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Abstract

Background: Sepsis is associated with disturbed glucose metabolism and reduced
mitochondrial activity and biogenesis, ultimately leading to multiple organ
dysfunction, e.g., acute kidney injury (AKI). Cystathionine-γ-lyase (CSE), the major
cardiovascular source of endogenous H2S release, is implicated in the regulation of
glucose metabolism and mitochondrial activity through a PGC1α-dependent
mechanism, and critical for kidney function. Atherosclerosis is associated with
mitochondrial dysfunction and reduced CSE expression. Thus, the aim of this post
hoc study was to test the hypothesis whether there is an interplay between CSE
expression and kidney dysfunction, mitochondrial activity, and oxidative/nitrosative
stress in porcine septic AKI with underlying coronary artery disease.

Methods: This study is a post hoc analysis of material from anesthetized and
instrumented swine with a high fat diet-induced hypercholesterolemia and
atherosclerosis undergoing faecal peritonitis-induced septic shock or sham procedure
and intensive care (comprising fluid resuscitation and continuous i.v. noradrenaline
(NoA) infusion) for 24 h. Glucose metabolism was quantified from blood 13C6-glucose
and expiratory 13CO2/

12CO2 isotope enrichment during 13C6-glucose infusion.
Mitochondrial activity was determined by high-resolution respirometry. CSE and PGC1α
expression, as well as nitrotyrosine formation and albumin extravasation, were
quantified by immunohistochemistry of formalin-fixed kidney paraffin sections.

Results: Sepsis was associated with lactic acidosis (p = 0.004) and AKI (50% fall of
creatinine clearance (CrCl), p = 0.019). While both whole-body glucose production (p =
0.004) and oxidation (p = 0.006) were increased, kidney tissue mitochondrial respiration
was reduced (p = 0.028), coinciding with decreased CSE (p = 0.003) and PGC1α (p = 0.
003) expression. Albumin extravasation (p = 0.011) and nitrotyrosine formation (p = 0.
008) were increased in septic kidneys.

Conclusions: Sepsis-induced AKI is associated with disturbed mitochondrial respiration
and biogenesis, which may be aggravated by oxidative and nitrosative stress. Our
results confirm previous data in murine septic shock and porcine hemorrhage and
resuscitation on the crucial role of CSE for barrier integrity and kidney function.

Keywords: Peroxisome proliferator-activated receptor gamma coactivator 1-α, Barrier
dysfunction, Oxidative stress, Co-morbidity, Glucose utilization, Hyperlactatemia
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Background
Septic acute kidney injury (AKI) is characterized by an acute decrease in renal function co-

inciding with relatively normal histologic morphology [1–5]. The severity of septic AKI is

related to vascular leakage [1], derangements in glucose metabolism [6], and reduced mito-

chondrial activity [7, 8]. Hydrogen sulfide (H2S), an important “gaseous mediator,” has been

implicated in all the abovementioned: kidney function, vascular regulation, barrier function,

glycemic control, and the mitochondria. Cystathionine-γ-lyase (CSE), the major enzymatic

source for endogenous H2S, is constitutively expressed in the kidney and has been shown to

be critical for kidney function [9, 10] as its “abundant” expression is associated with im-

proved glomerular filtration in human transplant patients [11]. We recently demonstrated

that CSE expression correlated with maintained creatinine clearance (CrCl) and reduced

vascular leakage in resuscitated murine polymicrobial septic shock [1].

CSE has also been shown to play a role in regulating glucose metabolism and mitochon-

drial function through a PGC1α-dependent mechanism [8, 12]. CSE−/− mice displayed re-

duced gluconeogenesis, which was reversed by exogenous administration of H2S, through

the upregulation of PGC1α [12]. In addition, we recently demonstrated the inverse relation-

ship, suggesting a regulatory loop; in hyperglycemic septic mice, CSE protein expression

was downregulated concomitant with reduced PGC1α levels and mitochondrial respiratory

activity in both coupled (maximum oxidative phosphorylation (OxPhos)) and uncoupled

(maximum capacity of the electron transfer system) states [8]. Impaired renal mitochondrial

function, through its production and release of free radicals, may further aggravate organ in-

jury during sepsis [13]. H2S is a mitochondrial electron donor and a free radical scavenger

[14] and has been demonstrated to attenuate AKI in pre-clinical ischemia/reperfusion

models [9]. Its role in sepsis, however, is ambivalent: In rodent endotoxemia or sepsis, H2S

was reported to attenuate [15, 16] or aggravate [17] kidney dysfunction and/or injury.

Atherosclerosis is a common confounding factor in the management of sepsis, increasing

mortality [18], which is often not incorporated by the use of naive/young animal models [9].

We recently reported that atherosclerotic pigs with coronary artery disease subjected to sep-

sis developed impaired cardiac function, which coincided with decreased CSE expression

and increased nitrotyrosine formation [19, 20]. Thus, the aim of this study was to test the

hypothesis whether there is an interplay between CSE expression and kidney dysfunction,

mitochondrial activity, and oxidative/nitrosative stress in porcine septic AKI with underlying

co-morbidity. The used swine strain, “familial hypercholesterolemia Bretoncelles Meishan”

(FBM), is characterized by coronary artery disease due to an atherogenic diet. FBM animals

are known to exhibit significantly higher cholesterol levels compared to healthy swine of the

same age [21–23] and present the biomarker pattern of hypercholesterolemia: increased

oxidative stress and lower blood levels of nitric oxide (NO) metabolites [23] reminiscent of

patients with hypercholesterolemia-induced atherosclerosis [24]. In atherosclerosis, CSE has

been shown to play an important role: its downregulation is associated with hypertension,

cardiovascular pathology, coronary artery disease, and chronic kidney disease [20, 25]. Data

reported are a post hoc analysis of material available from a previous study [26].

Methods
The study was approved by the University of Ulm Animal Care Committee and the

Federal Authorities for Animal Research. The experiments were performed in adher-

ence to the National Institute of Health Guidelines on the Use of Laboratory Animals
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and the European Union “Directive 2010/63/EU on the protection of animals used for

scientific purposes” and authorized by the federal authorities for animal research of the

Regierungspräsidium Tübingen (approved animal experimentation number: 1024),

Baden-Württemberg, Germany, and the Animal Care Committee of the University of

Ulm, Baden-Württemberg, Germany. This is a post hoc study performed on available

material from the vehicle-treated group of a previous study [26] and unpublished

sham-operated animals studied simultaneously under the same protocol. The

underlying atherosclerosis in the pig strain has previously been characterized in

coronary vascular sections by our group [19, 20]. Briefly, male castrated FBM (age

15–30 months, 69 kg (65–73 kg)) with a high-fat diet-induced hypercholesterol-

emia and atherosclerosis [21] underwent polymicrobial septic shock (n = 8) induced

by inoculation of autologous feces into the abdominal cavity, or sham procedure,

i.e., abdominal saline injection (n = 5), and subsequently received intensive care

therapy for 24 h. Anesthesia and surgical instrumentation have been previously de-

scribed in detail [26, 27]. In brief, for all animals, anesthesia was induced with pro-

pofol and ketamine to allow endotracheal intubation and was maintained thereafter

with continuous i.v. pentobarbitone and pancuronium and intermittent buprenor-

phine. Ventilator settings were fraction of inspired O2 (FiO2) 0.35, positive end-

expiratory pressure (PEEP) 10 cmH2O, tidal volume 8 mL/kg, respiratory rate 10

to 12 breaths/min adjusted to maintain arterial PCO2 = 35 to 40 mmHg, inspiratory

(I)/expiratory (E) ratio 1:1.5, peak airway pressure < 40 cmH2O, and modified to I/

E ratio 1:1, and PEEP 12 or 15 cmH2O if the ratio of arterial O2 partial pressure

(PaO2)/FiO2 is < 300 or < 200 mmHg, respectively [26]. The septic and sham pigs

had the right jugular vein and carotid artery exposed for the insertion of a central

venous catheter sheath and the placement of a balloon-tipped pulmonary artery

catheter to measure central venous pressure (CVP) and a thermistor-tipped arterial

catheter for blood pressure (mean arterial pressure (MAP)) recording and transpul-

monary single indicator thermodilution–cardiac output measurement. Ringer’s solu-

tion was continuously infused as maintenance fluid (10 mL/(kg h)) [20].

Experimental protocol

Atherogenic diet (1 kg daily, 1.5% cholesterol, 20% bacon fat) was fed for at least

9 months prior to the experiments. Post anesthesia and surgical instrumentation, the

supernatant (3 mL/kg) of 1.0 g/kg autologous feces incubated in 500 mL 0.9% saline

for 12 h at 38 °C, or saline only as sham procedure, was injected into the abdominal

cavity via the abdominal drainage tubes. Hydroxyethyl starch (10 mL/(kg h)), 5 mL/

(kg h) if CVP or PAOP was > 18 mmHg, allowed maintaining hyperdynamic

hemodynamics. If necessary, norepinephrine was infused and titrated to maintain MAP

at baseline values (not further increased if the heart rate was ≥ 160 beats/min to avoid

tachycardia-induced myocardial ischemia) [26]. Twenty-four hours after the induction

of fecal peritonitis, anesthesia was further deepened and animals were sacrificed with

potassium chloride [20]. At the end of the experiment, the total amount of NoA given

to the animal was documented. This amount was then normalized to the duration of

the experiment and body weight of the animal to be able to compare averaged NoA in-

fusion rates between the individual animals.
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Measurements and calculations

Hemodynamics, systemic and pulmonary gas exchange (arterial and mixed venous

blood gases), creatinine, and renal glucose, lactate, and hemoglobin concentrations have

been described previously in the original publication [26]. Using a steady-state ap-

proach, endogenous glucose production was calculated as the difference between the

rate of appearance of stable, non-radioactively labeled 1,2,3,4,5,6-13C6-glucose during

continuous intravenous isotope infusion minus the exogenous glucose infusion rate

after gas chromatography-mass spectrometry assessment of plasma isotope enrichment.

Direct, aerobic glucose oxidation was derived from the mixed expiratory 13CO2 isotope

enrichment measured using non-dispersive infrared spectrometry and corrected for the

plasma isotope ratio and CO2 production [23, 28]. Urinary and renal blood creatinine

levels were analyzed to calculate creatinine clearance; renal venous NGAL, TNFα, and

IL-6 levels were assessed as previously described [23, 26].

Histopathology and immunohistochemistry

For this experiment on the kidney, we selected the pig in contrast to the mouse, be-

cause pigs, monkeys, and humans share multilobular, multipapillary kidneys in contrast

to rodent kidneys, which are unilobular and unipapillary. Furthermore, in rodents, the

urine empties directly into the renal pelvis, whereas in pigs and humans, urine empties

into a branched caliceal network that distributes to the renal pelvis. The intricate sys-

tem of interlobar and segmented arteries, that provides blood flow to numerous kidney

lobes in humans and pigs, is not present in rodents and dogs because they do not

have the multiple medullary pyramids [29]. As a consequence, kidney ischemic in-

jury in rodents leads to extensive necrosis of proximal tubules. In humans, in con-

trast, “frank tubular necrosis” is infrequent, less pronounced, and only patchy if

present at all [9, 30].

Post-mortem, pyramid-shaped kidney samples comprising the kidney cortex, medulla,

and renal papilla were fixed in formalin (fixation identical for all samples), dehydrated,

and embedded in paraffin blocks. Paraffin sections (3–5 μm) were cut, deparaffinized in

xylene, and rehydrated with a graded series of ethanol to deionized water. Histopatho-

logical examination of hematoxylin–eosin-stained specimens was performed by an

experienced pathologist blinded for the sample grouping [26]. Histopathological alter-

ations were analyzed for the degree of “glomerular tubularization,” dilatation of Bow-

man’s space, and swelling of Bowman’s capsule, cellular edema of the proximal tubule,

distal tubular dilatation and elongation, tubular protein cylinders, and tubular necrosis

as described in detail previously [26].

For immunohistochemistry, the slide sections containing sham and septic tissue were

analyzed concurrently and included both negative and positive controls. After heat-

induced antigen retrieval in citrate pH 6, the slides were blocked with 10% normal sera

(Jackson ImmunoResearch) before incubating in primary antibody (1° ab, anti-

nitrotyrosine (Millipore)), CSE: anti-CTH (Abnova), anti-PGC1α (Novus), and anti-pig al-

bumin (Abcam)). Primary antibody detection was performed by Dako REAL detection

system (anti-mouse, anti-rabbit; alkaline phosphatase conjugated) and visualized with red

chromogen (Dako REAL; Dako) followed by counterstaining with hematoxylin (Sigma).

The slides were visualized using a Zeiss Axio Imager A1 microscope with a × 10 objective.
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Quantification for intensity was performed on multiple 800,000-μm2 sections using the

AxioVision 4.8 software (Zeiss) [10]. Data are presented as densitometric sum red [20].

The obtained densitometric values for CSE were compared and correlated (p = 0.001) with

the values obtained by western blotting (data shown in Additional file 1). It is well estab-

lished in the literature that densitometric analysis of colorimetric immunohistochemical

staining is as acceptable a method as western blotting for protein measurement [31–33].

In contrast to western blot, the IHC evaluation of the tissue allows identification of the

physical topography and protein expression in different cell types.

Mitochondrial respiration

Mitochondrial respiratory activity was determined via high-resolution respirometry

with a Clark-electrode-based system (Oxygraph 2k, OROBOROS Instruments Corp.,

Innsbruck, Austria) as described previously [34, 35]. Fresh postmortem kidney samples

were collected in Custodiol (Franz Köhler Chemie) and mechanically homogenized in

respiration medium (MIR05; 0.5 mM EGTA, 3 mM MgCl2·6H2O, 60 mM lactobionic

acid, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, and 1 g/L bo-

vine serum albumin), and 2 mg of tissue was added to the Oxygraph chamber. The

chambers were oxygenated to an O2 concentration of 400 μM. By the addition of a de-

fined sequence of substrates and inhibitors, various states of mitochondrial function

could be assessed. Ten micromolar cytochrome c was added to reactivate mitochondria

after homogenization. Complex I activity was determined after the addition of 10 mM

pyruvate and glutamate, and 5 mM malate and ADP. Maximum OxPhos was evaluated

after subsequent addition of 0.5 mM octanoyl–carnitine and 10 mM succinate; leak

compensation was assessed after inhibition of the ATP-synthase by 2.5 μM oligomycin,

followed by stepwise titration of the uncoupling agent carbonyl cyanide-4-(trifluoro-

methoxy) phenylhydrazone (FCCP, final concentration 1.5 μM) to reach maximum re-

spiratory activity of the electron transfer system (ETS) in the uncoupled state. The

activity of complex II was determined in the uncoupled state by the addition of 0.5 μM

rotenone, an inhibitor of complex I. The measurement was finished after the addition

of 5 μM of the complex III inhibitor antimycin A [8].

Statistical analysis

Data are presented as median (quartiles). Data on physiology and renal blood gas ana-

lysis were analyzed with a two-way ANOVA and post hoc Tukey test for multiple com-

parisons. All other group differences were analyzed with the Mann–Whitney rank sum

test after exclusion of normal distribution using the Kolmogorov–Smirnov test. Quanti-

tative relations of pooled data sets from all experimental groups, between noradrenaline

infusion and creatinine clearance, between noradrenaline infusion and mitochondrial

activity, and between mitochondrial activity and creatinine clearance, were determined

with Spearman’s coefficient for non-linear relationships, and the data were fitted to an

exponential decay or growth according to the general equation f(x) = a · e±bx. Correla-

tions between CSE expression and PGC1α expression, albumin extravasation, nitrotyro-

sine formation, and mitochondrial activity as well as correlations between nitrotyrosine

and mitochondrial activity were evaluated by measuring Pearson’s coefficient of correl-

ation for linear relationships. A non-linear model was used whenever a linear model
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was not statistically significant and/or a markedly higher coefficient of correlation sug-

gested better fitting of the non-linear model. Due to the post hoc character of the

study, the complexity of the experiment, and the high amount of parameters evaluated,

unfortunately, not all values were available for all the animals. The actual n for the indi-

vidual data sets is given in the respective figure legend.

Results
Physiological data

Additional file 1: Table S1 displays systemic physiologic parameters. Norepinephrine re-

quirements to maintain hemodynamics were significantly higher in the septic group (NoA

p = 0.004). Furthermore, there was evidence that the septic pigs developed lactic acidosis,

systemically (Additional file 1: Table S1), as well as on the kidney level (Additional file 1:

Table S2). Inflammatory cytokines TNFα and IL6, determined from the renal venous

blood, were elevated in sepsis (Additional file 1: Table S2). Septic pigs increased their glu-

cose production and oxidation over time (see Fig. 1), whereas glucose metabolism did not

change in the sham pigs. Blood glucose levels did not differ between the groups.

Histopathology

Kidney histopathology in the septic animals showed only mild to moderate glomerular

and tubular damage with very limited apoptosis and necrosis (see Table 1). Neverthe-

less, organ function was significantly impaired by sepsis (see Fig. 2a), as evinced by 50%

reduced urine output (p = 0.011), 40% elevated plasma creatinine (p = 0.011), and, con-

sequently, 50% reduced creatinine clearance (p = 0.019). Renal vein NGAL levels were

significantly elevated in sepsis (see Fig. 2a).

Mitochondrial respiration

Impaired kidney function coincided with significantly reduced mitochondrial activity in

the coupled as well as in the uncoupled state (see Fig. 2a), linked to the reduced activity

of complex II. There was a trend towards stronger coupling and higher Olg respiration

in the mitochondria from the septic kidney (OxPhos/ETS 0.92 (0.82; 1.02) vs. 0.71

(0.68; 0.86), p = 0.14; Olg/ETS 0.36 (0.28; 0.53) vs. 0.22 (0.20; 0.34), p = 0.14).

Plotting CrCl and OxPhos as functions of noradrenaline infusion rates revealed a sig-

nificant inverse relationship between kidney function and mitochondrial activity to

Fig. 1 Glucose metabolism. Glucose rate of appearance (sham n = 4, sepsis n = 7) (left panel) indicates
endogenous glucose production. Aerobic whole-body glucose oxidation (sham n = 4, sepsis n = 5) (middle
panel). Renal venous blood glucose levels (sham n = 5, sepsis n = 8) (right panel). Blue boxes, sham group;
red boxes, sepsis group. n.s. p > 0.05
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Table 1 Kidney histopathology score

Sham Sepsis

% glomerular tubularization 2.5 (0.5; 7.5) 5.0 (0; 13.8)

Tubular apoptosis/necrosis 0 0

Protein cylinders 0 (0; 0) 1 (0; 1)

Dilatation of Bowman’s space 0 (0; 1) 2 (0; 3)

Glomerular tubularization, i.e., the herniation of proximal tubular epithelial cells into Bowman’s capsule along the luminal
surface of the capsule, is reported as the number of glomeruli showing herniation of the tubular epithelium in % of all
glomeruli analyzed; all other data are the mean values of the scores of the five random sections for each item analyzed.
Data are given as median (interquartile range)

Fig. 2 Parameters of kidney function. a Physiological parameters: urine output, plasma creatinine
(Creatinine), creatinine clearance (CrCl), and renal venous neutrophil gelatinase-associated lipocalin
(NGAL) (all values sham n = 5, sepsis n = 8). b Kidney mitochondrial respiratory activity (sham n = 3,
sepsis n = 5). jO2, oxygen consumption; CI, mitochondrial respiratory activity in the coupled state
stimulated with complex I substrates and ADP; OxPhos, maximum mitochondrial respiratory activity
in the coupled state with complex I and II substrates, fatty acids, and ADP; Olg, leak respiration
after inhibition of ATP-synthase with oligomycin; ETS, maximum mitochondrial respiratory activity
after uncoupling with FCCP; CII, uncoupled mitochondrial respiratory activity linked to complex II
after inhibition of complex I by rotenone. c Plotting of CrCl and mitochondrial activity to
noradrenaline infusion (NoA). *p < 0.05; **p < 0.01; n.s. p > 0.05
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catecholamine requirements, respectively. Consequently, CrCl correlated with mito-

chondrial respiratory function.

Protein expression

Kidney immunohistochemistry (see Fig. 3) revealed significantly increased levels of

nitrotyrosine and extravasated albumin in sepsis (Fig. 3a, b), concomitant with reduced

CSE and PGC1α expression (Fig. 3c, d). PGC1α expression, mitochondrial respiratory

activity, and creatinine clearance correlated with CSE expression. There was an inverse

relationship with nitrotyrosine formation and albumin extravasation. Finally, kidney

nitrotyrosine formation was correlated with the degree of coupling of the mitochondrial

respiratory chain (OxPhos/ETS to nitrotyrosine p = 0.002) and inversely correlated with

maximum mitochondrial respiratory activity in the coupled state (OxPhos) (correla-

tions depicted in Fig. 4).

Discussion
We were able to confirm the initial hypothesis of an association between CSE expres-

sion and kidney dysfunction, mitochondrial activity, and oxidative/nitrosative stress in

Fig. 3 Kidney specimens stained for nitrotyrosine formation (sham n = 5, sepsis n = 8) (a), albumin extravasation
(sham n = 5, sepsis n = 8) (b), CSE expression (sham n = 5, sepsis n = 7) (c), and PGC1α expression (sham n = 5,
sepsis n = 8) (d). Top quantitative densitometric sum (red), bottom exemplary pictures for sham and sepsis,
respectively, in × 10 magnification
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porcine septic AKI with underlying co-morbidity. The main findings of this study were

(i) septic AKI accompanied by a marked drop in CSE expression which correlated with

(ii) decreased glomerular filtration and (iii) reduced mitochondrial respiratory activity.

Hyperlactatemia, metabolic acidosis, and enhanced glucose turnover were observed in

the septic arm. O2 saturation and histopathological tissue injury did not differ between

the sham and septic groups.

The lack of morphological changes associated with AKI, consistent with the literature

[2, 3], led us to investigate renal protein expression. CSE is constitutively expressed in

the kidney, and its expression correlates with the maintenance of glomerular filtration

[1]. We were able to confirm these results; a sepsis-induced reduction of CSE expres-

sion was associated with kidney barrier dysfunction (indicated by the increased albumin

extravasation; Fig. 3b, c) and thus contributed to the reduced glomerular filtration, as

evinced in the impaired CrCl (Fig. 2a).

Furthermore, CSE has been reported to play a role in regulating glucose metabolism

and mitochondrial function [8] through a PGC1α-dependent mechanism [12]. Consist-

ent with these findings are reports that PGC1α expression in the kidney of septic ani-

mals also has been shown to be reduced in proportion to the severity of the impaired

Fig. 4 Mathematical correlations of PGC1α expression, kidney function (CrCl), albumin extravasation,
nitrotyrosine formation, mitochondrial activity to CSE expression, and mitochondrial activity to nitrotyrosine
formation. High R2 values might in some cases rather be due to inter-group differences than correlations
between the parameters per se; thus, R2 values for (unpooled) separate groups are given in Additional file 1:
Table S3
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glomerular filtration rate [36]. This study was able to confirm a reduction of PGC1α

expression concomitant with the loss of CSE in the septic kidney (Fig. 3d), which corre-

lated with decreased mitochondrial respiratory activity (Fig. 2b). These findings are

consistent with reports of reduced mitochondrial respiratory activity in septic patients

and animal models of sepsis [7, 8]. Additionally, PGC1α has been shown to regulate

mitochondrial oxidative metabolism, and its overexpression protected podocytes in

renal injury preventing mitochondrial dysfunction [37, 38].

Nitrotyrosine formation is a marker of injury and oxidative and nitrosative stress and

was found to be markedly elevated in the septic in contrast to the sham kidney (Fig. 3a).

Impaired oxidative phosphorylation (OxPhos) in podocytes results in increased ROS

production and functional alterations which may account for disruption of the glom-

erular filtration barrier and reduced function [39, 40]. The inverse correlation of nitro-

tyrosine formation with OxPhos (Fig. 4) implies a direct relationship of increased ROS/

RNS with impaired mitochondrial function, as previously reported by others [41–43].

In turn, the linear correlation of OxPhos/ETS ratio to nitrotyrosine formation suggests

that in sepsis, the mitochondria themselves are at least partly responsible for the in-

creased ROS/RNS production, probably due to the strong coupling of the electron

transfer system to ATP synthesis. Limited uncoupling can reduce tissue oxidative stress,

whereas inhibiting the uncoupling leads to increased mitochondrial membrane poten-

tial with greater mitochondrial ROS production [44–46]. H2S can serve as a direct

scavenger of ROS and peroxynitrite [47, 48], whereas cysteine is a key substrate for

glutathione production, an important cellular antioxidant, and cysteine deficiency has

been reported to be associated with increased oxidative stress [49]. This is reflected in

the significant inverse relationship between CSE expression and nitrotyrosine formation

observed in this study (Fig. 4).

The intersection of mitochondrial biogenesis, ROS generation, and inflammatory re-

sponses has been shown to be relevant in disease [50]. TNFα and IL-6 are recognized

early players in the clinical response to sepsis and shown to be locally produced by in-

trinsic kidney cells in the early phase of injury [51, 52]. Elevated serum levels of IL-6

were shown to be indicators of animals that developed AKI, in a rat cecal ligation

puncture model, in contrast to those that did not develop AKI, and the increased IL-6

preceded evidence of morphological kidney injury [53]. Our findings of elevated TNFα

and IL-6 levels in sepsis-induced AKI (Additional file 1: Table S2) are consistent with

these reports.

Mitochondrial dysfunction caused by or coinciding with inflammation may contribute

to metabolic derangement of O2 utilization in septic AKI. Recent animal studies [2, 54]

as well as the O2 saturation levels reported here (Additional file 1: Table S2) suggest

that septic AKI is not necessarily due to the reduced tissue oxygen availability but ra-

ther due to the deranged cellular O2 metabolism, as suggested by the hyperlactatemia,

metabolic acidosis, and reduced mitochondrial activity (Additional file 1: Table S2 and

Fig. 2b). Recently, it has been shown that in sepsis, activated immune cells switch their

cellular metabolism from oxidative phosphorylation to glycolysis (Warburg effect), even

if oxygen is abundant [55, 56]. The reduced activity of complex II suggests the loss of

mitochondrial “reserve capacity” in the kidneys of septic pigs in this study. Normally,

mitochondria can make use of a “reserve capacity” in situations of increased energy de-

mands by increasing complex II activity in response to enhanced glucose oxidation

Merz et al. Intensive Care Medicine Experimental            (2018) 6:43 Page 10 of 14



[57]. Hyperlactatemic patients suffering from septic shock have been reported to have

increased lactate production concomitant to increased glucose turnover which is also

reflected in this atherosclerotic septic pig model [58]. Interestingly, although the

co-morbid septic pigs had increased glucose turnover overall, blood glucose levels did

not differ from the sham group (Fig. 1), suggesting that the septic group was unable to

mount an “adaptive” hyperglycemic stress response. This might be related to the re-

duced kidney CSE expression, as CSE−/− mice have been previously shown to have re-

duced rates of gluconeogenesis [12].

At first glance, this might be counterintuitive, since in comparison to the septic

group, the sham animals with maintained kidney CSE levels had lower glucose rate of

appearance (Fig. 1 and 3c). However, these animals did not need to increase glucose

turnover as a stress response and had very low rates of catecholamine administration

compared to septic animals (Additional file 1: Table S1). Considering previous results

from our group in a sepsis study in non-co-morbid young pigs, which displayed two

times higher rates of glucose appearance [59], atherosclerotic pigs in this study seem to

fail in their stress-related upregulation of gluconeogenesis. The kidney can account for

25–40% of all glucose released into the circulation and thus plays an important role in

glucose homeostasis [6, 60, 61], especially under conditions of catecholamine treat-

ment. Lactate is the predominant precursor for gluconeogenesis in healthy subjects

stimulated with epinephrine to simulate physiological stress [60]. Increased lactate

without hyperglycemia could be interpreted as a state wherein the body was no longer

able to generate a hyperglycemic adaptive response to stress [6]. Pertinent to the

current findings is the strong relation that was reported with regard to hyperlactatemia

and “concomitant relative ‘normoglycemia’” and its association with the development

of AKI [6]. Nonetheless, a limitation to the study is that we cannot discriminate how

the higher norepinephrine infusion rates affected glucose metabolism, reduced CSE ex-

pression, and contributed to the more pronounced kidney dysfunction or if they simply

reflected the severity of the disease in the individual animals.

Conclusions
To the best of our knowledge, this is the first report of a relation between CSE expres-

sion, renal tissue mitochondrial function, and the severity of AKI in a clinically relevant

resuscitated large animal model of polymicrobial sepsis. AKI was correlated with the re-

duced CSE and PGC1α expression, decreased mitochondrial respiratory activity con-

comitant with increased barrier dysfunction, increased oxidative stress, and metabolic

acidosis which, combined, manifested in an inability of the cells to utilize oxygen [62].

Consequently, maintenance of CSE expression and endogenous H2S availability might

attenuate sepsis-induced metabolic alterations [8, 20, 63].
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