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As new instances of nested organization—beyond ecological networks—are discovered, scholars are debating
the coexistence of two apparently incompatible macroscale architectures: nestedness and modularity. The
discussion is far from being solved, mainly for two reasons. First, nestedness and modularity appear to emerge
from two contradictory dynamics, cooperation and competition. Second, existing methods to assess the presence
of nestedness and modularity are flawed when it comes to the evaluation of concurrently nested and modular
structures. In this work, we tackle the latter problem, presenting the concept of in-block nestedness, a structural
property determining to what extent a network is composed of blocks whose internal connectivity exhibits
nestedness. We then put forward a set of optimization methods that allow us to identify such organization
successfully, in synthetic and in a large number of real networks. These findings challenge our understanding of
the topology of ecological and social systems, calling for new models to explain how such patterns emerge.
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I. INTRODUCTION

The identification of macroscale connectivity patterns has
been central to the development of network science. Beyond
the inherent methodological challenges of this task, ascer-
taining them is of relevance to the specific disciplines and
to the area as a whole, inasmuch they are the outcome of
distinct microscopic mechanisms of network formation. It is
in this context, i.e., understanding network architecture as
an emergent feature, that nestedness and modularity arise as
prominent macrostructural signatures to study.

The concept of nestedness was first coined in biology to
characterize the spatial distribution of biotas in isolated, yet
spatially-related, landscapes [1] and later found to describe
large families of interspecies cooperative relations [2]. In
structural terms, a perfectly nested pattern is such that the set of
connections of any given node is a subset of the relationships
of larger degree ones [3]; see Fig. 1 (left). Nestedness has
imposed itself as a landmark feature in mutualistic interac-
tions, with an emphasis in natural ecosystems, triggering a
large amount of research spanning fieldwork [2], modeling
[4], and simulation [5]. Beyond natural systems, nestedness
emerges as well in social, technical, and economic systems,
e.g., industrial relationships [4,6,7], international trade [8],
information ecosystems [9], anthropology [10], and knowledge

production [11]. In socioeconomic systems, the epitome of this
property in unipartite networks, the emergence of nestedness is
originated in agents attempting to maximize their own central-
ity [12–14].

On the other side, the identification of modular patterns
in networks stands as one of the hallmarks in the area with
prominent precedents in social network analysis [15]. Besides
social systems, networks with significant community structure,
see Fig. 1 (middle), appear in multiple contexts [16], like biol-
ogy [17] or cognitive science [18]. It implies the existence of
subgroups of nodes, strongly connected within but loosely con-
nected to nodes outside. The identification and analysis of com-
munity structure constitutes itself a subarea of network science.
It poses challenges with respect to detection algorithms, em-
pirical problems, applications, and conclusions derived [19].

Nestedness and modularity have been often treated as
incompatible architectures, since they are thought to emerge
from conflicting (respectively, cooperative and competitive)
dynamics [20]. Thus, most studies have focused exclusively
on either of them. The existence of systems which combine
both patterns has been largely overlooked, despite challenging
indications in natural [21–26] and social ecosystems [9]. As
of now, the proper identification of such compound structures
lays beyond the capabilities of state-of-the-art techniques.
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FIG. 1. Left: Example of network with nested structure. Rows
and columns have been ordered by degree. Center: Example of a
network with block structure; blocks are typically referred to as
communities and compartments in the network science [16] and
the ecology [21] literature, respectively. The network exhibits high
internal connectivity between nodes of the same block and low
connectivity between nodes that belong to different blocks. Right:
Example of a network with IBN structure. Nodes within blocks exhibit
nested structure. Vertical and horizontal lines are a visual guide to
show the existing blocks.

In the scarce existing literature we identify two different
approaches. The first operates in parallel, measuring modu-
larity and nestedness independently [9,23,27], with the obvi-
ous drawback that these properties are treated as emerging
unrelatedly. The second approach operates sequentially: Af-
ter a proper identification of a partition (usually in terms
of modularity [28]), it computes the nestedness (usually in
terms of node overlap-decreasing fill (NODF) [29]) locally
for each block [22,24]. In consequence, modularity takes
functional precedence relegating nestedness from a macro- to
a mesoscopic pattern. Both approaches overlook that these two
network patterns are inherently intertwined and thus cannot be
evaluated using independent metrics.

To be precise, the presence of modules places hard limits to
the extent of nestedness that a network can exhibit [Fig. 2(a)],
and, in the other direction, detected communities in a globally
nested system lead to aberrant, hardly interpretable modules
[22] (see Fig. 2(f) and the related discussion in Sec. III). As
is expected, the modularity score is sensitive to the number
of communities [Fig. 2(b)] but not to the shape of the nested
structure. Overall, these in-block nested (IBN) structures are
highly undetectable if the network contains few communities
and/or the nested structure within the communities is very
stylized (Fig. 1, right).

Beyond the methodological challenges, there exists an im-
portant epistemological aspect which cannot be overlooked. In
most scenarios, the boundaries of the system under considera-
tion are imprecise because the researchers, albeit involuntarily,
impose a discretionary observation scale to it. Extending the
realm of observation, the network structure can parsimoniously
be expected to show a set of loosely interconnected blocks.
This is particularly evident in natural ecosystems [30], where,
in general, no precise geographic boundaries can be defined,
but also in social networks, when it comes to decide which
subjects should be included or not in a specific study.

The paper is organized as follows: To overcome the lim-
itations of existing approaches, Sec. II introduces a compact
methodological framework that jointly considers both patterns
(block—or compartmental—structure and within-block nest-
edness). Our methodology can unveil the existence of IBN
structures, as shown in Sec. III for a suitable benchmark.
After discussing the possible resolution limits of our proposal

(Sec. IV), we investigate, in Sec. V, the question of how
general (or anecdotal) such property is. We show that a large
number of real datasets exhibit in-block nested structures that
would have gone undetected under conventional modularity
optimization/nestedness detection techniques. Our findings
indicate that these previously overlooked structures are in fact
common in ecological and social systems. This opens a new
direction for the structural analysis of ecological and social
systems, discussed in Sec. VI, calling as well for new models
to explain how IBN structures emerge.

II. DEFINITION AND QUANTIFICATION
OF IN-BLOCK NESTEDNESS

In this section, we develop a proper formulation of the
problem of determining to what extent a given network is
organized as loosely interconnected blocks, each of them
internally nested. We begin by defining in a congruent manner
both, global nestedness and the new in-block nestedness
fitness I. In particular, maximizing the IBN fitness function
I allows us to unveil the best node partition in terms of
IBN structure. We analyze synthetic networks to show that
I-maximization allows us to reconstruct ground-truth IBN
structures that would have gone undetected under the widely
used modularity optimization. We then proceed to analyze
a large set of real networks—originated in the most varied
disciplines—to evince that this type of structures is indeed
a common occurrence in both uni- and bipartite networks of
diverse nature.

A. A nestedness measure

In this section we will present a suitable objective function
to detect in-block nested structures in bipartite networks.
Later, we indicate how the objective function can be ex-
tended to unipartite networks. Consider a bipartite network,
describing a relationship between two sets G = {s,t, . . . } and
� = {σ,τ, . . . } with cardinalities Nr and Nc, respectively. The
bipartite network can be represented as a binary adjacency
matrix A whose elements areAs,τ = 1 if a relationship between
elements s and τ exists or zero otherwise. In the same spirit as
the measure [29] NODF, we introduce the global nestedness
fitness Ñ , which measures the amount of global overlap
between row and column pairs

Ñ = 2

Nr + Nc

[
Nr∑
s,t

Os,t

kt (Nr − 1)
�(ks − kt )

+
Nc∑
σ,τ

Oσ,τ

kτ (Nc − 1)
�(kσ − kτ )

]
, (1)

where ki corresponds to the degree of the element i (regardless
of whether it belongs to G or �); �(·) is the Heaviside step
function (such that the only contributing terms are those in
which the outer index has larger degree than the inner); and
O·,· measures the degree of overlap between row and column
pairs as

Os,t =
Nr∑

υ=1

AsυAtυ, Oσ,τ =
Nc∑

u=1

AuσAuτ . (2)
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FIG. 2. Behavior of nestedness metrics Ñ and N and modularity Q in noiseless IBN synthetic networks. Panel (a) illustrates how global
nestedness Ñ decreases with the number of blocks in a network—regardless of their internal perfectly nested structure. Notice that the shape
parameter ξ [see Eq. (5)] also affects Ñ as a side effect of the strict decreasing condition imposed in the original definition of NODF. Panel
(b) illustrates how modularity Q increases with the number of blocks in a network. Panel (c) illustrates the kind of networks generated by the
model (see Sec. III A). The vertical axis represents the shape parameter ξ that quantifies the slimness of the nested structures. The horizontal
axis stands for the number of modules. In noninteger settings (e.g., 2.5) there is an integer amount of nested blocks of the same size (e.g., 2) and
one block of relative size equal to the remaining fraction (e.g., 0.5 of the size of the other communities). Panel (d) shows the global nestedness
fitness N which incorporates a null model, as defined by Eq. (5). Panel (e) shows the normalized variation of information between the modules
detected by modularity optimization and the ground-truth (GT) blocks. Panel (f) shows the difference M − B between the number M of modules
detected by the modularity optimization and the number B of ground-truth blocks. Note that bottom-right color bar refers to panel (f) only.

It is important to remark that Eq. (1) weighs linearly the
contribution of rows and columns to Ñ (instead of quadratic
weights as in NODF [29]). This is preferable when the
difference between the number of rows and columns is
considerable.

B. Recasting nestedness at the mesoscale level

We now introduce two new elements that allow us to
generalize Ñ to the case where nested structures exist at a
mesoscopic scale: a membership variable and a null model.
First, we consider that both sets of nodes are partitioned into
C disjoint subsets, termed blocks. This implies that for each
node i, it is possible to define a membership variable αi . Based

on this, the total size of block 	 can be obtained as

C(	) =
Nr∑
s=1

δ(αs,	) +
Nc∑

σ=1

δ(ασ ,	), (3)

where δ is the Kronecker delta. In addition, Cs = ∑
t δ(αs,αt )

and Cσ = ∑
τ δ(ασ ,ατ ) give, respectively, the number of nodes

in the block nodes s and σ belong to. The block overlap O·,·,
now including the membership variable, can be obtained as

Os,t =
Nc∑

υ=1

AsυAtυδ(αs,αυ),

Oσ,τ =
Nr∑

u=1

AuσAuτ δ(αu,ασ ).
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The null model gauges the expected overlap between a
pair of nodes belonging to a class and aims at compensating
the nestedness that can be explained solely by the nodes’
degrees. The expected overlap, given two nodes s and t with
degrees ks and kt , is obtained considering that the neighbors of
each node are chosen uniformly at random. In this situation,
the probability that both nodes share a common neighbor is
simply (kskt )/Nc

2 and therefore the expected amount of shared
neighbors, i.e., the expected overlap, is given by 〈Os,t 〉 =
kskt/Nc. The same argument shows that for the columns,
〈Oσ,τ 〉 = kσ kτ /Nr .

We can now introduce the in-block nestedness fitness I,
which quantifies to which extent a network exhibits IBN,

I = 2

Nr + Nc

{
Nr∑
s,t

[
Os,t − 〈Os,t 〉
kt (Cs − 1)

�(ks − kt )δ(αs,αt )

]

+
Nc∑
σ,τ

[
Oσ,τ − 〈Oσ,τ 〉
kτ (Cσ − 1)

�(kσ − kτ )δ(ασ ,ατ )

]}
. (4)

In this expression, some normalization factors have disap-
peared after straightforward simplifications. In the same spirit
as in the row and column weighting of Ñ [Eq. (1)], the
per-block nestedness aggregates are weighted by the size of the
block (i.e., Cs and Cσ ). Notice that, for each pair of row nodes,
Os,t only accounts for column nodes within the same block,
while 〈Os,t 〉 considers all column nodes regardless of the block
they belong to. This implies that, for any pair of rows, I will be
in principle larger when they are assigned to the same block: In
this case the differenceOs,t − 〈Os,t 〉has positive contributions.
On the other hand, the membership variable α allows us to
discard some of the comparisons, assigning row nodes to
different communities. In general, an algorithm that correctly
maximizes I will attempt to discard pairs whose contribution
is negative to the aggregate. This intuition is equivalent for
columns. The balance of such “merge-split” strategy for rows
and columns allows an algorithm to identify in-block nested
structures by maximizing the objective functionI. In this work,
we have adopted a biologically inspired optimization algorithm
[31]. However, I ′s formulation—which closely follows that
of modularity Q—enables the adoption of many existing
heuristics (see Ref. [16] for an extensive review).

Equation (4) is equally valid for unipartite networks, simply
imposing that the sets G and � are equal. That is, each row node
and its column counterpart have the same class. This simplifies
the optimization, by reducing the number of unknowns to the
number of nodes in the networks.

Noteworthy, the objective function I reduces to Ñ , cor-
rected by a suitable null model, if one considers a single block
(αs = ασ = α,∀s,σ ), i.e.,

N = 2

Nr + Nc

[
Nr∑
s,t

Os,t − 〈Os,t 〉
kt (Nr − 1)

�(ks − kt )

+
Nc∑
σ,τ

Oσ,τ − 〈Oσ,τ 〉
kτ (Nc − 1)

�(kσ − kτ )

]
.

While the difference between NODF and Ñ is slight—except
when Nr � Nc or vice versa—the null-model correction in N

heavily alters the nestedness measure. In particular, note that
fully connected nodes do not contribute to N—as opposed to
maximum contribution in the original formulation.

To illustrate this point, it is instructive to consider the case
of one single nested block [Num. Blocks = 1 in Fig. 2(a),
2(c) and 2(d)] (note that Fig. 2 is explained in detail in the next
section). In this cut, the contrast between noncorrected measure
of nestedness [Fig. 2(a)] and corrected [Fig. 2(d)] is very clear:
When the perfectly nested network is very dense (bottom-left
corner, ξ < 2.5), most of the nodes have large expected overlap
with the few hubs. Hence, even though the nestedness condition
is respected for all the pairs of nodes, the nestedness metric
Ñ only deviates little from its expected value under the null
model, resulting in a small value of N . In other words, the
observed level of nestedness Ñ can be simply explained by
the network degree distribution. On the contrary, Ñ and N are
practically identical for ξ > 2.5. In this region, the slimness
of the nested structure and the strict decreasing connectivity
condition [Heaviside function in Eqs. (1) and (4)] heavily limit
the value of nestedness, regardless of the consideration of a null
model (N ) or not (Ñ ).

III. DETECTION OF IN-BLOCK NESTED STRUCTURES
IN SYNTHETIC NETWORKS

In this section, we first introduce a benchmark graph
model with planted in-block nested structures (Sec. III A) and
then present the results for the Q and I optimization algo-
rithms’ performance in reconstructing such planted structures
(Sec. III B).

A. In-block nested structures generator

In a perfectly nested structure, rows (and columns) interact
with a subset of the neighbors of the rows (and columns) of
larger degree. Correctly ordering its adjacency matrix by row
and column degree, it resembles an upper (possibly with some
curvature) secondary diagonal matrix. Inspired by the p-norm
unit ball equation, we synthetically generate such structures
using

y = fn(x) = 1 − (1 − x1/ξ )ξ , (5)

where x ∈ [0,1] and ξ ∈ [1,∞) dictate how stylized the shape
of the nested structure is. The adjacency matrix of the nested
structure with Nc nodes is constructed tessellating the [0,1] ×
[0,1] space into N2

c squares and then adding a link into each
matrix position whose center lies above the curve in Eq. (5).
While an approach based on threshold graphs would have been
also used, the degree sequences it produces are stochastic,
introducing unnecessary fluctuations to the network generation
[32].

Such noiseless nested structures are rarely found in real
systems. Thus, on top of the previous scheme, we mimic
random and uncorrelated noise using a dual-step procedure.
In the first stage, we randomly remove links from the perfectly
nested structure with probability p. Given a network with Ec

edges, pEc of them will be removed in average. In the second
step, the removed edges are randomly distributed across the
empty elements of the adjacency matrix. These include initially
empty positions [i.e., those lying below the function in Eq. (5)]
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and empty positions resulting form the stochastic removal
procedure. Parameter value p = 0 corresponds to the initial
structure and p = 1 corresponds to an Erdős-Rényi network
with average degree Ec/Nc.

The construction of an adjacency matrix of an ideal in-block
nested structure starts off withB (a real-valued number) blocks.
Specifically, we build 	B
 blocks of size 	Nc/B
 and another
with the remaining Nc − 	Nc/B
 nodes. In the previous, 	·

stands for the integer part function. In this way, the network
produced has some level of heterogeneity (albeit the size of all
blocks remains in the same order of magnitude). Then AI , can
be constructed repeating the procedure for each block, Ac, and
joining them to compose a block diagonal matrix,

AI =

⎡⎢⎢⎣
Ac1 Ao11 · · · Ao1B

Ao21 Ac2 · · · Ao2B

...
...

. . .
...

AoB1 AoB2 · · · AcB

⎤⎥⎥⎦ , (6)

where Ao = 0 is a matrix of the required size.
Similarly to the intrablock noise, we reproduce interblock

perturbations with an additional dual-step procedure controlled
by the parameter μ ∈ [0,1]. In this first step, for each block,
each link is removed with probability pi = μ(B − 1)/B. In the
second step, those links are distributed at random to connect
one node of the original block with a random node of a different
block. Probability pi depends on the number of blocks, since
our purpose is that for μ = 1 the amount of links within
each block is the same as the amount of links connecting any
two distinct blocks. In the limit situation of p = μ = 0 the
outcome corresponds to a noiseless in-block nested structure
and for p = μ = 1 the outcome corresponds to an Erdős-Rényi
network with the same average degree as the germinal noiseless
structure, see Appendix A.

The described generative process can be locally imple-
mented in terms of edge probabilities. Along these lines, the
probability of having a link between nodes i and j within a
block becomes

P
(
Ac

ij

) = [(1 − p + p pr )] �[j Nc − fn(i Nc)]

+pr {1 − �[j Nc − fn(i Nc)]}(1 − pi), (7)

where � is the Heaviside function. The term within square
brackets is related to the intrablock noise. In the first term,
(1 − p) corresponds to the probability of not altering the link.
The second, ppr , corresponds to the probability of recovering
a link, after removal, in the random dispersion of removed
links. These two terms are restricted, by � function, to
the region where links exist in the noiseless structure. The
third term, pr = pEc(Nc − Ec + pEc)−1, corresponds to the
probability of selecting link Aij in the random distribution
of removed links. Eventually, the term (1 − pi) corresponds
to the probability of not removing the link in the process of
generating interblock noise.

The probability of a interblock link is

P
(
Ao

ij

) = 2Ecpi

2(B − 1)N2
c

= μEc

N2
c B

. (8)

The numerator accounts for the amount of removed links
from the blocks related to the off-diagonal block Ao, that

is, compartments i and j . The denominator accounts for the
possible places where each of those links can be placed. Note
that the “2” on both numerator and denominator explicitly
shows that each removed link of compartment Ack can be
reallocated in Aok· or Ao·k .

The noisy version given by Eqs. (7) and (8) of the orig-
inal noiseless in-block nested structure generates a network
with equivalent average degree. This is formally proved in
Appendix A. An example of these synthetically generated
structures is shown in Fig. 2(c) and Fig. 3(c).

B. IBN optimization applied to synthetic networks

In Fig. 2, we unveil the limitations of current techniques to
detect IBN structures in noiseless networks (IBN networks)
where no links exist between nodes belonging to different
blocks. In a more realistic setting, where links can connect
nodes that belong to different blocks, such weaknesses become
even more apparent (see Fig. 3).

We generated synthetic (unipartite) networks of Nc nodes
and Ec edges within blocks, where the level of in-block
nestedness and the number of interblock links can be varied in a
controlled manner by means of few parameters (see Sec. III A):
the number of blocks B, the shape parameter ξ , the in-block
nestedness parameter p, and the mixing parameter μ. To allow
for heterogeneity in block size, we build 	B
 blocks of size
	Nc/B
 and another with the remaining nodes. ξ determines
the density of the network, controlling how stylized the nested
structure is. The in-block nestedness parameter p gives the
fraction of links that do not respect the notion of perfectly
nested organization within a block and the mixing parameter
μ measures the fraction of interblock links.

The experiments in Fig. 2 correspond to 3 × 104 networks
generated with parameters p = μ = 0, with varying number
of blocks and number of edges [see Fig. 2(c) for an illus-
tration of the resulting adjacency matrices]. By construction,
all networks have maximum I, in the range (0.16, 0.90),
depending on the shape parameter ξ and number of blocks B.
Unsurprisingly, modularity Q increases as the number of block
increases [Fig. 2(b)]. We find that in this setting, the modules
detected by the modularity-maximization algorithm can be
very different from the planted blocks, as measured by the NVI
[34,35], Fig. 2(e). The difference between the detected and
planted blocks is larger for sparser networks [upper region of
Fig. 2(e)]. Figure 2(f) shows the difference between the number
M of detected modules by the Q maximization and the number
B of planted blocks. The difference is nonzero for a large
region of the parameter space. In particular, the modularity
optimization algorithm detects more than one module in a
network composed of one single block with internal nested
structure [see Fig. 2(f), left corner]. This happens because
the modularity-optimization algorithm tends to form a module
that only contains the nodes with largest degree. Figures 2(e)
and 2(f) indicate that modularity optimization is only reliable
in the limit of large number of blocks and dense networks
(lower-right corner).

The results of Figs. 2(b), 2(e) and 2(f) make clear that mea-
suring modularity and nestedness as two independent network
properties is inherently flawed: modularity-optimization algo-
rithms detect more than one module in a network composed of
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FIG. 3. Results for synthetic IBN networks with B = 3 and ξ = 3 for varying values of p and μ. Panel (a) displays the value of the fitness
function I as obtained with a biologically inspired optimization algorithm. Similarly, panel (b) reports the value of modularity Q as obtained
with the Combo optimization algorithm [33]. Panels (d) and (e) compare the I-optimized (αI ) and the Q-optimized (αQ) partitions, respectively,
to the planted partition (α0) via the normalized variation of information (NVI). Panel (c) provides a visual intuition of the effect of parameters p

and μ on the synthetically generated networks. Panel (f) shows the difference between the I-optimized (αI ) and the Q-optimized (αQ) partitions
as measured by their NVI.

a single nested block, and the NVI between detected modules
and planted blocks is in general large. We have verified
that the I-optimization algorithm introduced in this paper
overcomes these limitations and is able to correctly recover
the planted structure for all the parameter values shown in
Fig. 2.

Figure 3 shows the results for an exhaustive exploration of
the (p,μ) parameter space over 2600 networks with a fixedB =
3 and shape parameter ξ = 3 [see Fig. 3(c) for an illustration
of the resulting adjacency matrices]. Results on these synthetic
networks after a modularity optimization process [Fig. 3(b)]
show that Q is only mildly affected by the p parameter (i.e., by
the level of IBN). This itself is a consequence of the fact that
Q does not consider any particular structure within the blocks,
but only their internal density.

Figure 3(a) shows the value of in-block nestedness fitness,
I, after a maximization procedure based on a biologically
inspired optimization algorithm (see Methods). Evidently, I
is sensitive to both the modular structure, and the nested
organization within, taking a maximum value for μ = 0 and
p = 0. When we increase the randomness in either dimension
the obtained in-block nestedness fitness smoothly decreases,
reaching a global minimum when μ = 1 and p = 1.

Since it can be assumed that the block structure is known a
priori, it is possible to quantify how far the detected partition
is from the planted one. As before, we resort on NVI to assess
the quality of the partitions obtained optimizing I [Eq. (4)]
and the quality of the partitions obtained maximizing Q [33].
Focusing on the similarity of the Q-detected partition with
respect to the prescribed one [Fig. 3(e)], we see that modularity
recovers the planted partition in the full range of p values and
low μ, implying that Q cannot discriminate between structured
(nested) and nonstructured blocks. A good approach to detect
IBN structures must be sensitive to both parameters p and μ.
Remarkably, changes in NVI are closely independent of the
parameter p, related to the level of disorder within each block.
In contrast, we see that I optimization allows us to unveil the
planted partition for a region along the μ axis, as long as p

remains low [Fig. 3(d)]: The presence of internal nestedness
compensates the tenuous identity of the blocks, caused by large
μ. The parameter region corresponding to low p and large μ

is also the region where Q-detected partitions and I-detected
partitions differ the most [Fig. 3(f)]. This points out that the
Q-detected partitions are particularly unreliable when there is
a clear internal nested structure and there exist a significant
number of interblock links.
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FIG. 4. Left: Qsingle (solid-red line) and Qpairs (solid-black line)
as a function of the number of nested blocks, B (note semilog scale).
As in the case of fully connected cliques, Q for this ring of dense
subgraphs exhibits a paradoxical behavior, showing a crossover that
disregards the natural partition favoring a larger-scale one. Isingle
(dashed-red line) and Ipairs (dashed-black line) for the same configu-
ration. Unlike Q, I uncovers the natural partition for all the range of
B, i.e.,Isingle > Ipairs,∀B. Furthermore, the ratioIsingle/Ipairs ≈ 0.5.
Right: Difference between Isingle and Ipairs (dashed), and between
Qsingle and Qpairs (solid), for different block sizes (note semilog
scale). Results show that that the conclusions extracted on the left
panel hold as well for different settings.

To see how results vary in terms of the ξ parameter,
we present results for ξ = 4 in Appendix B. We emphasize
that modularity does not recover the planted partition in any
parameter configuration, not even at μ = 0, and it is almost
insensitive to changes in the parameters of the model, its
range is quite narrow, 0.55 < Q < 0.7. Even further, the
value of modularity fluctuates around Q ≈ 0.6, in remarkable
accordance with the predictions in Guimerà et al. [36], for
sparse graphs, like those obtained with ξ = 4.

IV. RESOLUTION LIMIT

Before confronting the proposed methodology to empirical
networks, it is convenient to analyze the possible existence
of a resolution limit in I, along the lines of the well-known
detectability issues inherent to modularity [37]. Far from anec-
dotal, Q′s resolution limit implies that a certain detected par-
tition may be at risk of missing important structures at smaller
scales—which triggered a wealth of research on the topic
[38,39]. To illustrate this situation, Fortunato and Barthelemy
propose the simple case of a ring of fully connected (clique)
subnetworks, loosely interconnected to the neighboring ones.
Intuitively, the optimal partition of such network is the one
where the communities correspond to the planted cliques, i.e.,
Qsingle. However, increasing the number of communities in the
ring yields at some point a different optimal Qpairs, i.e., the one
in which pairs of consecutive cliques are considered as single
communities. Such behavior, analytically studied in Ref. [37]
(and visually evident in Fig. 4, left panel), is ever more para-
doxical, provided that the local structure of each clique has not
changed at all, i.e., the ratio between internal and external links
remains constant despite the addition of cliques to the ring.

We consider here a similar setting, where the elements of the
ring are not cliques—-the optimal structure for Q—but rather
perfectly nested blocks; see Appendix C. Figure 4 (left panel)

FIG. 5. Interaction matrices of four illustrative systems: (a) a
host-parasite competitive bipartite network in the Volga-Kama Nature
Reserve; (b) a pollination mutualistic bipartite network in Cordón del
Cepo, Chile; (c) an urban bipartite network accounting for citizen
visits to city services in Chennai, India; and (d) a unipartite friendship
network in a Dutch school class. For all of them, rows and columns
have been arranged to highlight different aspects: block membership
and degree forI- (left) and Q-maximization (center) partitions; global
degree ranking in the right column.

monitors the evolution of Isingle and Ipairs against the growth
of the ring (expressed as B, the number of nested blocks). This
plot shows that there is no evidence of a resolution limit for
IBN, because the dependency of Isingle and Ipairs on the number
of blocks (and any other configuration, for that matter) show a
parallel behavior, i.e., there will be no crossover between these
two quantities. Moreover, the right panel of Fig. 4 confirms this
behavior for a few other configurations.

The explanation to this unexpected result becomes apparent
by noticing that I [Eq. (4)] is built up on the sum over
normalized, pairwise connectivity overlaps, with the following
effect: Once a perfectly nested structure is found, further
additions of new nodes to the block will be detrimental for
the global score, unless they have a perfectly nested relation
with the nodes already identified as members of the block.
This is very different from modularity, where the addition of
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FIG. 6. Top: Scatter plot confronting modularity and nestedness with the I measure (color coded). Each point represents an ecological,
urban, or social network (left panel: unipartite networks; right panel: bipartite networks). Note that bipartite networks have been analyzed under
the formulation of Barber’s modularity [42]. Bottom: Comparison of in-block nestedness value obtained optimising modularity or directly I,
as we propose.

nodes to a community always increases the positive term of
Q, as long as these new nodes are nonisolated with respect
to the community. Appendix C discusses an extension of
this idealized setting, showing that, contrary to modularity,
the detectability of small blocks increases as we increase
the network size. These findings suggest that the study of
resolution limits in in-block nested structures is an intriguing
problem that deserves a deeper analysis in the future.

V. DETECTION OF IN-BLOCK NESTED STRUCTURES
IN REAL DATASETS

The previous sections demonstrate the adequacy and robust-
ness of I—and the inherent flaws of modularity Q and global
nestedness N—to unveil IBN structures. However, those anal-
ysis would be limited to a mere academic exercise in absence
of ample (in terms of examples and origin) empirical evidence.
To demonstrate the practical aspects of the proposed methodol-
ogy, we have analyzed a total of 334 networks, including both
unipartite (57) and bipartite (277) ones which are known to dis-
play some level of nested organization. Most of them (209 bi-
partite networks) belong to ecology [40]—mostly mutualistic
networks—and the rest belong to online platforms (68 bipartite
networks) and social networks (57 unipartite networks) [41].

As a visual intuition, Fig. 5 displays the adjacency matrix
of four of these networks, where rows and columns have been
sorted following different criteria: For left and central columns
(I- and Q-maximizing partitions, respectively), nodes in the

same block are placed together, and they are ranked by
degree (within blocks) to make more apparent a possible IBN
structure; in the right column, nodes are simply ranked by de-
gree. Figure 5(a) shows such arrangements for a host-parasite
network (see A_HP_050 in Ref. [41]). Clearly, the three matrix
representations look very different. In this case, I favors the
existence of a large, highly nested block, and a set of smaller
clusters with a clear internal organization as well, whereas Q

renders several, similarly sized, highly dense modules with no
clear internal nested organization. Even though the classical
NODF measure hints at some degree of global nestedness,
taking into account the null model (N = 0.059) seems to
indicate that the nested organization is a simple consequence
of the network’s degree distribution. Figure 5(b) shows the
results for a pollination mutualistic network (see M_PL_001
in Ref. [41]). The system exhibits a clear IBN structure that
cannot be detected through the maximization of modularity.
From the results in Figs. 5(a) and 5(b), it is worth remarking that
the observation of IBN structures in ecosystems with different
types of interactions demands a reconsideration of which
patterns should or should not be expected in them. Figure 5(c)
shows the results for a urban user-service network (see Chennai
in Ref. [41]). We observe again that global nestedness fails to
characterize the predominant organization of the system, i.e.,
an IBN structure. Figure 5(d) shows the results for a unipartite
network representing friendship relations in a Dutch school
class (see c2 in Ref. [41]). The conclusions of the analysis of
this network are similar to the ones in Fig. 5(a).
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While Fig. 5 is helpful to get an intuition of how I, Q,
and N work, these representations may be misleading. For
example, the degree-ranked representation in Fig. 5(b) (right)
conveys the idea that this particular plant-pollinator network is
clearly (and globally) nested—but the other two arrangements
are qualitatively convincing as well. For this reason, we have
systematically compared the results of N and Q, on one
side, and I, on the other, for the whole set of real networks
mentioned above. In Fig. 6(a), two color-coded scatter plots are
shown for uni- (left) and bipartite (right) networks. Strikingly,
modularity Q and in-block nestedness I are not strongly
correlated in real datasets. Networks that exhibit small or
intermediate values of modularity (compatible with those of
a random network [36]) may show high I, regardless of
the N score. Also, large values of Q—which unsurprisingly
display nestedness ≈0—indeed exhibit both large and small
I scores as well. Beyond the uncorrelated behavior between
the three descriptors, what surfaces here is the fact that when
analyzing data we may be overlooking a relevant pattern—IBN
structure—just because two partial views of it (N and Q taken
independently) appear to be nonsignificant.

Further, in Fig. 6(b) we show the value of I for partitions
obtained by maximizing Q confronted to the maximization
of I itself. This plot evidences that modularity optimization
may sometimes render partitions which do have some in-block
organization (near the diagonal), but most often it is blind to it.
This result highlights that using an approach where modularity
is maximized, to successively evaluate nestedness within the
blocks identified (i.e., the approach in Refs. [22,24]), is not
able to unveil the IBN structure in most real-world networks.

VI. CONCLUSIONS

The emergence of structural patterns in complex networks
is a consequence of the dynamics that take place on them.
While the ultimate goal is to understand how these dynamics
operate, this is not feasible until the correct methods to identify
those patterns are available. The increasing evidence that
nestedness and modularity appear in many empirical contexts,
the already abundant hints that they may appear together, and
the importance of both to disentangle how they affect—and
are affected by—the evolution of a system prompt the need
of rethinking the strategy to detect the occurrence of in-block
nestedness.

Inspired by the NODF and modularity optimization, in
this paper we have developed a methodology to detect in-
block nested structures. The objective function at the core
of this method naturally embeds a suitable null model to
discount the in-block nestedness of the network that can
be ascribed to randomness. Beyond the formal correctness
of our formulation, demonstrated by means of a suitable
benchmark to generate synthetic networks, we have shown
that it overcomes the inherent limitations of nestedness and
modularity (as independent methods) for this task. In structural
terms, our approach can be interpreted as a generalization of
the concept of nestedness (as expressed in NODF), reframing
it to the mesoscopic network scale. Along this line, the door
remains open to further development. For example, slight
modifications on our formulation generalize the notion of
multiple core-periphery structures, which has been recently

addressed from a different starting point [43]. Other directions
may be related to identification techniques (e.g., stochastic
block models [44]) or the design of distinct, specialized null
models [45,46]. Prominently, an analytical account of the
I ′s resolution limit—or lack thereof—is missing, beyond the
preliminary intuitions offered in this work.

The analysis of real data has shown that many networks
display in-block nested structure, regardless of their NODF and
modularity scores. This finding suggests that previous works
may have overlooked important features when discussing the
organization of real systems and connects with previous works
in diverse areas, such as network neuroscience [47,48]. The ex-
istence of in-block nested structures affects the debate around
population dynamics, in ecology especially, in terms of which
patterns maximize survival [5] and why. Our methodological
contribution thus uncovers the need for models—beyond
host-parasite [49,50]—that explain how networks transition
between possible configurations: from modular to combined to
purely nested architectures, as suggested by the emergence of
collective attention processes [9], or from nested to combined
architectures, as one would expect in a growing, but highly
structured, system with increasing specialization. Noteworthy,
it is not clear whether these processes are reversible, as they
may respond to different systemwide adaptive processes.
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APPENDIX A: AVERAGE DEGREE OF THE SYNTHETIC
NETWORK GENERATION MODEL

The synthetic in-block nested network generator we pro-
pose in Sec. III A include two parameters to generate
noise. Only as a summary, parameter p controls the intra-
compartment noise and parameter μ controls the intercommu-
nity noise. The noisy versions of the initial germinal noiseless
in-block nested structure has the same average degree. We
first show that adding intracommunity noise does not alter
the average number of edges. Under this situation μ = 0 and
Eq. (7) becomes

P
(
Ac

ij

) = [(1 − p) + ppr ]�[jNc − fn(iNc)]

+pr{1 − �[jNc − fn(iNc)]} (A1)

and the expected number of edges within a compartment is
〈Ec〉 = ∑Nc

ij P (Ac
ij ). Reorganizing common terms of the sums

we obtain that

〈Ec〉 =
Nc∑
ij

P (Aij )

= [(1 − p) + ppr ]
Nc∑
ij

�[jNc − fn(iNc)]

+pr

Nc∑
ij

{1 − �[jNc − fn(iNc)]}. (A2)
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The heaviside step function is one when a link was existing
in the original noiseless compartment. Thus, by definition,
Ec = ∑Nc

ij �[jNc − fn(iNc)], and, consequently, Nc − Ec =∑Nc

ij {1 − �[jNc − fn(iNc)]}. Substituting, this to Eq. (A2)
leads to

〈Ec〉 = (1 − p + ppr )Ec + pr

(
N2

c − Ec

)
= Ec − pE + pr (Nc − Ec + pEc) = Ec. (A3)

We now consider the case where μ �= 0. The expected amount
of edges within the full in-block nested structure is

〈E〉 = B

Nc∑
ij

P
(
Ac

ij

) + B(B − 1)
Nc∑
ij

P
(
Ao

ij

)

= B(1 − pi)
Nc∑
ij

{[(1 − p) + ppr ]�[jNc − fn(iNc)]}

+B(1 − pi)
Nc∑
ij

{pr�[fn(iNc) − jNc]}

+B(B − 1)
Nc∑
ij

Ecμ

N2
c B

= B(1 − pi)Ec + B(B − 1)
μEc

N2
c B

Nc∑
ij

1

= B

[
1 − μ(B − 1)

B

]
Ec + (B − 1)μEc = BEc. (A4)

Q.E.D.

APPENDIX B: THE EFFECT OF ξ ON Q AND I
PERFORMANCE

Figure 3 above illustrates the capabilities of Q and I when
confronted with a rich benchmark of synthetic networks, which
span three relevant architectures—in-block nested to modular
to random. While the main lessons from Fig. 3 hold in general,
both Q and I are quite sensitive to the density of the networks,
which our toy model encapsulates under the parameter ξ . Here
Fig. 7 presents the same results as Fig. 3 above, with sparser
structures (ξ = 4).

The sparsity of these synthetic networks may lead to
counterintuitive results, such as the fact that, in Fig. 7(e), NVI
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FIG. 7. Results for synthetic IBN networks with B = 3 and ξ = 4 for varying values of p and μ. Panel (a) displays the value of the fitness
function I as obtained with a biologically inspired optimization algorithm. Similarly, panel (b) reports the value of modularity Q as obtained
with the Combo optimization algorithm [33]. Panels (d) and (e) compare the I-optimized (αI ) and the Q-optimized (αQ) partitions, respectively,
to the planted partition (α0) via the NVI. Panel (c) provides a visual intuition of the effect of parameters p and μ on the synthetically generated
networks. Panel (f) shows the difference between the I-optimized (αI ) and the Q-optimized (αQ) partitions as measured by their NVI.
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(a) (b)

(c) (d)

FIG. 8. Panels (a) and (b) represent a ring of in-block nested sub-
graphs (network and adjacency matrix representation, respectively)
connected by a single link. This example, which follows closely Fig. 3
in Ref. [37], is analyzed in Sec. IV. Panels (c) and (d) represent
the same ring, although each block is connected by 	∗ links—the
minimum needed to enforce Ipairs > Isingle at B = 2.

values are close to 0.5 instead of ∼0 in the region μ ≈ 0,
p ≈ 1, i.e., the region where a purely modular, non-nested
structure is more obvious. The reason for these apparently
inconsistent results stems from the sparsity of the network
itself, which distorts even the modular partition that seems
more natural. For example, in the most extreme case (p =
1,μ = 0), the modularity value that the Combo algorithm [33]
delivers (Q = 0.70) is larger than the one imposing the planted
partition (Q = 0.66), thus explaining such high NVI.

APPENDIX C: FURTHER INSIGHTS AROUND Q AND I ′S
RESOLUTION LIMIT

In Sec. IV we have provided a minimal example, along
the lines of Ref. [37], which hints at the idea that I may not
be subjected to the inherent limitations of Q regarding the
detectability of nested blocks at small scales. Despite the lack
of an analytical approach, which we deem necessary in the
future, we suggest that such lack of a resolution limit is due to
the fact that I does not depend on a global quantity (like L,
the total number of links in the network) but rather is the sum
over a relative quantities, i.e., the normalized overlap bewteen
pairs of nodes.

Here we want to extend this argument with a striking
example that shows that not only I can retain the natural
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FIG. 9. Left: Qsingle (solid-red line) and Qpairs (solid-black line)
as a function of the number of nested blocks, B. Q for this ring
of dense subgraphs—each block connected to its neighbors by 	∗

links—exhibits the well-known behavior, i.e., showing an earlier
crossover (if compared to Fig. 4) that disregards the natural partition
and favors a larger-scale one. Isingle (dashed-red line) and Ipairs
(dashed-black line) for the same configuration. As prescribed,Ipairs >

Isingle initially. However, as B increases, I uncovers the natural
partition, i.e., Isingle > Ipairs. Right: Difference between Isingle and
Ipairs (dashed), and between Qsingle and Qpairs (solid), for different
block sizes. Results show that that the conclusions extracted on the
left panel hold as well for different settings.

partition as the number of blocks B grows but also it can
actually recover such natural partition even from the most
adverse starting point. To show this, let us consider again
a network built from dense subgroups, connected as a ring.
Unlike the structure from Figs. 8(a) and 8(b) (which mimics
Fig. 3 in Ref. [37]), consider that the blocks in the ring are
connected (to the previous and next block) by more than just
one link [say, 	 links, see Fig. 8(c) and 8(d)]. Arguably, the
logic of Q′s resolution limit still holds, with the difference
that the crossover at which Qpairs > Qsingle will happen for a
smaller B: We would observe a shift to the left in Fig. 4. If 	

is large enough, then Qpairs > Qsingle∀B.
Translating this logic to I, we perform the following

experiment: We start out with a configuration of two nested
blocks (B = 2) which are connected, in ring shape, with the
minimum amount of links 	∗, such that ensure, at this level, that
Ipairs > Isingle. We then proceed to extend the ring, connecting
again each block to its neighbors with the same amount of
	∗ links. Figure 9 shows that indeed, at B = 2 (the minimal
ring network), Ipairs > Isingle. However, we observe, as B

grows that the difference between Ipairs and Isingle reduces
to eventually reach a point such that I recovers the most
natural partition, i.e., Isingle has higher fitness than Ipairs. This
result evidences that, contrary to modularity, the detectability
of small blocks increases as we increase the size of the network
and allows us to hypothesize that I may not be susceptible to
problems similar to the resolution limit.
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