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SUMMARY

Identification in most sample selection models depends on the independence of the regressors and the error terms
conditional on the selection probability. All quantile and mean functions are parallel in these models; this implies
that quantile estimators cannot reveal any—per assumption non-existing—heterogeneity. Quantile estimators are
nevertheless useful for testing the conditional independence assumption because they are consistent under the
null hypothesis. We propose tests of the Kolmogorov–Smirnov type based on the conditional quantile regression
process. Monte Carlo simulations show that their size is satisfactory and their power sufficient to detect deviations
under plausible data-generating processes. We apply our procedures to female wage data from the 2011 Current
Population Survey and show that homogeneity is clearly rejected. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Estimation of economic models is frequently complicated by the problem of sample selection: the
variable of interest is only observed for a non-random subsample of the population. A prominent
example in labor economics is the estimation of the determinants of female wages. Individuals are
assumed to offer a positive labor supply only if their potential wage exceeds their reservation wage.
Starting with Gronau (1974) and Heckman (1974, 1976, 1979), the last 40 years have seen a prolifer-
ation of work addressing this difficult problem. Although the suggested estimators have progressively
weakened the distributional and parametric assumptions originally made, none of them is robust to the
presence of heteroscedasticity or higher-order dependence between the error terms and the covariates
(after controlling for the selection probability).

However, dependence in general—and heteroscedasticity in particular—is ubiquitous in the fields
where sample selection models are applied. As suggested by Mincer (1973) in his famous human cap-
ital earnings model, residual wage dispersion should increase with experience and education. In line
with this finding, the large majority of the quantile regression applications in labor economics find
significant heterogeneity in the returns to education and experience. Thus the conditional indepen-
dence assumption has neither theoretical nor empirical support in most economic applications. In this
paper we discuss the importance of this assumption in sample selection models and the implication
for quantile functions, and we suggest a test of its validity.

Our test exploits the fact that, under conditional independence, all quantile (and mean) regression
functions are parallel after controlling for sample selection. Thus we can test the conditional indepen-
dence assumption by comparing the slope coefficients at different quantiles. This approach is in the
spirit of Koenker and Bassett (1982), who apply quantile regression for testing heteroscedasticity in a
linear model without sample selection. In the absence of sample selection, the lack of independence
between the error terms and the regressors does not affect the consistency of the estimators; it is only
a minor nuisance for inference. In the presence of sample selection, the conditional independence
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assumption is an identifying assumption; its violation leads to the inconsistency of most sample selec-
tion estimators (including those only concerned with mean effects). To the best of our knowledge, ours
is the first test of this identifying assumption.

To implement this testing idea we use the sample selection correction for quantile regression pro-
posed by Buchinsky (1998a, 2001). These papers extended the series estimator of Newey (2009) to
the estimation of quantiles. The estimator has been applied to many data—among others in both orig-
inal articles—to analyze the heterogeneous effects of the explanatory variables on the distribution of
the outcome. Another contribution of this paper is to show that this estimator is consistent only in two
cases: when all quantile regression slopes are equal or when selection is random. The reason is that
Buchinsky (1998a) assumes that the error terms are independent of the regressors given the selection
probability. This implies that all quantile slope coefficients and the mean coefficients are identical; i.e.
it excludes heterogeneous effects even though their analysis has been the main motivation for using
quantile regression in recent applications.

The Buchinsky estimator nevertheless remains useful for two reasons, which were the initial moti-
vations for quantile regression: it is robust and can be used as the basis for a test of independence.
Koenker and Bassett (1978) also assume independence in their seminal paper and motivate quantile
regression purely from a robustness and efficiency point of view in the presence of non-Gaussian
errors. Similarly, the estimator of Buchinsky has a bounded influence function (in the direction of
the dependent variable), so that it is more robust than mean regression. Under the null hypothesis
of conditional independence the slope coefficients are constant as a function of the quantile, and the
procedure proposed by Buchinsky (1998a) consistently estimates them. Under the alternative hypoth-
esis, the estimates do not converge to the true values but will be a non-trivial function of the quantile.
These two properties justify testing the conditional independence assumption by testing whether the
coefficients vary across quantiles.

In order to detect any violation of the null hypothesis, our testing approach is based on the
Kolmogorov–Smirnov (KS) and Cramér–von Mises (CM) statistics, applied to the entire conditional
quantile process (after trimming the tails and conditioning on the selection probability). The presence
of an unknown nuisance parameter under the null hypothesis jeopardizes the nuisance-free asymp-
totic distribution of these statistics; Koenker and Xiao (2002) call this situation the Durbin problem.
Chernozhukov and Fernández-Val (2005) overcome this complication by estimating the critical values
using resampling procedures. More precisely, they obtain the critical values by subsampling the KS
and CMS statistics applied on the appropriately recentered empirical quantile process. This approach
requires recomputing the whole quantile process for all subsamples, which is feasible for standard
quantile regression but too demanding for instrumental variable (IV) quantile regression or the sam-
ple selection correction for quantile regression proposed by Buchinsky (1998a). For this reason,
Chernozhukov and Hansen (2006) resample the influence functions instead of recomputing the whole
process for all draws. They show that this procedure provides asymptotically valid critical values under
some high-level conditions. They also show that these conditions are satisfied for standard and IV
quantile regression; we check their conditions for our sample selection model. Monte Carlo simula-
tions calibrated to fit characteristics of typical applications show that this procedure performs well in
reasonably sized samples.

Finally, we apply our tests to examine whether violations of the conditional independence assump-
tion are an empirically relevant phenomenon. We use data from the 2011 outgoing rotation groups
of the Current Population Survey (CPS) to estimate a traditional Mincer wage regression for women.
The number of children (measured in three age brackets) is used as an instrument for selection and
excluded from the outcome equation. This is a typical application of sample selection models; a
prominent recent example is given by Mulligan and Rubinstein (2008). We reject the conditional inde-
pendence assumption at any conventional significance level. The working paper version of this article
(Huber and Melly, 2011) contains two other applications with similar conclusions. Therefore, we
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suspect that this problem is not limited to a few cases but is widespread in fields where sample selection
models have been used.1

This paper contributes to the literature on sample selection and quantile regression. The ability to
consistently estimate econometric models in the presence of non-random sample selection is one of
the most important innovations in microeconometrics, as illustrated by the Nobel Prize received by
James Heckman. Gronau (1974) and Heckman (1974, 1976 and 1979) addressed the selectivity bias
and proposed fully parametric estimators, assuming that the residuals are independent and jointly nor-
mally distributed. This approach may yield inconsistent results if the distribution of the error term
is misspecified. Therefore, Cosslett (1991), Gallant and Nychka (1987), Powell (1987) and Newey
(2009) proposed semiparametric estimators for the sample selection model. They relaxed the distribu-
tional assumption but kept the single index structure in both the selection and the outcome equation.
In addition, Ahn and Powell (1993) dropped the index structure in the selection equation. Finally, Das
et al. (2003) considered fully nonparametric sample selection models.

Quantile regression has progressively emerged as the method of choice to analyze the effects of
covariates on the distribution of the outcome. In the absence of selection, Koenker and Bassett (1978)
proposed a parametric (linear) estimator for conditional quantile models. Owing to its ability to cap-
ture heterogeneous effects, its theoretical properties have been studied extensively and it has been used
in many empirical studies. Guntenbrunner and Jurečková (1992) derived the uniform asymptotic resp-
resentation for the quantile regression process. Koenker and Xiao (2002) suggested tests based on this
process. Angrist et al. (2006) analyzed the misspecified quantile regression process. Chernozhukov
et al. (2013) suggested tests based on the counterfactual unconditional quantile processes. Buchinsky
(1994) is an early and influential application of quantile regression to the estimation of wage regres-
sion. Buchinsky (1998b), Koenker and Hallock (2000) and Koenker (2005) provide a comprehensive
discussion of quantile regression models and recent developments.

The remainder of this paper is organized as follows. In Section 2 we describe the sample selection
model of Buchinsky (1998a) and discuss the role of the independence assumption in sample selec-
tion models. Section 3 outlines the test procedure and proves its asymptotic validity. In Section 4
Monte Carlo simulations document the power and size properties of the proposed test. Section 5 offers
an empirical application showing the relevance of the problem at the heart of this paper. Section 6
concludes.

2. THE CONDITIONAL INDEPENDENCE ASSUMPTION IN SAMPLE SELECTION MODELS

2.1. The Model

We consider the quantile sample selection model of Buchinsky (1998a), which is similar to the semi-
parametric models for the mean in Cosslett (1991), Powell (1987) and Newey (2009). The outcome
equation and the latent selection function are assumed to be linear in the covariates as in the semi-
nal work of Heckman (1974, 1976, 1979). The error terms in both equations are independent of the
covariates conditional on the selection probability but, in contrast to the model of Heckman, their joint
distribution is unknown. While we derive formal results only for this specific model, we would like to
emphasize that the importance of the independence assumption, its implication for quantile regression
and its testability are all preserved in more general models. This includes models with a nonparamet-
ric selection equation as in Ahn and Powell (1993) or a nonparametric outcome equation as in Das

1 The codes for the simulations and applications and the datasets used in this paper can be downloaded at http://www.
econ.brown.edu/fac/Blaise_Melly/code_R_selection.html. Interested researchers can therefore easily verify whether conditional
independence holds in their applications.
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et al. (2003).2 Bearing this in mind, we maintain the following assumption, which is equation (2) in
Buchinsky (1998a).

Assumption 1: potential outcome. The potential outcome of interest, Y �, is determined by

Y � D X 02ˇ0 C U

where X2 denotes a vector of regressors, ˇ0 is the vector of slope coefficients and U is an error term.
X2 does not include a constant term, so that ˇ0 only comprises the slope coefficients and the inter-

cept is incorporated in the error term. We use this simplified notation because the intercept is not
relevant for testing conditional independence. Note that we do not observe the latent variable Y � but
only Y , which is defined in Assumption 2.

Assumption 2: observation rule and selection equation.

Y D Y � if D D 1 and is not observed otherwise

D D 1
�
X 01�0 C " � 0

�
where 1.�/ is the indicator function, X1 is a strict superset of X2 and " is a second error term.

The indicator function for being selected,D, is determined by a latent single-index crossing model,
which corresponds to equation (5) in Buchinsky (1998a). We do not impose any parametric restriction
on the distribution of .U; "/ but we require X1 to include at least one continuous variable which is not
in X2 and has a non-zero coefficient in the selection equation.

Assumption 3: conditional independence. The joint density of .U; "/ is absolutely continuous with
respect to Lebesgue measure. It is denoted by fU;" and is independent of X1 conditional on the latent
selection index:

fU;".�jX1/ D fU;"
�
�jX 01�0

�
Assumption 3 is the conditional independence that, combined with the additivity of the outcome
in Assumption 1, is at the center of this paper. It corresponds exactly to Assumptions C and E in
Buchinsky (1998a).3 This assumption is naturally implied by the unconditional independence between
.U; "/ and X1 but it is less restrictive because it allows X1 to affect the error terms through the index
governing the selection probability. For instance, heteroscedasticity with respect to the selection prob-
ability is allowed. We make and test only this conditional independence assumption because it is

2 In this paper we assume that the selection equation is semiparametric, which allows estimating the index governing selection
at the

p
n rate. A test similar to the one developed in this paper could be built on the quantile version of Ahn and Powell (1993).

Our asymptotic results likely extend to this model by applying the general uniform results in Escanciano and Zhu (2013). The
extension to a nonparametric outcome equation could be based on the quantile version of Das et al. (2003). However, deriving
the limiting distribution for this estimator appears very challenging. Mammen et al. (2012) provide results for this type of model
but only results for conditional means; we are not aware of similar results for the conditional quantiles. These two possible
extensions are left for future research.
3 In some sample selection models concerned with identifying the mean function, only a conditional moment restriction (such
as E ŒU jX1;D D 1� D E

�
U jX 01�0;D D 1

�
) is imposed without assuming full independence. However, the latter often

serves as a justification for the moment restriction. Departures from full independence that still satisfy the moment condition
are not substantial. For example, the moment condition allows for heteroscedastic measurement errors affecting the dependent
variable but not for heteroscedastic wage functions (see the discussion in Newey and Powell, 2003).
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enough to guarantee the consistency of the Buchinsky (1998a) estimator. The increase in generality
should nonetheless not be overemphasized. Because of Assumption 2 we could equivalently write
Assumption 3 as

fU;".�jX1/ D fU;".�jPr.D D 1jX1//

which implies that X1 would be unconditionally independent of .U; "/ in the absence of sample
selection (i.e. if the entire population was observed with probability one).

2.2. Identification and Testability

Let QV .� jW / denote the � th conditional quantile of V given W , for any random variables V and W .
Under Assumptions 1–3 for any 0 < � < 1:

QY .� jX1;D D 1/ D X
0
2ˇ0 CQU .� jX1;D D 1/

D X 02ˇ0 CQU
�
� jX1; X

0
1�0 � �"

�
D X 02ˇ0 CQU

�
� jX 01�0; X

0
1�0 � �"

�
D X 02ˇ0 CQU

�
� jX 01�0;D D 1

�
� X 02ˇ0 C h�.X

0
1�0/

The first line holds by Assumption 1, the second line by Assumption 2, the third line by
Assumption 3 and the fourth line again by Assumption 2. In the last line we define h� .X 01�0/ �
QU

�
� jX 01�0;D D 1

�
.

This result has three important consequences. First, Assumptions 1–3 point identify ˇ0 if the regres-
sors X2 are not linearly dependent after conditioning on X 01�0 and D D 1.4 This implies that ˇ0
can be estimated by the � th quantile regression of Y on X2 and a nonparametric function of X 01 O� in
the selected sample ( O� being a consistent estimate of �0). Second, since this is true for any quantile
� , Assumptions 1–3 imply that the slopes of all quantile regressions are identical. In addition, these
slopes are also equal to the slopes of the corresponding mean regression. However, in the majority of
cases where quantile methods are applied, the researcher is particularly interested in the heterogeneity
of the coefficients across the distribution. In the sample selection model, the identifying assumptions
exclude such a possibility.

Third, this result also implies that the model defined by Assumptions 1–3 can be tested by compar-
ing the slope coefficients obtained at different quantiles. Heterogeneity of the slope coefficients across
several quantiles points to the violation of (at least) one identifying assumption. We suggest such a test
based on the quantile estimator of Buchinsky (1998a) in Section 3. Our test bears great relevance for
empirical work, as the conditional independence assumption is a necessary condition for the consis-
tency of the estimators suggested in Heckman (1979) for parametric sample selection models, but also
in more general models as considered in Cosslett (1991), Gallant and Nychka (1987), Powell (1987),
Das et al. (2003) and Newey (2009) that allow relaxing Assumptions 1 and/or 2. Even though the
importance of this assumption in sample selection models has not remained unnoticed in the literature
(see, for instance, Angrist, 1997), we appear to be the first ones to suggest a formal test.

Our test is specifically designed to detect deviations from the conditional independence assump-
tion (Assumption 3) while maintaining the other assumptions. The next subsection gives examples for
which our test is consistent for deviations from this assumption. Of course, it may also detect some

4 This last assumption is formally stated below as Assumption 5. Its main substantial restriction (X1 must be a strict superset
ofX2) is already imposed by Assumption 2.
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violations of the maintained assumptions such as the validity of the exclusion restriction or the correct
parametric specifications but it is not designed to be very powerful in these cases, if at all. For this rea-
son, we call our procedure a test of the conditional independence assumption. In any case, a rejection
of the null hypothesis indicates that the model is misspecified and the estimates may be misleading.

2.3. Two Examples

Two examples will convey the intuition about the inconsistency of traditional estimators when inde-
pendence is violated and about the testability of this assumption. These two examples correspond to
the data-generating processes (DGPs) used in Section 4 to assess the finite-sample properties of our
tests. We first consider a simple multiplicative heteroscedastic model:

Y � D ˛0 CX
0
2ˇ0 C

�
1CX 02ı

�
� V (1)

where ˛0 is the constant and V is a mean zero error term that is independent of X1. In the notation of
Assumption 1, U D ˛0 C

�
1CX 02ı

�
� V and the conditional independence assumption is satisfied if

and only if ı D 0. It follows that

EŒY jX1;D D 1� D ˛0 CX
0
2ˇ0 C

�
1CX 02ı

�
�E
�
V jX 01�0;D D 1

�
We see that controlling for the selection probability (as done by sample selection mean estimators)

is no longer sufficient to identify ˇ0. If we fix X 01�0 to a specific value, the slope estimates in the
selected sample will converge to

ˇ0 C ı �E
�
V jX 01�0;D D 1

�
There is no bias only if (i) ı D 0 (i.e. Assumptions 1–3 are satisfied) or if (ii)E

�
V jX 01�0;DD1

�
D 0

(i.e. selection is random).
The same issue also arises for the quantile regression estimator of Buchinsky (1998a):

QY .� jX1;D D 1/ D ˛0 CX
0
2ˇ0 C

�
1CX 02ı

�
�Q�

�
� jX 01�0;D D 1

�
On the bright side, this demonstrates the possibility of testing the validity of our model because the

slope of the � th quantile regression in the selected population after fixing X 01�0 is

ˇ0 C ı �Q�
�
� jX 01�0;D D 1

�
Thus the slope is constant as a function of � if and only if ı D 0, i.e. if conditional independence

holds. In other words, our test is asymptotically capable of detecting any deviation from independence
when the true model is given by equation (1).

Figure 1 illustrates this example with 500 simulated realizations of .X2; Y �/ from model (1) with
a scalar X2 and ˇ0 D 1. X1 has been chosen such that the conditional selection probability is 0.5 for
each observation. Selection is positive, which can be seen from the fact that we observe more real-
izations (symbolized by boxes around the crosses) above than below the median. The error terms are
independent in the left panel and heteroscedastic in the right panel (ı D 0 vs. ı D 0:5).5 In the first
case, selection induces a shift in the conditional median of Y , but this bias is constant across observa-
tions due to the constant participation probability, resulting in a correct slope. In the heteroscedastic

5 More details concerning the DGP can be found in Section 4.1.
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Figure 1. Sample selection under independence and heteroscedasticity. Random samples of 500 observations.
Only the observations surrounded by a box are observed. All observations have X1 set such that
Pr.D D 1jX1/ D 0:5

case, the bias is increasing as a function ofX2 because the variance of the errors is increasing withX2,
resulting in an excessive slope. In general, the sign of the bias corresponds to the product of the sign
of ı and the direction of the selection. Figure 1 makes also clear that the independence assumption can
be tested by comparing the slopes of several quantile regressions.

After the location scale shift model, we consider a more general linear quantile regression model:

Y � D ˛.V /CX 02ˇ.V /; V jX1 � U.0; 1/

where � 7! ˛.�/ C x02ˇ.�/ is strictly increasing in � for each value of x2 in support of X2. Using
the notation of Assumption 1, we can define U D ˛.V / C X 02 .ˇ.V / � ˇ0/ and the conditional
independence assumption is satisfied if and only if ˇ.�/ D ˇ0 for all � 2 .0; 1/.

In this model

QY .� jX1;D D 1/ D ˛
�
QV

�
� jX 01�0;D D 1

��
CX2ˇ

�
QV

�
� jX 01�0;D D 1

��
(2)

Thus, if we fix X 01�0, the slope of the quantile function is given by ˇ
�
QV

�
� jX 01�0;D D 1

��
.

There is no bias only if (i) ˇ.�/ D ˇ.0:5/ for all � (i.e. Assumptions 1–3 are satisfied) or if (ii)
QV

�
� jX 01�;D D 1

�
D � (i.e. selection is random at the quantile of interest).

We suggest testing the model defined by Assumptions 1–3 by testing whether
ˇ
�
QV

�
� jX 01�0;D D 1

��
is constant across all quantiles � . Our test asymptotically detects any viola-

tion of independence under a minor additional assumption: if there exist at least two quantiles Q� and N�
with ˇ

�
Q�
�
¤ ˇ

�
N�
�

and Pr
�
D D 1jV D Q�

�
> 0 and Pr

�
D D 1jV D N�

�
> 0, then the slopes of the

Q� D Pr
�
V � Q� jD D 1

�
and N� D Pr

�
V � N� jD D 1

�
conditional quantile regressions in the selected

sample will differ. In other words, when the true model is a linear quantile regression model then our
test has power against any deviation from independence as long as the heterogeneous quantiles are
not completely unobserved.
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Figure 2 shows the biases that can arise in such a DGP when the parameters are calibrated to empir-
ical data as discussed in Section 4.2. The true quantile function is the male wage function in the 2011
CPS, the selection equation is the female selection equation during that year, and the copula between
V and " is Gaussian. We plot the values to which the estimator of Buchinsky (1998a) converges when
the correlation between V and " is set to -0.99, -0.5, 0, 0.5 and 0.99. The true values correspond to the
values for zero correlation. The quantile regression coefficients—in particular, the way they change
with the quantile of interest—are quite different for different correlations. In an application, the corre-
lation between V and " is, however, not identified without distributional assumptions, possibly leading
to an incorrect analysis.

Sample selection procedures are often applied to compare outcomes (e.g. the gender wage gap)
between different time periods. Our results imply not only that the estimates can be biased in any
period but also that the bias will change over time if the correlation between V and " changes. This
seems to be particularly an issue for the results in Mulligan and Rubinstein (2008) because one of their
main findings is precisely that selection into employment changed from negative to positive over time.

Figure 2. Asymptotic estimates in realistic DGPs. Details of the DGP can be found in Section 4.2. The true
coefficients correspond to the male coefficients in log wage regressions in CPS 2011. Plotted lines give the values
to which the estimates of Buchinsky (1998a) converge for five different correlations between the error terms in
the selection and outcome equation, " and U
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3. TEST PROCEDURE

The discussion in Section 2 shows that we can test the validity of the independence assumption by
testing whether the coefficients on X2 in the quantile regression of Y on X2 and h� .X 01�0/ are con-
stant as a function of the quantile. Our testing approach is based on the Kolmogorov–Smirnov and
Cramér–von Mises statistics, which are defined on the empirical quantile regression process. We fol-
low Buchinsky (1998a) and approximate the unknown function h� .X 01�0/ by a power series in X 01�0.
We estimate the unknown parameter �0 using the Klein and Spady (1993) estimator for binary choice
models. In Sections 3.1 and 3.2 we describe step by step the estimation and testing algorithms. In
Section 3.3 we give the formal inference results.

3.1. Estimation

The first step consists of estimating the selection equation, i.e. the parameter �0. The formal inference
results do not depend on the specific estimator of �0 but only require

p
n consistency and asymp-

totic linearity of the influence function. In our simulations and application we estimate the selection
equation by the semiparametric binary choice estimator suggested in Klein and Spady (1993):

O� � arg max
�

nX
iD1

°
Di � log

h
OE
�
Djx01i�

�i
C .1 �Di / � log

h
1 � OE

�
Djx01i�

�i±
(3)

where

OE
�
DjX 01i�

�
D

Pn
jD1Dj � �KS

��
x01i� � x

0
1j �

�
=wKS

�
Pn
jD1 �KS

��
x01i� � x

0
1j �

�
=wKS

� (4)

in which wKS is a bandwidth that depends on the sample size and �KS .�/ denotes a kernel function.
This estimator satisfies our regularity conditions under the assumptions detailed in Klein and Spady
(1993) and it attains the semiparametric efficiency bound for this model. Heteroscedasticity is allowed
to depend on the regressors only through the linear index.

In the second step, the function h�.X 01�0/ is approximated by a power series expansion. As sug-
gested by Buchinsky (1998a), we use a power series expansion of the inverse Mill’s ratio of the
normalized estimated index but other bases of power functions also satisfy our assumptions. The order
of the approximation, J , must increase with the sample size to ensure the consistency of the estimator.
Ǒ.�/ solve the following optimization problem:�

Ǒ.�/; O�.�/
�
D arg min

.ˇ;�/

X
i WdiD1

Oti � ��
�
yi � x

0
2iˇ �…J

�
x01i O�

�
�
�

(5)

where �� .A/ D A � .� � 1.A � 0// is the check function suggested by Koenker and Bassett (1978).
Furthermore, Oti is a trimming function:

Oti D 1
�
x01i O� 2 X

�
where X is a one-dimensional compact set. Trimming is convenient for proving several asymptotic
results (some of which we borrow from Lee, 2007) such as the boundedness of the influence function.
We do not expect it to be a critical tuning parameter in most applications. …J

�
x01i O�

�
is a polynomial

row vector in the inverse Mill’s ratio, …J

�
x01i O�

�
D
�
1; 	

�
x01i O�

�
; 	
�
x01i O�

�2
; : : : ; 	

�
x01i O�

�J�
, where

	.�/ D 
.�/=ˆ.�/ is the ratio of the normal probability density function to the normal cumulative
distribution function.
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3.2. Tests

Our testing problem is given by

H0Wˇ.�/ D ˇ.0:5/;8��T (6)

versusH1Wˇ.�/ ¤ ˇ.0:5/; for some ��T (7)

where T is a closed subset of Œe; 1 � e�; 0 < e < 1, and ˇ.�/ denotes the true � quantile regression
coefficient defined as

ˇ.�/ D arg min
ˇ

E
�
��
�
Yi �X

0
2iˇ � h�

�
X 01i�0

���
(8)

Buchinsky (1998a) gives the joint asymptotic distribution of Ǒ.�/ for a finite number of quantiles.
Based on his results, we can use a finite number of quantile regressions and apply a Wald test as
proposed by Koenker and Bassett (1982) in the absence of sample selection. Even asymptotically,
this test does not have power against all deviations from the null because the number of quantiles
considered is fixed. In addition, it is tempting to choose the quantiles used by the test after having seen
the results, which may distort the size of the test. Our tests use the whole quantile process and are
therefore consistent against all global departures from H0.

We measure the deviations from the null hypothesis by the Kolmogorov–Smirnov (KS) and
Cramér–von Mises (CM) statistics applied to the empirical process Ǒ.�/ � Ǒ.0:5/:

T KS
n D sup

��T

p
n
ˇ̌̌
j Ǒ.�/ � Ǒ.0:5/

ˇ̌̌
j Oƒ� and T CM

n D n

Z
T

ˇ̌̌
j Ǒ.�/ � Ǒ.0:5/

ˇ̌̌
j2Oƒ�

d� (9)

where jjajj Oƒ� denotes
q
a0 Oƒ�a and Oƒ� is a positive weighting matrix satisfying Oƒ� D ƒ� C op.1/,

uniformly in � . ƒ� is positive definite, continuous and symmetric, again uniformly in � .
Inference requires a knowledge of the asymptotic distributions of T KS

n ; T CM
n . In Section 3.3 we

derive the asymptotic distribution of the quantile regression process
p
n
�
Ǒ.�/ � ˇ.�/

�
, which would

allow us to derive the distribution of the test statistic if the null hypothesis was not estimated. The
presence of a nuisance parameter (the median coefficients vector) jeopardizes this possibility.

As suggested by Chernozhukov and Fernández-Val (2005), we could calculate the critical values by
resampling the centered inference process Ǒ.�/ � Ǒ.0:5/. But the repeated computation of the coeffi-
cients (in our case especially of O� ) for each bootstrap sample can be quite costly, in particular when
the sample size is large. For this reason, we follow Chernozhukov and Hansen (2006) and resample
the score functions instead, which are linear approximations of the empirical processes. We show in
Appendix A that

p
n
�
Ǒ.�/ � Ǒ.0:5/

�
D

1
p
n

nX
iD1

si .�/C op.1/ (10)

A precise definition of the score function si .�/, as well as its estimator Osi .�/, is given in the next
subsection. We draw B samples of size b and denote such samples as ‡j ; 1 � j � B . The KS and
CM statistics for the j th iteration are

T KS
n;b;j � sup

��T

p
b

ˇ̌̌
ˇ̌̌j1=b X

i�‡j

Osi .�/

ˇ̌̌
ˇ̌̌ j Oƒ� and T CM

n;b;j � b

Z
T

ˇ̌̌
ˇ̌̌j1=b X

i�‡j

Osi .�/

ˇ̌̌
ˇ̌̌ j2Oƒ� d�
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The critical values of a size ˛ test are the 1 � ˛th quantiles of T KS
n;b;j

and T CM
n;b;j

, i.e. cKS
n;b
.˛/ D

inf
°
c W B�1

PB
jD1 1

�
T KS
n;b;j

� c
�
� 1 � ˛

±
and similarly for the CM statistic. The level ˛ tests reject

H0 if T KS
n > cKS

n;b
.˛/ and T CV

n > cCM
n;b
.˛/.

3.3. Formal Inference Results

We prove that our tests have asymptotically the correct size and are consistent against all global alter-
native hypotheses by verifying the conditions of Theorem 5 in Chernozhukov and Hansen (2006). To
do so, we borrow heavily from the results in Lee (2007), who considers an instrumental variable esti-
mator that is almost identical to the Buchinsky sample selection estimator from a computational point
of view. To establish these results, we make the following additional assumptions.

Assumption 4: sampling. The data ¹.yi ; x1i ; di / W i D 1; : : : ; nº are i.i.d. realizations of .Y;X1;D/
and take values in a compact set.

Assumption 5: non-singularity.
(a) Define

�b;� D E
�
fU
�
QU

�
� jx01i�0; di D 1

�
jx01i�0; di D 1

�
�mim

0
i

�
;

mi D ti � di �
�
x2i �E

�
X2jx

0
1i�0; di D 1

��
�b;� is non-singular uniformly in � 2 T , i.e.

sup
�2T

det.�b;� / > c

for some constant c > 0.
(b) Define

ˆJ .�/ D E
�
fU

�
QU

�
� jx01i�0; di D 1

�
jx01i�0; di D 1

�
� PJ iP

0
J i

�
PJ i D ti � di �

�
x02i ;…J

�
x01i�0

��0
Uniformly in � 2 T the smallest eigenvalue of ˆJ .�/ is bounded away from zero for all J , and the

largest eigenvalue of ˆJ .�/ is bounded for all J , i.e.

inf
�2T

	min.ˆJ .�// > c and sup
�2T

	max.ˆJ .�// < c

where 	min.A/ and 	max.A/ denote the smallest and the largest eigenvalues of a symmetric matrix A
and c and c are two strictly positive constants.

Assumption 6: continuity.
(a) The density of U in the selected sample, fU .ujX1;D D 1/, is bounded above and away from zero

and is twice continuously differentiable with respect to u uniformly in u and X1.
(b) h�.X 01�0/ is r-times continuously differentiable with respect to X 01�0 uniformly in � 2 T .
(c) As a function of X 01�0; E

�
ti � fU

�
QU

�
� jX 01�0; di D 1

�
jX 01�0; di D 1

�
� x2i jX

0
1�0; di D 1

�
is

continuously differentiable uniformly in � 2 T .
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Assumption 7: number of approximating functions. J D Cn� for some constant C satisfying
0 < C <1 and some  satisfying 1

2r
<  < 1

9
.

Assumption 8: first stage. There exists an invertible matrix �P and a bounded dim.X1/� 1 column
vector ki � K.x1i ; di ; �0/ such that EŒki � D 0;E

�
kik
0
i

�
exists and is non-singular and

p
n . O� � �0/ D �

�1
P

Pn
iD1 kip
n
C op.1/

There is an estimator O�P of �P such that O�P ! �P .

These assumptions are the sample selection equivalent of the assumptions in Lee (2007). Assump-
tion 5(a) is satisfied if X1 includes at least one continuous variable which is not in X2 and has a
non-zero coefficient in the selection equation (and the components of X2 are not linearly depen-
dent). Assumption 5(b) ensures the non-singularity of the second moment matrix of the estimator.
Assumption 6(a) is standard in quantile models because quantiles are well defined and have a
standard asymptotic distribution only for continuous random variables.The restrictions imposed on
fU .ujX1;D D 1/ are implied by the same restrictions on the density of U in the whole popula-
tion together with Pr .D D 1jX1; U D u/ > 0. In other words, they are implied by the standard
regularity conditions on U when the probability to observe the outcome at the quantile of interest is
strictly positive. Assumptions 6(b) and 6(c) require that the approximated functions are sufficiently
smooth. Assumption 7 restricts the growth rate of J . Together with Assumption 6(b), it requires that
h�
�
X 01�0

�
is at least five times differentiable .r � 5/. Assumption 8 imposes regularity conditions on

the estimation of �0. The estimator suggested by Klein and Spady (1993) satisfies this condition with

�P D E

"
@Pi .�/

@�

ˇ̌̌
ˇ�D�0 @Pi .�/0@�

ˇ̌̌
ˇ
�D�0

1

Pi .�0/ � .1 � Pi .�0//

#

and ki D
@Pi .�/

@�

ˇ̌̌
ˇ
�D�0

Di � Pi .�0/

Pi .�0/ � .1 � Pi .�0//

where Pi .�/ D Pr
�
D D 1jX 01� D x

0
1i�0

�
.

Under Assumptions 1–8 the influence function of Ǒ.�/ is given by (see Appendix A for details)

p
n
�
Ǒ.�/ � ˇ.�/

�
D ��1b;�

1
p
n

nX
iD1

�
`i .�/C���

�1
P ki

�
C op.1/ (11)

where

`i .�/ D
�
� � 1

�
yi < x

0
2iˇ0 C h�

�
x01i�0

���
�mi ;

�� D E

"
ti � f"

�
Q"
�
� jx01i�0

�
�
dh�

�
x01i�0

�
d�0

mi

#
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si .�/ is simply the difference between the influence function of Ǒ.�/ and the influence function of
Ǒ.0:5/. We estimate the influence functions by their sample analogs. In particular, we estimate the

densities using the kernel method as in Powell (1986), Buchinsky (1998a) and Lee (2007):

Ò
i .�/ D

�
� � 1

�
yi < x

0
2i
Ǒ.�/C…J

�
x01i O�

�
O�.�/

��
� Omi ;

O�b;� D .nwn/
�1

nX
iD1

Oti � �

�
O"i .�/

wn

	
� Omi Om

0
i ;

O�� D .nwn/
�1

nX
iD1

Oti � �

�
O"i .�/

wn

	
�
d…J

�
x01i O�

�
d�

Omi ;

O".�/ D yi � x
0
2i
Ǒ.�/ �…J

�
x01i O�

�
O�.�/

where Omi is the vector of residuals from the regression of X2 on …J

�
X 01 O�

�
evaluated at x1i

and multiplied by Otidi . We impose the following restrictions on the kernel function �.�/ and the
bandwidth wn.

Assumption 9: kernel and bandwidth. The kernel function � has support Œ�1; 1�, is bounded and
symmetrical about 0 and satisfies

R 1
�1 �.u/ du D 1;

R 1
�1 u�.u/du D 0, and

R 1
�1 u

2�.u/du < 1.
wn D chn

�	 for some positive finite ch and some � satisfying =2 < � < .1 � 4/=4.

Under these conditions our tests are asymptotically correctly sized and consistent against any global
alternative hypothesis.

Proposition 1. Suppose Assumptions 1–9 hold. Then, as B ! 1; b ! 1; n ! 1: (i) under the

null hypothesis P
�
T KS
n > cKS

n;b
.˛/
�
! ˛ and P

�
T CM
n > cCM

n;b
.˛/
�
! ˛; (ii) under the alternative

hypothesis P
�
T KS
n > cKS

n;b
.˛/
�
! 1 and P

�
T CM
n > cCM

n;b
.˛/
�
! 1.

Chernozhukov and Hansen (2006) develop new inference tools in the context of their instrumen-
tal variable quantile regression estimator but they state the conditions in a form that is general
enough to apply to other estimators. We prove Proposition 1 by verifying the conditions for infer-
ence of their Theorem 5. Similar tests based on resampling the estimates (instead of the scores) are
also valid by Theorem 1 in Chernozhukov and Fernández-Val (2005) because their conditions are
weaker than the conditions that we check in Appendix A. In addition to the statement of our Proposi-
tion 1, Chernozhukov and Fernández-Val (2005) also show that this test has non-trivial power against
local alternatives.

3.4. Practical Details

3.4.1. Smoothing Parameters
We use the Gaussian density for all kernel functions. We follow a pragmatic approach and use the
generalized cross-validation criterion (GCV) proposed in Craven and Wahba (1979) to select the
smoothing parameters wKS and J . The same method was used in Buchinsky (1998a) and Newey et al.
(1990), among others. We do not claim any optimality of this method for our estimation and inference
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problem but it works well in our simulations.6 Finally, we use the Hall and Sheather (1988) rule for
wn, which is recommended by Koenker (2005).

3.4.2. Discretization
The theoretical results still hold if, instead of T , we use a grid Tn with the largest cell size converging
to 0 as n ! 1. In the simulations and application, we use for simplicity a grid with mesh size 0.01
but the results are not sensitive to the choice of mesh size as long as it is small enough. The differences
between the results with a mesh of size 0.005 , 0.01 and 0.02 are completely negligible.

3.4.3. Choice of ƒ�
In order to improve the power of the test we set ƒ� D varŒsi .�/��1. Note that by construction
varŒsi .0:5/� D 0, which forces us to cut out the part of Tn close to the median. In our simulations and
application we disregard Œ0:46; 0:54�. We estimate varŒsi .�/� by var ŒOsi .�/� (with var ŒOsi .�/� denoting
the sample variance of Osi .�/).

3.4.4. Choice of b and T
We experiment in our simulations and application with several rules for the choice of block size, b.
Although our empirical results are not sensitive to the choice of block size, the bootstrap has better
size and power properties in our simulations, while the tests are conservative when the subsample
size is smaller. Concerning T , in principle we would like to use a large range of quantiles in order to
increase the asymptotic power of the tests. However, the quantile regression estimator performs poorly
in the tails of the distribution if we do not make strong assumptions about the density of Y . In the
simulations we experiment with several ranges (Œ0:05; 0:95�; Œ0:1; 0:9� and Œ0:2; 0:8�).

4. SIMULATIONS: POWER AND SIZE PROPERTIES OF THE TESTS

In this section, we present Monte Carlo evidence about the size and power properties of the tests
that we have proposed in Section 3. We first consider a simple DGP that was used by Koenker and
Xiao (2002) and Chernozhukov and Fernández-Val (2005), with the difference that we observe only
a non-random sample from the population. Second, we will use a more realistic multivariate example
calibrated to empirical data used in Section 5.

4.1. A Simple Heteroscedastic DGP

D D 1.X2 CZ C " > 0/;

Y � D X2 C .1CX2ı/ � V;

X2 � N.0; 1/; Z � N.0; 1/

(12)

where

.V; "/ � N

��
0

0

	
;

�
1 0:8

0:8 1

		

6 The optimal choice of smoothing parameters in semiparametric models remains an important topic for future research.
Although they are probably not optimal, our choice of wn is in the range of values allowed by Delecroix et al. (2006) forp
n consistency and, as noted by Newey (2009) for a similar model, our choice of J should satisfy the rate condition of

Assumption 7. Alternatively, Härdle et al. (1993) and Escanciano and Zhu (2014) suggested estimating simultaneously the
bandwidth and the parameters for the binary choice and the sample selection model, respectively.
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Table I. Empirical rejection frequencies for 5% bootstrap tests: normal distribution, 1000 replications, 250
bootstrap draws

ı D 0 ı D 0:2 ı D 0:5

� � [0.05, 0.95] [0.10, 0.90] [0.20, 0.80] [0.05, 0.95] [0.10, 0.90] [0.20, 0.80] [0.05,0.95] [0.10,0.90] [0.20,0.80]

Kolmogorov–Smirnov test

n D 400 0.016 0.012 0.013 0.133 0.054 0.024 0.774 0.494 0.169
n D 800 0.027 0.020 0.013 0.556 0.333 0.147 0.998 0.988 0.881
n D 1600 0.036 0.025 0.012 0.936 0.849 0.585 1.000 1.000 1.000
n D 3200 0.041 0.036 0.030 1.000 0.996 0.927 1.000 1.000 1.000
n D 6400 0.049 0.042 0.035 1.000 1.000 1.000 1.000 1.000 1.000

Cramér–von Mises test

n D 400 0.008 0.007 0.007 0.149 0.105 0.048 0.912 0.790 0.465
n D 800 0.019 0.019 0.016 0.571 0.447 0.236 1.000 0.999 0.973
n D 1600 0.032 0.029 0.018 0.957 0.900 0.721 1.000 1.000 1.000
n D 3200 0.033 0.027 0.028 1.000 0.999 0.969 1.000 1.000 1.000
n D 6400 0.049 0.046 0.043 1.000 1.000 1.000 1.000 1.000 1.000

We consider three different values for the parameter ı, which gauges heteroscedasticity. Under the
null hypothesis, ı D 0, such that the regressor X2 is independent of U , which then corresponds to �,
and has a pure location shift effect. This case allows us to analyze the empirical size of our tests. We
also evaluate the power of our tests in two location scale shift models with ı D 0:2 and 0.5, such that
errors U are heteroscedastic.

In the simulations, we consider five sample sizes from n D 400 to n D 6400. We run 1000 Monte
Carlo replications and draw 250 bootstrap samples within each replication. The theoretical level of
significance is set at 5%. For the sake of brevity, we only report the rejection frequencies for the
bootstrap, i.e. for the block size m D n. The results for subsampling (i.e. for some m smaller than n)
are comparable and available from the authors upon request. Results are presented for three different
regions T over which the quantile coefficients are estimated: Œ0:05; 0:95�; Œ0:1; 0:9� and Œ0:2; 0:8�.7

The empirical rejection frequencies reported in Table I suggest that the bootstrap score tests have
good size and power properties. In the presence of independent errors .ı D 0/, both the KS and CM
tests are conservative, at least for the sample sizes considered. However, the empirical size slowly
converges to the theoretical size of 5% as the sample size increases. Under heteroscedasticity, the
rejection probabilities correctly converge to 100% as n becomes larger. As expected, this happens at
a faster pace for ı D 0:5 than for ı D 0:2. The power properties of the KS and CM tests are rather
similar, albeit the latter become relatively more powerful in larger samples and/or for a higher ı. The
empirical power increases as the range of quantiles considered increases and this holds true for both
test statistics and both values of ı. Summing up, the KS and CM tests seem to perform well in finite
samples with Gaussian errors. Under sample sizes of several thousand observations, they are powerful
in any scenario considered.

The results in Koenker and Xiao (2002) and Chernozhukov and Fernández-Val (2005) provide use-
ful benchmarks. In order to compare our results with theirs we must take into account that we observe
Y � only for half of the sample. Therefore, it seems fair to compare our results for 1600 observations

7 Whether a particular region T entails good testing power depends on the conditional outcome distribution in two ways. First,
the location of deviations from the null plays a role. For example, if violations of independence are concentrated in the center
of the distribution, using a smaller region is likely to be more powerful than the inclusion of extreme quantiles. Second, also the
shape of the conditional distribution of Y affects power. Extreme quantiles are less informative when the tails of the distribution
are fat.
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with theirs for 800 observations. In this case, we see for instance that with ı D 0:2 our empirical
power is 0.936 and 0.957, the power in Koenker and Xiao (2002) is 0.982 (in the best case) and the
power in Chernozhukov and Fernández-Val (2005) is 1. In general, the price to pay for allowing for
non-random selection is moderate in this DGP.

4.2. A Calibrated Multivariate DGP

In this subsection we analyze the properties of our tests in a more realistic setup. We calibrate our DGP
to fit several characteristics of the CPS data used in the application in Section 5. We draw the Monte
Carlo samples of X1 from the female sample distribution in 2011 (containing 45,296 observations).
We consider a model with four regressors (experience, experience squared, a high school dummy and
a college dummy) and three exclusion restrictions (number of children in three age brackets). These
covariates are only a subset of those used in our application because we also consider samples of
moderate sizes, which would lead to frequent multicollinearity problems with the 19 regressors of
the application.

The conditional distribution of the potential wage is generated by a linear quantile model:

Y � D ˛.V /CX 02ˇ.V /; V jX1 � U.0; 1/

We consider two sets of functions for ˛.�/ and ˇ.�/. The first one satisfies the null hypothesis with
a constant ˇ.�/ set to the value of the median regression coefficient estimates in the male sample.8 In
the second case, we set the coefficients to the unrestricted quantile regression estimates in the male
sample.9 This ensures that the violation of the null hypothesis is realistic and allows us to see the
power of our tests in a typical application. The selection equation is

D D 1
�
X 01� C " > 0

�
where " � N.0; 1/ and � is set to the probit estimates of the female participation equation in 2011.
Finally, the copula between " and V is Gaussian with a correlation coefficient of 0.233, which is the
estimate obtained by Mulligan and Rubinstein (2008) in the period 1990–1995.

When there are several regressors, the identifying Assumptions 1–3 imply that the whole vector
ˇ.�/ is constant as a function of � . Thus the tests suggested in Section 3 simultaneously use all coef-
ficients and weight them by the inverse of the covariance matrix (of the difference between Ǒ.�/ and
Ǒ.0:5/). In addition, we can also separately test whether each element of the vector is constant as a

function of the quantile. This will inform the researcher about the sources of the rejection when the
global test rejects the null hypothesis.

The results in Table II give the empirical rejection probabilities of our tests when the coefficients
are homogeneous (empirical size) and heterogeneous (empirical power). Our tests are somewhat con-
servative, with none of the empirical sizes being above the theoretical size of 5%. However, under the
null hypothesis the rejection probability does converge to the intended one even if it does not yet attain
it with 6400 observations. The power of the tests is very low when n D 400 but attains 98.6% when
n D 6400 for the KS statistic, which tends to be more powerful than the CM statistic. The dataset

8 ˛.�/ and ˇ.�/ are calibrated using the male sample to avoid the sample selection problem, as the employment probability is
high for men. If we took the female sample then we could find violations of the independence assumption due to the selection
bias. Alternatively, we could use the female sample and correct for the selection bias but this would require making distributional
assumptions that seem quite arbitrary.
9 We approximate the U.0; 1/ distribution of V with a discrete uniform distribution with 1000 points. This means that 1000
quantile regression are used to approximate the conditional distribution.
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Table II. Empirical rejection frequencies for 5% bootstrap tests: empirical data, 1000 replications, 250
bootstrap draws

� � [0.05, 0.95] � � [0.10,0.90] � � [0.20,0.80]

all exp exp2 hs col all exp exp2 hs col all exp exp2 hs col

Kolmogorov–Smirnov test: size

n D 400 0.033 0.006 0.007 0.017 0.005 0.026 0.004 0.003 0.021 0.000 0.028 0.002 0.004 0.015 0.002
n D 800 0.037 0.006 0.007 0.032 0.005 0.032 0.004 0.006 0.025 0.004 0.028 0.004 0.005 0.022 0.005
n D 1600 0.021 0.020 0.023 0.024 0.016 0.009 0.016 0.013 0.018 0.010 0.009 0.009 0.009 0.015 0.011
n D 3200 0.030 0.023 0.030 0.029 0.034 0.017 0.020 0.022 0.017 0.031 0.010 0.019 0.019 0.015 0.028
n D 6400 0.035 0.041 0.043 0.022 0.041 0.025 0.031 0.030 0.024 0.038 0.022 0.027 0.026 0.017 0.035

Kolmogorov–Smirnov test: power

n D 400 0.026 0.006 0.004 0.019 0.009 0.025 0.004 0.002 0.020 0.003 0.023 0.004 0.002 0.019 0.002
n D 800 0.042 0.015 0.013 0.020 0.089 0.028 0.011 0.010 0.015 0.058 0.022 0.009 0.009 0.014 0.042
n D 1600 0.229 0.112 0.069 0.043 0.346 0.080 0.047 0.038 0.018 0.136 0.020 0.020 0.022 0.009 0.043
n D 3200 0.694 0.261 0.156 0.109 0.755 0.340 0.150 0.105 0.053 0.421 0.090 0.093 0.072 0.022 0.146
n D 6400 0.986 0.518 0.343 0.178 0.972 0.808 0.329 0.228 0.091 0.815 0.329 0.200 0.155 0.041 0.352

Cramér–von Mises test: size

n D 400 0.002 0.005 0.003 0.004 0.005 0.001 0.003 0.002 0.002 0.003 0.000 0.001 0.001 0.003 0.004
n D 800 0.004 0.012 0.009 0.007 0.012 0.003 0.011 0.009 0.006 0.010 0.002 0.009 0.007 0.005 0.009
n D 1600 0.011 0.020 0.023 0.018 0.022 0.003 0.022 0.020 0.011 0.020 0.003 0.014 0.016 0.010 0.015
n D 3200 0.026 0.039 0.040 0.029 0.042 0.020 0.038 0.040 0.020 0.041 0.013 0.032 0.035 0.015 0.041
n D 6400 0.034 0.043 0.035 0.038 0.043 0.032 0.034 0.034 0.032 0.039 0.022 0.029 0.029 0.024 0.038

Cramér-von-Mises test: power

n D 400 0.002 0.008 0.005 0.003 0.013 0.001 0.005 0.003 0.002 0.010 0.001 0.003 0.001 0.003 0.004
n D 800 0.014 0.017 0.014 0.009 0.080 0.009 0.015 0.012 0.008 0.061 0.007 0.013 0.010 0.007 0.048
n D 1600 0.134 0.095 0.071 0.033 0.260 0.068 0.076 0.057 0.019 0.157 0.014 0.041 0.035 0.009 0.071
n D 3200 0.491 0.212 0.157 0.069 0.570 0.298 0.166 0.126 0.042 0.380 0.101 0.104 0.098 0.022 0.176
n D 6400 0.904 0.455 0.338 0.106 0.901 0.700 0.361 0.284 0.069 0.717 0.361 0.246 0.206 0.051 0.364

used in our application contains 45,296 observations such that we can expect our tests to be extremely
powerful. The widest range of quantiles that we considered, Œ0:05; 0:95�, delivers the best performance.

The tests of the constancy of a single coefficient are also slightly conservative. When n is large the
empirical power of all tests are above 5%, which shows that all variables contribute to the rejection of
the null hypothesis. The return to a college degree is the most heterogeneous coefficient, with rejection
rates close to those obtained when jointly testing all variables.

5. FEMALE WAGE DISTRIBUTION IN THE USA

The estimation of the female wage function is the most frequent application of sample selection esti-
mators (see, for example, Buchinsky (1998a) and Mulligan and Rubinstein (2008). We use the 2011
Merged Outgoing Rotation Groups of the CPS, which offer a good measure of hourly wages. Simi-
larly to many examples in the wage regression literature, we restrict our sample to white non-Hispanic
adults who are between 25 and 54 years old and exclude individuals who are self-employed, have
allocated earnings, or work in the military, agricultural and public sectors.

We classify females as either working or not, according to whether they worked at least 35 hours
during the week preceding the surveys. The dependent variable, Y , is the log hourly wage. Our vec-
tor of regressors, X2, contains five educational dummies (at least high school, some college, associate
degree, bachelor degree and advanced degree), potential experience and potential experience squared
as well as their interaction with educational attainment in years, three regional dummy variables and
an indicator for being married. The vector X1 consists of the same elements plus the numbers of
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Table III. Female wage distribution in the USA

Selection equation Outcome equation: Buchinsky (1998a)

Klein and Spady � D 0:25 � D 0:5 � D 0:75

Experience 0.013 (0.012) 0.021 (0.003) 0.031 (0.003) 0.034 (0.003)
Experience squared �0.001 (3e�4) �3e�4 (7e�5) �5e�4 (7e�5) �5e�4 (8e�5)
High school 1.848 (0.255) 0.147 (0.032) 0.260 (0.033) 0.273 (0.035)
Some college 0.216 (0.071) 0.117 (0.017) 0.132 (0.015) 0.146 (0.018)
Associate 0.630 (0.100) 0.088 (0.020) 0.128 (0.020) 0.203 (0.022)
Bachelor 0.234 (0.078) 0.229 (0.020) 0.255 (0.021) 0.230 (0.024)
Advanced 0.437 (0.097) 0.232 (0.023) 0.236 (0.023) 0.241 (0.024)
Exp. � education �0.005 (0.002) 2e�3 (5e�4) 3e�3 (5e�4) 4e�3 (7e�4)
Exp.2 � education 5e�5 (6e�5) �4e�5 (1e�5) �6e�5 (1e�5) �8e�5 (2e�5)
Married �0.392 (0.065) 0.035 (0.013) 0.033 (0.012) 0.020 (0.014)
# children Œ0; 2� �1.000
# children Œ3; 5� �0.530 (0.130)
# children Œ6; 13� �0.249 (0.067)
Married � # children Œ0; 2� �0.262 (0.152)
Married � # children Œ3; 5� �0.339 (0.113)
Married � # children Œ6; 13� �0.336 (0.069)

Note: Column 1 contains the coefficients of the selection equation obtained by the Klein and Spady (1993) estima-
tor. Columns 2–4 show the quantile regression coefficients obtained by the Buchinsky (1998a) estimator. Standard
errors are reported in parentheses. Three regional dummy variables are also part of the regressors but are not
shown, for brevity. These coefficients are consistent only if the independence assumption is satisfied or if selection
is random. Our tests in Table IV reject the independence assumption.

children in three age brackets (0–2, 3–5 and 6–13 years) and their interaction with the marital indica-
tor.10 Descriptive statistics can be found in Appendix B. We use the CPS earning weights for all our
calculations. We implement our test procedure as described in Section 3. The estimates of the selec-
tion equation by the Klein and Spady estimator, reported in Table III, show that the coefficients on all
six variables excluded from the outcome equation are strongly significant. The signs of the other coef-
ficients are also as expected, with a higher employment probability for non-married and high-educated
women. The bandwidth, determined by GCV, was set to 0.25 times the standard deviation of the fitted
index X 01 O� .

Table III also contains the 0.25, 0.5 and 0.75 quantile coefficients estimated using the Buchinsky
(1998a) estimator. Figure 3 shows all quantile coefficients between the 2nd and the 98th percentile
of four of the most important covariates. The order of the power series in the inverse Mill’s ratio,
also determined by GCV, is 5, which is large compared to the literature. Note that the coefficients
are consistent only if the independence assumption is satisfied or if selection is random.11 They are
provided here because they serve—among other quantile coefficients—as a basis for our tests. The
linear term in experience is more or less monotonically increasing as we move up the distribution.
At the same time, the quadratic term is decreasing as a function of the quantile. In other words, the
whole shape of the experience–wage function is changing with the quantile. This is a clear hint against
the independence assumption. In addition, the returns to education are also increasing in the quantile.

10 Owing to data coding, in about 5% of cases we are only able to determine lower and upper bounds on the number of children
in the three age brackets. We impute the average between the lower and upper bound in these cases. In contrast, the total number
of children is always known.
The excluded regressors are strictly speaking discrete. However, in our dataset we observe 77 different combinations of values
for these excluded variables. Therefore, the theoretical results should give a good approximation.
Huber and Mellace (2014) use novel hypothesis tests to check the validity (in particular, the exclusion restriction) of the number
of children as instrument for female labor supply. They found no statistical evidence for its violation in four different empirical
applications, including data from the CPS. As a word of caution, however, note that even asymptotically these tests cannot
detect all possible violations of instrument validity, as they rely on a partial identification approach.
11 We focus here on our test of the conditional independence assumption. We also tested for random selection and clearly
rejected random selection at the mean and at most quantiles (results available from the authors).
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Figure 3. Quantile regression coefficients corrected for sample selection. The coefficients are estimated using
the estimator of Buchinsky (1998a). Pointwise 95% confidence intervals are also plotted. In addition to the four
variables whose coefficients are plotted, the vector of regressors also contains: three regional dummy variables,
indicators for some college, associate degree, advanced degree and being married, and interactions between expe-
rience and experience squared with education in years. These coefficients are consistent only if the independence
assumption is satisfied or if selection is random. Our tests in Table IV reject the independence assumption

The returns are becoming flatter as a function of the quantile only for the highest levels of education,
perhaps due to a more homogeneous population.

Table IV reports the p-values of our tests of the conditional independence assumption. The null
hypothesis tested in the first row is the constancy of the whole quantile regression vector, i.e. the
validity of the model defined by Assumptions 1–9. The remaining rows give the p-values for each
coefficient separately. The results are reported for two choices of block size (b D n and b D 20 C

n1=2:01) and two ranges of quantiles (T D Œ0:02; 0:98� and T D Œ0:2; 0:8�).12 The number of bootstrap
replications B was set to 1000.

The hypothesis of the validity of the sample selection model defined in Section 2 is clearly rejected
in any setup as the p-values are always zero. A one-by-one investigation of the covariates shows
that this rejection is mainly due to heterogeneous returns to experience and to lower-level education
degrees (in particular, high school and associate degrees). These results and those for two other datasets
reported in the working paper version of this article (Huber and Melly, 2011) cast serious doubts on the

12 Not reported are the results for two other block sizes and two other ranges of quantiles, which are extremely similar.
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Table IV. Empirical application: test results

Statistic Kolmogorov–Smirnov Cramér–von Mises

� � Œ0:02; 0:98� Œ0:20; 0:80� Œ0:02; 0:98� Œ0:20; 0:80�

b (block size) 45,296 227 45,296 227 45,296 227 45,296 227
All variables 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Experience 0.000 0.000 0.002 0.011 0.000 0.000 0.013 0.019
Experience2 0.006 0.018 0.130 0.159 0.015 0.024 0.237 0.244
High school 0.003 0.048 0.010 0.046 0.000 0.008 0.016 0.029
Some college 0.002 0.014 0.422 0.381 0.028 0.028 0.781 0.722
Associate 0.007 0.027 0.004 0.014 0.000 0.000 0.000 0.000
Bachelor 0.113 0.179 0.387 0.351 0.195 0.218 0.275 0.300
Advanced 0.188 0.219 0.303 0.270 0.386 0.349 0.628 0.553
Exp.� education 0.338 0.317 0.242 0.190 0.131 0.169 0.076 0.113
Exp.2 � education 0.438 0.343 0.291 0.223 0.233 0.221 0.172 0.171
Married 0.140 0.161 0.354 0.311 0.151 0.149 0.323 0.304

Note: 45,296 observations. Critical values were obtained using 1000 bootstrap repetitions.

validity of traditional sample selection models in female wage regressions. The conclusion suggests a
few tracks to explore without assuming homogeneous coefficients.

6. CONCLUSION

Assuming additivity and conditional independence of the error term in the outcome equation is rather
restrictive. It implies that all individuals with the same selection probability react identically to changes
in the observable characteristics. In economic models, the unobservable random terms are not simply
measurement errors but they often have important economic interpretations. The recent econometric
literature has relaxed many restrictions on the interaction between observed and unobserved vari-
ables. Advances have been reported in selection on observables, instrumental variables and panel data
models, among many others (for a discussion see, for example, Matzkin, 2007).

Somewhat surprisingly, the sample selection model has been excluded from this trend. The consis-
tency of almost all sample selection estimators hinges on the additivity and conditional independence
of the error term. This is also the case in the quantile regression model of Buchinsky (1998a). How-
ever, in the quantile regression framework the conditional independence assumption implies that the
quantile slope coefficients are equal to the mean slope coefficients. In other words, the heterogeneity
that we want to analyze is excluded by assumption. Applications of the sample selection correction for
quantile regression that have found significant differences across the coefficients estimated at distinct
quantiles have merely proven the violation of the underlying assumptions and the inconsistency of
the estimator.

A general lesson to draw from this example is the danger of importing one-to-one mean recipes to
quantile models. Another example is given by the fitted value approach in endogenous models, which
is justified only by a similar independence assumption. The fitted value IV estimators suggested by
Amemiya (1982), Powell (1983) and Chen and Portnoy (1996) are, therefore, not useful for analyzing
heterogeneity (which was not the intention of their authors). Similarly, the control function estimators
in Lee (2007), Blundell and Powell (2007) and Carneiro and Lee (2009) are consistent only if the
coefficients do not vary across quantiles.

Given the importance of conditional independence for the identification of (mean and quantile)
sample selection models, we propose the first formal test for this assumption. Our test is based on
the conditional quantile regression process estimated by the procedure of Buchinsky (1998a), which
is consistent under the null hypothesis, and compares the coefficients obtained at different quantiles.
Monte Carlo simulations provide evidence on the satisfactory power and size properties of our tests.
We clearly reject the conditional independence assumption in an application to recent US wage data.
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What can be done if the independence assumption is rejected? Unfortunately, the parameters of
interest are then no longer point identified. In our companion paper (Melly and Huber, 2012), we derive
the sharp bounds on the quantile regression parameters when this assumption is no longer imposed.
It appears that there are only two ways to recover point identification.13 The first one is to impose a
parametric assumption on (at least) the copula function between the error terms in the selection and
outcome equations. Donald (1995) makes one step in this direction and proposes a two-step estimator
that allows for conditional heteroscedasticity but requires the error terms to be bivariate normally
distributed. Arellano and Bonhomme (2011) obtain point identification by parametrizing only the
copula while keeping the marginal distributions of the error terms nonparametric. The second way to
recover point identification is to use an identification-at-infinity argument. The latter requires not only
that some subpopulation is observed with probability (close to) one but also that the slope parameters
are identified from this subpopulation.

Another strategy consists in changing the estimand by considering a different population. Newey
(2007) analyzes a nonseparable model but shows identification only in the selected population instead
of the entire population. In the absence of an exclusion restriction, Lee (2009), Lechner and Melly
(2010) and Huber and Mellace (2013) provide sharp bounds for several subpopulations. This is of
interest in some applications but clearly not in all. For instance, it does not allow comparing wages
of different population groups like male and female or white and non-white individuals. These wage
comparisons were precisely the reason for which Gronau (1974) developed corrections for the sample
selection bias.
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APPENDIX A: PROOF OF PROPOSITION 1

Chernozhukov and Hansen (2006) present a class of instrumental variable estimators for the lin-
ear quantile regression model and develop its sampling theory. Their second contribution, which is
the relevant one for our article, is to develop practical inference procedures for testing distributional
hypotheses. They formulate the conditions for inference so that other estimators of the linear quan-
tile regression model are permitted. They show in Appendix C that their IV estimator as well as the
ordinary quantile regression estimator satisfy the high-level conditions for inference. We show in this
Appendix that the sample selection corrected quantile regression estimator (5) also satisfies these
conditions. Proposition 1 then follows from Theorem 5 in Chernozhukov and Hansen (2006).

For convenience, we restate here the four conditions for inference I.1–I.4 in Chernozhukov and
Hansen (2006) but we use ˇ instead of � as a symbol for the vector of parameters to keep our
notation consistent.

Assumption I.1. R.�/.ˇ.�/ � r.�// D g.�/, where the functions g.�/; R.�/; r.�/ are continuous and
either (a) g.�/ D 0 for all � or (b) g.�/ ¤ 0 for some � .

Assumption I.2.
p
n
�
Ǒ.�/ � .̌�/

�
H) b.�/ and

p
n. Or.�/ � r.�// H) d.�/ jointly in l1.T /, where b.�/

and d.�/ are jointly zero mean Gaussian functions that may have different laws under the null and the
alternative.

Assumption I.3. The estimates admit linear representations:

p
n. Ǒ.�/ � ˇ.�// D �J.�/�11=

p
n

nX
iD1

li .�; ˇ.�//‰i .�/C op.1/
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and

p
n. Or.�/ � r.�// D �H.�/�11=

p
n

nX
iD1

di .�; r.�//‡i .�/C op.1/

in l1.T /, where J.�/ andH.�/ are constant invertible matrices, and li .�; ˇ.�//‰i .�/ and di .�; r.�//‡i .�/
are i.i.d. mean zero for each � .

Assumption I.4. (a) We have estimates li
�
�; Ǒ.�/

�
O‰i .�/ and di.�; Or.�// O‡i .�/ that take realizations in a

Donsker class of functions with a constant envelope and are uniformly consistent in � in the L2.P /
norm. (b) Wp ! 1, Eli .�; ˇ.�//fi .�/jfD O‰ D 0 and Edi .�; r.�//fi .�/jfD O‡ D 0 for each i . (c)
Ekli .�; ˇ/ � li .�; ˇ

0/k < C kˇ0 � ˇk ; E kdi .�; r/ � di .�; r
0/k < C kr 0 � rk uniformly � 2 T and

in .ˇ; ˇ0; r; r 0/ over compact sets.

Our test fits into this framework by setting R.�/ D R D Œ1; 1; : : : ; 1�, a vector of 1 of length
dX � dim.x2i /, and r.�/ D ˇ.0:5/. Our continuity assumptions imply that ˇ.�/ is a continuous
function of � . Under the null hypothesis, g.�/ D 0 for all � and under the global alternative hypothesis
g.�/ ¤ 0 for some � . Thus Assumption I.1 is satisfied.

We must derive the limiting distribution of the sample selection corrected quantile regression pro-
cess to show the validity of the remaining three conditions I.2–I.4. To do so, we build on the results
of Lee (2007), who provided the pointwise limiting distribution for an estimator that closely resem-
bles our estimator.14 In fact, our estimator defined in equation (5) corresponds almost exactly to the
IV estimator defined in equation (7) of Lee (2007). The first difference is that in our case the estima-
tion is performed only in the selected population, whereas Lee (2007) uses the whole population. Our
problem fits, however, into his framework by redefining the trimming function to be zero for observa-
tions with D D 0. The second difference is that the first step fitted values are estimated by the Klein
and Spady (1993) estimator in our case, whereas Lee (2007) uses traditional quantile regression. This
is not an issue because Lee (2007) states the assumptions in a way that allows for other

p
n consistent

and asymptotically linear estimators.
Our assumptions are uniform in � 2 T and conditional on D D 1 versions of the assumptions of

Lee (2007). We do not need trimming with respect to X2 because we make a compactness assumption
on the distribution of X2. In addition, by Assumption 3, fU

�
ujx01i�0; x1i

�
D fU

�
ujx01i�0

�
, such that

we can simplify the definition of mi . We apply Theorem 3.1 in Lee (2007) and obtain the following
influence function (equations (39) and (40) in Lee, 2007):

p
n
�
Ǒ.�/ � ˇ0

�
D AˆJ .�/

�1 1
p
n

nX
iD1

�
`2i .�/C�2��

�1
P ki

�
C op.1/ (13)

where A denotes the ŒdX � .dX C J /� matrix such that A D
�
IdX ; 0dXCJ

�
, where IdX is the

dX -dimensional identity matrix, 0dXCJ is the ŒdX�J �matrix of zeros, dX is the dimension of x2i and

`2i .�/ D ti
�
� � 1

�
yi < x

0
2iˇ0 C h�

�
x01i�0

���
pJ i ;

�2� D E

"
tif"

�
Q"

�
� jx01i�0

� dh��X 01�0�
d�0

pJ i

#

14 Lee (2007) developed his estimator in an instrumental variable model but noticed the similarities with the sample selection
model. When applied to the sample selection model, his limiting distribution is the same as that obtained by Buchinsky (1998a).
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The matrix A selects the relevant components of the dXCJ score functions. The influence function
can equivalently be written as

p
n
�
Ǒ.�/ � ˇ.�/

�
D ��1b;�

1
p
n

nX
iD1

�
`i .�/C���

�1
P ki

�
C op.1/

in equation (11). This satisfies Assumption I.3 of Chernozhukov and Hansen (2006.15

We estimate the elements in the score function (11) by O�b;� ; Òi .�/, O�� ; O�P , and K .x1i ; di ; O�/.
Under Assumptions 1-9, arguments identical to those used in Lemma A.9 in Lee (2007) imply that
O�b;� is uniformly consistent for the non-singular matrix �b;� . Similarly, arguments identical to those
used in Lemma A.11 in Lee (2007) imply that O�� is consistent for�� . Since the trimming function is 0
when x01i O� is outside of a compact set and x01i takes value in a compact set, exploiting the boundedness
and monotonicity of the indicator function, it follows that the class of functions

T
�
� � 1

�
Y < X 02ˇ C h�

�
X 01�

���
M;ˇ 2 RdX and � 2 T

is Donsker. In addition, �� ; ��1P , and ki are bounded by assumption. Since sums and products of
Donsker functions are Donsker, this verifies Assumption I.4(a) of Chernozhukov and Hansen (2006).
Assumption I.4(b) of Chernozhukov and Hansen (2006) holds by our Assumptions 1–3, which imply
that x02iˇ0Ch�

�
x01i�0

�
is the � conditional quantile of yi given x1i and di D 1. Assumption I.4(c) of

Chernozhukov and Hansen (2006) holds by the bounded density assumption.
By the central limit theorem for empirical processes indexed by Donsker classes of functions

(van der Vaart and Wellner, 1996), �b;�
p
n
�
Ǒ.�/ � ˇ0

�
converges in distribution to a zero mean

Gaussian process ´.�/ with covariance function †.�; � 0/:

†.�; � 0/ D
�
min.�; � 0/ � �� 0

�
�E

�
mim

0
i

�
C���

�1
P var.ki /

This satisfies Assumption I.2 of Chernozhukov and Hansen (2006). The result of Proposition 1
follows from Theorem 5 in Chernozhukov and Hansen (2006), parts (a) and (b), where the continuity
of the distribution of the test statistics follows from part (c).

APPENDIX B: DESCRIPTIVE STATISTICS

Table B.I. Means of the relevant variables

All observations Employed full time Not employed full time

High school 0.904 0.951 0.865
Some college 0.626 0.694 0.570
Associate 0.447 0.521 0.387
Bachelor 0.318 0.374 0.273
Advanced 0.089 0.113 0.070
Experience 21.76 21.41 22.044
Married 0.718 0.668 0.759
# children Œ0; 2� 0.162 0.103 0.211
# children Œ3; 5� 0.204 0.138 0.259
# children Œ6; 13� 0.496 0.392 0.582

Number of obs. 45,296 20,789 24,507

15 Buchinsky (1998a) obtains the same score function in a more heuristic way.
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