
Improved Differential Evolution Based on Mutation

Strategies

Abstract. Differential Evolution (DE) has been regarded as one of the excellent

optimization algorithm in the science, computing and engineering field since its

introduction by Storm and Price in 1995. Robustness, simplicity and easiness to

implement are the key factors for DE’s success in optimization of engineering

problems. However, DE experiences convergence and stagnation problems. This

paper focuses on DE convergence speed improvement based on introduction of

newly developed mutation schemes strategies with reference to DE/rand/1 on ac-

count and tuning of control parameters. Simulations are conducted using bench-

mark functions such as Rastrigin, Ackley and Sphere, Griewank and Schwefel

function. The results are tabled in order to compare the improved DE with the

traditional DE.

Keywords: Differential Evolution; Convergence speed; Mutation Scheme;

Control Parameters.

1 Introduction

Differential Evolution (DE) has received much attention from various researchers

and research institutions since its inception by Storn and Price two decades ago. DE’s

recognition involves its robustness, simplicity, speed and reliability to convergence to

true optimum when solving an optimization problem. DE has gained much more suc-

cess in series of benchmark academic competitions, black box global optimization com-

petitions and real world optimization applications, leading to a big interest from both

researchers and practitioners [8], [6].Like other Evolutionary Algorithms (EA), DE

uses a population based stochastic search method instead of complex mathematical op-

eration [5]. By characteristics, DE is identified as an efficient and reliable global opti-

mizer for different optimization fields such as constrained and unconstrained optimiza-

tion, multimodal optimization and multi-objective optimization [6]. Despite DE algo-

rithm being regarded as one of the best reliable and efficient EA method for solving

optimization problems, it also has its own limitations. DE experiences stagnation,

which in return deteriorates its performance. The occurrence of stagnation causes the

algorithm not to get better solutions from the candidate solutions that are newly created,

even though the diversity of the population remains [5]. Chances of stagnation occur-

rence depend on the availability of number of different potential trial vectors and their

survival chances in the following generations [5]. In this paper, DE improvement is

proposed, based on modification of mutation schemes and tuning of control parameters.

The research will look to improve DE’s convergence speed without experiencing stag-

nation. The improved DE will be used to optimize power quality in smart. Unlike Ge-

netic Algorithm optimizing process which is affected by crossover function, in DE,

2

mutation function plays a significant role during optimization [7]. DE’s general nota-

tion is denoted as DE/X/Y/Z, where X indicates the mutation vector, Y indicated the

number of difference vectors used and Z indicates the exponential or binomial crosso-

ver scheme [7]. As reported by [8], Differential mutation contains two parts, selection

of base vector and summing of the difference vectors. The rest of the paper is organized

as follows: Section II discusses background of the classical DE, evolutionary functions

and mutation function schemes. Section III discusses the Improved DE algorithm for-

mation and formulas. Section IV gives the methodology to be followed during the ex-

periment of DE improvement. Section V gives the results of the experiment and the

discussion of the results. Section VI gives the conclusion of the research.

2 Differential Evolution

Differential Evolution (DE) algorithm is one of the stochastic population-based evo-
lutionary optimization algorithm that forms random search and optimization procedures
by following natural evolutionary principles. Its term DE is due to existence of a special
type of difference vector, as explained in [1]. During optimization, DE preserves candi-
date solutions population and creates new candidate solutions by combination of existing
candidate solutions according to their simple formulae. The best candidate solution with
better fitness on the optimization problem is kept close by [2]. DE uses three evolution-
ary functions during problem optimization, being mutation function, crossover function
and selection function. Mutation function randomly generates variations to existing in-
dividuals to present new information into the population. The functioning creates muta-
tion vectors 𝑣𝑖,𝑔 at each generation g, based on the population of the current parent
{𝑋1,𝑖,0 =(𝑥1,𝑖,0, 𝑥2,𝑖,0, 𝑥3,𝑖,0, …, 𝑥𝐷,𝑖,0)|𝑖 =1,2,3, …., 𝑁 }

DE/rand/1 𝑣𝑖, = 𝑋𝑟0, + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,) (1)

DE/ current-to-rest/1 𝑣𝑖, = 𝑋𝑖, + 𝐹𝑖 (𝑋𝑏𝑒𝑠𝑡, – 𝑋𝑖,) + 𝐹𝑖 (𝑋𝑟1, – 𝑋𝑟2,) (2)

DE/best/1 𝑣𝑖, = 𝑋𝑏𝑒𝑠𝑡, + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,) (3)

where,
𝑟0, 𝑟1, 𝑟2 = different integers uniformly chosen from the set {1,2, … . . , 𝑁 }\{𝑖} ,
𝑋𝑟1, − 𝑋𝑟2,= different vector to mutate the parent,
𝑋𝑏𝑒𝑠𝑡, = best vector at the current generation
𝐹𝑖 = mutation factor which ranges on the interval (0, 1+).

The crossover function performs an exchange of information between different individ-
uals in the current population. The final trial vector is formed by binomial crossover
operation.

𝑢𝑖,𝑔 = (𝑢1,𝑖,𝑔, 𝑢2,𝑖,𝑔, … . , 𝑢𝐷,𝑖,𝑔) (4)

𝑢𝑗,, = {
𝑣𝑗, 𝑖, 𝑔 … … 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗(0,1) ≤ 𝐶𝑅𝑖 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑥𝑗, 𝑖, 𝑔 … … … 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

where, 𝑟𝑎𝑛𝑑𝑗
(𝑎, 𝑏)= uniform random number on the interval (a, b) and newly generated for each 𝑗,

3

𝑗𝑟𝑎𝑛𝑑 = 𝑗𝑟𝑎𝑛𝑑𝑖𝑎𝑛𝑡 (1, D) = integer randomly chosen from 1 to D and newly generated
for each 𝑖.

The selection function passes a driving force towards the most favorable point by pre-
ferring individuals of better fitness. The selection operation selects the better one from

the parent vector 𝑋𝑖, and the trial vector 𝑢𝑖, according to their fitness values f (・) [3].

𝑋𝑖,+1 = {
𝑢𝑖, 𝑔 … … 𝑖𝑓 𝑓(𝑢𝑖, 𝑔) < 𝑋𝑖, 𝑔
𝑋𝑖, 𝑔 … … … … … 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

Unlike other evolutionary algorithms, DE requires selection of only three control

parameters, namely, Population Size (PS), Mutation Factor (F) and Crossover rate (Cr).
According to [4], number of iterations (Itermax) is not considered a control parameter,
since some stopping criteria is need on the simulation. However, it is very helpful to
have an estimation number of iterations in order to prevent a very long running time of
the program. Mutation factor F value that can be selected ranges from 0.1 to 2.0 while
the Crossover rate value ranges from 0.1 to 1.0. Population size is determined by the
Dimensionality D of the objective function, where the values from 5D to 10D are sug-
gested. However, the values are extended from 2D up to 40D [4].

3 Improved differential evolution

For DE improvement, two factors have been considered, the first being tuning of control
parameters to get the suitable combination to be used on a selected mutation scheme. In
this case the selected mutation scheme is DE/rand/1. DE/rand/1 is the most commonly
used scheme due to its simplicity and fast convergence during optimization of the prob-
lem. The second factor is modification of selected mutation scheme. Three modifica-
tions schemes are developed by taking Mutation Factor F into account on mutation for-
mula. For the first modification, the individual vector 𝑋𝑟0 is squired and divided by
mutation factor F as shown in the formula. The formula will be named DE/Modi/1

DE/Modi/1 𝑣𝑖, = (𝑋𝑟0)2, ÷ F𝑖 + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,) (7)

On the second modification, the parent vector is multiplied by the mutation factor F. In
this case the individual vector is not squired as shown in the next formula. The formula
will be named DE/Modi/2

DE/Modi/2 𝑣𝑖, = F𝑖 × 𝑋𝑟0, + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,) (8)

The third and final modification involves three factors applied to the individual vector.
First it is squired as done on the first modification, secondly it is multiplied by the mu-
tation factor, thirdly it is divided by 2 as shown in the formula. The formula will be
named DE/Modi/3

DE/Modi/3 𝑣𝑖, =F𝑖 × (𝑋𝑟0)2 ÷ 2 + 𝐹𝑖 (𝑋𝑟1, − 𝑋𝑟2,) (9)

4

4 Methodology

The following steps were taken during simulation of the DE improvement by means
of control parameter tuning and mutation scheme modification. The following bench-
mark functions were used to during simulation of the experiment, Rastrogin function,
Ackley function, Sphere Function, Griewank Function and Schewel Function.
DE/rand/1 is selected for the experiment.

Step 1: DE/rand/1 psue-code is done on matlab and Setting of control parameters is

done in the following manner, the constant parameters: D = 2, PS = 50, I_max = 200.
The varying parameters: F = [0.1–2.0], Cr = [0.1 – 1.0].

Step 2: Each benchmark function mentioned above is tested by varying F and Cr

from 0.1 to 2.0 and from 0.1 to 1.0 respectively in order to determine the perfect set of
values that makes a fast convergence on the optimization process.

Step 3: The determined set values of F and Cr are then used in the three modified

mutation schemes without being varied. In this case the determined set values are F =
0.2 and Cr = 0.9. The results of all the convergence of all the above mentioned bench-
mark functions during F = 0.2 and Cr = 0.9 are tabled and will be compared with the
results of convergence that are obtained on the modified mutation schemes.

Step 4: The original mutation scheme DE/rand/1 formula is modified according to

the above mentioned mutation schemes modifications. The control parameters on the
modified mutation schemes are, F = 0.2, Cr = 0.9, D = 2, PS = 50, I_max = 200.

Step 5: All the benchmark functions are simulated for convergence speed for

DE/Modi/1, DE/Modi/2 and DE/Modi/3. The results are tabled and compared with the
results of DE/rand/1.

5 Results and discussion

Following are the results obtained during simulation of the five benchmark functions.
All simulations are ran up maximum of 200 iterations.

Following are the results of DE/rand/1 strategy.

5

 Figure 1: Ackley’s fitness vs iterations. Figure 2: Ackley in three dimensions.

Figure 3: Ackley in one dimension. Figure 4: Rastrigin’s fitness vs iterations

 Figure 5: Rastrigin in three dimenstions. Figure 6: Rastrigin in one dimension

.

6

Figure 7: Sphere’s fitness vs iterations. Figure 8: Sphere in three dimensions.

Figure 9: Sphere in one dimension. Figure 10: Schwefel’s fitness vs iterations.

Figure 11: Schwefel in three dimensions. Figure 12: Schwefel in one dimension.

7

Figure 13: Griewank’s fitness vs iterations. Figure 14: Griewank in three dimensions.

Figure 15: Griewank in one dimension

TABLE 1: DE/rand/1 Results

Benchmark
function

DE/rand/1

Iterations Fitness

Ackley 65 7.989e-12

Rastrogin 63 0

Sphere 65 3.69e-25

Schwefel 65 3.862e-10

Griewank 71 0.007396

From the above results of DE/rand/1, it can be noticed that most functions conver-

gence becomes more strong after 63 iterations. For Griewank function, the convergence
is not much strong as it generates the fitness of 0.007396 after 71 iterations. Therefore it

8

means Griewank function will require more generations in order for it to have a strong
convergence of fitness zero (0) or close to zero (0).

Following are the results of DE/Modi/1 strategy.

Figure 16: Ackey’s fitness vs iterations. Figure 17: Ackley in one dimension.

Figure 18: Rastrigin’s fitness vs iterations. Figure 19: Rastrigin in one dimension.

Figure 20: Sphere’s fitness vs iterations. Figure 21: Sphere in one dimension.

9

Figure 22: Schwefel’s finess vs iterations. Figure 23: Schwefel in one dimension.

Figure 24: Griewank’s fitness vs iterations. Figure 25: Griewank in one dimension.

TABLE 2: DE/Modi/1 Results

Benchmark
function

DE/Modi/1

Iterations Fitness

Ackley 65 2.6e-08

Rastrogin 39 0

Sphere 22 1.79e-25

Schwefel 95 4.214e-12

Griewank 118 0.06904

From the above results of DE/Modi/1, it can be noticed that the convergence of the

strategy is slightly slow for Ackley function. For Griewank, the convergence turns to be
very weak and slow compared to classical DE strategy. For Schwefel function the con-
vergence is robust but extremely slow compared to DE/Rand/1 strategy. The conver-
gence speed improved for Rastrigin and Sphere functions.

10

Following are results of DE/Modi/2 strategy.

Figure 26: Ackley’s fitness vs iterations. Figure 27: Rastrigin’s fitness vs iterations.

Figure 28: Sphere’s fitness vs iterations. Figure 29: Schwefel’s fitness vs iterations.

Figure 30: Griewank’s fitness vs iterations. Figure 31: Ackley’s fitness vs iterations.

From the results obtained from DE/Modi/2, it can be noticed that convergence speed
robustness of all the functions has improved compared to both above strategies
DE/Rand/1 and DE/Modi/1. In this strategy, Griewank function is able to reach a robust
convergence.

11

TABLE 3: DE/Modi/2 Results

Benchmark
function

DE/Modi/2

Iterations Fitness

Ackley 17 1.863e-11

Rastrogin 14 0

Sphere 19 1.04e-28

Schwefel 18 6.02e-11

Griewank 21 0

Following are the results obtained from DE/Modi/3 strategy.

Figure 32: Rastrigin’s fitness vs iterations. Figure 33: Sphere’s fitness vs iterations.

Figure 34: Schwefel’s fitness vs iterations. Figure 35: Griewank’s fitness vs iterations.

From the results of DE/Modi/3, it can be noticed that there is a slight change of con-

vergence speed between DE/Modi/2 and DE/Modi/3. Convergence speed for Ackley

and rastrigin function slightly improved compared to DE/modi/2, while for Sphere,

Schwefel and Griewank function, convergence speed slightly dropped compared to

DE/Modi/2.

TABLE 4: DE/Modi/3 Results

Benchmark
function

DE/Modi/3

Iterations Fitness

12

Ackley 16 2.538e-11

Rastrogin 12 0

Sphere 15 1.189-26

Schwefel 24 4.09e-13

Griewank 29 0

6 Conclusion

Based on the above results, it has been noticed that DE/Modi/1 results lacks robust-

ness and convergence speed. For DE/Modi/3 it can be noticed that the improvement is

achieved compared to the classical DE/Rand/1. DE/Modi/2 has achieved the best re-

sults compared to all other modified strategies on this paper with best convergence

speed and strong convergence. It can be concluded that DE convergence speed has been

improved through modified strategies DE/Modi2 and DE/Modi/3.

Acknowledgments

This research is supported partially by South African National Research Foundation

Grants (No. 112108 and 112142) and South African National Research Foundation In-

centive Grants (No. 81705 and 95687).

References

1. S. Chattopadhyay, S. K. Sanyal, and A. Chandra, “Comparison of various mutation schemes

of differential dvolution algorithm for the design of low-pass FIR filter,” p. 809-814, 2011

2. S. Sagoo, “Array Failure Correction Using Different Optimization Techniques”,

3. M. P. Ganbavale, “Differential Evolution Using Matlab”. Birla Institute of Technology and

Science, Pilani. Hyderabad Campus, (2014)

4. F. Penunuri, C. Cab, J. A. Tapia and M. A. Zambrano-Arjona “A study of the Classical

Differential Evolution control parameters”, vol 26 Swarm and Evolutionary Computation,

Elsevier B.V, p. 86-96, 2015.

5. L. M. Zheng, S. X. Zhang, K. T. Tang, S. Y. Zheng, “ Differential evolution powered by

collective information”, vol. 399, Information Sciences, Elsevier B.V., p. 13-29 , 2017

6. G. Wu, X. Shen, H. Chen, A. Lin and P. N. Suganthan “Ensemble of differential evolution

variants,” vol 423, Information Sciences, Elsevier B.V., p. 172-186 , 2017.

7. R. Thangaraj, M. Pant and A. Abraham, “New mutation schemes for differential evolution

algorithm and their application to the optimization of directional over-current relay settings,”

vol. 216, Applied mathematics and computation, Elsevier B. V., p. 532-544, 2010

8. K. Opara, J. Arabas “Comparizon of mutation strategies in differential Evolution-a proba-

bilistic perspective”, vol 338, Swarm and Evolutionary Computation, Elsevier B.V, p. 1-37,

2017.

