent(XBarrierEvent.Kind kind);

XJumpEvent emitJumpEvent();

XJumpEvent emitJumpEvent(String jumpLabel);

void markNextEventLabel(String jumpLabel);

XNopEvent emitNopEvent();

XAssertionEvent emitAssertionEvent(XBinaryComputationEvent assertion);

XLocalMemoryEvent emitMemoryEvent(XLocalLvalueMemoryUnit destination,

XLocalMemoryUnit source);

XSharedMemoryEvent emitMemoryEvent(XLocalLvalueMemoryUnit destination,

XSharedMemoryUnit source);

XSharedMemoryEvent emitMemoryEvent(XSharedLvalueMemoryUnit destination,

XLocalMemoryUnit source);

XComputationEvent createComputationEvent(XUnaryOperator operator,

XLocalMemoryUnit operand);

XComputationEvent createComputationEvent(XBinaryOperator operator,

XLocalMemoryUnit operand1,

XLocalMemoryUnit operand2);

// non-linear statements interpretation:

void startBlockDefinition(BlockKind blockKind);

void startBlockConditionDefinition();

void finishBlockConditionDefinition(XComputationEvent condition);

void startBlockBranchDefinition(BranchKind branchKind);

void finishBlockBranchDefinition();

void finishNonlinearBlockDefinition();

void processJumpStatement(JumpKind kind);

XEntity processMethodCall(String methodName, XMemoryUnit... arguments);

}
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A.5 Dekker’s mutual exclusion algorithm in C

{ int flag0 = 0, flag1 = 0, turn = 0; }

void P0() {

while (true) {

int a = 1, b = 0;

flag0.store(memory_order_relaxed, a);

f1 = flag1.load(memory_order_relaxed);

while (f1 == 1) {

t1 = turn.load(memory_order_relaxed);

if (t1 != 0) {

flag0.store(memory_order_relaxed, b);

t1 = turn.load(memory_order_relaxed);

while (t1 != 0)

t1 = turn.load(memory_order_relaxed);

flag0.store(memory_order_relaxed, a);

}

}

}

}

void P1() {

while (true) {

int c = 1, d = 0;

flag1.store(memory_order_relaxed, c);

f2 = flag0.load(memory_order_relaxed);

while (f2 == 1) {

t2 = turn.load(memory_order_relaxed);

if (t2 != 1) {

flag1.store(memory_order_relaxed, d);

t2 = turn.load(memory_order_relaxed);

while (t2 != 1)

t2 = turn.load(memory_order_relaxed);

flag1.store(memory_order_relaxed, c);

}

}

}

}

exists (turn == 10)
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A.6 Sample of the verbose output of PorthosC in the porta-

bility analysis mode

$ java PorthosC --reachability

--input benchmarks/Dekker.c --bound

27 --target TSO -v

0.400: Interpretation...

0.632: Unrolling...

0.805: Program encoding...

1.019: Program domain encoding...

36.945: Memory model encoding...

40.281: Solving...

{

"result": "NonReachable",

"options": {

"inputProgramFile": {

"path": "benchmarks/Dekker.c"

},

"sourceModel": "TSO",

"unrollingBound": 27

},

"timerMain": {

"elapsedTimeSec": 40.679

},

"timers": {

"Interpretation": {

"elapsedTimeSec": 0.222

},

"ProgramDomainEncoding": {

"elapsedTimeSec": 35.925

},

"Solving": {

"elapsedTimeSec": 0.397

},

"Unrolling": {

"elapsedTimeSec": 0.088

},

"MemoryModelEncoding": {

"elapsedTimeSec": 3.335

},

"ProgramEncoding": {

"elapsedTimeSec": 0.214

}

},

"processStatistics": {

"_Prelude_": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 4,

"_XEdgeAlternative": 0,

"XLocalMemoryEvent": 0,

"XSharedMemoryEvent": 3,

"XControlFlowEvent": 0,

"XComputationEvent": 0,

"XEvent": 4,

"XMemoryEvent": 3

},

"_Postlude_": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 3,

"_XEdgeAlternative": 0,

"XLocalMemoryEvent": 0,

"XSharedMemoryEvent": 1,

"XControlFlowEvent": 0,

"XComputationEvent": 1,

"XEvent": 3,

"XMemoryEvent": 1

},

"t0": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 22,

"_XEdgeAlternative": 4,

"XLocalMemoryEvent": 6,

"XSharedMemoryEvent": 7,

"XControlFlowEvent": 0,

"XComputationEvent": 8,

"XEvent": 22,

"XMemoryEvent": 13

},

"t1": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 22,

"_XEdgeAlternative": 4,

"XLocalMemoryEvent": 6,
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"XSharedMemoryEvent": 7,

"XControlFlowEvent": 0,

"XComputationEvent": 8,

"XEvent": 22,

"XMemoryEvent": 13

}

},

"processStatisticsUnrolled": {

"_Prelude_": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 4,

"_XEdgeAlternative": 0,

"XLocalMemoryEvent": 0,

"XSharedMemoryEvent": 3,

"XControlFlowEvent": 0,

"XComputationEvent": 0,

"XEvent": 4,

"XMemoryEvent": 3

},

"_Postlude_": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 3,

"_XEdgeAlternative": 0,

"XLocalMemoryEvent": 0,

"XSharedMemoryEvent": 1,

"XControlFlowEvent": 0,

"XComputationEvent": 1,

"XEvent": 3,

"XMemoryEvent": 1

},

"t0": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 165,

"_XEdgeAlternative": 33,

"XLocalMemoryEvent": 43,

"XSharedMemoryEvent": 52,

"XControlFlowEvent": 0,

"XComputationEvent": 46,

"XEvent": 165,

"XMemoryEvent": 95

},

"t1": {

"XBarrierEvent": 0,

"XNopEvent": 0,

"_XEdgePrimary": 165,

"_XEdgeAlternative": 33,

"XLocalMemoryEvent": 43,

"XSharedMemoryEvent": 52,

"XControlFlowEvent": 0,

"XComputationEvent": 46,

"XEvent": 165,

"XMemoryEvent": 95

}

},

"errors": []

}
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