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Abstract—In visible light communications (VLC) technology,
the channel is generally modeled as a multi-path propagation
environment. This is due to the presence, on the photo-detector
(PD), of specular and non-specular signal components. The
Racian K-factor is exploited in such environments to measure
the dominance of the line-of-sight (LoS) signal power over that
of the non-LoS (NLoS) link. In this paper, K is exploited in
the evaluation of the VLC link. Examples of the use of K is
underlined in the computation of few link evaluation metrics
including the signal-to-noise ratio (SNR), γ, the channel capacity,
C, and the outage probability, pout.

Index Terms—VLC, K-factor, VLC link analysis, signal-to-
noise ratio, channel capacity, outage probability.

I. INTRODUCTION

V ISIBLE light communications (VLC) technology is con-

tinuously gaining interests from researchers and industry.

This can be illustrated by the number of research outputs found

in the literature. In most cases, it is assumed that the line-of-

sight (LoS) signal is dominant when compared to the non-

LoS (NLoS) signal. This is valid in umpteen cases, but in a

few situations such as in some indoor environments, the NLoS

received power should not be completely neglected. This paper

attempts to analyze the indoor VLC link using the Racian K-

factor, which gives an idea of the power in the NLoS link

when the power in the LoS link is known.
The indoor VLC channel is typically made of two main

components: (i) The LoS sub-channel which represents the

direct link between transmitter and receiver without an obsta-

cle and (ii) the NLoS sub-channel representing the remaining

paths used by the transmitted message to reach the receiver.

The lighting comfort of the communication environment has

naturally benefited from this structure as it may contribute to

the harmony of the light over the environment, knowing that in

VLC, both lighting and communication have to be optimized.
The Racian K-factor gives the ratio of the squared signal

power of the LoS link, (P
(o)
r )2, over that of the signal

from the NLoS link, (P
(k)
r )2. This paper defines a factor,

∆ = 1 + 1/
√
K, giving the ratio of the received total power

by the power in the LoS link based on K. Both K and ∆
are exploited to measure the non-specular signal power. K
is given between 0 and +∞ while ∆ is defined between 1

and +∞. For ∆ = +∞, (K = 0), the fading channel is

said to be Rayleigh distributed [1]. If ∆ = 2, (K = 1),

equal powers are received from both LoS and NLoS links and

∆ = 1, (K = +∞), invokes an overall Gaussian distributed

link [1]. These variations of the value of K/∆ show that, the

probability of facing a link with a high number of NLoS rays

is high. Hence, the need of analyzing the indoor VLC channel

based on the K-factor, because a great number of reflected rays

may induce a high non-specular received power. To the best

of the authors’ knowledge, such analysis has not been done.

With this in mind, in this paper, the main indoor VLC link

evaluation metrics, which are the signal-to-noise ratio (SNR),

γ, the channel capacity, C, and the outage probability, pout,
are analyzed based on K/∆. This helps to underline the values

of K/∆ that provide the best link structure. Results show the

impacts of the NLoS channel gain on γ, C and pout, and,

finally on the performance of the system.
The remainder of the paper is organized as follows: Sec-

tion II discusses the generalized indoor VLC system and

looks at the ratio between LoS and NLoS received powers,

P
(o)
r and P

(k)
r . The link evaluation metrics are discussed and

analyzed in Section III. These include the probability density

function (PDF) and the moment generating function (MGF)

of the received signal, the SNR, the channel capacity, and the

outage probability. In Section IV, numerical results are given

to highlight the behavior of γ, C and Pout. Finally, concluding

remarks are given in Section V.

II. VLC CHANNEL AND RACIAN K-FACTOR

This section introduces the indoor VLC system and presents

the impact of the Racian K-factor on the overall channel gain.

A. The VLC system

A generalized VLC system is shown in Fig. 1. The incoming

bits are coded, then mapped to a VLC signal constellation.

Each signal point is converted from digital to analog (D/A),

and the resulting signal is applied to a light source (LS),

which may be a light emitting diode (LED) or a laser diode

(LD). The LS is in charge of coupling the message signal to

the channel while simultaneously serving as an illumination

device. On the receiver side, the broadcast light is detected by

a photo-detector (PD) and converted into an electric pulse. The

latest is digitalized (A/D) and then de-mapped to produce bits

which are decoded and sent to the data recipient. The channel

in Fig. 1 is made up of three main elements. The LoS rays

going from the transmitter to the receiver without deviation,

the NLoS rays, also generated by the same LS as the LoS rays,

but reflected by objects such as walls, ceilings, etc., and the

unwanted rays provided by additional sources of light such as

the sun or incandescent and luminescent lights. Based on the

above description, the entire link is Racian distributed. The

unwanted signal is considered as noise or interference sources

and the transmission is governed by

y = λhx + n, (1)

where y and x are the received and the transmitted vectors,

respectively. λ is the responsivity of the PD, h the overall
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Fig. 1: A VLC system model.

channel gain and n, given by n ∼ N (0, σ2), σ2 = N0/2,

is the additive noise vector. Note that N0 is the single-sided

power spectral density of the total noise at the PD. Taking into

account both LoS and NLoS paths, the indoor VLC channel

impulse response, h(t), is defined as [2]

h(t) = h(o)(t) + h(k)(t), (2)

where h(o)(t) is the impulse response of the LoS link while

h(k)(t) is the sum of impulse responses of the remaining paths

exploited by the transmitted signal to reach the receiver.

B. Link powers and the K-factor

The transmitted power is split into three part: The first part

is directly detected by the PD with no reflection (LoS), the

second part reaches the PD after one or multiple reflections

(NLoS) and the third part does not reach the photo-detector.

This paper considers the parts of the transmitted signal that

reach the receiver. Let Pt be the power at the transmitter,

P
(o)
r the power at the received from the LoS link and P

(k)
r ,

the power at the receiver due to the NLoS link. The Racian

K-factor is defined by

K =
(P

(o)
r

P
(k)
r

)2

=
(λPtH

(o)

λPtH(k)

)2

=
(H(o)

H(k)

)2

, (3)

where H(o) and H(k) are LoS and NLoS links’ DC gains.

From Eq. (3), Ho is readily calculated as H(o) = H(k)
√
K.

Beside, in [3], H(o) is also given as a temporal function of

the minimum delay, t0, as

Ho =

∫

t0
cos(θ)

t0

2t0

t3 sin2(θ)
dt =

1

2t20
. (4)

By analogy to Eq. (2), the overall channel DC gain is given

by

H = H(o) +H(k) =
(

1 +
1√
K

)

H(o). (5)

The factor ∆ = 1 + 1/
√
K is seen as a modified Racian K-

factor, defining the ratio of the overall gain by that of the LoS

link. ∆ is defined between 1 and +∞ and totally describes the

fading aspect of the VLC channel. It provides a feeling that

the link is always LoS scaled by ∆ since the LoS component

is always the strongest. It is therefore kept close to 1, knowing

that ∆ > 2 implies P
(k)
r > P

(o)
r .

III. VLC LINK EVALUATION

In this section, the link evaluation metrics are underlined

and the impact of the Racian K-factor and ∆ on the link

performance is analyzed.
Let a(t) be the received temporal signal. Since the channel

is Racian fading, it is fully described by the Racian K-factor

and the total received signal power P 2
r = |a(t)|2. This received

power, also known as the total mean power, is the sum of

powers in LoS and NLoS links.

P 2
r = (P (o)

r )2 + (P (k)
r )2, (6)

where (P
(o)
r )2 = 1

1+(∆−1)2P
2
r and (P

(k)
r )2 = (∆−1)2

(∆−1)2+1P
2
r .

A. PDF and MGF

The probability density function of the received signal over

the considered fading channel, f(a), is given by [4]

f(a) =
2a+ (∆− 1)2)

(∆− 1)2λ2H2P 2
t

e
−

1
(∆−1)2

−
a2+(∆−1)2)

(∆−1)2λ2H2P2
t

× I0

(

2a

√

1 + (∆− 1)2

(∆− 1)4λ2H2P 2
t

)

,

(7)

where I0(·) is the 0th order modified Bessel function of the

first kind. The SNR based moment generating function of this

fading transmission can be expressed as [5]

M(a) =
1 + (∆− 1)2

1 + (∆− 1)2(1− aγ̄)
exp
{ aγ̄

1 + (∆− 1)2(1− aγ̄)

}

,

(8)

where the average SNR, γ̄, is defined as

γ̄ =
2λ2H2Pt(1 + (∆− 1)2)

B(∆− 1)2
Pt

N0
, (9)

B being the bandwidth in Hz.

B. Channel capacity

Two main types of fading channel can be defined: The

ergodic fast fading and the bloc fading channels. This im-

plies two main types of channel capacities. In this paper,

it is assumed that the codeword is long enough so that the

transmitted symbols experience all state of the channel. Hence,
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the considered channel is ergodic fast fading. In this case, the

capacity is generally defined as

C = max
(px)

I(X;Y ), (10)

where (px) is the input distribution and I(X;Y ) is the mutual

information and, X and Y are two discrete variables. This

capacity can be evaluated in terms of the PDF, f(·), of the

SNR and is expressed as [6]

C = B

∫

∞

0

log2(1 + γ)f(γ)dγ. (11)

For a Racian ergodic fading channel, the PDF in Eq. (11) can

be expressed as

f(γ) =
1 + (∆− 1)2

γ̄(∆− 1)2
e
−

1
(∆−1)2 e

−( 1
(∆−1)2

+1) γ
γ̄

× I0

[√

4γ

γ̄

1

(∆− 1)2

( 1

(∆− 1)2
+ 1
)

]

.

(12)

Substituting Eq. (12) in Eq. (11) leads to a closed-form of the

VLC Racian ergodic fading channel capacity [7]. Adapting ∆,

the capacity, C, becomes

C =
e

(∆−1)2+1

γ̄(∆−1)2

ln 2
E1

( (∆− 1)2 + 1

γ̄(∆− 1)2

)

+ log2

(

1 +
γ̄

(∆− 1)2 + 1

)

+
1

ln 2

γ̄((∆− 1)2 + 1)

((∆− 1)2 + 1 + γ̄)2
,

(13)

where E1(·) is an exponential integral and γ̄ defined in Eq. (9).

For values of ∆ close to 1 (high values of K), this capacity

reduces to

C =
1

2
log2(1 + γ̄). (14)

C. Outage probability

This metric measures the probability that the SNR, γ, falls

under a threshold SNR, γth, set for a specific quality of service

(QoS). It is given by

pout = pr[γ < γth] =

∫ γth

0

f(γ)dγ, (15)

where f(·) is the PDF of the SNR given in Eq. (12). Based on

Eq. (12), Eq. (15) can also be rearranged to obtain a closed-

form expression. It is shown in [5] that for a Racian fading

channel, the cumulative distribution function (CDF), which is

another expression of Eq. (15) (outage probability), can be

represented using the Marcum Q-function. This is exploited

to derive the outage probability based on Eq. (9), which is

expressed as

F (γ) = 1− χ

(
√
2

|∆− 1| ,
4λ2H2Pt(1 + (∆− 1)2)

BP
(k)
r (∆− 1)2

Pt

N0

)

,

(16)

where χ(·, ·) is the Marcum Q-function given by

χ(a, b) = exp
{

− a2 + b2

2

}

∞
∑

q=1−M

(a

b

)q

Iq(ab), (17)

Iq(·) being the qth order Bessel function of the first kind.
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Fig. 2: Average SNR, γ̄, of an indoor VLC link in

terms of Pt/N0 for multiple values of ∆; ∆ ∈
{1.4472, 1.5774, 1.7071, 1.8165, 2, 2.4142,+∞}.
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Fig. 3: Ergodic channel capacity of an indoor VLC link

in terms of Pt/N0 for multiple values of ∆; ∆ ∈
{1, 1.0447, 1.0577, 1.0707, 1.1, 1.1414, 2,+∞}.

IV. NUMERICAL RESULTS

This section provides some results related to the analysis

proposed in the previous section on the link evaluation metrics.

Note that the values of ∆ are selected between 1 and 2 to

keep P
(k)
r ≤ P

(o)
r valid, with an exception for ∆ = +∞

to emphasize the case of a Rayleigh distributed channel. The

first metric analyzed here is the SNR. The results are shown

in Fig. 2. The average SNR varies with the ratio Pt/N0 for

∆ ∈ {1.4472, 1.5774, 1.7071, 1.8165, 2, 2.4142,+∞}. Notice

the Rayleigh behavior of the SNR for ∆ = +∞ (K = 0).

It is also important to highlight the case where ∆ = 2 (K
= 1), which corresponds to the situation where both LoS and

NLoS links are transmitting the same amount of power to

the receiver. All curves of Fig. 2 have the same shape. The

difference between them is related to the value of ∆. They

show that Pt/N0 is exponentially proportional to the SNR.

Based on Eqs. (13) and (14), the indoor VLC ergodic chan-
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Fig. 4: Ergodic channel capacity of an indoor VLC link

in terms of average SNR for multiple values of ∆; ∆ ∈
{1, 1.0447, 1.0577, 1.0707, 1.1, 1.1414, 2,+∞}.
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Fig. 5: Outage probability of the VLC indoor link

in terms of Pt/N0 for multiple values of ∆; ∆ ∈
{1.3162, 1.5574, 1.7071, 1.8165, 2, 2.4142,+∞}.

0 0.5 1 1.5 2 2.5

Average SNR, (dB)

0

0.2

0.4

0.6

0.8

1

O
u
ta

g
e
 p

ro
b
a
b
ili

ty

K=0 dB,  = + , (Rayleigh)

K=0.5 dB, 2.4142

K=1 dB,  = 2, (P
r
(o) = P

r
(k))

K=1.5 dB  = 1.8165

K=2 dB  = 1.7071

K=3 dB,  = 1.5774

K=10 dB  = 1.3162

Fig. 6: Outage probability of the VLC indoor link in

terms of average SNR, for multiple values of ∆; ∆ ∈
{1.3162, 1.5574, 1.7071, 1.8165, 2, 2.4142,+∞}.

nel capacity is provided in Figs. 3 and 4, for multiple values

of K/∆. Fig. 3 gives the channel capacity in terms of Pt/N0

while Fig. 4 gives the capacity in terms of average SNR.

Notice in Fig. 3 the case where ∆ = +∞ (Rayleigh channel)

and the case where ∆ = 2, corresponding to P
(o)
r = P

(k)
r .

For ∆ ∈ {1, 1.0447, 1.0577, 1.0707, 1.1, 1.1414}, the channel

capacity follows a similar pattern as ∆ is seen as the main

factor affecting the channel. This explains the fact that the

curves look parallel. In Fig. 4, for each value of ∆ corresponds

a different curve with a different asymptote. Nevertheless,

it also presents particularities in cases where ∆ = +∞
(Rayleigh channel), ∆ = 2 (P

(o)
r = P

(k)
r ) and the case where

∆ = 1 (AWGN). In both Figs. 3 and 4, the cases where

∆ = 1 and ∆ = +∞ are particular as the curves experience

a different fading distribution (Rayleigh and Gaussian).
Figs. 5 and 6 are plots of the outage probability. They show

plots of Eq. (16) for multiple values of ∆. They give an idea

on the outage probability of the indoor VLC fading channel.

Considering for example a 0.4 probability of failure of the

SNR, at least about 4.2 dB of Pt/N0 is required when ∆
= 1.3162. If ∆ increases (more NLoS power), it is required

to increase Pt/N0 as shown in Fig. 5. For the same outage

probability expectation, the average SNR is less when the

channel is Rayleigh distributed and grows progressively with

the value of ∆ as depicted in Fig. 6.

V. CONCLUSION

This paper aimed to discuss indoor VLC link evaluation

metrics based on the Racian K-factor and ∆. A generalized

VLC transmission system is presented and the impact of K
and ∆ on the DC channel gain is discussed. The paper looked

at few communication link evaluation metrics including the

SNR, the channel capacity, and the outage probability. They

are all analytically given in terms of Pt/N0 and the average

SNR for multiple values of K/∆. These metrics all give a

general and precise idea on how K/∆ impact the indoor VLC

channel, especially when the value of K/∆ change the fading

distribution of the channel from Racian to Rayleigh (K = 0,

∆ = +∞) or to Gaussian (K = +∞, ∆ = 1). Finally, the

analysis proposed in this paper shows how the NLoS link can

impact the performance of an indoor VLC system.
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