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Abstract—This paper presents the development of a lab-on-
chip, based on thin-film sensors, suitable for DNA treatments.
In particular, the system performs on-chip DNA amplification
and separation of double-strand DNA into single-strand DNA,
combining a polydimethylsiloxane microfluidic network, thin-film
electronic devices, and surface chemistry. Both the analytical pro-
cedures rely on the integration on the same glass substrate of thin-
film metal heaters and amorphous silicon temperature sensors
to achieve a uniform temperature distribution (within ±1 °C)
in the heated area and a precise temperature control (within
±0.5 °C). The DNA separation also counts on the binding between
biotinylated dsDNA and a layer of streptavidin immobilized
into a microfluidic channel through polymer-brushes-based layer.
This approach results in a fast and low reagents consumption
system. The tested DNA treatments can be applied for carrying
out the on-chip systematic evolution of ligands by exponential
enrichment process, a chemistry technique for the selection of
aptamers.

Index Terms—Amorphous silicon sensor, lab-on-chip (LoC),
systematic evolution of ligands by exponential enrichment
(SELEX).

I. INTRODUCTION

LABS-ON-CHIPS (LoCs) are miniaturized analytical sys-
tems, which are able to simplify complex laboratory

procedures integrating several biochemical procedures on a
single chip. The advantages of LoC include reduced sample
and reagent consumption, fast detection times, the possibility
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to perform on-field analysis, and no need for expert operators.
Their applications comprise agro-food field, forensic science,
and analytical and clinical diagnostics [1].

A basic function of an LoC is the recognition and detec-
tion of biomolecules, which is often performed through the
antigen–antibody reaction [2], [3]. Some researchers have
reported DNA extraction and amplification in microfluidic-
based device [4], [5]. Recently, DNA biosensors integrated
in LoC devices based on microfluidics were also reported [6].

An alternative approach to antibodies, in biomolecular
recognition, is represented by aptamers. Aptamers are artificial
single-stranded DNA (ssDNA) or RNA sequences that fold
into secondary and tertiary structures allowing their binding
to selected targets with extremely high specificity [7], [8].
Due to their chemical structure, aptamers are much easier to
be chemically modified with functional groups according to
different purposes and are much more stable than antibodies.
Furthermore, aptamers are selected in vitro via a combinatorial
chemistry technique known as systematic evolution of ligands
by exponential enrichment (SELEX) overtaking the use of
cell lines and animals as starting stages for the production of
antibodies, and permitting their production in large quantity
with high purity and lower ingredient costs [9].

The SELEX process starts with the generation of
a library with a greater number of random nucleotide
sequences (1013 – 1016), which are incubated with the desired
target molecule under conditions suitable for binding. Next,
the unbound ssDNA are partitioned from those specifically
bound to the target molecule and are then eluted by the target
molecules and amplified by the polymerase chain reaction
(PCR). This procedure is reiterated for multiple rounds (typ-
ically 8–15) until the bound sequences are enriched. SELEX
process requires the use of bulky equipment such as shaker
and PCR machines and the use of large amounts of reagents
and samples.

Although PCR in LoC devices has been largely reported
in the literature [10]–[13], only a few examples of the
miniaturized SELEX process were reported [14], [15]. These
systems are based on microfluidic chip in which magnetic
beads functionalized and located into a microfluidic channel
are brought into contact with the target molecule. Other works
also show the aptamer selection by coated magnetic nanopar-
ticles, PCR amplification, and double-stranded DNA (dsDNA)
denaturation in the same chamber of a single microfluidic
chip [16].
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Fig. 1. Schematic of the whole LoC system [12].

These devices combine microfluidic and microelectro-
mechanical system technologies for the miniaturization and
automation of the SELEX process with implications in terms
of reduction of time and improved efficiency of the whole
process. Nevertheless, in these devices, only a few rounds of
ligand enrichments were possible, and their applicability for
large screening of aptamers seems still very far.

In this paper, we focused on the development of a com-
pact LoC where DNA amplification and dsDNA separation
occurred in the same platform. This device can be used in
combination with the standard SELEX permitting a quick
DNA amplification and separation. The separated ssDNAs
could be used for the conventional aptamer selection and
in perspective, incorporated within a full on-chip integrated
SELEX system. Moreover, the same system could also be
used for sensing the presence of pathogens through their DNA
amplification, separation, and detection by hybridization with
a complementary strand (possibly immobilized in the channel)
and final recognition. The compactness and versatility of the
device are achieved integrating on the same glass substrate
thin-film metal heaters and amorphous silicon (a-Si:H) temper-
ature sensors [17], [18] and coupling the so-obtained system-
on-glass (SoG) to a specific polydimethylsiloxane (PDMS)
microfluidic network [19].

This paper is organized as follows: Section II reports
the details of the LoC structure and fabrication; Section III
discusses the experimental results focusing on the DNA ampli-
fication through the PCR on chip and on the dsDNA separation
through a microfluidic chip functionalized with streptavidin;
finally, Section IV draws the conclusions.

II. LOC STRUCTURE AND FABRICATION

The whole structure of the developed LoC system is
reported in Fig. 1. It includes the following four main parts.

1) SoG hosting on the bottom side of thin-film metal
heaters and on the upper side of a-Si:H temperature
sensors. In particular, the thin-film metal heaters provide
the thermal energy, while the a-Si:H diodes act as
temperature sensors for accurate temperature control.

2) A disposable microfluidic network fabricated on another
glass and positioned over the SoG during the imple-
mentation of the bioanalytical procedures. The designed
coupling permits to rapidly substitute the microfluidics
when new samples need to be analyzed, avoiding con-
tamination among different samples.

3) An electronic system, electrically connected to the SoG,
for the readout of the thin-film temperature sensors and
the driving of the heaters.

4) A personal computer that controls the timing
and operation of the electronics and displays the
results.

The heaters are stacked structures of Cr/Al/Cr layers
deposited by vacuum evaporation [18], while the a-Si:H
sensors are metal/p-type/intrinsic/n-type/metal structures,
deposited by plasma enhanced chemical vapor deposition
(PECVD) [20]. Both the heaters and the temperature sen-
sors have been patterned with standard photolithographic
processes [21]. Careful attention has been paid to the sequence
and recipes of the fabrication steps in order to ensure the
compatibility of the different processes and the correct oper-
ation of the on-chip sensors. In particular, both the process
reliability and the yield increase if the temperature sensors are
fabricated before the heaters. This is due to the higher number
of photolithographic steps required for the sensor fabrication
with respect to the heater.

The fabrication process of the SoG has been then performed
with the following steps:

1) cleaning of the glass substrate;
2) fabrication of the a-Si:H sensors through the following:

a) deposition of a Cr/Al/Cr (300Ȧ/1500Ȧ/300Ȧ)
stack acting as bottom electrode and its patterning
by photolithography;

b) deposition of the n-i-p a-Si:H layers by PECVD in
a three-chamber ultrahigh vacuum system;

c) deposition of a Cr film (500Ȧ) in a Balzers
510 evaporation system;

d) photolithographic patterning of the sensor structure
through wet etching of the Cr layer and reactive ion
etching of the a-Si:H layers;

e) deposition of a passivation layer (SU8-3005) and
its patterning for the via hole definition over the
temperature sensors;

f) deposition by magnetron sputtering of a TiW film
(2000Ȧ) acting as top electrode and its patterning
by photolithography;

g) deposition of a passivation layer (SU8-3005) to
protect the a-Si:H sensors;

3) fabrication of the thin-film heaters through the
following:

a) spin coating of photoresist AZ1518;
b) definition of the geometries of the heaters through

UV exposure;
c) development of photoresist in AZ100 remover;
d) thermal vacuum evaporation of three metal

Cr/Al/Cr (1000Ȧ/6000Ȧ/1000Ȧ) stack;
e) liftoff with acetone to remove the metal stack over

the cured photoresist;
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Fig. 2. (a) Fabricated SoG. The lower part of the structure is doubled and
mirrored with respect to the white line. (b) dsDNA-chip and PCR-chip (from
left to right) positioned on the SoG [12].

f) final passivation of the heaters with SU-8 3005 to
protect the structure.

A picture of the fabricated SoG, with the a-Si:H sensors on
the top, is reported in Fig. 2(a). Two independent devices are
fabricated on a single 50 mm × 50 mm glass substrate.

The geometry of the central heater has been optimized,
using COMSOL multiphysics, to achieve, on the top glass
side, a temperature uniformity within ±1 °C, over the area
aligned with the heater.

The working principle of the a-Si:H temperature sensors
relays on the linear dependence on temperature of the volt-
age drop across the diode biased with constant forward
current [18]. In this paper, a sensitivity of 3.2 mV/°C has
been measured at 50-nA forward current bias. A dedicated
electronic board drives the heaters and biases and reads out
the temperature sensors, providing, at the same time, the tem-
perature control of the PCR process through a proportional-
integrative-derivative (PID) algorithm [22]. The connection
of the thin-film devices (heaters and a-Si:H diodes) to the
electronic board is implemented by a card edge connector
(TE connectivity AMP connector 5-5530843-4).

Two microfluidic chips have been developed: the
“amplification chip,” (PCR-chip) where the DNA amplification
occurs, and the “separation chip,” (dsDNA-chip) where the
dsDNA is separated into ssDNA.

The PCR-chip is fabricated in PDMS (Sylgard 184, Dow
Corning, MI, USA) by soft lithography. PDMS is an elastomer
widely used in microfluidics for its good optical transparency,
its biocompatibility, and the ease of fabrication. Soft litho-
graphy, indeed, allows inexpensive rapid prototyping with
low thermal budget. The microfluidics of the PCR-chip has
been achieved by bonding together two PDMS layers [17]:
the control layer that provides two thermoactuated valves and
the flow layer that includes a serpentine-shaped channel for the
DNA amplification, an inlet, and an outlet. Fabrication of
the thermoactuated valves was achieved mixing the PDMS
and the curing agent in the ratio 20:1 and placing the mixture
in gentle vacuum at 600 mbar for 30min to remove the

air bubbles. The PDMS was spun on a previously prepared
50-μm-thick SU-8 3050 mold at 500 rpm for 5 s (acceleration
100 rpm/s) and at 1000 rpm for 30s (acceleration of 300 rpm/s)
in order to obtain a 100-μm PDMS thin film. In this way,
the valve membrane was 50 μm thick. This PDMS layer was
partially cured in oven at 85 °C for 8 min.

The flow channel, instead, has been realized pouring a
mixture of PDMS and curing agent in the ratio 10:1 in a
50-μm-thick SU8-3050 mold master followed by a partial
curing at 80 °C for 25 min. Also in this case, before pouring,
the PDMS and curing agent were placed in gentle vacuum at
600 mbar for 30 min to remove the air bubbles. The inlet
and outlet were made using a 304 SS TiN coated round
punch (1.5 in long and featuring a 0.021-in inner diameter and
0.028-in outer diameter) purchased from Syneo LLC
(Angleton, TX, USA). Bonding of the PDMS channel with
the PDMS valve was achieved by peeling the partially cured
PDMS channel from the mold and put onto the partially cured
valve layer taking care of the alignment between the channel
and the valve. The alignment has been performed under an
optical microscope with 10×magnification. A complete curing
of the PDMS network and the bonding of the two layers were
achieved in the oven at 60 °C for 2.5 h. Finally, the whole
structure was bonded to a plain glass slide using the transfer
bonding technique with uncured PDMS as adhesive [23].

The layout of the PCR module ensures the alignment of
the microfluidics with the corresponding electronic devices
on the SoG. The dimensions of the microfluidic network
determine a useful-PCR volume close to 6 μL. Prior to use,
the PDMS channel was filled with a solution of bovine serum
albumin (BSA) 4% at the flow rate of 25 μL/min for 10 min
and 5 μL/min for 1 h. After rinsing with MilliQ water at
25 μL/min for 10 min, the chip was dried with a stream
of nitrogen and kept in the oven at 37 °C until the channel
appeared completely dried.

The dsDNA-chip, made in Sylgard 184, has the same
dimensions and shape of the flow layer of the microfluidic
PCR module but does not include the control layer. The
fabrication starts from the pouring of a mixture of PDMS and
curing agent in the ratio 10:1 on the same mold used for the
flow layer of the PCR module and proceeds with a complete
curing at 100 °C for 40 min. Subsequently, the inlet and
outlet are made. Before bonding, a glass substrate was func-
tionalized with polymer brushes using a previously published
procedure [24]–[28].

At this point, the PDMS stub, previously obtained, was
bonded to the poly 2-(hydroxyethyl methacrylate) (PHEMA)
functionalized with succinic anhydride functionalized glass
substrate [23]. After the bonding between the PDMS ser-
pentine channel and the PHEMA-functionalized glass slide,
the microfluidic channel was further modified to immobilize
streptavidin [7].

The amount of streptavidin immobilized to the brush layer
was quantified using a bicinchoninic acid assay [29] pro-
tein assay kit (Thermo Scientific). Several standard samples
were prepared with a known concentration of BSA and a
working reagent. Using these standards, a calibration curve
was determined (by plotting the BSA concentration versus
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Fig. 3. Schematic of PCR-chip coupled with the SoG. The lower part shows
the three heaters (black lines): The central one has a double concentric spiral
shape, while the two lateral heaters have a meander shape. The turning ON

of the heaters aligned with the valves determines the deflection of the PDMS
membrane of the control layer and the subsequent closure of the microfluidic
channel.

the absorbance at 562 nm as measured for each standard
sample). The working reagent solution was pumped into
the chip and kept inside for 30 min at room temperature.
Subsequently, the chip was rinsed with buffer, and the eluted
solution collected with a Hamilton syringe and injected
into a flow cell connected by means of two optical fibers
(Ocean Optics Inc., The Netherlands), and this cell was con-
nected to a deuterium–halogen light source (DT-Mini-2-GS,
Mikropack GmbH, Germany) and a fiber optic spectrometer
(HR4000, Ocean Optics Inc., The Netherlands). Subsequently,
the absorbance at 562 nm was measured, and the concentra-
tion of the streptavidin was calculated using the calibration
curve. The total concentration of streptavidin was found to
be (3.1 ± 0.46) 10−5μg/mm2.

III. RESULTS AND DISCUSSION

In order to perform the DNA treatments, the SoG has been
coupled to the PCR-chip and to the separation chip as reported
in Fig. 2(b). It is worth noting that the fabricated SoG can host
both the PCR-chip and the dsDNA-chip.

A. PCR on Chip

During the DNA amplification, the PCR-chip is placed
on the SoG, aligning the valves and the chamber with the
heaters (Fig. 3). The two meander-shaped lateral heaters are
aligned with the valves, providing the deflection of the 50-μm-
thick PDMS membrane of the control layer (Fig. 3), while
the central serpentine-shaped heater, aligned with the PCR
chamber, supplies the energy for the DNA thermal treatment.

A PCR reaction mix (20-nM ssDNA template, 1 μM of each
primer, 0.2-mM deoxynucleoside triphosphates, and 1.5-mM
MgCl2) was prepared in the reaction buffer and an aliquot was
stored as control mix. A Hot Start Taq enzyme (HOT FIREPol
DNA Polymerase-Solis BioDyne) was added to the remaining

Fig. 4. Gel electrophoresis of dsDNA after the PCR amplification by applying
different denaturation temperatures. dsDNA is the product of a PCR reaction
conducted under the optimized conditions for this template and primers, used
as reference/standard product.

sample to a final concentration of 0.05 U/μL. This solution
was then inserted in the microfluidic network.

As the channel and the process chamber were filled, the two
heaters below the valves were actuated. Applying power to the
heaters, the air contained in the valve reservoir heats up and
increases its volume creating a pressure that pushes up the
PDMS membrane into the channel. As the valves are closed,
the thermal procedure can occur by turning on the heater below
the PCR chamber.

The temperature control is performed in the PCR process
through the PID algorithm implemented by the electronic con-
trol board ensuring the absence of overshoots and a deviation
from the set-point temperature below ±0.5 °C. The heating
rate achieved by the system is 2 °C/s, while the cooling
rate, controlled by a fan driven by the same electronic board,
is 1 °C/s.

Typically, the PCR process is conducted using a three-
temperature sequence: melting of the double-stranded DNA
(at about 94 °C), annealing of the specific primers to their
ssDNA template (usually between 50 and 65 °C, depending
on the primer sequence and length), and extension of primers
by a thermostable polymerase enzyme (Taq polymerase)
(near 72 C). In order to perform PCR in the microfluidic
chip, preliminary experiments have been conducted to observe
the effect of the temperature variation on the microfluidic
chip filled with a buffer solution. Varying the temperature
between 55 °C and 95 °C, bubble formation was observed
above 80 °C, causing partial evaporation of the sample and
leading to irreproducible values of the amplification yield for
samples under the same amplification conditions.

In order to avoid the bubble formation in the chip, the PCR
process has been revised and optimized in order to avoid
temperatures above 80 °C. A set of experiments has been
conducted by varying the temperature of the melting step
in the range of 76 °C–90 °C using a standard commercial
thermocycler. The gel electrophoresis conducted for each
sample showed that the amplicon (Fig. 4) was formed for each
selected temperature.

Taking into account these results, the on-chip PCR was con-
ducted using the following procedure: 20 s at 76 °C (melting),
60 s at 62 °C (annealing), and 30 s at 72 °C (elongation).
In order to activate the Taq polymerase, the solution containing
oligonucleotides, ssDNA and DNA polymerase, has been
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Fig. 5. Normalized emission spectra as a function of the PCR cycles.
The normalization has been achieved by subtracting the blank signal.

previously heated at 94 °C for 15 min off-chip. Subsequently,
30 μL of that solution were flowed into the channel using
a Hamilton syringe. PCR experiments have been conducted
varying the number of thermocycles from 5 to 15. 15-cycle
15 was also performed using a solution without Taq poly-
merase (blank).

The yield of the amplification was verified off-chip: The
channel was rinsed with phosphate buffer, and the collected
sample was lyophilized. Subsequently, 1 mL of a phosphate
buffer solution containing [Ru(phen)2(dppz)]2+ 0.1 mM was
added to each sample. [Ru(phen)2(dppz)]2+ is a light switch
complex [30], which has no luminescence in aqueous solution
as the triplet metal to ligand charge transfer excited state
is quenched by hydrogen binding between water and the
phenazine nitrogen of the ligand. When it binds to dsDNA,
the interaction between the ligand and the base pair of duplex
nucleic acid protects the phenazine nitrogen from water, lead-
ing to an intense emission.

The PCR amplified samples were analyzed by fluores-
cence spectroscopy. As expected, the analysis showed an
increase of the fluorescent signal proportional to the number
of cycles performed (Fig. 5). The blank signal showed the
same luminescence intensity of the solution containing only
[Ru(phen)2(dppz)]2+. The samples were also analyzed by
gel electrophoresis to verify that the right strand of ssDNA
was amplified (Fig. 6). The gel-electrophoresis proves the
amplification of the ssDNA to the desired dsDNA; moreover,
no amplification was observed for the blank sample, thus
confirming the results obtained by fluorescence spectroscopy.

B. dsDNA Separation on Chip

After DNA amplification, the dsDNA is separated to
ssDNA. This module is located in the same platform. The
PCR product is taken using a Hamilton syringe and is directly
transferred into “dsDNA separation chip.” This channel is
functionalized with streptavidin and will bind the biotinylated
dsDNA. After heating till 95 °C, the dsDNA will be separated
and would be possible to recover the ssDNA and possibly
use it for conventional aptamer selection for a given target
molecule.

This step is usually performed using streptavidin-coated
beads through which the dsDNA, having one of the strands

Fig. 6. Gel electrophoresis results showing that the right strand of DNA was
amplified. Indeed, the band of the dsDNA amplified with the on-chip PCR
has the same position of the band achieved with a standard PCR.

labeled with biotin, is brought into contact. After several
washing steps and the elution of the nonbiotinylated strand,
the ssDNA is achieved [31], [32].

As reported before, in this paper, the separation of the
amplified dsDNA is obtained using a microfluidic chip
(dsDNA-chip) functionalized with streptavidin by growing
PHEMA polymer brushes on the glass side of the channel.

The dsDNA-chip has the same structure of the PCR chip,
i.e., serpentine chamber having 6.5-μL volume without the
thermoactuated valves, which are not necessary since the
dsDNA separation process is occurring in continuous flow.
The dsDNA-chip is positioned on the top of the integrated
device, aligning the main heater with the serpentine chamber.

The product of the PCR amplification is a dsDNA having
a biotinylated reverse primer, thus we tailored that once the
dsDNA is immobilized to the streptavidin layer, the increase in
temperature up to 95 °C for a few seconds would recover the
nonbiotinylated ssDNA representing the desired sequence to
be incubated with the target molecule for the selection of the
aptamer. Thus, the amplified dsDNA (0.6 μM) was inserted
into the dsDNA-chip, by means of a Hamilton syringe, and
incubated for 10 min. The channel was rinsed with a phosphate
buffer at the flow rate of 15 μL/min for 5 min for three times
to eliminate the unbounded dsDNA. The rinsing buffer was
collected after each rinsing step in a vial and named “flow
through vials” (FTv). Afterward, a MilliQ water solution was
flowed into the channel and a temperature of 95 °C was set
on the main heater of the SoG device.

In this case, the electronic circuit driving the heater and
controlling the temperature is based on the variation of the
heater resistance with temperature controlled through the
analog circuit reported in [33]. The control circuit is based
on a single operational amplifier fed with a single supply
voltage. The circuit implements a constant resistance control
loop [34], [35]. In the circuit, a Darlington bipolar junction
transistor (BJT) has been used to bias the microheater, due to
the relatively high current needed. An additional BJT limits the
maximum current of the heater. In addition, a feedback resistor
has been split in two parts in order to accurately define a
limiting current for the heater. A voltage divider, implemented
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Fig. 7. Analysis by UV-Vis spectroscopy of FTv and Sv samples.

with a digital potentiometer, has been used to change the target
temperature of the heater. The maximum achievable heating
rate is limited by the maximum power density on the glass
that prevents fractures and cracking. In particular, an average
heating rate of 7 °C/s and a regime temperature ripple of the
order of ±0.5 °C were achieved. An active cooling system was
not necessary and was not implemented. The actual value of
the final temperature reached by the heater slightly depends
on the room temperature since the measured 2-wire heater
resistance depends on an effective temperature coefficient of
resistance, which encloses the room temperature. However,
the regime heater temperature for the dsDNA-chip is not so
critical as for the PCR module as it is enough to increase the
temperature above the melting point of the dsDNA to achieve
the separation of the double strands.

After heating the channel at 95 °C for 30 s, the heater
was turned OFF and, subsequently, the microchannel was
rinsed using MilliQ water at the flow rate of 5 μL/min for
2 min and at 15 μL/min per 5 min. This procedure was
repeated thrice and all the samples were collected in three
different vials named “sample vials” (Sv). At the temperature
of 95 °C, the dsDNA denaturates, allowing the separation of
the complementary sequences. The biotinylated strand remains
bound to the PHEMA-streptavidin layer, while the other strand
is removed by flowing water applied through the channel.
In order to verify this hypothesis, all the FTv and Sv samples
were lyophilized, and subsequently re-dissolved in MilliQ
water and analyzed by UV-vis spectroscopy following the
absorption at 260 nm.

Fig. 7 shows that, as expected, the amount of dsDNA in
the FTv samples decreases from the FTv1 to FTv3 after the
third rinsing step and that some DNA is still present in FTv3.
This result suggests that probably some of the dsDNA remains
bound onto the PHEMA-streptavidin layer or nonspecifically
adsorbed onto the surface of the PDMS channel. The analysis
of the Sv samples revealed the presence of DNA in each vial,
even though the amount of DNA in Sv3 resulted diminished
compared to Sv1. In order to verify whether the DNA collected
was dsDNA or ssDNA, the Sv1 was also analyzed by gel-
electrophoresis. The analysis revealed that ssDNA was retried
by applying the described procedure. This experiment demon-
strates the capability of the PHEMA-Streptavidin functional-
ized chip to separate the dsDNA obtained by PCR.

A device based on this technology was never reported in the
literature. This system compared to those described [10], [11]

is solely based on surface chemistry functionalization of
the microchannel and does not need the magnetic beads
to be introduced into the system. Moreover, the developed
streptavidin layer can also be used to immobilize a specific
biotinylated ssDNA, which may eventually be used for the
recognition, by hybridization, of a selected ssDNA for sensing
applications.

The use of the proposed dsDNA-chip, compared with the
most commonly used laboratory procedure for isolation of
ssDNA based on magnetic separation with streptavidin-coated
beads, is advantageous in terms of both cost and time. Indeed,
in order to perform the separation, the chip procedure requires
a few microliters of amplified DNA (6.5 μL) versus the
100 μL necessary for the laboratory procedure [32]. Moreover,
for the dsDNA-chip, the preconditioning steps are not neces-
sary and the separation of the dsDNA occurs in 45 min instead
of about 2 h as for the magnetic beads procedure [31]. Finally,
the DNA separation achieved by applying the dsDNA-chip
does not need the centrifugation step, as instead required by
the beads, avoiding the use of bulky and expensive equipment.

IV. CONCLUSION

This paper is focused on the development an LoC aim-
ing to DNA amplification and to separation of dsDNA into
ssDNA. The LoC results from the combination of two glass
substrates: One is provided with thin-film electronic devices
for supplying and controlling the thermal energy, and the
other is bonded to a PDMS microfluidic network, where DNA
manipulation is performed. In particular, our LoC presents for
the first time: 1) a DNA amplification controlled by thin-film
metal heaters coupled with a-Si:H temperature sensors, and
2) a DNA separation ruled by the biotin-streptavidin bond,
where the streptavidin is immobilized on the glass surface
through a PHEMA polymer brush layer.
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