Mimicking the chemistry of natural eumelanin synthesis: the KE sequence in polypeptides and in proteins allows for a specific control of nanosized functional polydopamine formation.

Camille Bergtold ^{1,2,*}, Daniel Hauser ^{3,*}, Alain Chaumont⁴, Salima Elyakhlifi², Mihaela Mateescu ¹, Florent Meyer ^{1,2}, Marie-Hélène Metz-Boutigue ^{1,2}, Benoît Frisch ⁵, Pierre Schaaf ^{1,6}, Dris Ihiawakrim ⁷, Ovidiu Ersen ⁷, Christophe A. Monnier³, Alke Petri-Fink ³, Barbara Rothen-Rutishauser ³ & Vincent Ball ^{1,2,#}

1: Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France.

2: Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France.

3: Adolphe Merkle Institute, University of Fribourg, 4 Chemin des Verdiers, CH-1700 Fribourg, Switzerland.

4 : Faculté de Chimie, Chimie de la Matière Complexe, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7140, 4 rue Blaise Pascal, 67081, Strasbourg, France.

5: Université de Strasbourg, Faculté de Pharmacie, Laboratoire de Conception et application de molécules bioactives.

6: Centre National de la Recherche Scientifique, Institut Charles Sadron, Unité Propre 22, 23 rue du Loess, 67034 Strasbourg, France.

7: Centre National de la Recherche Scientifique, Institut de Physique et de Chimie des Matériaux, Unité Mixte de Recherche 7504, 23 rue du Loess, 67034, Strasbourg, Cedex 2, France.

email: vball@unistra.fr

Supporting Information

Figure SI 1: Size exclusion (SEC) chromatograms of the GGKEGG, GGKGEGG and GGKGGEGG peptides (first row) and of the same peptides with added dopamine in the presence of Tris buffer (pH = 8.5). The SEC were taken 16h after mixing dopamine with the considered peptides. The detection wavelength was set at 214 nm.

Figure SI 2: Schematic representation of the dopamine molecule and the RESP charges used during MD simulation.

Figure SI 3: Absorbance of PDA films deposited on quartz slides recorded at λ =500 nm as a function of the oxidation time in the presence of dopamine at 2mg.mL⁻¹ (Tris buffer 50 mM, pH = 8.5), in the absence of lysozyme (•) and in the presence of lysozyme at 0.5 (•) and 1 (•) mg.mL⁻¹.

Figure SI 4: Absorbance of PDA films deposited on quartz slides recorded at λ =500 nm as a function of the oxidation time in the presence of dopamine at 2mg.mL⁻¹ (Tris buffer 50 mM, pH = 8.5), in the absence of α lactalbumin (•) and in the presence of α lactalbumin at 1.0 mg.mL⁻¹ (•).

Figure SI 5: A : Absorbance of PDA films deposited on quartz slides recorded at λ =500 nm as a function of the oxidation time in the presence of dopamine at 2mg.mL⁻¹ (Tris buffer 50 mM, pH = 8.5), in the absence of human fibrinogen (•) and in the presence of human fibrinogen at 0.2 mg.mL⁻¹ (•) and at 2 mg.mL⁻¹ (•).

B: Evolution of the hydrodynamic diameter of PDA@fibrinogen particles after 24 h of oxidation (2 mg.mL⁻¹ dopamine in the presence of 50 mM Tris buffer at pH = 8.5) as a function of the protein concentration. The protein + PDA mixture was dialyzed before the light scattering experiments. (O) and (\bullet) correspond to the smaller and larger particles with relative fractions of about 60 and 40 % (in number of particles)

Figure SI 6: A : Absorbance of PDA films deposited on quartz slides recorded at λ =500 nm as a function of the oxidation time in the presence of dopamine at 2mg.mL⁻¹ (Tris buffer 50 mM, pH = 8.5), in the absence of glucose oxidase + peroxidase (•) and in the presence of a mixture of both proteins at 0.5 mg.mL⁻¹ each (•).

B: Evolution of the hydrodynamic diameter of PDA@GOX+POX particles after 24 h of oxidation (2 mg.mL⁻¹ dopamine in the presence of 50 mM Tris buffer at pH = 8.5) as a function of the protein concentration. The protein + PDA mixture was dialyzed before the light scattering experiments. (O) and (\bullet) correspond to the smaller and larger particles with relative fractions of about 60 and 40 % (in number of particles) in the absence of proteins and to 100 % in the presence of GOX (0.5 mg.mL⁻¹) and POX (0.5 mg.mL⁻¹).

Human Serum Albumin

10	20	30	40	50
QFPTDYDEGQ	DDRPKVGLGA	RGHRPYDKKK	EEAPSLRPVP	PPISGGGYRA
60	70	80	90	100
RPATATVGQK	KVERKPPDAD	GCLHADPDLG	VLCPTGCKLQ	DTLVRQERPI
110	120	130	140	150
RKSIEDLRNT	VDSVSRTSSS	TFQYITLLKN	MWKGRQNQVQ	DNENVVNEYS
160	170	180	190	200
SHLEKHQLYI	DETVKNNIPT	KLRVLRSILE	NLRSKIQKLE	SDVSTQMEYC
210	220	230	240	250
RTPCTVTCNI	PVVSG <mark>ke</mark> cek	IIRNEGETSE	MYLIQPEDSS	KPYRVYCDMK
260	270	280	290	300
TEKGGWTVIQ	NRQDGSVDFG	RKWDPYKQGF	GNIATNAEGK	KYCGVPGEYW
310	320	330	340	350
LGNDRISQLT	NMGPTKLLIE	MEDWKGDKVT	ALYEGFTVQN	EANKYQLSVS
360	370	380	390	400
KYKGTAGNAL	IEGASQLVGE	NRTMTIHNSM	FFSTYDRDND	GWKTTDPRKQ
410	420	430	440	450
CS <u>KE</u> DGGGWW	YNRCHAANPN	GRYYWGGAYT	WDMAKHGTDD	GVVWMNWQGS
460				
WYSMKKMSMK	IRPYFPEQ			

Glucose oxidase (Aspergillus Niger)

10	20	30	40	50
MQTLLVSSLV	VSLAAALPHY	IRSNGIEASL	LTDPKDVSGR	TVDYIIAGGG
60	70	80	90	100
LTGLTTAARL	TENPNISVLV	IESGSYESDR	GPIIEDLNAY	GDIFGSSVDH
110	120	130	140	150
AYETVELATN	NQTALIRSGN	GLGGSTLVNG	GTWTRPHKAQ	VDSWETVFGN
160	170	180	190	200
EGWNWDNVAA	YSLQAERARA	PNAKQIAAGH	YFNASCHGVN	GTVHAGPRDT
210	220	230	240	250
GDDYSPIVKA	LMSAVEDRGV	PTKKDFGCGD	PHGVSMFPNT	LHEDQVRSDA
260	270	280	290	300
AREWLLPNYQ	RPNLQVLTGQ	YVGKVLLSQN	GTTPRAVGVE	FGTHKGNTHN
310	320	330	340	350
VYAKHEVLLA	AGSAVSPTIL	EYSGIGMKSI	LEPLGIDTVV	DLPVGLNLQD
360	370	380	390	400
QTTATVRSRI	TSAGAGQGQA	AWFATFNETF	GDYSEKAHEL	LNTKLEQWAE
410	420	430	440	450
EAVARGGFHN	TTALLIQYEN	YRDWIVNHNV	AYSELFLDTA	GVASFDVWDL
460	470	480	490	500
LPFTRGYVHI	LDKDPYLHHF	AYDPQYFLNE	LDLLGQAAAT	QLARNISNSG
510	520	530	540	550
AMQTYFAGET	IPGDNLAYDA	DLSAWTEYIP	YHFRPNYHGV	GTCSMMPKEM
560	570	580	590	600
GGVVDNAARV	YGVQGLRVID	GSIPPTQMSS	HVMTVFYAMA	LKISDAILED
YASMQ				

Horseradish peroxidase

10	20	30	40	50
MAMSYSIRVL	TFLMLISLMA	VTLNLLSTAE	AKKPRRDVPI	VKGLSWNFYQ
60	70	80	90	100
RACPKVEKII	K KE LKKVFKR	DIGLAAAILR	IHFHDCFVQG	CEASVLLAGS
110	120	130	140	150
ASGPGEQSSI	PNLTLRQQAF	VVINNLRALV	QKQCGQVVSC	SDILALAARD
160	170	180	190	200
SIVLSGGPDY	AVPLGRRDSL	AFATPETTLA	NLPPPFANAS	QLISDFNDRN
210	220	230	240	250
LNITDLVALS	GGHTIGIAHC	PSFTDRLYPN	QDPTMNKSFA	NSLKRTCPTA
260	270	280	290	300
NSSNTQVNDI	RSPDVFDNKY	YVDLMNRQGL	FTSDQDLFVD	KRTRGIVESF
310	320	330	340	350
AIDQNLFFDH	FTVAMIKMGQ	MSVLTGTQGE	IRSNCSARNT	ASFISVLEEG
IVEEALSMI				

Hemoglobin α chain

20 30 40 50 10 MVLSPADKTN VKAAWGKVGA HAGEYGAEAL ERMFLSFPTT KTYFPHFDLS 100 60 70 80 90 HGSAQVKGHG KKVADALTNA VAHVDDMPNA LSALSDLHAH KLRVDPVNFK 110 120 130 140 LLSHCLLVTL AAHLPAEFTP AVHASLDKFL ASVSTVLTSK YR

Figure SI 7: Amino acid sequences of the proteins used to control the oxidation of dopamine and its assembly in PDA. The KE sequence has been highlighted in red when present.

The sequences are extracted from UniprotKB.

Figure SI 8 : A : Absorbance of PDA films deposited on quartz slides recorded at λ =500 nm as a function of the oxidation time in the presence of dopamine at 2mg.mL⁻¹ (Tris buffer 50 mM, pH = 8.5), in the absence of human hemogmlobin (•) and in the presence of human hemoglobin at 0.2 mg.mL⁻¹ (•).

B: Evolution of the hydrodynamic diameter of PDA@hemoglobin particles after 24 h of oxidation (2 mg.mL⁻¹ dopamine in the presence of 50 mM Tris buffer at pH = 8.5) as a function of the protein concentration. The protein + PDA mixture was dialyzed before the light scattering

experiments. (O) and (\bullet) correspond to the smaller and larger particles with relative fractions of about 60 and 40 % (in number of particles)