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1 Introduction

Following the seminal papers of Judd and Kenny (1981), Baron and Kenny (1986), and Robins and

Greenland (1992), the evaluation of direct and indirect effects, also known as mediation analysis,

is widespread in social sciences, see for instance the applications in MacKinnon (2008). The aim

is to disentangle the total causal effect of a treatment on an outcome of interest into an indirect

component operating through one or several intermediate variables, i.e. mediators, as well as a

direct component. As example, consider the effect of educational interventions on health, where

part of the effect might be mediated by health behaviors, see Brunello, Fort, Schneeweis, and

Winter-Ebmer (2016), or personality traits, see Conti, Heckman, and Pinto (2016). While earlier

studies on mediation typically rely on tight linear models, the more recent literature considers

more flexible and possibly nonlinear specifications. A large number of contributions assumes a

‘sequential conditional independence’ assumption, implying that the assignment of the treatment

and the mediator is conditionally exogenous given observed covariates and given the treatment

and the covariates, respectively. For examples, see Pearl (2001), Robins (2003), Petersen, Sinisi,

and van der Laan (2006), van der Weele (2009), Flores and Flores-Lagunes (2009), Imai, Keele,

and Yamamoto (2010), Hong (2010), Albert and Nelson (2011), Tchetgen Tchetgen and Shpitser

(2012), Vansteelandt, Bekaert, and Lange (2012), Zheng and van der Laan (2012), and Huber

(2014a), among many others.

Our main contribution is the extension of such mediation models to account for issues of out-

come nonresponse and sample selection, implying that outcomes are only observed for a subset

of the initial population or sample of interest. These problems frequently occur in empirical ap-

plications as, for instance, wage gap decompositions, where wages are only observed for those

who select themselves into employment. In a range of studies evaluating total (rather than direct

and indirect effects), sample selection is modelled by a so-called missing at random (MAR) re-

striction, which assumes conditional exogeneity of sample selection given observed variables, see

for instance Rubin (1976), Little and Rubin (1987), Robins, Rotnitzky, and Zhao (1994), Robins,

Rotnitzky, and Zhao (1995), Carroll, Ruppert, and Stefanski (1995), Shah, Laird, and Schoen-
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feld (1997), Fitzgerald, Gottschalk, and Moffitt (1998), Abowd, Crepon, and Kramarz (2001),

and Wooldridge (2002, 2007). In contrast, so-called sample selection or nonignorable nonresponse

models permit sample selection to be related to unobservables. Unless strong parametric assump-

tions are imposed (see for instance Heckman (1976, 1979), Hausman and Wise (1979), and Little

(1995)), identification requires an instrumental variable (IV) for sample selection (e.g. Das, Ne-

wey, and Vella (2003), Newey (2007), and Huber (2012, 2014b)).

In this paper, we combine the identification of average natural direct and indirect effects

based on sequential conditional independence with specific MAR or IV assumptions about sample

selection. We show under which conditions the parameters of interest in the total as well as the

selected population (whose outcomes are actually observed) are identified by inverse probability

weighting1 (IPW) based on particular propensity scores for treatment and selection. Under

MAR, effects in the total population are obtained through reweighing by the inverse of the

selection propensity given observed characteristics. If selection is related to unobservables, we

make use of a control function that can be regarded as a nonparametric version of the inverse

Mill’s ratio in Heckman-type selection models. Under specific conditions, reweighing observations

by the inverse of the selection propensity given observed characteristics and the control function

identifies the effects in the selected and the total population. To convey the intuition of our

identification results, we provide a brief simulation study, in which the finite sample properties

of semiparametric IPW estimation with probit-based propensity scores is investigated.

As an empirical illustration, we evaluate the average natural direct and indirect effects of

Program STAR, an educational experiment in Tennessee, U.S., which randomly assigned children

to small classes in kindergarten and primary school. The positive impact of STAR classes on

academic achievement has been demonstrated for example in Krueger (1999), but less is known

about the underlying causal mechanisms. We consider absenteeism in kindergarten as potential

mediator of the overall effect. The outcome of interest is the score on a standardized math test

in the first grade of primary school, which is unobserved for a non-negligible share of students in

1The idea of using inverse probability weighting to control for selection problems goes back to Horvitz and
Thompson (1952).
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the data due to attrition. We apply one of our proposed IPW-based estimators to account for

outcome attrition and compare the results to several alternative mediation estimators that make

no corrections for sample selection.

The remainder of this paper is organized as follows. Section 2 discusses the parameters of in-

terest, the assumptions, and the nonparametric identification results based on inverse probability

weighting. Section 3 outlines estimation based on the sample analogs of the identification results.

Section 4 presents a simulation study. Section 5 provides an application to Project STAR data.

Section 6 concludes.

2 Identification

2.1 Parameters of interest

We would like to disentangle the average treatment effect (ATE) of a binary treatment variable D

on an outcome variable Y into a direct effect and an indirect effect operating through the mediator

M , which has bounded support and may be a scalar or a vector and discrete and/or continuous.

To define the effects of interest, we use the potential outcome framework, see Rubin (1974),

which has been applied in the context of mediation analysis by Rubin (2004), Ten Have, Joffe,

Lynch, Brown, Maisto, and Beck (2007), and Albert (2008), among others. M(d), Y (d,M(d′))

denote the potential mediator state as a function of the treatment and potential outcome as

a function of the treatment and the potential mediator, respectively, under treatments d, d′ ∈

{0, 1}. Only one potential outcome and mediator state, respectively, is observed for each unit,

because the realized mediator and outcome values are M = D · M(1) + (1 − D) · M(0) and

Y = D · Y (1,M(1)) + (1−D) · Y (0,M(0)).

The ATE is given by ∆ = E[Y (1,M(1)) − Y (0,M(0))]. To disentangle the latter, note

that the (average) natural direct effect (using the denomination of Pearl (2001))2 is identified

2Robins and Greenland (1992) and Robins (2003) refer to this parameter as the total or pure direct effect and
Flores and Flores-Lagunes (2009) as net average treatment effect.
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by exogenously varying the treatment but keeping the mediator fixed at its potential value for

D = d:

θ(d) = E[Y (1,M(d))− Y (0,M(d))], d ∈ {0, 1}, (1)

Equivalently, by exogenously shifting the mediator to its potential values under treatment and

non-treatment but keeping the treatment fixed at D = d, the (average) natural indirect effect3 is

obtained:

δ(d) = E[Y (d,M(1))− Y (d,M(0))], d ∈ {0, 1}. (2)

The ATE is the sum of the direct and indirect effects defined upon opposite treatment states:

∆ = E[Y (1,M(1))− Y (0,M(0))]

= E[Y (1,M(1))− Y (0,M(1))] + E[Y (0,M(1))− Y (0,M(0))] = θ(1) + δ(0)

= E[Y (1,M(0))− Y (0,M(0))] + E[Y (1,M(1))− Y (1,M(0))] = θ(0) + δ(1). (3)

This follows from adding and subtracting E[Y (0,M(1))] or E[Y (1,M(0))], respectively. The no-

tation θ(1), θ(0) and δ(1), δ(0) points to possible effect heterogeneity w.r.t. the potential treat-

ment state, implying the presence of interaction effects between the treatment and the mediator.

However, the effects cannot be identified without further assumptions, as either Y (1,M(1)) or

Y (0,M(0)) is observed for any unit, whereas Y (1,M(0)) and Y (0,M(1)) are never observed.

In contrast to natural effects, which are functions of the potential mediators, the so-called

controlled direct effect is obtained by setting the mediator to a predetermined value m, rather

than M(d):

γ(m) = E[Y (1,m)− Y (0,m)], m in the support of M. (4)

3Robins and Greenland (1992) and Robins (2003) refer to this parameter as the total or pure indirect effect and
Flores and Flores-Lagunes (2009) as mechanism average treatment effect.
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Whether θ(d) or γ(m) is of primary interest depends on the research question at hand. The

controlled direct effect may provide policy guidance whenever mediators can be externally

prescribed, as for instance in a sequence of active labor market programs assigned by a

caseworker, where D and M denotes assignment of the first and second program, respectively.

This allows analysing the direct effect of the first program under alternative combinations of

program prescriptions. In contrast, the natural direct effect assesses the effectiveness of the

first program given the status quo decision to participate in the second program in the light

of participation or non-participation in the first program. We refer to Pearl (2001) for further

discussion of what he calls the descriptive and prescriptive natures of natural and controlled

effects.

Our identification results will make use of a vector of observed covariates, denoted by X,

that may confound the causal relations between D and M , D and Y , and M and Y . A further

complication in our evaluation framework is that Y is assumed to be observed for a subpopulation,

i.e. conditional on S = 1, where S is a binary variable indicating whether Y is observed/selected,

or not. We therefore also define the direct and indirect effects among the selected population:

θS=1(d) = E[Y (1,M(d))− Y (0,M(d))|S = 1], δS=1(d) = E[Y (d,M(1))− Y (d,M(0))|S = 1],

γS=1(m) = E[Y (1,m)− Y (0,m)|S = 1].

Empirical examples with partially observed outcomes include wage regressions, with S being an

employment indicator, see for instance Gronau (1974), or the evaluation of the effects of policy

interventions in education on test scores, with S being participation in the test, see Angrist,

Bettinger, and Kremer (2006). Throughout our discussion, S is allowed to be a function of D,

M , and X, i.e. S = S(D,M,X). However, S must neither be affected by nor affect Y .4 S is

therefore not a mediator, as selection per se does not causally influence the outcome. An example

4See for instance Imai (2009) for an alternative set of restrictions, assuming that selection is related to the
outcome but is independent of the treatment conditional on the outcome and other observable variables.
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for such a set up in terms of nonparametric structural models is given by

Y = φ(D,M,X,U), S = ψ(D,M,X, V ), (5)

where U, V are unobserved characteristics and φ, ψ are general functions.5

2.2 Assumptions and identification results under MAR

This section presents identifying assumptions that formalize the sequential conditional indepen-

dence of D and M as imposed by Imai, Keele, and Yamamoto (2010) and many others as well as

a MAR restriction on Y that implies that S is related to observables.6

Assumption 1 (conditional independence of the treatment):

(a) Y (d,m)⊥D|X = x, (b) M(d′)⊥D|X = x for all d, d′ ∈ {0, 1} and m in the support of M .

By Assumption 1, there are no unobservables jointly affecting the treatment, on the one hand,

and the mediator and/or the outcome, on the other hand, conditional on X. In observational

studies, the plausibility of this assumption crucially hinges on the richness of the data, while in

experiments, it is satisfied if the treatment is randomized within strata defined by X or rando-

mized independently of X.7

Assumption 2 (conditional independence of the mediator):

Y (d,m)⊥M |D = d′, X = x for all d, d′ ∈ {0, 1} and m,x in the support of M,X.

By Assumption 2, there are no unobservables jointly affecting the mediator and the outcome con-

ditional on D and X. Assumption 2 only appears realistic if detailed information on possible

confounders of the mediator-outcome relation is available in the data (even in experiments with

random treatment assignment) and if post-treatment confounders of M and Y can be plausibly

5Note that Y (d,M(d′)) = φ(d,M(d′), X, U), which means that fixing the treatment and the potential mediator
yields the potential outcome.

6We implicitly also impose the Stable Unit Treatment Value Assumption (SUTVA, see Rubin, 1990), stating
that the potential mediators and outcomes for any individual are stable in the sense that their values do not depend
on the treatment allocations in the rest of the population.

7In the latter case, even the stronger condition {Y (d′,m),M(d), X}⊥D holds.
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ruled out when controlling for D and X.8

Assumption 3 (conditional independence of selection):

Y⊥S|D = d,M = m,X = x for all d ∈ {0, 1} and m,x in the support of M,X.

By Assumption 3, there are no unobservables jointly affecting selection and the outcome conditi-

onal on D,M,X, such that outcomes are are missing at random (MAR) in the denomination of

Rubin (1976). Put differently, selection is assumed to be selective w.r.t. observed characteristics

only.

Assumption 4 (common support):

(a) Pr(D = d|M = m,X = x) > 0 and (b) Pr(S = 1|D = d,M = m,X = x) > 0 for all d ∈ {0, 1}

and m,x in the support of M,X.

Assumption 4(a) is a common support restriction requiring that the conditional probability to

be treated given M,X, henceforth referred to as propensity score, is larger than zero in either

treatment state. It follows that Pr(D = d|X = x) > 0 must hold, too. By Bayes’ theorem, As-

sumption 4(a) implies that Pr(M = m|D = d,X = x) > 0, or in the case of M being continuous,

that the conditional density of M given D,X is larger than zero. Conditional on X, M must

not be deterministic in D, as otherwise identification fails due to the lack of comparable units

in terms of the mediator across treatment states. Assumption 4(b) requires that for any combi-

nation of D,M,X, the probability to be observed is larger than zero. Otherwise, the outcome

is not observed for some specific combinations of these variables implying yet another common

support issue.

Figure 1 illustrates the causal framework underlying our assumptions by means of a causal

graph, see for instance Pearl (1995), in which each arrow represents a potential causal effect.

Further (unobserved) variables that only affect one of the variables explicitly displayed in the

system are kept implicit. For instance, there may be unobservable variables U that affect the

8Several studies in the mediation literature discuss identification in the presence of post-treatment confounders
of the mediator that may themselves be affected by the treatment. See for instance Robins and Richardson (2010),
Albert and Nelson (2011), Tchetgen Tchetgen and VanderWeele (2014), Imai and Yamamoto (2011), and Huber
(2014a).
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Figure 1: Causal framework under MAR

outcome, but do not influence D, M , or S; otherwise, there would be confounding. Under

Assumptions 1 to 4, potential outcomes as well as direct and indirect effects in the total population

are identified based on weighting by the inverse of the treatment and selection propensity scores.

Theorem 1:

(i) Under Assumptions 1, 2, 3, and 4, for d ∈ {0, 1},

E[Y (d,M(1− d))] = E

[
Y · I{D = d} · S

Pr(D = d|M,X) · Pr(S = 1|D,M,X)
· Pr(D = 1− d|M,X)

Pr(D = 1− d|X)

]
,

E[Y (d,M(d))] = E

[
Y · I{D = d} · S

Pr(D = d|X) · Pr(S = 1|D,M,X)

]
. (6)

(ii) Under Assumptions 1(a), 2, 3, and 4, and M following a discrete distribution,

E[Y (d,m)] = E

[
Y · I{D = d} · I{M = m} · S

Pr(D = d|X) · Pr(M = m|D,X) · Pr(S = 1|D,M,X)

]
. (7)

Proof: See the appendix.
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Using the results of Theorem 1, it can be easily shown that the direct and indirect effects are

identified by

θ(d) = E

[(
Y ·D

Pr(D = 1|M,X)
− Y · (1−D)

1− Pr(D = 1|M,X)

)
· Pr(D = d|M,X) · S

Pr(D = d|X) · Pr(S = 1|D,M,X)

]
,

δ(d) = E

[
Y · I{D = d} · S

Pr(D = d|M,X) · Pr(S = 1|D,M,X)
·
(

Pr(D = 1|M,X)

Pr(D = 1|X)
− 1− Pr(D = 1|M,X)

1− Pr(D = 1|X)

)]
,

γ(m) = E

[(
Y ·D

Pr(D = 1|X)
− Y · (1−D)

1− Pr(D = 1|X)

)
· I{M = m} · S

Pr(M = m|D,X) · Pr(S = 1|D,M,X)

]
.

These expressions are related to the IPW-based identification in Huber (2014a) for the case with

no missing outcomes with the difference that here, multiplication by S/Pr(S = 1|D,M,X) is

included to account for sample selection. Furthermore, our results fit into the general framework of

Wooldridge (2002), who considers the IPW-based M-estimation of missing data models. Finally,

for the identification of γ(m), Assumption 1 can be relaxed to Assumption 1(a) because (in

contrast to θ(d), δ(d)) the distribution of the potential mediator M(d) need not be identified.

2.3 Assumptions and identification results under selection related to unob-

servables

In the following discussion, we consider the case that selection is related to both observables and

unobservables that are associated with the outcome. Assumptions 3 and 4 are therefore replaced.

Rather, we assume that an instrumental variable for S is available to tackle sample selection.

Assumption 5 (Instrument for selection):

(a) There exists an instrument Z that may be a function of D,M , i.e. Z = Z(D,M), is condi-

tionally correlated with S, i.e. E[Z · S|D,M,X] 6= 0, and satisfies (i) Y (d,m, z) = Y (d,m) and

(ii) {Y (d,m),M(d′)}⊥Z(d′′,m′)|X = x for all d, d′, d′′ ∈ {0, 1} and z,m,m′, x in the support of

Z,M,X,

(b) S = I{V ≤ Π(D,M,X,Z)}, where Π is a general function and V is a scalar (index of) unob-

servable(s) with a strictly monotonic cumulative distribution function conditional on X,

(c) V⊥(D,M,Z)|X.
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Assumption 5 no longer imposes the independence of Y and S given observed characteristics.

As the unobservable V in the selection equation is allowed to be associated with unobservables

affecting the outcome, Assumptions 1 and 2 generally do not hold conditional on S = 1 due to

the endogeneity of the post-treatment variable S. In fact, S = 1 implies that Π(D,M,X,Z) > V

such that conditional on X, the distribution of V generally differs across values of D,M . This

entails a violation of the sequential conditional independence assumptions on D,M given S = 1

if potential outcome distributions differ across values of V . We therefore require an instrumental

variable denoted by Z, which is allowed to be affected by D and M , but must not affect Y or be

associated with unobservables affecting M or Y conditional on X, as invoked in (5a).9 We apply

a control function approach based on this instrument,10 which requires further assumptions.

By the threshold crossing model postulated in 5(b), Pr(S = 1|D,M,X,Z) = Pr(V ≤

Π(D,M,X,Z)) = FV (Π(D,M,X,Z)), where FV (v) denotes the cumulative distribution function

of V evaluated at v. We will henceforth use the notation p(W ) = Pr(S = 1|D,M,X,Z) with

W = D,M,X,Z for the sake of brevity. Again by Assumption 5(b), the selection probability

p(W ) increases strictly monotonically in Π conditional on X, such that there is a one-to-one

correspondence between the distribution function FV and specific values v given X. For X

fixed, the identification of FV by p(W ) is ‘as good as good as’ identifying V . By Assumption

5(c), V is independent of (D,M,Z) given X, implying that the distribution function of V

given X is (nonparametrically) identified. Figure 2 illustrates the causal framework underlying

Assumptions 1, 2, and 5 by means of a causal graph.

By comparing individuals with the same p(W ), we control for FV and thus for the confounding

associations of V with (i) D and {Y (d,m),M(d′)} and (ii) M and Y (d,m) that occur conditional

on S = 1. In other words, p(W ) serves as control function where the exogenous variation comes

9As an alternative set of IV restrictions in the context of selection, d’Haultfoeuille (2010) permits the instrument
to be associated with the outcome, but assumes conditional independence of the instrument and selection given
the outcome.

10Control function approaches have been applied in semi- and nonparametric sample selection models, e.g. Ahn
and Powell (1993), Das, Newey, and Vella (2003), Newey (2007), and and Huber (2012, 2014b) as well as in
nonparametric instrumental variable models, see for example Newey, Powell, and Vella (1999), Blundell and Powell
(2004), and Imbens and Newey (2009).
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Figure 2: Causal framework under selection on unobservables

from Z. More concisely, it follows from our assumptions for any bounded function g that

E [g(Y (d,m))|D,M,X, p(W ), S = 1] = E [g(Y (d,m))|D,M,X,FV , S = 1]

= E [g(Y (d,m))|D,X,FV , S = 1] = E [g(Y (d,m))|X,FV , S = 1] .

The first equality follows from p(W ) = FV under Assumption 5, the second from the fact that

when controlling for FV , conditioning on S = 1 does not result in an association between Y (d,m)

and M given D,X such that Y (d,m)⊥M |D,X, p(W ), S = 1 holds by Assumptions 2 and 5. The

third equality follows from the fact that when controlling for FV , conditioning on S = 1 does not

result in an association between Y (d,m) and D given X such that Y (d,m)⊥D|X, p(W ), S = 1

holds by Assumptions 1 and 5. Similarly,

E [g(M(d))|D,X, p(W ), S = 1] = E [g(M(d))|D,X,FV , S = 1] = E [g(M(d))|X,FV , S = 1]

follows from the fact that when controlling for FV , conditioning on S = 1 does not result in an

association between M(d) and D given X such that M(d)⊥D|X, p(W ), S = 1 holds by Assump-

tions 1 and 5. These results will be useful in the proofs of Theorems 2 and 3, see Appendix A.2.

Furthermore, identification requires the following common support assumption, which is

similar to Assumption 4(a), but in contrast to the latter also includes p(W ) as a conditioning
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variable.

Assumption 6 (common support):

Pr(D = d|M = m,X = x, p(W ) = p(w), S = 1) > 0 for all d ∈ {0, 1} and m,x, z in the support

of M,X,Z.

By Bayes’ theorem, Assumption 6 implies that the conditional density of p(W ) = p(w) given

D,M,X, S = 1 is larger than zero. This means that in fully nonparametric contexts, the

instrument Z must in general be continuous and strong enough to importantly shift the selection

probability p(W ) conditional on D,M,X in the selected population. Assumptions 1, 2, 5, and

6 are sufficient for the identification of mean potential outcomes as well as direct and indirect

effects in the selected population.

Theorem 2:

(i) Under Assumptions 1, 2, 5, and 6 for d ∈ {0, 1},

E[Y (d,M(1− d))|S = 1] = E

[
Y · I{D = d}

Pr(D = d|M,X, p(W ))
· Pr(D = 1− d|M,X, p(W ))

Pr(D = 1− d|X, p(W ))

∣∣∣∣S = 1

]
,

E[Y (d,M(d))|S = 1] = E

[
Y · I{D = d}

Pr(D = d|X, p(W ))

∣∣∣∣S = 1

]
. (8)

(ii) Under Assumptions 1(a), 2, 5, and 6, and M following a discrete distribution,

E[Y (d,m)|S = 1] = E

[
Y · I{D = d} · I{M = m}

Pr(D = d|X, p(W )) · Pr(M = m|D,X, p(W ))

∣∣∣∣S = 1

]
. (9)

Proof: See the appendix.

Therefore, the direct and indirect effects are identified by

θS=1(d) = E

[(
Y ·D

Pr(D = 1|M,X, p(W ))
− Y · (1−D)

1− Pr(D = 1|M,X, p(W ))

)
· Pr(D = d|M,X, p(W ))

Pr(D = d|X, p(W ))

∣∣∣∣S = 1

]
,

δS=1(d) = E

[
Y · I{D = d}

Pr(D = d|M,X, p(W ))
·
(

Pr(D = 1|M,X, p(W ))

Pr(D = 1|X, p(W ))
− 1− Pr(D = 1|M,X, p(W ))

1− Pr(D = 1|X, p(W ))

) ∣∣∣∣S = 1

]
,

γS=1(m) = E

[(
Y ·D

Pr(D = 1|X, p(W ))
− Y · (1−D)

1− Pr(D = 1|X, p(W ))

)
· I{M = m}

Pr(M = m|D,X, p(W ))

∣∣∣∣S = 1

]
.

In nonparametric models that allow for general forms of effect heterogeneity related to

unobservables, direct and indirect effects can generally only be identified among the selected
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population. The reason is that effects among selected observations cannot be extrapolated to

the non-selected population if the effects of D and M interact with unobservables that are

distributed differently across S = 1, 0. The identification of effects in the total population

therefore requires additional assumptions. In Assumption 7 below, we impose homogeneity

in the direct and indirect effects across selected and non-selected populations conditional

on X,V . A sufficient condition for effect homogeneity is the separability of observed and

unobserved components in the outcome variable, i.e. Y = η(D,M,X) + ν(U), where η, ν are

general functions and U is a scalar or vector of unobservables. Furthermore, common support

as postulated in Assumption 6 needs to be strengthened to hold in the entire population. In

addition, the selection probability p(w) must be larger than zero for any w in the support of

W ; otherwise, outcomes are not observed for some values of D,M,X. Assumption 8 formalizes

these common support restrictions.

Assumption 7 (conditional effect homogeneity):

E[Y (1,m) − Y (0,m)|X = x, V = v, S = 1] = E[Y (1,m) − Y (0,m)|X = x, V = v] and

E[Y (d,M(1)) − Y (d,M(0))|X = x, V = v, S = 1] = E[Y (d,M(1)) − Y (d,M(0))|X = x, V = v],

for all d ∈ {0, 1} and m,x, v in the support of M,X, V .

Assumption 8 (common support):

(a) Pr(D = d|M = m,X = x, p(W ) = p(w)) > 0 and (b) p(w) > 0 for all d ∈ {0, 1} and m,x, z

in the support of M,X,Z.

While the mean potential outcomes in the total population remain unknown even under

Assumptions 7 and 8, the effects of interest are nevertheless identified by the separability of U .

Theorem 3:

(i) Under Assumptions 1, 2, 5, 6, 7, and 8 for d ∈ {0, 1},

θ(d) = E

[(
Y ·D

Pr(D = 1|M,X, p(W ))
− Y · (1−D)

1− Pr(D = 1|M,X, p(W ))

)
· Pr(D = d|M,X, p(W )) · S

Pr(D = d|X, p(W )) · p(W )

]
(10)

δ(d) = E

[
Y · I{D = d} · S

Pr(D = d|M,X, p(W )) · p(W )
·
(

Pr(D = 1|M,X, p(W ))

Pr(D = 1|X, p(W ))
− 1− Pr(D = 1|M,X, p(W ))

1− Pr(D = 1|X, p(W ))

)]
.
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(ii) Under Assumptions 1(a), 2, 5, 6, 7, and 8, and M following a discrete distribution,

γ(m) = E

[(
Y ·D

Pr(D = 1|X, p(W ))
− Y · (1−D)

1− Pr(D = 1|X, p(W ))

)
· I{M = m} · S

Pr(M = m|D,X, p(W )) · p(W )

]
.

(11)

Proof: See the appendix.

2.4 Extensions to further populations, parameters, and variable distributions

This section briefly sketches how the identification results can be extended to further populati-

ons of interest, policy-relevant parameters, and richer distributions of the treatment and/or the

mediator. First and in analogy to the concept of weighted treatment effects in Hirano, Imbens,

and Ridder (2003), direct and indirect effects can be identified for particular target populations

by reweighing observations according to the distribution of X in the target population. To this

end, we define ω(X) to be a well-behaved weighting function depending on X. Including ω(X)
E[ω(X)]

in the expectation operators presented in the theorems above yields the parameters of interest

for the target population. As an important example, consider ω(X) = Pr(D = 1|X). For some

well-behaved function f(Y,D,M, S,X,Z) of the observed data,

E
[

ω(X)
E[ω(X)] · f(Y,D,M, S,X,Z)

]
= E

[
Pr(D=1|X)

Pr(D=1) · f(Y,D,M, S,X,Z)
]

(12)

= E
[

Pr(D=1|X)
Pr(D=1) · f(Y,D,M, S,X,Z)

]
= E [f(Y,D,M, S,X,Z)|D = 1] ,

i.e. the expected value of that function among the treated is identified. Likewise, defining ω(X) =

1− Pr(D = 1|X) gives the expected value among the non-treated. Any of the expressions in the

expectation operators of the theorems may serve as f(Y,D,M, S,X,Z) in (12).11

11For instance, the weighted versions of the parameters identified in Theorem 1 correspond to

Eω[Y (d,M(1− d))] = E

[
ω(X)

E[ω(X)]
· Y · I{D = d} · S

Pr(D = d|M,X) · Pr(S = 1|D,M,X)
· Pr(D = 1− d|M,X)

Pr(D = 1− d|X)

]
,

Eω[Y (d,M(d))] = E

[
ω(X)

E[ω(X)]
· Y · I{D = d} · S

Pr(D = d|X) · Pr(S = 1|D,M,X)

]
,

Eω[Y (d,m)] = E

[
ω(X)

E[ω(X)]
· Y · I{D = d} · I{M = m} · S

Pr(D = d|X) · Pr(M = m|D,X) · Pr(S = 1|D,M,X)

]
.
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Second, the identification results may be extended to well-behaved functions of Y , rather than

Y itself. For instance, replacing Y by I{Y ≤ a}, the indicator function that Y is not larger than

some value a, everywhere in the theorems permits identifying distributional features or effects.

The inversion of potential outcome distribution functions allows identifying quantile treatment

effects.

Third, our framework can be adapted to allow for multiple or multivalued (rather than binary)

treatments. If D is multivalued discrete, the derived expressions may be applied under minor

adjustments. For instance, for any d 6= d′ in the discrete support of D, the expression for potential

outcomes in Theorem 1 becomes

E[Y (d,M(d′))] = E

[
Y · I{D = d} · S

Pr(D = d|M,X) · Pr(S = 1|D,M,X)
· Pr(D = d′|M,X)

Pr(D = d′|X)

]

under appropriate common support conditions. If D is continuous, any indicator functions for

treatment values, which are only appropriate in the presence of mass points, need to be replaced by

kernel functions, while treatment propensity scores need to be substituted by conditional density

functions. In analogy to Hsu, Huber, Lee, and Pipoz (2018), who consider mediation analysis with

continuous treatments in the absence of sample selection, the expression for potential outcomes

in Theorem 1 becomes

E[Y (d,M(d′))] = lim
h→0

E

[
Y · ω(D; d, h) · S

E[ω(D; d, h)|M,X] · Pr(S = 1|D,M,X)

× E[ω(D; d′, h)|M,X]

E[ω(D; d′, h)|X]

]
.

The weighting function ω(D; d) = K ((D − d)/h) /h, with K being a symmetric second order ker-

nel function assigning more weight to observations closer to d and h being a bandwidth opera-

tor. For h going to zero, i.e. limh→0, E[ω(D; d′, h)|X] and E[ω(D; d′, h)|M,X] correspond to the

conditional densities of D given X and given M,X, respectively, also known as generalized pr-

opensity scores. We refer to Hsu, Huber, Lee, and Pipoz (2018) for more discussion on direct

.
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and indirect effects of continuous treatments and how estimation may proceed based on genera-

lized propensity scores. We also note that in the context of controlled direct effects, such kernel

methods not only allow for a continuous treatment, but (contrarily to our theorems) also for a

continuous mediator.

3 Estimation

The parameters of interest can be estimated using the normalized versions of the sample analogs of

the IPW-based identification results in Section 2. This implies that the weights of the observations

used for the computation of mean potential outcomes add up to unity, as advocated in Imbens

(2004) and Busso, DiNardo, and McCrary (2009). For instance, the normalized sample analogs

of the results in Theorem 1, part (i) are given by

µ̂1,M(0) =
1

n

n∑
i=1

Yi ·Di · Si

p̂(Mi, Xi) · π̂(Di,Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)

/
1

n

n∑
i=1

Di · Si

p̂(Mi, Xi) · π̂(Di,Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
,

µ̂0,M(1) =
1

n

n∑
i=1

Yi · (1−Di) · Si

(1− p̂(Mi, Xi)) · π̂(Di,Mi, Xi)

p̂(Mi, Xi)

p̂(Xi)

/
1

n

n∑
i=1

(1−Di) · Si

(1− p̂(Mi, Xi)) · π̂(Di,Mi, Xi)

p̂(Mi, Xi)

p̂(Xi)
,

µ̂1,M(1) =
1

n

n∑
i=1

Yi ·Di · Si

p̂(Xi) · π̂(Di,Mi, Xi)

/
1

n

n∑
i=1

Di · Si

p̂(Xi) · π̂(Di,Mi, Xi)
,

µ̂0,M(0) =
1

n

n∑
i=1

Yi · (1−Di) · Si

(1− p̂(Xi)) · π̂(Di,Mi, Xi)

/
1

n

n∑
i=1

(1−Di) · Si

(1− p̂(Xi)) · π̂(Di,Mi, Xi)
.

i indexes observations in an i.i.d. sample of size n and µ̂d,M(d′) is an estimate of µd,M(d′) =

E[Y (d,M(d′))] with d, d′ ∈ {1, 0}. p̂(Mi, Xi), p̂(Xi) are estimates of the treatment propensity

scores Pr(D = 1|Mi, Xi), Pr(D = 1|Xi), respectively, while π̂(Di,Mi, Xi) is an estimate of the

selection propensity score Pr(S = 1|D,M,X). Direct and indirect effect estimates are obtained

by θ̂(d) = µ̂1,M(d) − µ̂0,M(d) and δ̂(d) = µ̂d,M(1) − µ̂d,M(0).

When propensity scores are estimated parametrically, e.g. based on probit models as in the

simulations and application below, then µ̂d,M(d′), θ̂(d), δ̂(d) satisfy the sequential GMM frame-

work discussed in Newey (1984), with propensity score estimation representing the first step and

parameter estimation the second step. This approach is
√
n-consistent and asymptotically nor-
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mal under standard regularity conditions. When the propensity scores are estimated nonpara-

metrically,
√
n-consistency and asymptotic normality can be obtained if the first step estimators

satisfy particular regularity conditions. See Hsu, Huber, and Lai (2018), who consider series logit

estimation of the propensity scores, however, for the case without sample selection. Furthermore,

the bootstrap is consistent for inference as the proposed IPW estimators are smooth and asymp-

totically normal.

4 Simulation study

This section provides a brief simulation study, in which we investigate the finite sample properties

of estimation of natural direct and indirect effects based on the sample analogs of Theorems 1 to

3. To this end, the following data generating process is considered:

Y = 0.5D +M + 0.5DM +X − αDU + U, Y is observed if S = 1,

S = I{0.5D − 0.5M + 0.25X + Z + V > 0},

M = 0.5D + 0.5X +W, D = I{0.5X +Q > 0}, Z = 0.25X − 0.25M +R,

X,U, V,W,Q,R ∼ N (0, 1), independently of each other.

The outcome Y is a linear function of the observed variables D,M,X and an unobserved term

U , and is only observed if the selection indicator S – which depends on D,M,X, an instrument

Z, and an unobservable V – is equal to one. α gauges the interaction of D and U in the

outcome equation. For α 6= 0, the treatment effect is heterogeneous in U such that Assumption

7 is violated. W and R denote the unobservables in the linearly modelled mediator M and

instrument Z, respectively. Any unobservable as well as the observed covariate X are standard

normally distributed independent of each other. In this framework, the assumptions underlying

Theorem 1 are satisfied.
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We run 5,000 Monte Carlo simulations with sample sizes n = 1000, 4000 and consider

estimation of the natural direct and indirect effects in the total population (θ(d), δ(d)) based

on three different estimators: (i) normalized IPW as suggested in Huber (2014a) among the

selected (‘IPW w. S = 1’) that controls for X but ignores selection bias, (ii) normalized IPW

based on Theorem 1 assuming MAR (‘IPW MAR’), and (iii) normalized IPW based on Theorem

3 (‘IPW IV’). We estimate the treatment and selection propensity scores by probit and apply a

trimming rule that discards observations with p̂(M,X) smaller than 0.05 or larger than 0.95 or

with π̂(D,M,X) smaller than 0.05 to prevent exploding weights due to small denominators.

Trimming hardly affects IPW estimator (i), but reduces the variance of estimation based on

Theorems 1 and 3 in several cases.

Table 1: Simulations under selection on observables, total population

θ̂(1) θ̂(0) δ̂(1) δ̂(0)
bias std rmse bias std rmse bias std rmse bias std rmse

α = 0.25, n = 1000

IPW w. S = 1 -0.16 0.14 0.21 -0.17 0.16 0.23 -0.01 0.15 0.15 -0.02 0.11 0.12
IPW MAR 0.03 0.28 0.28 0.01 0.20 0.20 -0.03 0.13 0.14 -0.05 0.14 0.15

IPW IV -0.01 0.30 0.30 -0.02 0.31 0.31 -0.02 0.18 0.18 -0.03 0.15 0.15

α = 0.25, n = 4000

IPW w. S = 1 -0.16 0.07 0.18 -0.17 0.08 0.19 0.00 0.08 0.08 -0.01 0.06 0.06
IPW MAR 0.01 0.15 0.15 0.01 0.10 0.10 -0.02 0.07 0.07 -0.03 0.08 0.09

IPW IV -0.01 0.15 0.15 -0.02 0.16 0.16 -0.01 0.09 0.09 -0.02 0.08 0.08

Note: ‘std’ and ‘rmse’ report the standard deviation and root mean squared error, respectively.

Table 1 reports the simulations results under α = 0.25,12 namely the bias, standard deviation

(std), and the root mean squared error (RMSE) of the various estimators for the natural direct and

indirect effects in the total population. Ignoring selection (IPW w. S = 1) yields biased estimates

of the direct effects under either sample size, while biases are generally small for estimation based

on Theorem 1. Interestingly, the latter result also holds for estimation related to Theorem 3,

where the selection process accounts for the same observed factors as under the correct MAR

assumption, plus the control function. Even though including the control function is not required

for consistency, it does not jeopardize identification either, even if Assumption 7 requiring α = 0

12Results are very similar when α = 0 and therefore omitted.
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is not satisfied,13 as reflected in the low biases. However, accounting for this unnecessary variable

entails an increase of the standard deviation in some cases. In general, the estimators based on

Theorems 1 and 3 are (due to the estimation of the sample selection propensity score) less precise

than IPW without selection correction in the selected sample. The proposed methods become

relatively more competitive in terms of the RMSE as the sample size increases and gains in bias

reduction become relatively more important compared to losses in precision.

As a modification to our initial setup, we introduce a correlation between U and V , which

implies that the assumptions underlying Theorem 1 no longer hold, while those of Theorem 2 are

satisfied and those of Theorem 3 are satisfied when α = 0: U

V

 ∼ N (µ,Σ), where µ =

 0

0

 and Σ =

 1 0.8

0.8 1



Table 2: Simulations with selection on unobservables, total population

θ̂(1) θ̂(0) δ̂(1) δ̂(0)
bias std rmse bias std rmse bias std rmse bias std rmse

α = 0, n = 1000

IPW w. S = 1 -0.28 0.13 0.31 -0.27 0.16 0.32 0.07 0.16 0.18 0.07 0.12 0.14
IPW MAR (Theorem 1) -0.09 0.30 0.31 -0.11 0.21 0.24 0.06 0.14 0.15 0.04 0.15 0.16

IPW IV (Theorem 3) 0.02 0.32 0.32 -0.01 0.31 0.31 -0.02 0.18 0.18 -0.05 0.16 0.16

α = 0, n = 4000

IPW w. S = 1 -0.28 0.07 0.29 -0.28 0.08 0.29 0.08 0.08 0.12 0.09 0.06 0.11
IPW MAR (Theorem 1) -0.11 0.16 0.20 -0.11 0.10 0.15 0.06 0.07 0.09 0.06 0.09 0.11

IPW IV (Theorem 3) 0.01 0.17 0.17 -0.01 0.16 0.16 -0.02 0.09 0.09 -0.04 0.08 0.09

α = 0.25, n = 1000

IPW w. S = 1 -0.37 0.13 0.39 -0.35 0.15 0.38 0.05 0.16 0.16 0.07 0.12 0.14
IPW MAR (Theorem 1) -0.20 0.30 0.36 -0.20 0.21 0.28 0.03 0.14 0.14 0.04 0.15 0.16

IPW IV (Theorem 3) -0.14 0.32 0.34 -0.16 0.31 0.35 -0.02 0.18 0.18 -0.05 0.16 0.16

α = 0.25, n = 4000

IPW w. S = 1 -0.38 0.07 0.38 -0.36 0.08 0.36 0.06 0.08 0.10 0.09 0.06 0.11
IPW MAR (Theorem 1) -0.22 0.16 0.27 -0.20 0.10 0.22 0.04 0.07 0.08 0.06 0.09 0.11

IPW IV (Theorem 3) -0.14 0.16 0.22 -0.16 0.16 0.23 -0.01 0.09 0.09 -0.04 0.08 0.09

Note: ‘std’ and ‘rmse’ report the standard deviation and root mean squared error, respectively.

13Note that in spite of α = 0.25, estimation based on (the incorrect) Theorem 3 is consistent because the
distribution of U is not associated with S conditional on D,M,X.
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Table 2 reports the results for the estimation of natural effects in the total population under

α = 0 and 0.25 using the same methods as before. Non-negligible biases occur not only when

ignoring sample selection (‘IPW w. S = 1’), but also when selection is assumed to be related to

observables only (IPW MAR). When α = 0, estimation based on Theorem 3 (IPW IV) is close to

being unbiased and dominates the other methods in terms of RMSE under the larger sample size

(n = 4000). When α = 0.25, however, also the latter approach is biased due to the violation of

Assumption 7. Therefore, Table 3 considers the estimation of natural effects among the selected

population only (θS=1(d), δS=1(1)) in the presence of the D-U -interaction effect. We investigate

the performance of estimation based on Theorem 2 (‘IPW IV w. S = 1’), as well as of IPW among

the selected ignoring selection. While the latter approach is biased, the former is close to being

unbiased, but less precise. Under the larger sample size, our approach dominates both in terms

of unbiasedness and RMSE.14

Table 3: Simulations with selection on unobservables, selected population (S = 1)

θ̂S=1(1) θ̂S=1(0) δ̂S=1(1) δ̂S=1(0)
bias std rmse bias std rmse bias std rmse bias std rmse

α = 0.25, n = 1000

IPW w. S = 1 -0.11 0.13 0.17 -0.09 0.15 0.17 0.05 0.16 0.16 0.07 0.12 0.14
IPW IV w. S = 1 (Theorem 2) 0.00 0.21 0.21 -0.03 0.23 0.23 0.02 0.17 0.17 -0.01 0.12 0.12

α = 0.25, n = 4000

IPW w. S = 1 -0.12 0.07 0.14 -0.10 0.08 0.12 0.06 0.08 0.10 0.09 0.06 0.11
IPW IV w. S = 1 (Theorem 2) 0.01 0.10 0.10 -0.02 0.11 0.12 0.03 0.08 0.08 -0.00 0.06 0.06

Note: ‘std’ and ‘rmse’ report the standard deviation and root mean squared error, respectively.

5 Empirical Application

This section illustrates the evaluation of direct and indirect treatment effects in the presence

of sample selection using data from Project STAR (Student-Teacher Achievement Ratio), an

educational experiment conducted from 1985 to 1989 in Tennessee, USA. In the experiment,

a cohort of students entering kindergarten and their teachers were randomly assigned within

their school to one of three class types: small (13 – 17 students), regular (22 – 26 students), or

14Results are very similar when setting α = 0 and therefore omitted.
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regular with an additional teacher’s aid. Students were supposed to remain in the assigned class

type through third grade, returning to regular classes afterwards. The goal of Project STAR

was investigating the impact of class size on academic achievement measured by standardized

and curriculum-based tests in mathematics, reading, and basic study skills. Numerous studies

found positive effects of reduced class size on academic performance both short- (Folger and Breda

(1989), Finn and Achilles (1990), Krueger (1999)), mid- (Finn, Fulton, Zaharias, and Nye (1989)),

long-term (Nye, Hedges, and Konstantopoulos (2001), Krueger and Whitmore (2001)), and even

on later-life outcomes (Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan (2011)). While

benefits of small class size are well documented, the causal mechanisms underlying the effect

are less well-understood. Finn and Achilles (1990) argue that the impact is likely driven by

classroom processes related to higher teacher morale and satisfaction translated to students,

increased teacher-student interactions and time for individual attention, and student involvement

in learning activities.

We investigate whether the effect of reduced class size on academic performance is mediated

by the number of days absent from school. There might be several explanations for why class

size affects days of absence. A smaller concentration of children in a classroom may be related

to reduced transmission of infectious diseases and hence absenteeism.15 Increased student invol-

vement and closer teacher-student relationships in smaller classes may represent further channels

making children and their parents more engaged and less likely to miss classes. As for the link

between school absence and academic performance, a number of studies demonstrated a negative

association between the two, see for instance Gershenson, Jacknowitz, and Brannegan (2017),

Gottfried (2009), and Morrissey, Hutchison, and Winsler (2014).

We compare results using the IPW MAR estimator (‘IPW MAR’ in Table 5) based on

Theorem 1 (relying on Assumptions 1 through 4) in Section 2 to three previously considered

15Odongo, Wakhungu, and Stanley (2017) find a positive correlation between school size and communicable
disease prevalence rates in Kenya. We are, however, not aware of any such study considering class (rather than
school) size.
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mediation estimators that ignore sample selection:16 (i) a linear mediation estimator allowing for

treatment-mediator interactions but neither accounting for observed pre-treatment confounders,

nor selection, which is numerically equivalent to the decomposition of Blinder (1973) and Oaxaca

(1973) (‘Lin w. S = 1, no X’);17 (ii) a semiparametric IPW-based analog of the linear mediation

estimator not accounting for confounding also considered in Huber (2015) (‘IPW w. S = 1, no

X’); and (iii) the IPW estimator suggested in Huber (2014a) that incorporates observed pre-

treatment covariates X but ignores sample selection when estimating the effect for the total

population (‘IPW w. S = 1’). We apply the same trimming rule as in the simulations presented

in Section 4, which discards observations with treatment propensity scores p̂(M,X) smaller than

0.05 or larger than 0.95 or with π̂(D,M,X) smaller than 0.05. However, no observations are

dropped for any IPW method as such extreme propensity scores do not occur in our sample.

The treatment (D) is a binary indicator which is one if a child entering kindergarten was

enrolled in a small class and zero otherwise.18 The outcome (Y ) is the first grade score in

the Stanford Achievement Test (SAT) in mathematics. For IPW MAR estimation, a selection

indicator S for missing outcomes is generated and all observations in our evaluation sample are

preserved, such that effects are estimated for the entire population. In the case of the remaining

three estimators, the evaluation is based on the data with non-missing Y , such that estimation

relies on the selected sample only. The mediator (M) is the number of days a child was absent

during the kindergarten year. Observed covariates (X) consist of child’s race, gender, year of

birth, and free lunch status as a proxy for socio-economic status. They are controlled for in the

‘IPW w. S = 1’ and ‘IPW MAR’ estimators. Even if these variables are initially balanced due to

the random assignment of D, they might confound M and Y , implying that they are imbalanced

when conditioning on the mediator for estimating direct and indirect effects.19

16We do not consider IPW IV estimation based on Theorems 2 and 3, as our data do not contain credible
instruments.

17See Huber (2015) on the equivalence of conventional wage gap decompositions and a simple mediation model.
18Following Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan (2011), we consider regular class size with

and without additional teaching aid to be one treatment.
19For example, Ready (2010) reports a stronger negative impact of absenteeism on early literacy outcomes

for students with lower socioeconomic status, which implies that socioeconomic status and absenteeism interact in
explaining the outcome. If socioeconomic status in addition affects absenteeism, it is a confounder of the association
between absenteeism and the literacy outcomes.
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We restrict the initial sample of 11,601 children to 6,325 observations who were part of Project

STAR in kindergarten such that their treatment status was observed.20 About 30% of participants

in the kindergarten year were randomized into small classes. Table 4 presents summary statistics

for the variables included in our empirical illustration for individuals without any missing values

in the covariates. It shows a positive and statistically significant association between reduced class

size and the average score in the standardized math test. Furthermore, children in small classes

are, on average, about 0.7 days less absent and this difference is significant at the 5% level. There

are no statistically significant differences in students’ gender, race,21 and free lunch status across

treatment states due to treatment randomization. The sample is not perfectly balanced in terms

of students’ years of birth: children born in 1978 and 1980 are less likely to be in small classes

(differences are statistically significant at the 1 and 10% levels, respectively), while those born

in 1979 are more likely to be in small classes (significant at the 5% level). There is substantial

attrition: math SAT scores in the first grade are observed for only 70% of program participants

in the kindergarten year. The number of missing values in other key variables is much smaller.

In the estimations, observations with missing values in M or X are dropped, which concerns all

in all 83 cases, or about 1% of the sample.

Table 5 provides point estimates (‘est.’), cluster-robust standard errors (‘s.e.’) based on

blockbootstrapping the effects 1,999 times, and p-values for the total treatment effect, as well

as natural direct and indirect effects under treatment and non-treatment (θ̂(1), θ̂(0), δ̂(1), δ̂(0))

for the four estimators. The total average effect of small class assignment is very similar across

all methods and highly statistically significant, amounting to an increase of almost 10 points.

Furthermore, we find that if anything, the contribution of the indirect effects due to reduced days

of absence is positive, but rather modest, ranging 0.18 to 0.99 points across different methods

and treatment states. The IPW MAR estimator yields the largest indirect effects (amounting

to 3 – 11% of the total effect), and the indirect effect on the non-treated group is statistically

205,276 students joined the program in subsequent years. About 2,200 entered the experiment in the first grade,
1,600 in the second and 1,200 in the third grade.

21Less than 1% of students in the sample are Asian, Hispanic, Native American or other race. In our analysis,
they are included in one group with black students.
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Table 4: Mean covariate values by treatment status

Variable Total d = 0 d = 1 Difference p-value

Student’s gender: male 0.51 0.51 0.51 0.00 0.96
[0.50] [0.50] [0.50] (0.01)

Student’s race: white 0.67 0.67 0.68 0.01 0.42
[0.47] [0.47] [0.47] (0.02)

Free lunch 0.48 0.49 0.47 -0.02 0.25
[0.50] [0.50] [0.50] (0.02)

Born 1978 0.01 0.01 0.00 -0.01 0.00
[0.08] [0.09] [0.05] (0.00)

Born 1979 0.23 0.22 0.25 0.03 0.04
[0.42] [0.42] [0.43] (0.01)

Born 1980 0.76 0.77 0.74 -0.02 0.09
[0.43] [0.42] [0.44] (0.01)

Born 1981 0.00 0.00 0.00 0.00 0.87
[0.03] [0.03] [0.03] (0.00)

Kindergarten days absent 10.51 10.72 10.01 -0.71 0.02
[9.76] [9.95] [9.29] (0.31)

Math SAT grade 1 534.54 531.52 541.25 9.73 0.00
[43.83] [42.92] [45.10] (2.14)

Note: Standard deviations are in squared brackets. Cluster-robust standard errors are in parentheses.

significant at the 10% level. It is thus the direct effects, which are highly statistically significant

for any method, that mostly drive the total effect. IPW MAR yields direct effect estimates of

8.52 points under treatment and 7.75 points under non-treatment, which is slightly smaller than

those of the other estimators exploiting the subsample with non-missing outcomes only (ranging

from 9.01 to 9.55 points under treatment and from 8.77 to 9.55 points under non-treatment). We

therefore conclude that causal mechanisms not observed in the data (possibly including teacher

motivation and individual teacher-student interaction) and entering the direct effect are much

more important than absenteeism for explaining the effect of small kindergarten classes on math

performance.

Table 5: Effects of small class size in kindergarten on the math SAT in grade 1

Total effect θ̂(1) θ̂(0) δ̂(1) δ̂(0)
est. s.e. p-val est. s.e. p-val est. s.e. p-val est. s.e. p-val est. s.e. p-val

IPW MAR 8.74 2.37 0.00 8.52 2.36 0.00 7.75 2.70 0.00 0.99 0.79 0.21 0.23 0.13 0.09
Lin w. S = 1, no X 9.73 2.16 0.00 9.46 2.17 0.00 9.55 2.15 0.00 0.27 0.18 0.12 0.18 0.13 0.16

IPW w. S = 1, no X 9.73 2.16 0.00 9.55 2.15 0.00 9.43 2.18 0.00 0.30 0.21 0.16 0.18 0.13 0.15
IPW w. S = 1 9.20 2.14 0.00 9.01 2.14 0.00 8.77 2.19 0.00 0.43 0.32 0.18 0.19 0.14 0.18

Note: Cluster-robust standard errors (‘s.e.’) and p-values (‘p-val’) for the point estimates (‘est.’) are obtained by

bootstrapping the latter 1,999 times.
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6 Conclusion

In this paper, we proposed an approach for disentangling a total causal effect into a direct

component and a indirect effect operating through a mediator in the presence of outcome

attrition or sample selection. To this end, we combined sequential conditional independence

assumptions about the assignment of the treatment and the mediator with either selection on

observables/missing at random or instrumental variable assumptions on the outcome attrition

process. We demonstrated the identification of the parameters of interest based on inverse

probability weighting by specific treatment, mediator, and/or selection propensity scores and

outlined estimation based on the sample analogs of these results. We also provided a brief

simulation study and an empirical illustration based on the Project STAR experiment in the

U.S. to evaluate the direct and indirect effects of small classes in kindergarten on math test

scores in first grade.
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A Appendix

A.1 Proof of Theorem 1
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Y · I{D = d} · S
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[E [Y (d,M(1− d))|X = x]]

]
= E[Y (d,M(1− d))].

Note that E
A|B=b

[C] denotes the expectation of C taken over the distribution of A conditional on B = b. The first equality follows from the

law of iterated expectations, the second and third from basic probability theory, the fourth from Bayes’ theorem, the fifth from Assumption 3,

the sixth from the observational rule (implying for instance that Y given D = d and M = m is Y (d,m)), the seventh from Assumption 2, the

eighth from Assumption 1, the ninth from Assumption 2, the tenth from Assumption 1, which implies that Y (d,m)⊥D|M(1− d) = m,X = x,

and the last from the law of iterated expectations.
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The first, third, sixth, and ninth equalities follow from the law of iterated expectations, the second and fourth from basic probability theory,

the fifth from Assumption 3, the seventh from the observational rule, and the eighth from Assumption 1.
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The first and seventh equalities follow from the law of iterated expectations, the second from basic probability theory, the third from Assumption

3, the fourth from the observational rule, the fifth from Assumption 2, and the sixth from Assumption 1.

A.2 Proof of Theorem 2
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The first equality follows from the law of iterated expectations, the second from basic probability theory, the third from Bayes’ theorem and

the observational rule, the fourth from Assumptions 2 and 5 (which imply Y (d,m)⊥M|D = d′, X = x, p(W ) = p(w), S = 1), the fifth from

Assumptions 1 and 5 (which imply {Y (d,m),M(1−d)}⊥D|X = x, p(W ) = p(w), S = 1), the sixth from Assumptions 2 and 5, the seventh from
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Assumptions 1 and 5 (which imply Y (d,m)⊥D|M(1− d) = m,X = x, p(W ) = p(w), S = 1), and the last from the law of iterated expectations.
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= E
X,p(W )|S=1

[
E

[
Y · I{D = d} · I{M = m}

Pr(D = d|X, p(W )) · Pr(M = m|D,X, p(W ))

∣∣∣∣X = x, p(W ) = p(w), S = 1

] ∣∣∣∣S = 1

]

= E
X,p(W )|S=1

[
E [Y |D = d,M = m,X = x, p(W ) = p(w), S = 1]

∣∣∣∣S = 1

]
= E

X,p(W )|S=1
[E [Y (d,m)|D = d,M = m,X = x, p(W ) = p(w), S = 1]]

= E
X,p(W )|S=1

[E [Y (d,m)|D = d,X = x, p(W ) = p(w), S = 1]]

= E
X,p(W )|S=1

[E [Y (d,m)|X = x, p(W ) = p(w), S = 1]] = E[Y (d,m)|S = 1]

The first and sixth equalities follow from the law of iterated expectations, the second from basic probability theory, the third from the observati-

onal rule, the fourth from Assumptions 2 and 5 (which imply Y (d,m)⊥M|D = d,X = x, p(W ) = p(w), S = 1), and the fifth from Assumptions

1 and 5 (which imply Y (d,m)⊥D|X = x, p(W ) = p(w), S = 1).
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A.3 Proof of Theorem 3

E

[(
Y ·D

Pr(D = 1|M,X, p(W ))
−

Y · (1−D)

1− Pr(D = 1|M,X, p(W ))

)
·

Pr(D = d|M,X, p(W )) · S
Pr(D = d|X, p(W )) · p(W )

]
(A.7)

= E
X,p(W )

[
E

M|X=x,p(W )=p(w)

[
E

[
Y ·D · S

Pr(D = 1|M,X, p(W )) · p(W )

−
Y · (1−D) · S

1− Pr(D = 1|M,X, p(W )) · p(W )

∣∣∣∣M = m,X = x, p(W ) = p(w)

]
·

Pr(D = d|M,X, p(W ))

Pr(D = d|X, p(W ))

]]

= E
X,p(W )

[
E

M|X=x,p(W )=p(w)

[
E

[
Y · S
p(W )

∣∣∣∣D = 1,M = m,X = x, p(W ) = p(w)

]

− E

[
Y · S
p(W )

∣∣∣∣D = 0,M = m,X = x, p(W ) = p(w)

]
·

Pr(D = d|M,X, p(W ))

Pr(D = d|X, p(W ))

]]

= E
X,p(W )

[
E

M|X=x,p(W )=p(w)
[E[Y |D = 1,M = m,X = x, p(W ) = p(w), S = 1]

− E[Y |D = 0,M = m,X = x, p(W ) = p(w), S = 1] ·
Pr(D = d|M,X, p(W ))

Pr(D = d|X, p(W ))

]]

= E
X,p(W )

[
E

M|D=d,X=x,p(W )=p(w)
[E[Y (1,m)|D = 1,M = m,X = x, p(W ) = p(w), S = 1]

− E[Y (0,m)|D = 0,M = m,X = x, p(W ) = p(w), S = 1]]]

= E
X,p(W )

[
E

M|D=d,X=x,p(W )=p(w)
[E[Y (1,m)|D = 1, X = x, p(W ) = p(w), S = 1]

− E[Y (0,m)|D = 0, X = x, p(W ) = p(w), S = 1]]]

= E
X,p(W )

[
E

M(d)|X=x,p(W )=p(w)
[E[Y (1,m)− Y (0,m)|X = x, p(W ) = p(w), S = 1]]

]

= E
X,p(W )

[
E

M(d)|X=x,p(W )=p(w)
[E[Y (1,m)− Y (0,m)|X = x, p(W ) = p(w)]]

]
= θ(d)

The first and last equalities follow from the law of iterated expectations, the second from basic probability theory, the third from basic probability

theory and the fact that Pr(S = 1|D,M,X, p(W )) = Pr(S = 1|D,M,X,Z) = p(W ) (as p(W ) is a deterministic function of Z conditional on

D,M,X), the fourth from Bayes’ theorem and the observational rule, the fifth from Assumptions 2 and 5 (which imply Y (d,m)⊥M|D = d′, X =

x, p(W ) = p(w), S = 1), the sixth from Assumptions 1 and 5 (which imply {Y (d,m),M(d′)}⊥D|X = x, p(W ) = p(w), S = 1), and the seventh

from Assumption 7 by acknowledging that p(W ) = FV .

E

[
Y · I{D = d} · S

Pr(D = d|M,X, p(W )) · p(W )
·
(

Pr(D = 1|M,X, p(W ))

Pr(D = 1|X, p(W ))
−

1− Pr(D = 1|M,X, p(W ))

1− Pr(D = 1|X, p(W ))

)]
(A.8)

= E
X,p(W )

[
E

M|X=x,p(W )=p(w)

[
E

[
Y · I{D = d} · S

Pr(D = d|M,X, p(W )) · p(W )

∣∣∣∣M = m,X = x, p(W ) = p(w)

]

×
(

Pr(D = 1|M,X, p(W ))

Pr(D = 1|X, p(W ))
−

1− Pr(D = 1|M,X, p(W ))

1− Pr(D = 1|X, p(W ))

)]]

= E
X,p(W )

[
E

M|X=x,p(W )=p(w)

[
E[Y |D = d,M = m,X = x, p(W ) = p(w), S = 1] ·

(
Pr(D = 1|M,X, p(W ))

Pr(D = 1|X, p(W ))
−

1− Pr(D = 1|M,X, p(W ))

1− Pr(D = 1|X, p(W ))

)]]

= E
X,p(W )

[
E

M|D=1,X=x,p(W )=p(w)
[E[Y (d,m)|D = d,M = m,X = x, p(W ) = p(w), S = 1]]

− E
M|D=0,X=x,p(W )=p(w)

[E[Y (d,m)|D = d,M = m,X = x, p(W ) = p(w), S = 1]]

]

= E
X,p(W )

[
E

M|D=1,X=x,p(W )=p(w)
[E[Y (d,m)|D = d,X = x, p(W ) = p(w), S = 1]]

− E
M|D=0,X=x,p(W )=p(w)

[E[Y (d,m)|D = d,X = x, p(W ) = p(w), S = 1]]

]

= E
X,p(W )

[
E

M(1)|X=x,p(W )=p(w)
[E[Y (d,m)|X = x, p(W ) = p(w), S = 1]]− E

M(0)|X=x,p(W )=p(w)
[E[Y (d,m)|X = x, p(W ) = p(w), S = 1]]

]
= E

X,p(W )
[E[Y (d,M(1))− Y (d,M(0))|X = x, p(W ) = p(w)]] = δ(d)
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The first and last equalities follow from the law of iterated expectations, the second from basic probability theory and the fact that Pr(S =

1|D,M,X, p(W )) = Pr(S = 1|D,M,X,Z) = p(W ), the third from Bayes’ theorem and the observational rule, the fourth from Assumptions 2 and

5 (which imply Y (d,m)⊥M|D = d′, X = x, p(W ) = p(w), S = 1), the fifth from Assumptions 1 and 5 (which imply {Y (d,m),M(d′)}⊥D|X =

x, p(W ) = p(w), S = 1), and the sixth from Assumption 7 by acknowledging that p(W ) = FV .

E

[(
Y ·D

Pr(D = 1|X, p(W ))
−

Y · (1−D)

1− Pr(D = 1|X, p(W ))

)
·

I{M = m} · S
Pr(M = m|D,X, p(W )) · p(W )

]
(A.9)

= E
X,p(W )

[
E

[(
Y ·D

Pr(D = 1|X, p(W ))
−

Y · (1−D)

1− Pr(D = 1|X, p(W ))

)
·

I{M = m} · S
Pr(M = m|D,X, p(W )) · p(W )

∣∣∣∣X = x, p(W ) = p(w)

]]
= E

X,p(W )
[E[Y |D = 1,M = m,X = x, p(W ) = p(w), S = 1]− E[Y |D = 0,M = m,X = x, p(W ) = p(w), S = 1]]

= E
X,p(W )

[E[Y (1,m)|D = 1,M = m,X = x, p(W ) = p(w), S = 1]− E[Y (0,m)|D = 0,M = m,X = x, p(W ) = p(w), S = 1]]

= E
X,p(W )

[E[Y (1,m)|D = 1, X = x, p(W ) = p(w), S = 1]− E[Y (0,m)|D = 0, X = x, p(W ) = p(w), S = 1]]

= E
X,p(W )

[E[Y (1,m)− Y (0,m)|X = x, p(W ) = p(w), S = 1]]

= E
X,p(W )

[E[Y (1,m)− Y (0,m)|X = x, p(W ) = p(w)]] = γ(m)

The first and last equalities follow from the law of iterated expectations, the second from basic probability theory and the fact that Pr(S =

1|D,M,X, p(W )) = Pr(S = 1|D,M,X,Z) = p(W ), the third from the observational rule, the fourth from Assumptions 2 and 5 (which imply

Y (d,m)⊥M|D = d,X = x, p(W ) = p(w), S = 1), the fifth from Assumptions 1 and 5 (which imply Y (d,m)⊥D|X = x, p(W ) = p(w), S = 1),

and the sixth from Assumption 7 by acknowledging that p(W ) = FV .
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