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Abstract—This article presents results on the pre-processing
(clipping/nulling) of impulse noise corrupted signal that is digi-
tally modulated. The novelty of the article is in performing the
clipping technique on the waveform of the digitally modulated
signal as opposed to working with the constellation of the
modulated signal. We present bit error rate performance results
of Frequency Shift Keying (FSK) modulation in the presence
of impulse noise and AWGN, when clipping is performed. We
furthermore, develop closed-form expressions for the bit error
rates of FSK modulation in the presence of both AWGN and
impulse noise, when clipping of the received signal has been
performed.

Index Terms—Frequency Shift Keying, Impulse noise, Clip-
ping, Bit error rate expressions.

I. INTRODUCTION

Power line communication (PLC) research has devoted a
large body of work to the study of impulsive noise and
methods to mitigate the effects of impulsive noise [1]–[7]. One
of the widely used methods of combatting impulsive noise is
clipping. Clipping has been observed to be very effective in
OFDM systems where, the impulse noise energy is spread
in the frequency domain, after the FFT. Clipping can also
be performed in single carrier modulations like Frequency
Shift Keying (FSK), Amplitude Shift Keying (ASK) and Phase
Shift Keying (PSK). Two important points worth noting: 1.The
introduction of OFDM in PLC has resulted in very few
research on clipping for single carrier modulation. 2. When
clipping is performed in the literature, it is conventionally
done on the signal constellation of the digitally modulated
signal (see [3]–[6]). In this paper, we address these two points
by (a) performing clipping on single carrier modulated signal
(specifically FSK), and secondly (b) performing clipping on
the time-domain waveform signal, which is more realistic. We
then go on to give analytical expressions for clipping of a FSK
modulated signal that is affected by both impulse noise (IN)
and additive white Gaussian noise (AWGN).

II. IMPULSE NOISE CLIPPING

Clipping of the received signal is performed before the
demodulation process and it is called a pre-processing opera-
tion. For impulse noise clipping, a threshold, which is usually
higher than the average amplitude of the transmitted signal

and AWGN, is employed to detect impulse noise. We use the
definition of the clipping technique described in [9], which is

r̃k =

{
rk, for |rk| ≤ Th

The
j arg(rk), for |rk| > Th

, (1)

where rk is received sample, r̃k is clipped received sample
and Th is the so called clipping threshold. The above definition
of impulse noise (1) has been widely used by many researchers
who worked on impulse noise mitigation techniques [3], [4],
[5], [6] and [8]. In this paper, we use the same process
of amplitude clipping as given by (1). However, instead
of working with signal constellation, we apply the clipping
technique on a real sinusoidal FSK signal that is corrupted by
AWGN and/or IN.

III. SYSTEM MODEL

The communication system model used in this paper is
shown in Figure 1. For the IN effect, we adopt the Bernoulli-
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Fig. 1. Bernoulli-Gaussian impulse noise model. The parameter p is the
probability of entering a state wih impulse noise and AWGN with variances
σ2
I and σ2

g , respectively.

Gaussian noise model in [10], [11] and [12], where p is the
probability of IN in a symbol period as shown in Figure 1.
The variance of IN is given by σ2

I = Kσ2
g , where K > 1. The

IN noise samples follow a zero-mean Gaussian distribution
(N (0, σ2

I )). Dk is the kth sample of an FSK modulated
symbol, Sl with symbol period Tb, and D̃k is the noisy version
of Dk. This means that an FSK symbol Sl is a sequence of



samples such that Sl = {D1, D2, . . . DL}, where L is the
number of samples of the FSK symbol. Therefore, each sample
Dk goes through the channel depicted by the model in Figure
1, and each sample has a probability p of encountering impulse
noise.

The analytical expression of the FSK modulated signal is
given in [13] by

Sl =

√
2Eb

Tb
sin(2πflt+ φ), (2)

for l = 1, 2, . . . ,M and 0 ≤ t ≤ Tb, where fl is any one of
M frequencies. The amplitude of the FSK modulated carrier
wave, A can be deduced from (2) as

A =

√
2Eb

Tb
,

Eb is the bit energy of the modulating signal and Tb is the
bit duration. If the bit duration is fixed, then the amplitude
depends on the bit energy. This definition of A will be useful
later when we track the changes in signal-to-noise-ratio (SNR).
In digital modulation, SNR is given as Eb/N0, where N0 is the
noise power. Thus, for a fixed N0, the SNR can be increased
by increasing the value of Eb. Having defined the amplitude,
we discuss clipping of the modulated carrier waveform at the
receiver, which will be related to the amplitude of the carrier
waveform.

For clipping at the receiver to mitigate noise, we set a
clipping threshold, Th that will be equal to the amplitude
of the carrier waveform, Th = |A|. This means that if there
is no noise in the system, the modulated carrier wave will
be preserved because the clipping threshold is equal to its
amplitude.

IV. CLIPPING UNDER AWGN

A. Square waveform plus AWGN

To understand the results of clipping for AWGN only, it is
more informative to use a square wave signal for the carrier
signal. Let us assume that the sinusoidal carrier waveform of
amplitude A is approximated by a square waveform of the
same amplitude A. Then we observe that when a zero mean
AWGN with variance σ2

g is added to the square waveform
of amplitude A, the AWGN takes on a new mean, A or −A
as shown in Figure 2 where A = 1. The total power, PT

will be the sum of the signal power and the noise power,
PT = A2 + σ2

g . This total power can easily be proved to be
the sum of the signal power and noise power by considering
the symmetry of the Gaussian distribution about its mean.
This symmetry means that approximately half of the AWGN
samples are above the mean A and the other half is below the
mean A, therefore the total power of the signal and AWGN is
given as

PT =
1

2
(A+ σg)2 +

1

2
(A− σg)2 = A2 + σ2

g . (3)

If clipping is performed with threshold, Th = |A|, Equation
(3) can be adjusted to remove the contribution of the noise

Fig. 2. Square waveform show the effect of AWGN.

above |A|, hence the new total power after clipping, Pc is
given as

Pc =
1

2
(A)2 +

1

2
(A− σ̄g)2 = A2 −Aσ̄g + σ̄2

g/2, (4)

where σ̄g = σg
√

2/π because the noise follows the half
normal distribution after clipping half of it.

Therefore, when clipping is performed with Th = |A| for
the square wave signal transmission under AWGN, we can use
(4) to derive the SNR which is given by

SNRc =
Eb −A(σ̄g/

√
Tb)

σ̄2
g/2

=
Eb −

√
2Eb/Tb(σ̄g/

√
Tb)

σ̄2
g/2

=
Eb − 1

Tb

√
2Ebσ̄2

g

σ̄2
g/2

. (5)

Clipping when the transmitted signal is approximated by
square waveform under AWGN presents a case of an upper
bound on SNRc due to the fact that a square wave has a flat
amplitude which enables about half of the AWGN amplitudes
to be clipped off.

B. Sinusoidal waveform plus AWGN

If the transmitted signal is a sinusoidal waveform, as is
usually the case for bandpass modulation, most of the AWGN
amplitudes remain in the received clipped signal because the
clipping is performed at the peak of the sinusoidal waveform.
This is true especially when the sinusoidal waveform ampli-
tude A is much larger than the noise power σ2

g , that is at high
SNR.

For sinusoidal waveform transmission under AWGN, and
at high SNR, we can assume that the noise power is hardly
affected/changed after clipping at the receiver. This means that
the signal energy is more affected by clipping compared to the
noise. With this assumption, the SNR in (5) can be modified
to give an approximation of the SNR when a sinusoidal is
used and clipping is performed at Th = |A|:



SNRc =
Eb − 1

Tb

√
2Ebσ2

g

N0
=
Eb − 1

Tb

√
2Ebσ2

g

2σ2
g

. (6)

V. CLIPPING UNDER AWGN AND IMPULSE NOISE

Having discussed clipping of the received signal under
AWGN, we now discuss clipping when impulse noise (IN) and
AWGN are present in the channel. Impulse noise is usually
of oder of magnitudes larger than AWGN and lasts for a
short duration of time. This statement leads to the following
definition of the probability of impulse noise occurrence:
denote the impulse noise duration by τ , then p = τ/Tb,
where τ ≤ Tb and Tb is the signal duration as defined in
(2). Now, concerning the amplitude of impulse noise, recall
that the variance of IN is given by σ2

I and the amplitude of
the transmitted signal is given by A. For our analysis, we
consider a case of IN of very large amplitudes compared to
the transmitted signal, σI � A. In this case we can observe
that when Th = |A|, the resulting clipped signal affected by
this IN will produce noise of amplitude A. The average energy
of the clipped large IN amplitude will be zero, and its variance
will be approximately σ2

CI = p2Eb, where p is the probability
(fraction of the time) of impulse noise occurrence within the
transmitted signal duration Tb. After clipping at the receiver,
the SNR when both impulse noise and AWGN were added to
the transmitted sinusoidal waveform is

SNRc =
(1− p)2(Eb − 1

Tb

√
2Ebσ2

g)

(1− p)(σ2
g) + (σ2

CI)

=
(1− p)2(Eb − 1

Tb

√
2Ebσ2

g)

(1− p)(σ2
g) + (p2Eb)

(7)

VI. DISCUSSION OF RESULTS

The main aim of the article is to investigate the effect of
clipping on a FSK modulated waveform that is corrupted by
impulse noise. However, the effect of clipping under AWGN
only is also very important, as evidenced by the analysis that
resulted in (5) and (6), as well as the results in Figure 3.
It can be seen in Figure 3 that the simulated and analytical
results for Th = |A| are very close. Figure 3 shows the
effect of various clipping thresholds on a FSK modulated
waveform that is affected by AWGN only. The results show
that clipping degrades the performance of FSK when only
AWGN is present, and that the larger the clipping threshold
the better the performance. The best performance is when no
clipping is performed on the waveform. The benefit of clipping
shows when IN is present together with the AWGN as shown
in Figure 4.

Figure 4, 5 and 6 present results of the effect of clipping
on a FSK modulated waveform that is affected by both IN
and AWGN. In the simulation, we set p = 0.01, 0.1 and 0.2,
and σ2

I = 105. We chose a large value of σ2
I in the simulation

because in our analytical expression in (7) we assumed very
large IN power.

Fig. 3. The effect of clipping a FSK modulated waveform that is affected
by AWGN only. Various clipping thresholds are tested.

Fig. 4. The effect of clipping a FSK modulated waveform that is affected
by AWGN and IN. Various clipping thresholds are tested, for p = 0.01 and
σ2
I = 105.

In Figure 4, where p = 0.01, it can be observed that Th =
|A| is not the best threshold, while in Figures 5 and 6 the best
threshold is Th = |A|. It is also observed from both Figures
3 and 4 that a threshold of Th = 2|A| is good for both cases.
The reason for this is that in Figure 4 the probability of IN ,
p = 0.01 is low enough for the performance to be comparable
to the AWGN only case in Figure 3. When the probability of
IN starts getting higher, it is observed that the best threshold
is Th = |A| as seen in Figures 5 and 6, where p = 0.1 and
p = 0.2, respectively.

Figures 7 and 8 show the expected result that increasing the
variance of IN or the probability of IN deteriorates the perfor-
mance. Figure 7 presents performance results of increasing σ2

I

for a fixed probability of IN p = 0.01. In Figure 8, the results
show that increasing p, for a fixed threshold (Th = |A|) and
fixed large variance (σ2

I = 105), deteriorates the performance.

The results show the following: (a) While a clipping thresh-
old equal to the amplitude of the FSK modulated carrier
(Th = |A|), dramatically reduces the effect of impulse noise



Fig. 5. The effect of clipping a FSK modulated waveform that is affected
by AWGN and IN. Various clipping thresholds are tested, for p = 0.1 and
σ2
I = 105.

Fig. 6. The effect of clipping a FSK modulated waveform that is affected
by AWGN and IN. Various clipping thresholds are tested, for p = 0.2 and
σ2
I = 105.

and result in an analytical expression for the SNR, it is not
the optimal clipping threshold. This conclusion can be drawn
from Figures 3 and 4. (b) Figure 3 shows that for the case
when only AWGN is present, clipping makes the performance
worse than when no clipping is performed. This is due to the
fact that the FSK signal’s energy is reduced significantly, due
to clipped, compared to the AWGN’s energy.

VII. CONCLUSION

The paper has presented results on impulse noise clipping in
FSK modulated signal, showing the effect of clipping the time-
domain FSK signal waveform as opposed its constellation. The
performance results showed that clipping is beneficial when
there is impulse noise in the communication system, giving a
performance that is close to the AWGN case with a difference
of about 0.9 dB for p = 0.001, 1 dB for p = 0.01, 2.5 dB
for p = 0.1, and 4 dB for p = 0.2. The results also show that
while we used Th = |A| to obtain the analytical expression,

Fig. 7. The effect of IN and AWGN on a FSK modulated waveform. The
results are for p = 0.01 and various values of the IN variance (σ2

I = 10,
100 or 100).

Fig. 8. The effect of IN and AWGN on a FSK modulated waveform. The
results are for Th = |A|, σ2

I = 105 and various values of the probability of
IN occurrence (p = 0.001, 0.01, 0.1 or 0.2).

it is not always the best clipping threshold. Th = |A| is the
best threshold for higher p, and for very low values of p the
threshold has to be larger than A, Th > |A|.
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