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SUMMARY

Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and

synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for

successful seed development and should have highly conserved functions. Recent genome-wide studies

have found limited conservation of IGs among distantly related species, but there is a paucity of data from

closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm develop-

ment, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using

laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of

three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with

putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm.

Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited con-

served imprinting status across all three lineages, but differences in power to assess imprinted expression

imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs

and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs,

indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation

of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different func-

tions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expres-

sion and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with

cellular- and nuclear-type endosperm.

Keywords: genomic imprinting, endosperm, cellular-type endosperm, seed development, epigenetic,

laser-assisted dissection, transcriptomics, Solanum, wild tomatoes.

INTRODUCTION

Parent-of-origin-dependent gene expression (i.e. genomic

imprinting) is an epigenetic phenomenon with important

functions for developmental programs in mammals and

flowering plants (Feng et al., 2010). Pioneering experi-

ments on nuclear transplantation in mouse embryos

demonstrated that the two parental genomes are not

equivalent (McGrath and Solter, 1984; Surani et al., 1984).

Disrupted imprinting is responsible for mouse embryo

abortion and several human diseases collectively called

imprinting disorders (Buiting et al., 1995; Eggermann

et al., 2015). Imprinting has also been identified in the

mammalian placenta, with mis-imprinting resulting in seri-

ous developmental abnormalities (Fowden et al., 2006;

McMinn et al., 2006). As a compartment of angiosperm

seeds, the endosperm is a tissue functionally equivalent to

the mammalian placenta (Scott and Spielman, 2006). This

seed compartment results from double fertilization and

has a triploid genome constitution (2m:1p); it nurtures the

embryo and coordinates development between seed com-

partments (Berger et al., 2006; Lafon-Placette and K€ohler,

2014). Imprinting is restricted to a few genes in angios-

perm embryos, but widespread among endosperm-

1

ht
tp
://
do
c.
re
ro
.c
h

Published in "The Plant Journal 95 (6): 1084–1101, 2018"
which should be cited to refer to this work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/162134036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


expressed genes (Luo et al., 2011; Garc�ıa-Aguilar and Gill-

mor, 2015). Experiments in Arabidopsis thaliana have

demonstrated that imprinting defects in the endosperm

may cause seeds to abort, yet the main functions of

imprinting in the endosperm are not fully understood

(Gehring and Satyaki, 2017).

Several costs and benefits potentially driving the evolu-

tion of genomic imprinting have been formulated (Hurst

and McVean, 1998; Haig, 2000; Spencer and Clark, 2014),

and can be interpreted in the specific context of flowering

plants (Ko et al., 2010). The leading explanatory framework

for the evolution of imprinting is the kin conflict theory

championed by Haig and Westoby (1989, 1991; Haig, 2013).

Their theory posits that imprinting is evolutionarily fuelled

by diverging parental interests over resource allocation to

offspring. Under conditions of parental conflict, imprinted

expression might be a means to balance divergent parental

interests and be necessary for proper endosperm (and

seed) development. It has been proposed that endosperm

growth is optimized when paternally expressed genes

(PEGs; supposedly promoting growth) and maternally

expressed genes (MEGs; supposedly repressing growth)

are jointly expressed with suitable dosage (Leblanc et al.,

2002). This would imply that imprinted genes (IGs) are

likely to functionally interact. The coordinated expression

of MEGs and PEGs might require, or be facilitated by, their

organization in functional, regulatory and physical net-

works likely involving co-adaptation (Holman and Kokko,

2014; Patten et al., 2016). However, the putative functional

and physical linkage between IGs has not been extensively

studied in flowering plants; such analyses were mostly lim-

ited to a low number of candidate genes (Wolff et al., 2011;

Zhang et al., 2011).

The kin conflict theory further predicts that imprinting

will evolve under strong selective constraints in outcross-

ing lineages with high levels of multiple paternity, while

such constraints might be relaxed under long-term

inbreeding (Brandvain and Haig, 2005). To our knowledge,

genomic imprinting in the endosperm has been studied in

representatives of four angiosperm families (Brassicaceae,

Poaceae, Solanaceae and Euphorbiaceae), including: (i)

(mainly) inbreeding species such as A. thaliana (Wolff

et al., 2011; Pignatta et al., 2014), Capsella rubella

(Hatorangan et al., 2016) and rice (Yuan et al., 2017); and

(ii) (mainly) outcrossing species such as Arabidopsis lyrata

(Klosinska et al., 2016), maize (Zhang et al., 2014), Sor-

ghum bicolor (Zhang et al., 2016), Solanum peruvianum

(Florez-Rueda et al., 2016) and castor bean (Xu et al.,

2014). While seed phenotypes of homoploid crosses

between closely-related species with different mating sys-

tems are consistent with predictions of the kin conflict the-

ory, they have hitherto not been associated with specific

imprinting patterns (Rebernig et al., 2015; Lafon-Placette

et al., 2017).

Moreover, the extent of imprinting conservation

between taxa has proved difficult to quantify and interpret,

and is often referred to as being quite limited (Zhang et al.,

2011; Pignatta et al., 2014). Some of the suggested expla-

nations for low levels of imprinting conservation are

mainly technical. Studies on genomic imprinting involved

various dissection methods and developmental time

points, as well as different bioinformatics pipelines, likely

impacting the number and identity of ‘imprinted’ genes.

Moreover, serious concerns have been raised about mater-

nal contamination of endosperm transcriptomes, found to

be widespread in manually dissected A. thaliana endo-

sperm samples (Schon and Nodine, 2017). A second, not

mutually exclusive, explanation for varying levels of

imprinting conservation rests on the potentially diverse

evolutionary trajectories of IGs. Specifically, imprinting

conservation should only be expected for genes whose

imprinted expression is maintained by natural selection for

its functional consequences, leaving large scope for evolu-

tionarily ephemeral IGs, for example those whose paren-

tally biased expression may be incidentally caused by

nearby insertions of transposable elements (TEs; Gehring

et al., 2009; Pignatta et al., 2014). Importantly, the possibil-

ity that imprinting mismatch between lineages may be

causal for (or contribute to) hybrid seed failure (and thus

might promote reproductive isolation and speciation) is

increasingly appreciated (Florez-Rueda et al., 2016; Lafon-

Placette and K€ohler, 2016). Despite these conceptual and

empirical leads, qualitative and quantitative comparisons

of genomic imprinting between closely related lineages

have only just started to emerge (Hatorangan et al., 2016;

Klosinska et al., 2016).

Wild tomatoes (Solanum section Lycopersicon) provide

an excellent model system to study the incidence, evolu-

tion and consequences of imprinting in the endosperm;

they diverged fairly recently (~2.5 Mya; Pease et al., 2016),

harbor a diversity of mating systems and exhibit various

degrees of post-zygotic isolation mediated by endosperm-

based hybrid seed failure (Baek et al., 2016; Roth et al.,

2018). Unlike all other taxa that have been the focus of

studies on endosperm genomic imprinting, Solanum is

characterized by a cellular- rather than a nuclear-type

endosperm during early development. The cellular-type

endosperm development implies that there is no transition

from an initial syncytial to a later cellular stage (Vija-

yaraghavan and Prabhakar, 1984), and is thought to be

ancestral to other endosperm types (Floyd and Friedman,

2000). To date, no study has probed the conservation of

imprinting across lineages with different developmental

types of endosperm.

Using laser-assisted microdissection of developing

endosperm from three reciprocal crosses and subsequent

transcriptome sequencing, we have characterized and

compared imprinting landscapes in three self-incompatible
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wild tomato lineages: Solanum arcanum var. mara~n�on (A),

Solanum chilense (C) and S. peruvianum (P). These lin-

eages are morphologically and ecologically well differenti-

ated (Rick and Lamm, 1955; Rick, 1986; Peralta et al., 2008),

and are reproductively isolated from each other to varying

degrees by endosperm-based hybrid seed failure, causing

partial to near-complete seed abortion (Roth et al., 2018).

Using estimates of maternal expression proportions for

between 7730 and 13 198 genes per lineage, our study

characterizes genomic imprinting and probes the level of

imprinting divergence between the three closely related

wild tomato lineages. In addition, we have assessed the

putative genomic localization and functions of IGs as well

as their predicted protein interactions. Finally, we also pro-

vide insights into the potential mechanisms underlying

parent-specific expression (PSE) in the developing Sola-

num endosperm.

RESULTS

Identification of IGs and their degree of conservation

By generating RNA-Seq data from developing endosperm

in replicated reciprocal crosses, we assessed genomic

imprinting in the three wild tomato lineages A, C and P. To

maximize power to assess PSE, the parental combinations

were chosen based on high inter-individual molecular

polymorphism as well as high seed viability (Roth et al.,

2018). Biological variation was taken into consideration by

using three clonal replicates for each cross, resulting in a

total of 18 endosperm samples. Requiring the use of laser

microdissection, we sampled developing endosperm tissue

at 12 days after pollination (DAP), corresponding to the

early globular embryo stage in all three crosses. Mapping

against the SL2.50 tomato reference generated an average

of 83.9% mapped reads with mapping quality >20. Using

the ITAG2.4 tomato genome annotation, this allowed us to

quantify PSE for 7730 (A), 9623 (C) and 13 198 (P) nuclear

genes, often based on multiple single nucleotide polymor-

phisms (SNPs) per gene (Table 1). In this set of genes,

6169 were found commonly expressed and polymorphic in

all three reciprocal crosses. As pioneered by Florez-Rueda

et al. (2016), we inferred maternal proportions from both

homozygous and heterozygous parental SNPs (Figure 1;

Tables 1 and S1). Using empirically derived cross-specific

thresholds of maternal proportion, we identified a total of

812 candidate MEGs and 213 candidate PEGs among the

three reciprocal crosses (Figure 2; Table 1). Importantly,

we did not observe any reversal in imprinting status

between lineages, i.e. no changes from candidate MEG to

candidate PEG or vice versa.

Following Schon and Nodine (2017), we probed for

potential seed-coat and embryo contamination of our

endosperm transcriptomes. Using tissue-specific transcrip-

tome data obtained via laser-capture microdissection from

early developing wild tomato seeds as reference data (Pat-

tison et al., 2015), there was no discernible signal of seed-

coat or embryo contamination in any of our endosperm

samples (Figure S1; all P-values = 1).

As imprinting assessment relies on parental polymor-

phisms that are specific to each cross, quantifying imprint-

ing conservation across species faces uncertainties that

deserve particular attention. To evaluate the proportion of

‘conserved’ IGs between two or three taxa, one has to con-

sider the common gene universe for which PSE can be

assessed. In our data, this set is represented by the 6169

genes with parental SNPs in each of the three reciprocal

crosses that are expressed in developing endosperm at

12 DAP. Within this set of genes, we found 485 to be candi-

date imprinted in at least one lineage (47.3% of all candi-

date IGs; Figure 3; Table S2). Among them, 59 (12.2%) are

candidate imprinted in all three crosses; this conserved sta-

tus is shown by 42 MEGs (10.4% of all assessable candi-

date MEGs) and 17 PEGs (20.7% of all assessable

candidate PEGs; Figure 3; Table S3). As the probability of

randomly sampling the same genes in the A, C and P gene

universes is very low, this degree of overlap is highly sig-

nificant (10 000 iterations, t-test, P < 2.2e-16 for PEGs and

MEGs). In pairwise comparisons among lineages, conser-

vation in imprinting status ranged between 19.9 and 24.6%

for candidate MEGs, and between 31.3 and 39.3% for can-

didate PEGs. Overall, these data indicate a higher conser-

vation of PEGs compared with MEGs in these wild tomato

lineages. Considering candidate MEGs and PEGs together,

we found the highest imprinting overlap between C and P

(26.7%), closely followed by A and P (25.2%), and A and C

(21.9%).

We also assessed the average maternal proportion of

genes that failed to reach our imprinting thresholds in one

or two species, conditional on those genes being candidate

imprinted in one or two of the three crosses. Such non-

conserved IGs exhibited average maternal proportions of

78.7% (SD 8.7%) for candidate MEGs and 41.6% (SD 12.7%)

for candidate PEGs when they failed to reach imprinting

thresholds. This indicates that many of the non-conserved

PEGs also showed paternal expression bias and were close

to reaching imprinting thresholds; thus, the ‘true’ conser-

vation among PEGs might be higher than estimated above.

Finally, using a different rationale, we estimated the

potential maximum and minimum levels of imprinting con-

servation from our data. For this, we also took all genes

into account whose imprinting conservation could not be

assessed empirically due to the absence of sequence poly-

morphism in one or two of the three crosses. We consid-

ered two extreme scenarios where: (i) all genes lacking

parental polymorphism are also imprinted like in the infor-

mative cross(es); and (ii) all such genes are not imprinted

(or have a different imprinting status). This yielded esti-

mates of imprinting conservation across all three lineages
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of 5.2–30.0% (min–max) for MEGs and 8.0–45.5% for PEGs;

the maximum overlap could result in 244 MEGs and 97

PEGs (Figure S2; Table S2).

Conserved imprinting among distantly related species is

moderate but highlights important functions

Based on previous studies, we screened our set of Sola-

num candidate IGs for sequence similarity with genes

(whether or not imprinted) in A. thaliana (At), A. lyrata (Al),

C. rubella (Cr), maize (Zm), rice (Os), S. bicolor (Sb) and

castor bean (Rc). Using BLASTx and stringent filtering cri-

teria, we identified potential homologs to our candidate

IGs in these seven model species (Table S4). Specifically,

we found that 127 Solanum MEGs and 35 PEGs had the

best match (lowest e-value) with a gene identified as

imprinted in at least one other study (15.6% of candidate

MEGs and 16.4% of candidate PEGs). Among the 178 pairs

of Solanum IGs and their putative homologs from distantly

related species, we identified ‘conserved’ imprinting status

for 147 pairs (82.6%). The other 31 gene pairs (17.4%)

showed ‘reversed’ imprinting status between Solanum and

the distantly related taxa (Table S4).

We also used the program OMA to identify IGs in model

species that are putative orthologs to Solanum candidate

IGs. We thus found 34 Solanum genes, mainly transcrip-

tion factors (TFs), with putative one-to-one orthologs in

one of the model species (Table S4). Among them, 29 gene

pairs coincide with the best hits found with the Blastx

searches. In most cases, the direction of parental bias was

conserved, except for one gene each in At, Al and rice. This

set of putatively orthologous genes represents strong can-

didates for conserved imprinting across distantly related

angiosperm species.

Moreover, among the 167 Solanum candidate IGs with

evidence for conserved imprinted expression among dis-

tantly related species, we found 11 MEGs and five PEGs

with evidence for imprinting in two or three non-Solanum

model species, including some with reversed imprinting

status (Table 2). These 16 genes appear to primarily code

for regulatory elements, such as two RING-domain pro-

teins with conserved MEG status across the tomato lineage

A, Ricinus communis and A. thaliana (the imprinting status

in lineages C and P could not be assessed due to lack of

parental sequence differences). These RING-domain

Table 1 Summary of data underlying the estimation of maternal proportions (and numbers of candidate IGs) in endosperm-expressed
genes in three wild tomato crosses (lineages)

Statistic
A 9 A
2185A ? 1626B

C 9 C
4329B ? 2748B

P 9 P
2744B ? 2964A

Endosperm-expressed genes with
SNPs in reciprocal cross

7730 9623 13 198

Alternative homozygous sites 19 274 19 053 61 552
Heterozygous sites (e.g. CC:AC) 17 195 56 092 127 036
Mean no. of SNPs per gene 4.7 7.8 14.3
Candidate MEGs 356 316 365
Candidate PEGs 66 94 133
Median maternal proportion
(across all genes)

0.722 ? 0.758 0.693 ? 0.757 0.728 ? 0.731

MEG, maternally expressed gene; PEG, paternally expressed gene; SNP, single nucleotide polymorphism.
A, Solanum arcanum var. mara~n�on; C, Solanum chilense; P, Solanum peruvianum. Individual parental genotypes are abbreviated with their
four-digit TGRC accession number (e.g. 2185, accession LA2185), followed by a capital letter.

Figure 1. XY-plot representing the distribution of maternal proportion per

gene (MAT/TOT allelic counts per gene; 9593 genes) in one biological repli-

cate of the reciprocal cross CC.

The first replicates of each cross direction (CC1 and CC2) are shown. Red

and blue areas: maternally and paternally biased genes in CC1 (replicate 1)

and CC2 (replicate 1). Genes located in these highlighted areas may not

have been retained as candidate imprinted genes (IGs) because to be con-

sidered imprinted, parental bias had to be evident in at least two replicates

per cross direction (full data in Table S1).
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proteins might be components of the Skp1–Cullin–F-box
(SCF) E3 ubiquitin ligase, a protein complex involved in

gene repression that might also control cell-cycle switches

in the endosperm (Kim et al., 2008; Dumbliauskas et al.,

2011).

Levels of gene expression are moderately impacted by

imprinting status

Expression levels were assessed for each library by count-

ing transcripts per gene with HTseq and transforming

Figure 2. Circos graph representing gene expression and candidate imprinted genes (IGs) in each wild tomato lineage (14 021 genes represented in total).

Orange, Solanum arcanum var. mara~n�on; blue, Solanum chilense; purple, Solanum peruvianum. SL00-SL12, linkage groups as given in the tomato genome ref-

erence SL2.50. Circles (a–f): (a) gene density along the cultivated tomato reference genome (The Tomato Genome Consortium, 2012); gene density is summa-

rized as the number of genes in consecutive 1-Mb bins; (b) mapping of candidate maternally expressed genes (MEGs); (c) mapping of candidate paternally

expressed genes (PEGs); expression levels in S. arcanum var. mara~n�on (d), S. chilense (e) and S. peruvianum (f) intraspecific crosses [transcripts pre million

(TPM) averaged across biological replicates].

Figure 3. Venn diagrams displaying the overlap of candidate imprinted genes (IGs) assessed in three tomato lineages.

Maternally expressed genes (MEGs; n = 812); paternally expressed genes (PEGs; n = 213).
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these counts to transcripts per million (TPM). While 24.8%

of all expressed genes were expressed in only one or two

lineages, genes with variable imprinting status were

invariably expressed across all three taxa. This indicates

that in our study, imprinting status of a given gene is not

likely to be lost due to missing data (e.g. very low expres-

sion) but rather by expression modulation. To study

potential co-variation of imprinting status and expression

level, we considered expression levels only for genes for

which PSE could also be assessed (overall, n = 30 537

observations; Table S5). Variance analysis (ANOVA) revealed

that expression levels were influenced by species

(P < 2.2e-16), imprinting status (P = 1.17e-06) and by

their interaction (P = 9.1e-04). However, comparisons of

means did not discriminate between interaction levels

(species 9 imprinting status; Tukey’s test, all P > 0.05;

Figure 4).

Interestingly, IGs conserved across all three lineages

showed higher expression levels than candidate IGs with

variable imprinting status [Wilcoxon rank sum test

(WRST), PEGs, P = 1.3e-03; MEGs, P = 9.2e-08]. Among

these 59 conserved IGs, MEGs revealed higher expression

in P compared with both C and A (paired WRST P–C,
P = 0.04; P–A, P = 0.04; Figure 5), and PEGs higher expres-

sion in P compared with C but similar expression levels to

A (paired WRST P–C, P = 0.016; P–A, P = 0.14; Figure 5).

No significant differences in expression levels of con-

served IGs were found between A and C (paired WRST,

MEGs, P = 0.94; PEGs, P = 0.37; Figure 5). These differ-

ences in expression levels might reflect higher levels of

parental conflict in lineage P compared with both A and C

(see Discussion).

Next, we examined whether expression level changes

with imprinting status for a given gene. We restricted

this analysis to the 426 genes exhibiting variable imprint-

ing status across the three lineages [referred to hereafter

as NI/MEGs (n = 361) and NI/PEGs (n = 65)]. In the

context of the triploid endosperm, an additive model of

gene expression predicts that silencing the paternal or

maternal gene copies reduces gene expression by 1/3

and 2/3, respectively, compared with biparentally

expressed genes. In both cases, the expectation under

this scenario is lower gene expression when imprinted

than when not imprinted. We found no evidence for

reduced expression correlating with imprinting status.

Instead, expression of NI/MEGs was higher when genes

were imprinted (paired WRST, P = 0.017), and expression

of NI/PEGs was not significantly different between

imprinted and non-imprinted state (paired WRST,

P = 0.34). This suggests that distinct mechanisms regu-

late the expression of PEGs and MEGs with variable

imprinting status, MEGs being specifically upregulated

when imprinted.

IGs are involved in metabolism, transcription regulation

and cell cycle

Biological functions of endosperm-IGs have been charac-

terized in relatively few species and appear to be quite

diverse. It is thus still unclear whether some functions are

key to IGs and whether these functions are conserved

across species. In our study, IGs were found to be mainly

involved in biosynthetic and catabolic processes, transcrip-

tion regulation, signaling and development (Figure 6).

There is evidence that IGs are strongly involved in gene

expression regulation, as the set of candidate genes con-

tains 38 TFs (29 MEGs and 9 PEGs; Table S2), the main

gene families being BZIP, MYB, GATA and MADS-box. We

also found 17 imprinted methyltransferases (11 MEGs and

6 PEGs; Table S2), which are key mediators of gene silenc-

ing. Three helicases have also been identified; one is a

SNF2-related helicase (PEG), a family deemed crucial for

rice endosperm development (Hara et al., 2015). One MEG

and four PEGs are mRNA splicing factors that may be

essential for the correct production of isoforms specific to

the endosperm (Lu et al., 2013).

Because MEGs and PEGs might comprise different func-

tions, we analyzed their associated gene ontology (GO)

terms separately (Table S6). MEGs and PEGs were signifi-

cantly enriched for many biological processes, molecular

functions and cellular components. MEGs were mainly

enriched for metabolic processes (GO:0008152), such as

carbohydrate transport and metabolism (GO:0004556,

0000271), cell wall (GO:0042546, 0048046), and in signaling

via hormone regulation (GO:0010817) such as auxin

(GO:0009734) and stress response (GO:0034599). PEGs

were enriched for several chromatin-binding functions,

such as histones (GO:0044154, 0043972, 0043971) and

euchromatin binding (GO:1990188). They were also

involved in amino acid and nucleotide transport

(GO:0015802, 0043090, 0006862) and signaling

(GO:0001789, 0007186). Lastly, they were also enriched for

ubiquitination (GO:0036459) and post-transcriptional

silencing by RNA activities (GO:0035194). Jointly, these

results may indicate that PEGs contribute more specifically

to cell-cycle control and gene regulation. Interestingly, 53

MEGs and five PEGs are nuclear-encoded chloroplastic

genes, while 19 MEGs and two PEGs are related to mito-

chondrial function (ITAG2.4 and Panther database;

Table S2).

To assess how IGs’ encoded proteins may interact, we

utilized the available information from several databases

using the software STRING (see Experimental Procedures).

The majority of interaction networks involved both MEGs

and PEGs (Figure 7; Table S7). We found 179 significant

pairwise interactions between IGs, 33 of them between

MEGs and PEGs, 140 between MEGs and six between

PEGs. In particular, the MEG Solyc05g018300.2, a
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phosphatase 2C, interacts with 22 other IGs (10 PEGs and

12 MEGs); it is a hub between DNA-binding elements, ribo-

somal proteins and amylases (Table S7). We further

explored whether additional genes might potentially inter-

act with our candidate IGs, and thus highlight key networks

or pathways. Among the 10 inferred interactors, three

are interconnected hsp40 chaperone proteins

(Solyc04g081570.2, Solyc04g081630.1, Solyc04g081640.1),

interacting mainly with DNA-binding elements, other chap-

erones and serine/threonine kinases (Table S7). The Soly-

c12g044540.1 protein is at the center of a large cluster of

IGs, mainly serine/threonine kinases represented by 26

MEGs and six PEGs. It has no functional annotation but is

predicted to be a phosphatase 2C in Solanum lycoper-

sicum (Blastx, e = 2.0e-24). Due to sequence identity in all

three crosses, we were unable to assess the imprinting sta-

tus of this gene.

IGs tend to be physically clustered

Candidate IGs were located on all chromosomes; however,

MEGs were particularly abundant on chromosome 1

(n = 127) and PEGs on chromosome 3 (n = 28; Table S8). We

tested for clustering in non-overlapping 100-kb bins using the

full set of 1025 candidate IGs across all three lineages. We

thus found 164 significant clusters or physically close pairs of

IGs representing 373 genes [one-sample t-test, P < 0.05 with

false discovery rate (FDR) correction 0.05]. They either con-

tained only MEGs (n = 104, 2–10 genes), only PEGs (n = 15,

2–4 genes) or both classes of IGs (n = 45, 2–5 genes). The

densest cluster was located on chromosome 1, where 10 out

of 13 genes (expressed and polymorphic) are candidate

MEGs (SL2.50ch01_bin19; Table S8). Among them, nine

genes have a chloroplastic function and are involved in trans-

lation (five are ribosomal proteins).

The next-largest cluster of MEGs contained four genes

exclusively imprinted in lineage A (SL2.50ch05_bin17). The

largest cluster of PEGs contained regulatory elements with

a RING-domain and an F-box, putative elements from the

SCF complex (SL2.50ch08_bin16). MEGs and PEGs also

clustered jointly within each of 45 clusters of 2–5 genes. In

cluster SL2.50ch10_bin610, the two PEGs and two MEGs

are involved in transcription regulation. Interestingly, we

observed 10 bins each comprising two IGs with identical

annotation. In all cases, these tandemly arranged genes

were imprinted for the same parent. These observations

suggest that IG clustering is extensive in wild tomatoes,

and could potentially result from gene duplication of IGs

together with shared cis-regulatory elements. Given that

we could only analyze polymorphic genes, we may expect

this physical clustering of IGs to be even more pronounced

than could be assessed with the data at hand.

DISCUSSION

To characterize and compare patterns of genomic imprint-

ing in three closely-related wild tomato lineages, we

conducted a large RNA-Seq experiment on laser-microdis-

sected endosperms at the early-globular stage. Impor-

tantly, we found no evidence of RNA contamination from

maternal seed-coat or embryo tissues in our endosperm

samples, confirming that laser microdissection can achieve

high tissue specificity (Schon and Nodine, 2017). More-

over, our experimental design allowed to take biological

Figure 4. Violin plots representing the distribution of expression levels in

the endosperm across all ‘imprinting by species’ categories [log2(TPM) val-

ues, 14 021 genes in total].

Expression values are averaged across replicates. TPM, transcripts per mil-

lion. Gray, non-imprinted genes (NI); red, maternally expressed genes

(MEGs); blue, paternally expressed genes (PEGs); intraspecific crosses

within Solanum arcanum var. mara~n�on (AA), Solanum chilense (CC) and

Solanum peruvianum (PP). NI-AA, 7304 genes; NI-CC, 9208 genes; NI-PP,

12 695 genes; MEGs-AA, 356 genes; MEGs-CC, 316 genes; MEGs-PP, 365

genes; PEGs-AA, 66 genes; PEGs-CC, 94 genes; PEGs-PP, 133 genes.

Figure 5. Box plots representing the distribution of expression levels

[log2(TPM) values] across lineages A (orange), C (blue) and P (purple) for

conserved maternally expressed genes (MEGs; 42 genes) and paternally

expressed genes (PEGs; 17 genes). TPM, transcripts per million.
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variability of PSE into account; this is of particular impor-

tance when measuring expression levels of lowly

expressed genes from partially degraded tissues (Sims

et al., 2014; Anjam et al., 2016). For each of the three spe-

cies crosses, we identified several hundreds of genes with

stable imprinting signatures across replicates.

Figure 6. Over-represented gene ontology (GO) terms among candidate imprinted genes (IGs) and interactions between GO terms (biological process terms

only).

Each polygon represents a GO term and its size is proportional to the number of genes associated with this term. Color scale: level of significance for each over-

represented GO term (P-value); white: non-significant. Main functions found with WordCloud (word enrichment) are annotated: black, word enrichment on

locally nested GO terms; red, word enrichment on all enriched GO terms.

Figure 7. Protein–protein associations among candidate imprinted genes (IGs) identified in Solanum arcanum var. mara~n�on, Solanum chilense and Solanum

peruvianum intraspecific endosperms, and significant interacting genes found by the STRING database (348 interactions in total).

Red, maternally expressed genes (MEGs); blue, paternally expressed genes (PEGs); green, genes significantly interacting with several candidate IGs.
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PEGs and MEGs exhibit different degrees of conservation

In common with previous studies on plants (Waters et al.,

2013; Hatorangan et al., 2016; Klosinska et al., 2016), we

quantified the observed proportion of conserved imprint-

ing status among lineages A, C and P, and found PEGs to

be more conserved than MEGs (ranges for pairwise com-

parisons: PEGs 31.3–39.3%, MEGs 19.9–24.6%). We also

estimated the considerable biological uncertainties associ-

ated with measures of imprinting conservation; these

uncertainties partly stem from many endosperm-expressed

genes with no parental sequence polymorphisms in our

crosses. This revealed that imprinting overlap among all

three lineages could vary between 5.2 and 30.0% (min–
max) for MEGs, and between 8.0 and 45.5% for PEGs. To

our knowledge, such uncertainties have not been esti-

mated in other studies. Moreover, the group of non-con-

served PEGs showed marked expression bias toward

paternal expression (while not reaching imprinting thresh-

olds), implying that the actual degree of imprinting conser-

vation for PEGs is likely to be somewhat higher than

estimated here. The apparent stronger conservation of

PEGs in wild tomatoes agrees with comparative imprinting

analyses in the Brassicaceae (A. thaliana–C. rubella: 28.6%
for PEGs and 14.3% for MEGs; Hatorangan et al., 2016;

A. thaliana–A. lyrata: 50% for PEGs and 35% for MEGs;

Klosinska et al., 2016).

These replicated patterns suggest differences in selec-

tive pressures impacting the conservation of PEG- versus

MEG-status over evolutionary time. Although a trend for

faster evolution of MEGs compared with PEGs has been

observed in A. thaliana (Wolff et al., 2011), no significant

differences in sequence evolution between PEGs and

MEGs were evident using dN/dS ratio comparisons in

A. thaliana and maize (Wolff et al., 2011; Waters et al.,

2013), or by comparisons of rates of adaptive relative to

neutral substitutions in C. rubella (xa; Hatorangan et al.,

2016). Thus, further investigations are needed to explore

patterns of sequence evolution in MEGs and PEGs, for

example by repeating such analyses with more individuals

and more IGs, preferentially in outcrossing species where

IGs are expected to evolve under stronger parental conflict

(Brandvain and Haig, 2005; Haig, 2013). Data on endo-

sperm growth and seed size in interspecific crosses

between these three lineages suggest that lineage P expe-

rienced higher levels of parental conflict compared with

both A and C (Roth et al., 2018), consistent with its higher

level of nucleotide diversity (St€adler et al., 2008; Tellier

et al., 2011; Beddows et al., 2017). Interestingly, we found

that conserved IGs tend to have a higher expression in lin-

eage P compared with both A and C (Figure 5), possibly

reflecting higher levels of parental conflict and mirroring

observations in A. lyrata–A. thaliana comparisons (Klosin-

ska et al., 2016). Whether directly or indirectly, such

expression differences might be involved in the molecular

underpinnings of hybrid seed failure observed between

these wild tomato lineages (Florez-Rueda et al., 2016; Roth

et al., 2018).

Imprinting is moderately conserved across closely and

distantly related taxa

As the knockout of single IGs has been shown to be suffi-

cient to induce seed abortion, these appear to be essential

for correct seed development and thus potentially con-

served across angiosperms (Grossniklaus et al., 2001;

K€ohler et al., 2003). The 59 candidate IGs identified as

being conserved across all three wild tomato lineages rep-

resent a non-random overlap, and provide insights into

key functions borne by PEGs and MEGs. Moreover, a mod-

erate proportion of our candidate IGs (15.8%) revealed

potentially orthologous (‘best hit’) IGs identified in dis-

tantly related plant species, possibly highlighting major

functions of a subset of plant IGs. Similarly, Zhang et al.

(2016) recently reported a potential 30% overlap between

their candidate IGs in S. bicolor and imprinted potential

homologs in maize, rice and A. thaliana. Importantly, com-

mon functions specific to MEGs and PEGs emerged from

our and previous studies, suggesting that they are not tied

to the mode of endosperm development. Across Solanum,

maize, Sorghum, Arabidopsis and Capsella, PEGs and

MEGs are often TFs, but MEGs are primarily involved in

transcription regulation, signaling and biosynthetic activi-

ties while PEGs are more specifically enriched for chro-

matin binding and chromatin modifications (Waters et al.,

2013; Pignatta et al., 2014; Hatorangan et al., 2016; Zhang

et al., 2016).

Any differences in suites of IGs among taxa likely reflect

underlying genetic, epigenetic and regulatory divergence

arising during and after speciation (Josefsson et al., 2006;

Birchler, 2014). In our study system, the closely related

taxa C and P (estimated divergence time 1.25 Mya; Bed-

dows et al., 2017) reveal only slightly higher levels of

imprinting conservation (26.7% of all candidate IGs) than

the more distantly related pairs A–P (25.2%) and A–C
(21.9%) that both should be equally diverged (approxi-

mately 2 Mya; Pease et al., 2016). Our estimates of IG con-

servation are overall higher than those obtained for

comparisons between the much more diverged A. thaliana

and C. rubella (10–14 Mya; Mitchell-Olds, 2001; Koch and

Kiefer, 2005), sharing 20% of their IGs (Hatorangan et al.,

2016). However, they are lower than those conservatively

estimated between A. thaliana and A. lyrata (45.3%; Klosin-

ska et al., 2016), which are also markedly more diverged

than wild tomatoes (13 Mya; Beilstein et al., 2010). Disre-

garding potential contributions of maternal RNA contami-

nation in hand-dissected endosperm datasets (Schon and

Nodine, 2017) and differences in statistical criteria and

power to call candidate IGs between studies, the
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proportion of overlapping IGs does not linearly reflect esti-

mates of divergence time between pairs of lineages. How-

ever, revealing no instances of reversal between MEG and

PEG status might better reflect the fairly recent divergence

time of wild tomato lineages. Analyses in Arabidopsis have

provided evidence that gene duplication events impacted

the incidence and expression profiles of IGs, and that the

diverging fates of paralogs have likely fuelled cases of neo-

functionalization (Qiu et al., 2014); such processes might

largely account for the cases of reversed imprinting status

we have uncovered between Solanum and distantly related

species (Tables 2 and S4).

The majority of tomato candidate IGs were specific to

one or two wild tomato lineages, suggesting their rela-

tively fast turnover over evolutionary timescales. This is

consistent with evidence for imprinting polymorphism

among genotypes in maize (Waters et al., 2013) and

A. thaliana (Pignatta et al., 2014), thought to be driven

mostly by insertion and turnover of TEs and TE-specific

silencing machinery (Gehring et al., 2009; Pignatta et al.,

2014; Klosinska et al., 2016). Polymorphism of imprinting

status has recently been proposed as a mechanism gener-

ating phenotypic polymorphism and promoting efficient

diversifying selection on seed traits (Bai and Settles, 2015).

This might be especially the case for the less-conserved

MEGs; their higher rate of evolutionary turnover might

reflect processes of co-adaptation that could contribute to

local adaptation of the growing seed (Wolf and Hager,

2006; Holman and Kokko, 2014).

PEGs and MEGs appear to be regulated by distinct

mechanisms

In our overall data, about 25% of all genes were not

expressed in all three lineages (i.e. they were ‘repressed’ in

one or two lineages). In contrast, non-conserved candidate

IGs were never found completely repressed in any of

the lineages. This might imply that their biological func-

tions are essential for seed development, irrespective of

their imprinting status. It certainly seems plausible that

important functions of IGs are conserved across species,

rather than their individual identities (Gehring and Satyaki,

2017).

Imprinting has been proposed as a general mechanism

to attain specific expression levels of functionally impor-

tant genes (Haig, 2000; Patten et al., 2014; Wolf et al.,

2014). It was recently shown that imprinted A. lyrata genes

maintain higher expression than non-IGs (Klosinska et al.,

2016). Comparing expression levels between non-

imprinted and candidate IGs in wild tomatoes, our results

show no clear signal for up- or downregulation of candi-

date IGs at genome-wide scales (Figure 4). This may sim-

ply reflect the broad range of expression optima among

the suite of endosperm-expressed genes. Nevertheless,

conserved IGs showed increased gene expression

compared with genes with variable imprinting status,

which might be interpreted in different ways. On the one

hand, genes with higher expression levels may be more

likely to be detected as parentally biased in all lineages. On

the other hand, conserved IGs may be more likely to be

essential for seed development, thus requiring relatively

high expression levels.

To further quantify the co-variation of imprinting and

gene expression levels, we selected genes with varying

imprinting status (i.e. non-conserved across the three lin-

eages), and compared expression levels between non-

imprinted and imprinted states. We found that genes with

variable imprinting status tend to be slightly upregulated

when maternally imprinted and expressed at similar levels

when paternally imprinted, compared with their expression

as NIs. This suggests that distinct mechanisms regulate

the expression of PEGs versus MEGs. Imprinting is set

either by allele-specific derepression of methylated genes,

involving DNA glycosylases (Choi et al., 2002; Gehring

et al., 2004; Kinoshita et al., 2004; Bauer and Fischer, 2011),

and/or by allele-specific silencing via histone modifications

through the activity of the PRC2 protein complex (Hsieh

et al., 2011; Ikeda, 2012; Raissig et al., 2013). In light of our

results, the expression of MEGs might be mostly caused

by derepression or upregulation of the maternal allele

leading to increased gene expression (whether or not the

paternal allele is completely silenced). For PEGs, the pater-

nal allele might be sufficiently upregulated to compensate

for the silencing of the maternal allele. This would corre-

spond to a model where MEGs are more likely regulated

by allele-specific activation and PEGs by allele-specific

silencing of the maternal and upregulation of the paternal

allele. The well-characterized imprinted A. thaliana genes

MEDEA (MEG) and PHERES1 (PEG) illustrate this inference;

the maternally derived MEDEA allele is activated in the

central cell by DEMETER, with MEDEA remaining silent in

dme mutants (Gehring et al., 2006), while the maternally

derived PHERES1 allele is repressed by MEDEA, with

PHERES1 being overexpressed in mea mutants (K€ohler

et al., 2003, 2005). Along the same lines, it was recently

found that MEGs are more likely to be endosperm-specific

(i.e. repressed in other tissues), implying that their mater-

nal alleles are specifically activated in the endosperm

(Klosinska et al., 2016).

PEGs and MEGs may be physically and functionally linked

Mammalian IGs occur essentially in clusters (Brannan and

Bartolomei, 1999); some imprinted regions have been well-

characterized in mouse and human embryos where the

expression of neighboring IGs is regulated by so-called

imprinting control regions (Verona et al., 2003; Edwards

and Ferguson-Smith, 2007). IGs in mammals not only

co-localize and share common cis-regulatory elements, but

also regulate each other in IG networks (Varrault et al.,
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2006; Gabory et al., 2009). This physical clustering could

emerge from the proliferation of IGs via gene duplication

and/or from shared regulatory elements (Walter and Paul-

sen, 2003; Holman and Kokko, 2014). Physical clusters

comprising a few IGs have been identified in A. thaliana

and maize, but do not tend to be a common feature of

plant genomes (Feil and Berger, 2007; Hsieh et al., 2011;

Wolff et al., 2011; Zhang et al., 2011); however, this

appears to not have been rigorously evaluated in the pub-

lished literature.

We found many examples of physical linkage between

candidate IGs (164 clusters containing 36.4% of total candi-

date IGs), often involving both PEGs and MEGs (45 clus-

ters; Table S8). As the identification of IGs relies on

parental sequence polymorphisms, it is likely that even

more extensive genomic clustering is hidden by this tech-

nical constraint in detecting neighboring IGs. Among our

three within-lineage crosses, 45–70% of all endosperm-

expressed genes could not be assessed for PSE, leaving

considerable scope for discovering more IGs. We also

identified 10 bins containing putative duplicated genes,

consistent with clustered A. thaliana IGs often being par-

alogs (five of eight clusters comprise paralogous IGs; Wolff

et al., 2011); such observations indicate that gene duplica-

tion might be a driver of IG clustering and/or that dupli-

cated genes tend to have the same imprinting status. It is

generally acknowledged that tomato chromosomes are

highly syntenic with conserved structural features, such as

gene-rich euchromatic arms and gene-poor, low-recombi-

nation centromeric regions (The Tomato Genome

Consortium, 2012). Some small-scale chromosomal rear-

rangements have been identified, but most of them map to

gene-poor heterochromatic regions (Anderson et al., 2010).

Given that we probed 100-kb bins containing at least five

expressed genes, any such rearrangements among lin-

eages are unlikely to have created false-positives among

our inferred clusters.

We were also interested in interactions between PEGs

and MEGs at the functional level. Functional cooperation

between PEGs and MEGs is expected under the premises

of the kin-conflict theory (Haig, 2000). In our study, we

found candidate PEGs and MEGs to be enriched for dis-

tinct functions, suggesting they are not functionally

equivalent. This non-equivalence, however, does not pre-

clude interactions among their gene products. By identi-

fying numerous predicted protein–protein interactions

between PEGs and MEGs, we provide evidence that Sola-

num candidate IGs interact in functional networks, high-

lighting common biological functions such as expression

regulation and cell-cycle control (Figure 7). Although can-

didate PEGs are greatly outnumbered by candidate

MEGs, both MEGs and PEGs are represented in the

majority of protein classes identified (Table S2). For

example, we found four imprinted ethylene responsive

factors (ERFs; two MEGs and two PEGs); this diverse

gene family is involved in primary and secondary meta-

bolism, stress response and developmental control

(Licausi et al., 2013). Parentally biased expression might

achieve optimized stoichiometry of duplicated ERFs that

are crucial for the endosperm developmental program.

Moreover, the activity, localization and abundance of

ERFs is regulated by specific proteins such as phosphory-

lases, acyl-coA and ubiquitins, some of which were iden-

tified as candidate MEGs and PEGs in our data,

suggesting functional interactions between IGs (Licausi

et al., 2013).

More generally speaking, functional and/or physical

units constituted by IGs might reflect many instances of

‘innocent bystanders’ associating with ‘first-order IGs’

that happened to be selected for (Varmuza and Mann,

1994; Patten et al., 2016). Moreover, as linkage disequi-

librium can facilitate co-adaptation between loci, mater-

nally biased imprinted expression of physically linked

genes may enhance the evolution of co-adapted mater-

nal and offspring traits when these are favored by natu-

ral selection (Wolf, 2013; Bai and Settles, 2015). Natural

selection may have shaped the evolution of genes with

functionally important imprinted expression, but where

genes have gained an imprinted status as regulatory or

physical byproducts of other IGs, natural selection might

be relaxed (Spillane et al., 2007; Holman and Kokko,

2014).

PEGs and MEGs as potential agents of cell-cycle

transitions

Ubiquitination is a process responsible for targeted protein

degradation that is essential for cell-cycle control and

involves highly conserved protein complexes (Tyers and

Jorgensen, 2000; Nigg, 2001; Reed, 2003; Pines, 2006). We

found 16 candidate IGs (nine MEGs and seven PEGs) con-

tributing to ubiquitination (Table S2), and PEGs are signifi-

cantly enriched for one ubiquitin-related GO term

(Table S6). In particular, 12 genes from a major family of

E3 ubiquitin ligases, which are part of the SCF complex,

were found among our candidate IGs (10 MEGs and two

PEGs; Table S2), and two of them encoding RING-domain

proteins have conserved MEG status in A. thaliana and

R. communis. We also identified a cluster of SCF-related

PEGs on chromosome 8. Via ubiquitination, the SCF com-

plex controls cyclin concentration, which serves as a

switch between cell-cycle steps; it has a central role in

plant development and appears to be highly conserved

across species (Gray et al., 1999; Kim et al., 2008; Jeong

et al., 2011; Boycheva et al., 2015). Our results indicate that

ubiquitination might be intricately linked to imprinting,

and that imprinted expression of specific SCF-complex

genes might be required for cell-cycle control in the endo-

sperm.
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The timing of cell division and differentiation in different

endosperm regions is crucial for seed development and

embryo survival (Sabelli and Larkins, 2009; Dante et al.,

2014). Parental imprints may dictate the correct pace of cell

division after genome and epigenome duplication. These

ideas are consistent with the perturbed cell proliferation

observed in endosperm of interploidy crosses in maize and

A. thaliana (Lin, 1982; Scott et al., 1998; Kradolfer et al.,

2013). Leblanc et al. (2002) proposed that specific IGs regu-

late mitosis in the developing maize endosperm, hypothe-

sizing that a set of MEGs holds mitosis in check while a set

of PEGs controls DNA synthesis. It seems plausible that

such parental control occurs, at least partly, in the cellular

Solanum endosperm. For example, we identified one

cyclin-dependent kinase (CdK) as a candidate MEG and

three sister chromatid cohesion proteins, all as candidate

PEGs (Table S2). Interestingly, the degradation of sister

chromatid cohesion proteins, necessary for the transition

from metaphase to anaphase, is carried out by CdK

(Murray, 1995; Pines, 2006).

In addition to the potentially critical role of Solanum can-

didate IGs for cellular switches, they appear to be specifi-

cally involved in cell and nuclear organization. As

chromosomes in Arabidopsis mainly form biparental

homologous pairs in endosperm nuclei (Baroux et al.,

2017), IG products such as sister chromatid cohesion pro-

teins might contribute to the correct pairing of chromo-

somes (Pardo-Manuel de Villena et al., 2000). We also

found candidate IGs related to the cytoskeleton (11 MEGs

and six PEGs; Table S2), among them actin- and micro-

tubule-binding proteins that may contribute to correct cell

organization and mitosis. Moreover, Arabidopsis endo-

sperm chromatin has atypical features compared with

other cell types, such as low interphase condensation and

enlarged nuclei (Baroux et al., 2007). It was shown that

specific heterochromatin domains are established under

maternal control and may affect the entire chromatin struc-

ture throughout endosperm development, contributing to

the characteristic hypomethylation of the endosperm gen-

ome (Baroux et al., 2007; Gehring et al., 2009). We found

five candidate IGs potentially involved in chromosome

condensation, but no evidence for a major maternal role

(three PEGs and two MEGs; Table S2). These features sug-

gest that an important function of IGs might be to ensure

correct segregation of parental chromosomes during mito-

sis (Pardo-Manuel de Villena et al., 2000); parental control

might be favored in the endosperm because of its atypical,

triploid genome.

EXPERIMENTAL PROCEDURES

Plant material and crossing design

Seeds were provided by the Tomato Genetics Resource Center
(TGRC, University of California, Davis, USA, https://tgrc.ucdavis.edu).

To maximize molecular polymorphism (i.e. power to detect
imprinting) for each of the three reciprocal crosses, two genotypes
from different source populations were selected. For the AA cross,
we chose plants from populations LA2185 (Amazonas, Peru) and
LA1626 (Ancash, Peru); populations LA4329 (Antofagasta, Chile)
and LA2748 (Tarapaca, Chile) were chosen for CC; and populations
LA2744 (Arica and Parinacota, Chile) and LA2964 (Tacna, Peru)
were chosen for PP. All selected crosses produced ‘normal’ quan-
tities of seeds per fruit with high seed viability (Roth et al., 2018).
Plants were grown from seed in an insect-free greenhouse at
ETHZ (Lindau-Eschikon, canton Zurich, Switzerland). They were
regularly repotted in 5-L pots using fresh soil (Ricoter Substrate
214, Ricoter Erdaufbereitung AG, Aarberg, Switzerland, https://
www.ricoter.ch) and fertilizing granules (Gartensegen, Hauert
HBG D€unger AG, Grossaffoltern, Switzerland, https://www.haue
rt.com). Additional liquid fertilizer was applied once or twice per
month depending on the season (Wuxal� NPK solution, Aglukon
Speziald€unger GmbH & Co. KG, D€usseldorf, Germany, https://
www.aglukon.com). Plants were watered two-four times per week.
Well before the onset of the experiments, cuttings yielded multi-
ple ramets per genotype, from which we chose three to serve as
biological replicates. All clones were maintained in a climate
chamber for the duration of the whole experiment (12 h light at
18 Klux and 50% relative humidity, 12 h darkness at 0 Klux with
60% relative humidity).

Reciprocal crosses, sample collection and preparation

The 18 plants (six genotypes 9 three clonal replicates) started
flowering a few months after propagation such that all crosses
could be performed concurrently, always between 08:00 hours
and 10:00 hours. For each reciprocal cross, pollen was manually
transferred from stamens of the paternal plant to pistils of the
maternal plant. We sampled developing fruits 12 DAP, always
between 13:00 hours and 15:00 hours. Each sample represents
one biological replicate for a given cross. The protocol for fruit fix-
ation, cryoprotection and cryosection was adapted from Nakazono
et al. (2003). Briefly, fruits were cut into two equal parts and put in
15-ml tubes containing 4°C Farmer’s solution (3:1 ethanol:acetic
acid). This fixative solution was infiltrated under vacuum on ice
for 15 min, and swirled for 1 h on a rocker shaker at 4°C. Samples
were vacuumed a second time in the same way and left swirling
overnight at 4°C. The next day, samples were infiltrated by three
successive pre-chilled cryoprotectant solutions (sucrose grades
10, 20 and 30% in phosphate-buffered saline solution). For each
solution, fruits were infiltrated under vacuum for 15 min on ice
and shook for 1 h at 4°C. Then, fruits were carefully drained,
placed in Tissue-Tek� cryomolds (25 9 20 9 5 mm, Sakura� Fine-
tek, Tokyo, Japan, https://www.sakuraus.com) and filled with Tis-
sue-Tek� O.C.T. medium (Optimal Cutting Temperature, Sakura�

Finetek). The obtained embeddings were frozen in liquid nitrogen,
stored at �80°C until use and transported on dry ice. For each par-
ental genotype, flower buds were sampled from the original plant
(before cuttings) and stored in liquid nitrogen for later RNA
sequencing.

Endosperm isolation

While preserving an adequate histological context for lasering out
the endosperm, our fruit preparation protocol allowed for cutting
fruits at low temperature to minimize RNA degradation and maxi-
mize RNA yield. Cryosections were performed with a Thermo Sci-
entific cryostat (Cryostar NX70; Thermo Fisher Scientific,
Waltham, MA, USA, https://www.thermofisher.com). Cryopro-
tected fruits embedded in O.C.T. were kept at �20°C for 10 min in
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the cryochamber to equilibrate temperature. Fruits were sliced in
12-lm cuts recovered on LCM tissue tape (Section-Lab, Hiroshima,
Japan, www.section-lab.jp) with the slightly modified Kawamoto’s
film method (Kawamoto, 2003). After cutting, slices stuck to the
tape were washed in pre-chilled ethanol grades (50, 75, 95%) and
dehydrated in 100% ethanol in the cryochamber at �20°C for
30 min. Tapes were dried for 5 min under a fume hood and trans-
ported on dry ice for direct lasering or stored at �80°C for later
lasering on the same day. Each tape was mounted on a metal
frame allowing for visualizing and lasering endosperms directly
on the tape. Dissection was done with a PALM� Microbeam Sys-
tem (Zeiss, Oberkochen, Germany, https://www.zeiss.com) and the
assistance of the PALM� Robosoftware (Zeiss). Upon lasering,
endosperm slices were catapulted jointly with the underlying tape
to the cap of an adhesive tube (Zeiss). For each sample, RNA was
extracted immediately after endosperm collection (at least 100
slices). Endosperm samples were immerged in extraction buffer
(XB, Arcturus� Picopure RNA isolation kit; Thermo Fisher Scien-
tific) and incubated at 42°C for 1 h. The obtained cell extracts were
stored at �80°C for a maximum of 4 days prior to RNA isolation.

RNA isolation, library preparation and sequencing

RNA isolation was performed following the manufacturer’s proto-
col (Arcturus� Picopure RNA isolation kit; Thermo Fisher Scien-
tific), including the application of DNase (RNase-free DNase Set,
Qiagen, Hilden, Germany, https://www.qiagen.com/de) for 15 min
on the column. RNA was quantified with a Qubit� fluorometer
(Invitrogen, Waltham, MA, USA, https://www.thermofisher.com)
and its quality assessed with the 2200 TapeStation instrument
(Agilent Technologies, Santa Clara, CA, USA, https://www.agile
nt.com). A minimum of 100 ng of RNA per sample was treated a
second time with DNAse prior to library preparation (gDNA Wipe-
out Buffer, QuantiTect Reverse Transcription Kit, Qiagen). Riboso-
mal RNA was removed with the Ribo-Zero Plant Library Prep Kit
(Illumina, San Diego, CA, USA, https://www.illumina.com) and
libraries were prepared with the TruSeq Stranded Total RNA
Library Prep Kit following the protocol supplied by Illumina; repli-
cate samples were prepared on different days. Library quality was
assessed on a 2100 Bioanalyzer and on TapeStation (Agilent Tech-
nologies). The 18 endosperm libraries were paired-end sequenced
(2 9 125 bp) on an Illumina HiSeq 2500 v4 at the Functional Geno-
mics Center Zurich (www.fgcz.ch). To obtain satisfactory cover-
age, we pooled eight samples per lane following the TruSeq
pooling protocol, with all cross replicates being sequenced across
at least two lanes.

RNA from parental flower buds was extracted with RNAeasy
RNA isolation kit (Qiagen) and libraries prepared with the Illumina
TruSeq RNA Sample Preparation Kit v2 (Illumina). These libraries
were sequenced on a HiSeq2000 to produce 150-bp paired-end
reads (ETH Department of Biosystems Science and Engineering,
Basel, Switzerland).

Bioinformatics analyses

Filtering and read mapping. Once reads were de-multiplexed,
quality assessment of all samples was done with the FastQC pro-
gram (http://bioinformatics.babraham.ac.uk/projects/fastqc/). Ada-
pters were removed with cutadapt (Martin, 2011). Trimming and
quality filtering were done with the Perl script trimmingreads.pl
from the NGSQC Toolkit version 2.3 (Patel and Jain, 2012), and
reads with Q < 25 and length <30 nucleotides were filtered out.
Read mapping was performed with TopHat version 2.1.0 (Trapnell
et al., 2009) against the SL2.50 reference genome of the cultivated
tomato var. Heinz (The Tomato Genome Consortium, 2012) with

the corresponding annotation ITAG2.4 (International Tomato
Annotation Consortium; https://solgenomics.net/). Mapping qual-
ity check was done with Qualimap version 2.2 (Okonechnikov
et al., 2016) and RseQC (Wang et al., 2012).

Inferring maternal counts from endosperm data. Single
nucleotide polymorphisms were called from the parental tran-
scriptomes (flower bud tissue) to infer the expected genotype in
the endosperm for each polymorphic site. Variants were identified
with the mpileup tool from Samtools (Li et al., 2009), retaining
only high-quality, uniquely mapping reads (Q > 20). For each sam-
ple and each SNP, allele-specific endosperm expression of genes
was assessed using the workflow described in Florez-Rueda et al.
(2016), with slight parameter modifications (https://github.com/
MorganeRoth). The main advantage of this approach is the possi-
bility to use both homozygous and heterozygous nucleotide differ-
ences between parental individuals for estimating maternal
expression proportions. Total and maternal allelic counts were
thus quantified for each SNP from the raw allelic counts obtained
from the endosperm transcriptomes. Using the genome annota-
tion ITAG2.4, we then summed the computed allelic counts at all
SNPs per gene and estimated maternal proportions for each gene
as the ratio maternal/total counts.

Detection of candidate IGs. Once total and maternal counts
were computed for each sample, we calculated the distribution
of maternal proportions across genes. For each of our six (uni-
lateral) crosses, the distribution of maternal proportions across
genes was calculated after merging counts from the three repli-
cates. For each cross, we called MEGs and PEGs after calculat-
ing thresholds based on each empirically derived distribution.
We considered the median observed maternal proportion as the
expected maternal proportion of non-IGs. Genes exhibiting <50%
paternal expression compared with the expected median were
considered as candidate MEGs. Conversely, we defined candi-
date PEGs as those having their expected maternal expression
at least halved. Hence, genes with maternal proportion > [me-
dian + ((1 � median)/2)] were called maternally biased (MEGs)
and genes with maternal proportion < [median/2] were called
paternally biased (PEGs). The inference of parental bias was con-
sidered as robust only if it was found in two or three (of three)
replicates for a given cross. Moreover, a gene was considered
imprinted for the corresponding cross only if the direction of
parental bias matched between reciprocals. As an additional cri-
terion, we only retained genes for which total parental counts
across replicates were significantly different from the empirical
median values in each direction of the cross (v2 test with 5%
FDR correction). Putative genomic positions of all candidate IGs,
gene expression levels and gene density were plotted on a cir-
cos plot using the circlize package in R (R Development Core
Team, 2014; Gu, 2017). Gene density was estimated by counting
annotated S. lycopersicum genes in 1-Mb bins using the BED-
Tools utility (Quinlan and Hall, 2010).

Assessment of maternal contamination. Previous endo-
sperm-based transcriptomic studies in Arabidopsis have been
shown to be partly compromised by RNA contamination from the
maternal seed-coat, particularly as they relate to the number and
identity of MEGs (Schon and Nodine, 2017). To probe for potential
maternal contamination of our endosperm data, we used the sta-
tistical method for tissue-specific enrichment advocated by Schon
and Nodine (2017), using recent transcriptomic data from Sola-
num pimpinellifolium 4-DAP seed tissues (pre-globular embryo
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stage) extracted via laser-microdissection as a reference (Pattison
et al., 2015). We defined tissue-specific expression as sets of
genes having expression levels at least two times higher in a
given tissue (endosperm, seed-coat, embryo) compared with the
two others. Multiple-test correction was performed by adjusting
P-values with a 1% FDR.

Quantification of gene expression levels. Read counts per
gene were calculated with the HTSeq program (Anders et al.,
2015), and these counts were transformed to TPM (Wagner et al.,
2012). These analyses were performed in R (R Development Core
Team, 2014).

Network and ontology analyses. Gene ontology networks
were calculated with BiNGO (Maere et al., 2005), and functional
networks were calculated with STRING (80% confidence interval;
Szklarczyk et al., 2017), both using the Cytoscape 3.4 interface
(Cline et al., 2007; Su et al., 2014). We used the Panther database
to obtain additional putative annotation for candidate IGs and to
perform GO-term overrepresentation tests (Mi et al., 2017). GO-
term enrichment among IGs was tested with the R package
TopGO, using the weight01 algorithm (R Development Core Team,
2014; Alexa and Rahnenf€uhrer, 2016). The considered gene uni-
verse was the union of expressed and polymorphic genes in A, C
and P, and P-values were corrected with the Benjamini–Hochberg
method using a 5% FDR.

We created an inventory of published IGs identified in
A. thaliana (At; K€ohler et al., 2005; Spillane et al., 2007; Gehring
et al., 2011; Hsieh et al., 2011; McKeown et al., 2011; Wolff et al.,
2011; Bratzel et al., 2012; Pignatta et al., 2014; Burkart-Waco et al.,
2015; Jeong et al., 2015), A. lyrata (Al; Klosinska et al., 2016),
C. rubella (Cr; Hatorangan et al., 2016), rice (Os; Luo et al., 2011;
Yuan et al., 2017), maize (Zm; Guti�errez-Marcos et al., 2004; Zhang
et al., 2011, 2014; Waters et al., 2013; Xin et al., 2013), S. bicolor
(Sb; Zhang et al., 2016) and castor bean (Rc; Xu et al., 2014).
Sequences were retrieved from public databases: At, The Ara-
bidopsis Information Resource (TAIR; Swarbreck et al., 2008) at
http://www.arabidopsis.org; Al and Cr, Phytozome v11.0 (Good-
stein et al., 2012) at https://phytozome.jgi.doe.gov; maize, Mai-
zeGDB (Lawrence, 2004) at http://www.maizegdb.org; rice and Sb,
PlantGDB (Duvick et al., 2007) at http://www.plantgdb.org; and Rc,
Castor Bean Genome Project (Chan et al., 2010) at http://castorbea
n.jcvi.org. We estimated sequence similarity between protein
sequences from genes in these distantly related species and can-
didate IGs found in our study using BLASTx with e-values ≤ 1e-10,
retaining and reporting the best hit for each Solanum-model spe-
cies gene pair only when that non-Solanum gene was found to be
imprinted in at least one study (Table S4). Putative orthologs
between our IGs and IGs found in At, Al, Sb, maize and rice were
also inferred with OMA (Dessimoz et al., 2005) using the ‘all-
against-all’ function.

Physical clustering of genes. We assessed whether IGs tend
to be located in physical clusters. For this we adapted the method
described in Wolff et al. (2011) and Zhang et al. (2011) by defining
non-overlapping bins of 100 kb along the reference genome (The
Tomato Genome Consortium, 2012) and counting the number of
inferred IGs per bin; this analysis was performed jointly on all IGs
inferred among the three reciprocal crosses. We assumed that the
IG distribution was independent between chromosomes and per-
formed individual tests on each chromosome, simulating the ran-
dom sampling of the total number of inferred IGs among the
expressed and polymorphic genes (for which we have parental

expression data) in each chromosome. We then performed a one-
sample t-test on each bin to assess whether the observed number
of IGs was higher than the number obtained from a random distri-
bution. The obtained P-values were corrected with the FDR
method (R Development Core Team, 2014).

AVAILABILITY OF DATA AND MATERIAL

Raw sequence data for the RNA-sequencing dataset used

in this study are available from the Sequence Read Archive

(https://trace.ncbi.nlm.nih.gov/Traces/sra/) with the acces-

sion numbers SRP132466 (this study) and SRX1850236

(maternal plant LA4329B; Florez-Rueda et al., 2016).
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Figure S1. Heat map representing tissue-specific enrichment for
each of our 18 endosperm samples (following Schon and Nodine,
2017; using data from Pattison et al., 2015).
Figure S2. Venn diagrams displaying the potential maximum
overlap of IGs assessed in three tomato lineages if parental poly-
morphisms were present in all relevant genes.

Table S1. Maternal proportions, imprinting status and metrics to
assess PSE for all expressed and polymorphic genes.

Table S2. Identity and annotation of the 1025 candidate IGs identi-
fied among AA, CC and PP reciprocal intraspecific crosses, with
information on conserved imprinting among taxa.

Table S3. List of 59 conserved Solanum candidate IGs with func-
tional annotation.

Table S4. Imprinted putative homologs/orthologs of Solanum can-
didate IGs in seven other species (178 gene pairs Solanum-model
species).

Table S5. Expression levels in the three reciprocal wild tomato
crosses (30 537 observations across species), and expression
comparisons for 6167 genes polymorphic and expressed in all
three crosses, including genes with variable imprinting status.
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Table S6. GO-term enrichment analyses of candidate IGs with
TopGO in R and BiNGO in Cytoscape; separate tests were run for
MEGs, PEGs, and all candidate IGs (MEGs & PEGs).

Table S7. Edges (protein–protein interactions) obtained by net-
work analysis (STRING program) of 1025 candidate IGs and 10
additional, interacting non-IGs.

Table S8. List of 373 Solanum candidate IGs found to be signifi-
cantly enriched in physical clusters (bin size 100 kb), and proper-
ties of the 164 100-kb bins with significant clustering of Solanum
candidate IGs.
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