

Accepted Manuscript

Impact of model notations on the productivity of domain modelling: an
empirical study

Cristina Cachero, Santiago Meliá, Jesús M. Hermida

PII: S0950-5849(18)30251-9
DOI: https://doi.org/10.1016/j.infsof.2018.12.005
Reference: INFSOF 6082

To appear in: Information and Software Technology

Received date: 21 May 2018
Revised date: 7 December 2018
Accepted date: 10 December 2018

Please cite this article as: Cristina Cachero, Santiago Meliá, Jesús M. Hermida, Impact of model nota-
tions on the productivity of domain modelling: an empirical study, Information and Software Technology
(2018), doi: https://doi.org/10.1016/j.infsof.2018.12.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.12.005
https://doi.org/10.1016/j.infsof.2018.12.005

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Impact of model notations on the productivity of
domain modelling: an empirical study

Cristina Cachero∗, Santiago Meliá, Jesús M. Hermida1

Departamento de Lenguajes y Sistemas Informáticos. Universidad de Alicante. Spain

Abstract

Context : The intensive use of models is a cornerstone of the Model-Driven En-
gineering (MDE) paradigm and its claimed gains in productivity. However, in
order to maximize these productivity gains, it is important to adequately select
the modeling formalism to be used. Unfortunately, the MDE community still
lacks empirical data to support such choice.
Objective: This paper aims at contributing to filling this gap by reporting an
empirical study in which two types of domain model notations, graphical vs.
textual, are compared regarding their efficiency and effectiveness during the
creation of domain models.
Method : A quasi-experiment was designed in which 127 participants were ran-
domly classified in four groups. Then, each group was randomly assigned to
a different combination of notation and application. All the participants were
students enrolled in the 6th semester of the Computer Engineering degree at
the University of Alicante. The statistical procedure applied was a two-factor
multivariate analysis of variance (two-way MANOVA).
Results: The data shows a statistically significant effect of notation type on the
efficiency and effectiveness of domain modelling activities, independently from
the application being modelled.
Conclusions: The joint examination of our results and those of previous stud-
ies suggests that, in MDE, different tasks call for different types of notations.
Therefore, MDE environments should offer both textual and graphical nota-
tions, and assist developers in selecting the most suitable one depending on the
task being carried out. In particular, our data suggest that domain model
creation tasks are better supported by graphical notations. To augment the va-
lidity of the conclusions of this paper, the experiment should be replicated with
different subject profiles, notations, domain model sizes, tasks and application
types.

∗Corresponding author. Tel.:+34 965903400
Email addresses: ccachero@dlsi.ua.es (Cristina Cachero), santi@dlsi.ua.es

(Santiago Meliá), jhermida@dlsi.ua.es (Jesús M. Hermida)
1Currently working at the European Commission, Joint Research Centre (JRC), Ispra,

Italy.

Preprint submitted to Information and Software Technology December 11, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Keywords: MDE, Empirical research, Notations, Quasi-Experiment

1. Introduction

Human abilities to process information are highly sensitive to the external
representation in which the information is presented to the senses [1]. One
reason for this is that external representations of a problem tend to constrain
internal representations, and therefore an inappropriate external representation
of a problem may lead to a non-optimal mental model, thus hampering its solu-
tion [2]. In fact, minor changes in how information is presented to readers may
have a dramatic impact on their performance in comprehension and problem
solving [1, 3–5].

The Software Engineering (SE) community, aware of this reality, proposes
the use of different modelling languages for different purposes in order to increase
developers’ productivity. These languages act at different levels of abstraction,
and they provide different external representations (language notations), which
often integrate graphics with text in order to improve the coding experience [2].
Languages whose notation relies on such integration are often referred to as Vi-
sual Programming Languages (VPLs), as opposed to pure Textual Programming
Languages (TPLs).

Unfortunately, the existing SE language proposals are largely under- eval-
uated [6]. Most languages have been introduced based on the best knowledge
and intuition of their creators, who have largely based their language design
decisions on meta-cognitive beliefs [7], that is, on how they think that the use of
advanced user interface technology can facilitate the mental processes involved
in software construction. In contrast, the use of theoretical models to back
the VPL creation process has been traditionally either ignored or considered
non-essential [8], the explicit involvement of different user types in the language
construction process has been nearly non-existent [6], and their empirical evalu-
ation is scarce for the moment [6, 9]. Such lack of scientific support introduces a
degree of uncertainty regarding the conditions under which a VPL can be used
successfully [1], which is translated into practitioners often experiencing some
practical difficulties when adopting new languages [6].

This situation introduces even more uncertainty when using modern MDE
[10] environments, which heavily rely on the construction and maintenance of
different models for different views of the system [11]. The claimed benefits of
the paradigm rely on how these modelling languages can harness the accidental
complexity of software systems [6]. In this context, it is of paramount impor-
tance to provide sound empirical evidence of such benefits and, more concretely,
of the gains in software developers’ performance attributable to the use of the
proposed MDE models and techniques in different contexts of use [12]. Empirical
data should be related to the evaluation of the languages at the three language
definition levels: semantics, abstract syntax (meta-model) and concrete syntax
(notation). This paper focuses on the latter, that is, the notation level. In
this level, probably due to the meta-cognitive beliefs among the SE community

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

that have been previously mentioned, most MDE environments largely rely on
graphical representations of models as the main notation, with text acting as a
secondary notation. This contrasts with the fact that graphical notations have
proven to be inferior to textual notations for certain tasks [7, 13]. In order to
clarify this apparent contradiction, and give each notation type its place in the
MDE arena, ascertaining when and how graphical notations -as opposed to its
textual counterparts- can be beneficially used within the context of the complex
cognitive activities required by software development? [2] is as relevant today as
it was twenty years ago.

This paper addresses this research question and presents an empirical study
that compares the performance (efficiency and effectiveness) of junior software
developers while performing a typical domain model development task with two
different notations (concrete syntaxes), one graphical and one textual, included
in the OOH4RIA MDE methodology [14].

The paper is organized as follows: Section 2 introduces the state of the
art regarding the impact of domain modelling notations on domain modelling
activities. Section 3 briefly describes the theoretical model that has guided the
formulation of the hypotheses for our study. Section 4 presents the study design
(objectives, research questions, variables, hypotheses and sensitivity analysis)
and its execution. Section 5 describes the data analysis on the efficiency and
effectiveness of the notations during domain modelling activities and the threats
to its validity. Finally, Section 6 discusses the main results of the study and
draws some conclusions and future lines of research.

2. Related Work

Graphical notations differ from textual ones in the way the information is
encoded within the language and subsequently processed by the human mind.
While textual languages encode information using sequences of characters (uni-
dimensional or linear), graphical languages use spatial arrangements together
with textual elements (bi-dimensional or spatial) [5]. As a consequence, textual
representations can only be processed sequentially, while visual representations
allow for a parallel processing by the visual system [5].

Existing research has discussed the relative strengths and weaknesses of both
types of notations based on two competing arguments. The research community
assumes that diagrams are easy for humans to be understood because their
spatial arrangement allows for a more efficient information processing than the
linear order of text [2, 15]. Some authors explain this fact by the shift that
diagrams allegedly make of some of the processing burden from the cognitive
system to the perceptual system, which is faster and frees up scarce cognitive
resources for other tasks [5]. However, the symbols of a graphical notation are,
in general, harder to comprehend than the textual ones. Therefore, readers of
graphical notations must be trained in order to achieve the claimed performance
gains provided by the use of such notation. [1, 13, 16].

Other differences between textual and graphical notations compiled from the
existing literature are the following:

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Graphical notations can facilitate the comprehensibility of the problem
[3, 17] since they usually facilitate the capture and representation of the
mental model of the system structure [18]. Their higher level of abstraction
may make the programming task easier even for professional programmers
[19].

• Graphical notations may contribute to avoiding errors during the mod-
elling activities, also due to their support to spatial reasoning [20].

• Graphical notations allow for a richer secondary notation [2]. Closeness of
elements, colors or symbols may supply extra information over and above
the information explicitly represented by the model [17]. This proves
specially important for expert developers [3].

• Graphical notations help recognition, at least of individual elements (easier
to read and discriminate) [17], allowing for a simpler location and access
of the desired information.

• Graphical notations are less accurate than textual ones, since a lot of
information is embedded in the symbols of the language, which could
result in some ambiguity in the interpretation of the reader [3].

• Textual notations are more efficient in spatial terms (more information
in the same space) [21]. Otherwise stated, graphical notations offer a
relatively low screen density compared to textual notations (Deutch limit)
[2].

• Textual notations are more platform- and tool- independent than their
graphical counterparts [21] and allow for an easier consistency check.

• Graphical notations are more sensitive to bad layouts (textual pretty print-
ers are much more effective than graphical ones [3])

Table 1 summarizes the main benefits (+) of each notation type commented
above.

Table 1: Benefits of textual and graphical notations in software modelling

Textual notation Graphical notation
(+) Accuracy (+) Problem comprehensibility (better

representation of mental models)
(+) Spatial efficiency / Higher screen
density

(+) Spatial reasoning

(+) Platform and tool independency (+) Information accessing (easier to
read/discriminate individual elements)

(+) Consistency check (+) Richer secondary notation
(+) Lower training required
(+) Better layout tool support

It is important to note how this compilation of results is largely focused on
differences between textual and graphical languages that are operating at differ-
ent levels of abstraction (e.g. comparison between General Purpose Languages

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(GPLs) and Domain Specific Languages (DSLs) [22]). Oftentimes, it is this
different level of abstraction, and not only the graphical or textual character of
the language, what may help to explain some apparently contradicting claims in
the literature. For example, accuracy is considered to be a potential hindrance
of graphical languages [3]. However, in our experience, it may become an issue
only if the textual and graphical languages operate at different levels of abstrac-
tion, in which case accuracy will usually favor the notation that operates at the
lower level. In the same line of thought, efficiency in spatial terms seems to
favor graphical notations [15] only if its level of abstraction is higher, while, if
both languages operate at the same level of abstraction (for example, when both
notations rely on the same underlying meta-model), textual notations make a
better use of space [21].

Another important conclusion that has been largely overlooked by the MDE
community is that cognitive effectiveness is not an intrinsic property of graph-
ical representations, but something that must be designed into them [6, 15].
Unfortunately, such design (see e.g. [6, 23]) is the exception rather than the
rule in MDE notations included in MDE environments. Next, the state of the
art of MDE domain modelling notations, which are the object of our study, is
presented.

2.1. Domain Modelling Textual vs Graphical Notations in MDE

In MDE, both textual and graphical notations can be used to define different
models representing different views of the system under development. Among
these views, this experimental study centers on the domain model, which is a
core element for the representation of the business logic and the persistence
layer of the software applications.

Domain modelling notations in MDE follow two main trends. On the one
hand, graphical notations define all the elements in terms of nodes (i.e., do-
main entities) and links among the nodes (i.e., relationships among the enti-
ties), clearly influenced by the Unified Modelling Language (UML) and Entity-
Relationship (ER) model, two de-facto standards. On the other hand, regarding
the textual representation of domain models, the Object Management Group
(OMG) has defined the Human-Usable Textual Notation (HUTN) as a Model-
Driven Architecture (MDA) standard for general textual modelling [24]. How-
ever, there is no standard for the specific representation of domain models.
Table 2 shows examples of MDE solutions, together with the languages, be
them GPLs or DSLs [22], that they propose to model the application domain.

Table 2: Excerpt of MDE approaches and support for domain modelling notations

Approach Textual notation Graphical notation
OOH4RIA Propietary DSL UML
OO-Method - UML
RadarC - UML
WebML - UML, ER
UMPLE Propietary DSL UML

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.2. Empirical research comparing textual and graphical notations
To the best of our knowledge, there are few empirical studies that compare

textual and graphical notations at a similar level of abstraction. In Software
Engineering, abstraction is a cognitive means by which, in the process of solving
a problem, developers convert the original problem into a simpler one (i.e., more
abstract) [25, 26]. In this process of conversion, developers can focus their efforts
on specific concerns and address them at a certain detail level. The levels of
abstraction and detail of a model are related and constrained by the notation
(language) used in the definition. While the level of abstraction refers to the
structure of the knowledge acquired and represented in the model (i.e., more
general or specific), the level of detail refers to the number of elements (and
their properties) used in the representation. Detailed models contain most of
the elements and interactions thought to exist in the system being modelled
[27].

As part of a broader study, Whitley [2] compiled the empirical evidence
up to 1996 regarding the use of VPLs vs. pure TPLs. She concluded that
graphical notations can provide better organization and can make information
explicit, which favors its performance (notably, its comprehension), more so as
the size or complexity of the problem grows. She also claimed that notations
are not probably superior in an absolute sense: rather, they are good in relation
to specific tasks (match-mismatch and cognitive-fit hypotheses) and individual
differences, such as experience [17]. In [28], professional software engineers were
asked to validate models presented in three formats: a semi-structured language,
a diagrammatic notation and a fully structured textual notation. The results
indicated that the semi-structured natural language resulted in the highest ef-
ficiency and effectiveness. Also closely related to the study presented in this
paper, in [29] it was empirically assessed how the use of a textual vs. a graphi-
cal domain-model notation has an impact on the maintainability of the models,
with the textual notation outperforming its graphical counterpart.

Some authors have performed such textual vs graphical comparison based
on theoretical arguments instead of empirical data. As an example, in [30] the
authors informally compare three object modelling notations: Alloy (graphical),
UML (graphical) and Z (textual) regarding several parameters such as expres-
siveness, treatment of functions, contexts, classes and types, and relationships.

There is also a line of research whose focus is on the comparison between
different graphical notations (see e.g. [31], [32]). Notably, in [33], the authors
extended a DSL and compared the original version against the extended one.
They showed how the extended language allowed users to work faster without
their effectiveness being hampered.

Another related area with much ampler research results is the the compar-
ison of DSLs vs. GPLs (usually defined at different levels of abstraction) for
different tasks. Whitley [2] compiles a good summary of of such studies up to
1996. Scanniello et al. [34] also provide a good synthesis of a set of studies that
compare the effects of using UML domain models produced in the requirements
analysis phase against working directly with source code for the comprehensibil-
ity and modifiability of such code. A meta-analysis performed on such studies

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

concludes that UML models do not influence neither the comprehensibility of
the source code nor its modifiability. In [35] the authors compare the Pheasant
DSL vs C++ for query construction. They conclude that Pheasant is more
effective, more efficient and generates more satisfaction among its users. In [36]
it is shown how the use of models (vs. direct coding) has a positive impact on
the maintainability of software applications. Also, in [37] the authors present
a family of experiments that show how users achieved higher efficiency and ef-
fectiveness in comprehension tasks when using a DSL. Furthermore, in [9] it is
proven that these results are independent from the use of an Integrated Devel-
opment Environment (IDE). Another good example of this line of research is
presented in [38], where a family of experiments show that users solve program
comprehension tasks more accurately and efficiently with a DSL than with a
GPL. Some of these studies have gone one step further and have tried to explain
the empirically found improvements in efficiency and effectiveness of program
comprehension using DSLs vs using GPLs by better values in a subset of cog-
nitive dimensions [39]. These studies show how the most influential dimensions
for differences between DSLs and GPLs are closeness of mappings, diffuseness,
error-proneness, role expressiveness and hard mental operations, all of them
favoring the use of DSLs over GPLs [40]. Given the importance of such cogni-
tive dimensions as potential explaining factors for the empirical results of MDE
experiments, their main characteristics are presented next.

3. Theoretical Model: The Cognitive Framework for Notations

In MDE, decisions on which type of notation to use for a given task in a
given context should be based on objective criteria [16]. Given the myriad of
notations and the impossibility to compare them one to one for every possi-
ble usage context, it is necessary to link empirical results to more theoretical
arguments that may help explain and generalize them beyond the particular no-
tations being tested. To this purpose, many characteristics of the notations with
potential explaining power have been proposed, including cognitive dimensions
[39, 41–45], expressive power [46], formal analysis capabilities [47], terseness
[48], cognitive load [49], aesthetics [50], perceptual characteristics of the symbol
set [5, 51] and usability [4], to name a few. From them, the Cognitive Dimen-
sions Framework (CDF) [39] and the Physics of Notations Framework (PNF)
[5] stand out. The PNF centers on decoding efficiency (comprehensibility) and
is only applicable to graphical notations [52]. On the contrary, the CDF centers
on encoding efficiency (productivity) and it can be applied to both graphical
and textual notations in either an interactive (computer-based, which may in-
clude graphical packages, word-processors and IDEs) or a non-interactive (static
representations on paper, on a board, etc.) context [52, 53]. For these two rea-
sons, in this paper the CNF has been chosen to characterize the languages being
compared.

The CDF adopts a cognitive effectiveness viewpoint, which can be defined
as the speed, ease and accuracy with which a representation can be processed by
the human mind [15]. It defines a set of constructs that is listed in Table 3. It

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is expected that different values of these constructs for different notations may
at least partly explain differences in the language usability, defined as the extent
to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use [54]. The
usability measurement of modeling languages can be performed informally (see
e.g. [44]) or more formally, e.g. through the use of questionnaires (see e.g. [55])
or even a whole quality assessment framework [56]. Also, it is important to
note how the impact of the values of these dimensions may vary depending on
the particular task being performed [44] or the individual characteristics of the
developer[57]. Last but not least, some of the characteristics of the language
may be mitigated by design manoeuvres, either isolated or part of an IDE [44].

Based on the definition of these dimensions, it seems only natural to assume
that not all of them are equally impacted by the notation being used: abstrac-
tion, diffuseness, premature commitment, closeness of mapping, provisionality
and role expresiveness seem to be more related to the abstract syntax of the
language (Low influence of notation, see Table 3), while hidden dependencies,
secondary notation, viscosity, visibility, consistency, error proneness, hard men-
tal operations and progressive evaluation may be more directly affected by the
notation (High influence of notation, see Table 3).

4. Experimental design

In the context of SE, a controlled experiment can be defined as a randomised
experiment or quasi-experiment in which individuals or teams (the experimental
units) conduct one or more SE tasks for the sake of comparing different popu-
lations, processes, methods, techniques, languages or tools (the treatments) [58].
In March 2016, a quasi-experiment was conducted at the University of Alicante.
A quasi-experiment is a type of controlled experiment in which the subjects are
not selected randomly. In this way, it is possible to study cause-effect relation-
ships in scenarios like ours, in which the cost of the random selection of subjects,
i.e. software developers, is very high [59].

4.1. Objectives and context definition

Following the structure of the Goal-Question-Metric (GQM) template [60],
the purpose of this study was to assess the effect (efficiency and effectiveness)
of the use of a textual vs. the use of a graphical notation for the representation
of domain models from the point of view of junior software developers individ-
ually modelling a software system. The context of the study is that of a 6th
semester undergraduate student enrolled in the Computer Engineering degree
at the University of Alicante. The design of the experiment is based on the
experimentation framework proposed by Wohlin et al. [61].

The two chosen notations are part of the OOH4RIA MDE proposal [14].
OOH4RIA proposes a complete development process based on a set of models
and transformations that allow to go from conceptual models to code. Specifi-
cally, the central model is the domain model that allows to represent different

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dimension Description Influence
Abstraction types and availability of abstraction

mechanisms in the language
Low

Hidden dependen-
cies

Important links between entities are
not visible

High

Secondary notation Extra information is provided in
means other than form syntax

High

Diffuseness Verbosity of language Low
Premature commit-
ment

Constraints on the order of doing
things

Low

Viscosity Resistance to change High
Visibility Ability to view components easily High
Closeness of map-
ping

Closeness of representation to do-
main

Low

Consistency Similar semantics are expressed in
similar syntactic forms

High

Error proneness Notation invites mistakes High
Hard mental opera-
tions

High demand on cognitive resources High

Progressive Evalua-
tion

Work-to-date can be checked at any
time

High

Provisionality Degree of commitment to actions or
marks

Low

Role expressiveness Purpose of a component is readily
inferred

Low

Table 3: CDF Dimensions and influence of notation

entities and their relations of the real world independently of their implementa-
tion. From the domain model, the OOH4RIA proposal defines a set of model-
to-text transformations to obtain the business logic and the persistence layers
of software applications. In this experiment, the reason for selecting OOH4RIA
is two fold: on the one hand, the MDE community does not favor any specific
MDE environment over the other, so, to the best of our knowledge, the selection
of one or other is a highly subjective choice. On the other hand, our research
question required an experimental environment that provided support for both
a graphical and a textual notation for domain models that were informationally
equivalent [1]. The OOH4RIA approach fulfills these requirements and pro-
vides, for the definition of domain models, two possible notations. The first is
a graphical notation that turns the language into a VPL. The second is a pure
textual notation that turns the language into a pure TPL. With this selection
it has been ensured that, in the study, the abstract syntax and the semantics
of the DSL remain fixed, so that, if differences in performance are found, they
can be attributed to the concrete syntax (notation) used. The hypothesis in
this sense is, based on the related literature and the CDF, that such differences

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

exist.
The research questions (RQ) addressed in this study were designed to be

answered using quantitative data. The questions are the following:

• RQ1: Is the productivity of the software developers, understood as a linear
composite of effectiveness and efficiency, affected by the use of a graphi-
cal or a textual notation during the definition of the domain model of a
software application?

• RQ2: Is the effectiveness of the software developers affected by the use
of a graphical or a textual notation during the definition of the domain
model of a software application?

• RQ3: Is the efficiency of the software developers affected by the use of a
graphical or a textual notation during the definition of the domain model
of a software application?

4.2. Design of the experiment

In this study, it was planned to gather data from 134 subjects, who were 6th
semester students of the Computer Engineering degree at the University of Ali-
cante. The subjects were randomly assigned to two factors: Notation (graphical
or textual) and System (Ticket Seller or Hotel Manager). As mentioned before,
both types of notation share the same abstract syntax and semantics, while
differing in their concrete syntax or notation. It should be noted that the ex-
periment was designed to be run in a class session. During that session, which
was scheduled 2 hours, the students had to be able to finish the domain model
proposed. For this reason, the complexity of the systems had to be adjusted to
that time restriction. The final complexity of the two proposed systems was as
follows:

• The TicketSeller system has 8 classes, 24 attributes, 11 operations and 10
relationships.

• The HotelManager system has 6 classes, 25 attributes, 6 operations and 7
relationships.

Variables

To conduct the experiment, two independent variables (IV) or factors were
defined, each with two levels/values:

• Notation (Not): categorical variable, inter-subject, with two possible val-
ues: textual and graphical. Not was defined as our focal variable, i.e., the
independent variable of primary interest.

• System (Sys): categorical variable, inter-subject, with two possible values:
TicketSeller or HotelManager. Sys was included as a moderator variable,
i.e., a variable which can further define/refine the relationship between
the focal variable and the dependent variables.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Their combination resulted in four different treatments (corresponding to
the four possible value combinations of Not and Sys).

The set of dependent, or measurable, variables (DV) were defined as follows:

• PAtr: percentage of attributes correctly defined, out of the total number
of attributes in the model [0..100]

• POp: percentage of operations correctly defined, out of the total number
of operations in the model [0..100]

• PRel: percentage of relationships correctly defined, out of the total num-
ber of relationships in the model [0..100]

• PCard: percentage of cardinality constraints correctly defined, out of the
total number of cardinality constraints in the model [0..100]

• T: Time needed to complete the domain model (in seconds).

Finally, given the fact that all the DV are related to the productivity concept,
the Productivity construct has been defined as a linear composite of the PAtr,
POp, PRel, PCard and T DV.

Hypotheses

Based on the literature review presented in Section 2, and the research ques-
tions and the variables presented above, the following null hypotheses (and the
corresponding alternative hypotheses) were defined:

• HProductivity0: The use of the graphical or textual notation of OOH4RIA
for domain modelling does not affect the productivity of the software de-
velopers (i.e., the percentage of elements correctly identified and the de-
velopment time), independently from the system being developed.

• HEffectivenessAttr0: The use of the graphical or textual notation of the
approach OOH4RIA for domain modelling does not affect the percent-
age of attributes correctly detected, independently from the system being
developed.

• HEffectivenessOp0: The use of the graphical or textual notation of the
approach OOH4RIA for domain modelling does not affect the percentage
of operations correctly detected, independently from the system being
developed.

• HEffectivenessRel0: The use of the graphical or textual notation of the
approach OOH4RIA for domain modelling does not affect the percentage
of relationships correctly detected, independently from the system being
developed.

• HEffectivenessCard0: The use of the graphical or textual notation of
OOH4RIA for domain modelling does not affect the percentage of cardi-
nality constraints correctly defined, independently from the system being
developed.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• HEfficiency0: The use of the graphical or textual notation of OOH4RIA
for domain modelling does not affect the time needed to complete a model,
independently from the system being developed.

Sensitivity analysis

Finally, in order to validate our experiment design, a sensitivity analysis of
the main univariate effects was performed, both for Not and Sys. Given that
our subject number is fixed (limited by the number of students enrolled in the
course) and cannot be modified, this analysis was used to determine the size
of the effect that can be detected with our design, for the variables Not, Sys
and their interaction. Using ANOVA (ANalysis Of VAriance), the size of the
effect is measured using the eta-squared statistic (η2). In the three cases, the
result was 0.25 (average effect size [62]) with an analysis power (1-β) of 0.8 [62].
This means that our design, besides limiting to α=0.05 the probability of Type
I errors (rejecting the null hypothesis when it was actually True), controls the
risk of Type II errors (i.e., risk of accepting the null hypothesis when it should
be rejected) to 0.2 if the effect size is at least 0.25.

4.3. Experiment Execution

This quasi-experiment was conducted during a two-hour session of the Soft-
ware Design course. The subjects had been previously trained in the use of both
notations (graphical and textual) during two hours each. In the MDE field, IDEs
are normally used for modelling. However, as presented in Table 2, few MDE
proposals support both a textual and a graphical notation for the same abstract
syntax of the domain model. From the ones that do support both (such as is
the case of the OOH4RIA editor), the aids provided by the textual and graphi-
cal editors (syntax highlighting, auto-complete functions, continuous validation,
etc.) differed. Therefore, it was decided to ask the subjects to create the domain
models on paper, in order to control for this potentially confounding factor.

During the session, the subjects did not receive any feedback on their perfor-
mance. Furthermore, two lecturers supervised the experiment in order to avoid
any possible interaction among the subjects. For ethical reasons, subjects were
explicitly asked for permission to treat their anonymised and aggregated data
in this experiment. 127 subjects (out of 134) accepted. Table 4 shows the final
distribution of the subjects by treatment.

Table 4: Final distribution of subjects by treatment

Textual Graphical Total
Ticket Seller 30 33 63
Hotel Manager 32 32 64
Total 62 65 127

All the measures were calculated based on the manual evaluation of the
tasks, carried out by the three authors of this paper. Before the evaluation, in
order to avoid misalignments among evaluators, a set of evaluation templates

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

were elaborated using Google Forms 2 3. Subsequently, the templates were re-
fined by collaboratively evaluating five assignments for each system. Finally, the
templates were validated using five more assignments, which were evaluated in-
dependently by the three authors. The specificity of the criteria achieved during
the first stage of the template evaluation made possible to reach a 100% level of
agreement for this second set. This result allowed us to divide the evaluation of
the remaining assignments among the three evaluators. The complete versions
of the models (textual and graphical) used in this experiment are available as
part of the experimental package 4.

5. Data Analysis and Results

To analyse the data, the software SPSS Statistics v.23 was used. Table 5
shows the descriptive statistics corresponding to the measures used in this study.

Table 5: Descriptive statistics for the five measures associated with the dependent variables.
(Avg: average; SD: standard deviation)

DV
Textual Graphical Ticket Seller Hotel Manager

Avg SD Avg SD Avg SD Avg SD
PAtr 76.47 16.34 84.77 9.90 81.82 11.68 79.64 17.28
POp 44.03 29.70 58.77 26.99 42.86 28.50 60.16 28.26
PRel 39.49 29.77 71.69 16.72 55.24 26.39 56.70 31.81
PCard 21.70 25.31 42.14 29.28 33.42 28.49 30.92 29.98
T 3701 798 2964 974 3123 931 3520 960

5.1. Test selection, assumptions, interaction and main effects

To perform the statistical data analysis, a two-factor Multivariate ANalysis
Of VAriance (two-way MANOVA) was applied [63] (α=0.05) with two indepen-
dent variables – Not and Sys – and five dependent variables – PAttr, POp,
PRel, PCard and T –. The two-way MANOVA is an extension of the two-way
ANOVA in which two or more dependent variables are combined to measure
something (in our case, the overall productivity of the analysts in the creation
of domain models).

Before the analysis, all the assumptions that ensure the applicability of the
MANOVA in our study were verified. A scatterplot of the dependent variables
by group detected absence of linearity. Although the violation of this assump-
tion does not prevent the application of the test, it does reduce its power. The
Pearson coefficient showed no evidence of multicolinearity (|r| < 0.9). After the
inspection of the boxplots, several univariate outliers and two extreme points
were detected. The review of the associated data tuples showed that they were
not errors in the data input or in the measure, but genuinely exceptional values.

2Hotel Manager Evaluation form: https://goo.gl/PR67uV
3Ticket Seller Evaluation Form: https://goo.gl/9E831d
4http://mde.dlsi.ua.es/oohria/labPackages/ExpPackageIST2018.zip

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Therefore, they were kept in the analyses. With the calculation of the Maha-
lanobis distance, the existence of multivariate outliers was discarded. Violations
of the normal distribution of the scale in the values of the dependent variables
PAttr, POp and PRel in several groups were detected. In order to correct this
aspect, given that all the variables showed a light negative asymmetry, a reflect
and square root transformation was performed, consisting in adding one to the
scale maximum, substracting the value of each variable and finally calculating
the square root [64]. This transformation substantially improved the distribu-
tion of the three variables, which passed the normality test (verified by means
of the z-score for asymmetry and kurtosis, in the range ±2.58 for all the cases)
even though with no linearity. In addition, the verification of the compliance
of the homogeneity of the covariance matrices was done by means of the Box’s
M test (ρ> 0.001), and the homogeneity of the variances was checked using the
Levene’s variance homogeneity test (ρ> 0.05).

The interaction effect between Not and Sys in the combined variables was
not significant – F (5, 119) = 0.403, ρ= .846, Wilks’ Λ= .983, partial η2= .017–.
However, the analyses detected a significant main effect in both Not – F(5, 119)
= 15.030, ρ<0.001, Wilks’ Λ= .613, partial η2 = .387 – and Sys – F(5, 119) =
4.245, ρ= 0.001, Wilks’ Λ= .849, partial η2 = .151 – over the combined DVs.
Based on these results, the first hypothesis, HProductivity0, can be rejected, and
thus affirm that the model notation in OOH4RIA globally affects the efficiency
and effectiveness of the developers. Subsequently, a two-way ANOVA univariate
analysis was carried out in order to study the univariate effects of the variables
Not and Sys over each dependent variables separately.

5.2. Univariate Effect of Notation and System

The performed analysis detects a statistically significant main effect of the
Not over all the dependent variables. In addition, it detects a statistically
significant main effect of Sys over POp and T. Such effects are shown in Table 6.

Table 6: Univariate effects in Notation and System (two-way ANOVA)

IV DV F(1,123) p partial n2

Not

PAttr 8.891 0.003 0.067
POp 6.204 0.014 0.048
PRel 43.73 <0.001 0.262
PCard 15.475 <0.001 0.112
T 22.363 <0.001 0.154

Syst

PAttr 0.283 0.596 0.002
POp 14.029 <0.001 0.102
PRel 0.956 0.330 0.008
PCard 0.236 0.628 0.002
T 6.525 0.012 0.050

Based on these results, the hypotheses related to the RQ2 can be rejected,
concerning effectiveness, and affirm that the percentage of attributes, opera-
tions, relationships and cardinality constraints correctly defined is affected in

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

OOH4RIA by the use of a specific notation. The system modelled in the exer-
cise (Hotel Manager or Ticket Seller) also affects POp and T measures, suggest-
ing a difference in complexity among both systems despite its similar size. In
particular, efficiency is significantly lower for the Hotel Manager system, which,
counterintutively, is slightly smaller than the Ticket Seller, indicating that model
size may be misleading as a complexity measure. Last, there is no interaction
in the effects, which implies that the direction of the effect is homogeneous and,
in our case, favors the graphical notation.

Figures 1a, 1b, 1c and 1d illustrate the results in a set of charts. In the
figures, the proximity of the lines corresponding to each system indicates that
the Sys variable does not affect the results. The influence of the Not variable
can be appreciated in the slope of the lines. Finally, the slope of both lines
(similar direction and inclination) shows in a visual manner that there is no
interaction of the variables Not*Sys. The same visual indications are applicable
to Figure 1e, which represents the average time used by the subjects to model
each system with each notation.

Finally, Table 6 also provides the information required to answer RQ3 and
to reject the hypothesis HEfficiency0. Our analysis shows how subjects are
significantly more efficient when they use the graphical notation (vs. using the
textual one) as well as when they model the TicketSeller system (vs. modelling
the HotelManager one).

The results show how the two measures most notably affected by the notation
used are the definition of model relationships and model cardinalities; for these
two domain modelling subtasks, developers are significantly less efficient and
effective when using the textual notation.

Next a tentative explanation of these facts according to the CDF introduced
in Section 3 is presented.

5.3. CDF Analysis of the Notations of the Empirical Study

Section 3 explained how the CDF can be used to come up with plausible
explanations for differences in productivity of different notations [52]. However,
in this study, not all the dimensions of the CDs framework are equally rele-
vant. Since the study compares the notations (while the abstract syntax of the
language is constant), the values for the dimensions of abstraction, closeness of
mapping, diffuseness, premature commitment, consistency, provisionality and
role expressiveness remain constant. The other dimensions, i.e., hidden depen-
dencies, secondary notation, viscosity, visibility, error proneness, hard mental
operations and progressive evaluation, of the two OOH4RIA notations (for the
task of domain model creation) were evaluated following the procedure defined
in [65]. Table 7 presents the main results of such evaluation.

As it can be seen in Table 7, for the domain model creation task, the textual
and graphical notations of OOH4RIA differ in some important dimensions. Re-
garding the Hidden dependencies dimension, all the relationships of the domain
are explicitly represented in the graphical notation (low value). In the case of the
textual notation, some relationships are implicit due to how the inheritance rela-
tionship between classes/concepts is expressed in the notation (medium value).

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) PAttr (b) POp

(c) PRel (d) PCard

(e) PT

Figure 1: Univariate effects of Notation and System over PAtr, POp, PRel,PCard and T

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dimension OOH4RIA Textual OOH4RIA Graphical
Hidden dependencies Medium Low
Secondary notation Low High
Viscosity Medium Medium
Visibility Medium High
Error proneness Medium Low
Hard mental operations High Low
Progressive Evaluation High High

Table 7: Cognitive dimensions of the OOH4RIA Notations for the Creation of Domain Models

Therefore, with the textual language, readers must keep in mind some relation-
ships between classes that are not present in the visible segment of text, which
may lead to misinterpretations of the model.

Regarding the Secondary notation dimension, the OOH4RIA graphical no-
tation does not represent all the knowledge captured by the model, but requires
an auxiliary notation (textual, form-based) to represent some properties of the
classes, attributes, operations and constraints (high value). Instead, all the
elements and properties are represented in the textual notation (low value).
Therefore, regarding this dimension, the graphical notation is at a disadvantage
since, to understand a basic piece of knowledge (e.g., a constraint), developers
may need to read two different notations. This can be a problem specially in
medium/large models.

In the Visibility dimension, the graphical notation (high value) captures
and presents more knowledge to the readers than the textual notation (medium
value) in the same representation space, i.e., it provides a higher knowledge den-
sity. For small/medium models, this can be an advantage for readers because
they can have a complete view of the model (and the problem) with less effort.
However, understanding large models requires more effort independently from
the notation. In this case, readers can have an advantage using the textual no-
tation, since it can better split the represented knowledge. Regarding the Error
proneness dimension, the graphical notation is not considered as error prone
(low value) since it is an extension of the notation for UML class diagrams
(well-known in the domain of Software Engineering). Such familiarity of the
developers with the the UML class diagram should reduce the learning curve
of this notation, as well as facilitate its use. Instead, the textual notation is
specific for the OOH4RIA domain model. Although it is a simple notation and
there are several high-level programming languages that use similar structures,
the fact that developers are not as familiarized with this specific notation may
cause some problems with its use, in particular with the definition of contexts
and relationships. Regarding the Hard mental operations dimension, the models
using both notations require some effort from the readers, especially when un-
derstanding the inheritance relationships between classes and its implications.
In particular, the textual notation (high value) requires a general effort to un-
derstand the logic of the relationships between classes and keep it in mind. This

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is due to the fact that relationships are defined independently from the classes
and may not even be represented in a text area nearby. On the other hand, in
the graphical notation (low value), with medium and small systems, the classes
and their relationships are represented in the same representation space, which
reduces the effort to memorize and to comprehend the system under develop-
ment. Finally, we do not appreciate substantial differences between the two
notations regarding Viscosity and Progressive evaluation, despite them being
also potentially influenced by notation.

5.4. Threats to the validity of the study

Given the design of the study, the main threats to its validity are external,
i.e., they affect the capacity of extrapolating the results to the general pop-
ulation. Our student sample is a limited representation of the population of
software developers in MDE environments. However, our need for a broad sam-
ple that was able to detect at least an average effect size (see the sensitivity
analysis in Section 4) made very difficult the recruitment of such a high number
of professionals. This is a common situation in experiments of this type [66].
Also, graphical modelling techniques have been empirically proven to provide
better support for expert modellers than for student modellers [67]. Based on
these findings, our hypothesis (whose validation requires a replication of this
study) is that the positive impact of the graphical notation over our subjects
would have been bigger had expert modelers been enrolled instead. Another
external threat is the the setting of the experiment (modelling on paper, in the
context of a university course), since it does not reflect the conditions of a work
environment. As mentioned before, using an IDE, while increasing the external
validity, also meant including a potential additional source of variability [44].
For this reason, in the experiment design this variable was removed. The results
presented in this paper can therefore be regarded as a baseline against which
future data involving the use of the OOH4RIA IDE can be compared and ques-
tions such as ’to what extend does the use of a given IDE mitigates/increments
the impact of the notation used?’ can be answered. In this sense, some related
results presented in [9] suggest that such use should not significantly change
the direction of the results. Also the complexity of the systems defined is lower
than the average complexity of the systems used in the industry, due to time
constraints in the experiment (a 2-hour session). Finally, the model notations
are the ones included in the OOH4RIA IDE. Although the graphical and textual
notations of OOH4RIA are the result of more than 10 years of experience in
the development of MDE applications in the industry, they are still two pos-
sible notations among many others, which makes impossible to generalise our
conclusions to other existing notations.

Regarding the conclusion validity of this study, all the assumptions that
enable the use of the chosen statistical test were verified. Moreover, an analysis
of the sensibility that ensures a power of 0.8 for the main effects with a medium
effect size (0.25) was performed.

The main threats to the construct validity were mitigated by avoiding the
discussion of the hypothesis of the experiment beforehand and by using more

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

than one system.
Finally, the threats to the internal validity of the study were mitigated by

asking each subject to develop one single system (thus avoiding learning ef-
fects, lack of time and maturity) and controlling the interaction among subjects
during the experiment. Another internal threat is the possible different level
of familiarity of students with the two assigned systems. This risk has been
mitigated by choosing two systems that are commonly used as examples in SE
courses (and therefore assumed to be equally familiar for the students). Also,
students were randomly assigned to each system and notation.

6. Discussion, conclusions and future work

This paper has compared the impact of two modelling notations, a graph-
ical and a textual one, both part of the OOH4RIA environment, regarding
the efficiency and effectiveness of junior software developers for the task of do-
main model creation. To this aim, several measures have been defined over the
number of attributes, operations, relationships and cardinality constraints that
developers need to define in domain models, as well as over the time needed to
develop the models.

The data gathered in the current study demonstrates that it is statistically
significant the improvement of a graphical notation regarding to the textual
notation, for the development tasks of small-sized domain models with juniors
software developers. The sensitivity analysis carried out in the study also qual-
ifies the non-significant results. In terms of the theory of equivalence of rep-
resentations [1], this means that the graphical and textual notations of the
OOH4RIA approach are semantically equivalent (that is, the same information
can be conveyed from both representations of the system) but computationally
unequivalent (creating graphical domains model requires less computation than
creating textual ones).

The results of efficiency (errors with the textual notation against errors with
the graphical one), together with the types of errors that were more affected by
the notation (relationships and their cardinalities), are a particularly relevant
contribution of this paper. The vast majority of subjects was able to finish the
assignment within the 2-hour time boundary, which allows us to assume that
the lack of time did not influence the results. In addition, the models developed
during the experiment are relatively simple, so that the lower number of at-
tributes, operations, relationships and cardinality constraints detected correctly
cannot be due to the tiredness of the subjects, which a more complex system
could have produced.

It is important to note how these results contrast with the ones obtained in a
previous study on maintainability of MDE models using either textual or graph-
ical notations [29], in which the textual notation improved both the efficiency
and the effectiveness of the subjects during certain tasks of analysis and mod-
ification of domain models. Such contrasting findings (textual notations being
superior for model maintainability tasks and graphical notations being superior
for model creation tasks) corroborate the claim made by several authors that

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the cognitive load of the different languages may impact differently depending
on the particular task [2, 44].

In light of the CDF dimension values assigned to both the textual and graph-
ical notations (see Section 3), it can be inferred that these dimensions do not
affect in the same way domain model maintenance and domain model creation
tasks. The OOH4RIA graphical notation shows less hidden dependencies, higher
visibility, lower error proneness and easier mental operations, which seem to be
important for developers’ productivity. However, for domain model maintenance
tasks, such graphical advantages are shadowed by the need for a secondary no-
tation. Our hypothesis in this sense (which will need to be further examined in
future experiments) is that spatial reasoning, while very important for model
creation, plays a secondary role in model maintenance. Given the fact that
both are important cognitive activities that need to be supported by modelling
languages [6], it seems only sensible for the MDE community to provide support
for both notations in their MDE environments. Unfortunately, this is not the
common practice in the discipline, as it was shown in Table 2.

The main threats to the validity of this study are 1) the fact that the exper-
iment was conducted with students and with no IDE (on paper) and 2) the size
of the models used, relatively small. From them, the use of novice modellers is
the most worrying, since existing literature points at the idea that novices may
be specially sensitive to the visual form of notations used [68]. Therefore, our
next step will be to replicate this experiment using the OOH4RIA IDE, with
more complex models and more experienced developers. Another line of work
is the replication of this study with other examples of graphical and textual
notations (other DSLs), ideally differing in other cognitive dimensions in order
to better understand how they influence the performance of developers.

Acknowledgements

This study was partially funded by the Spanish Ministry of Economy, Indus-
try and Competitiveness under the project TIN2016-78103-C2-2-R “Plataforma
para la publicación y consumo de datos abiertos para una ciudad inteligente”.
Special thanks to the subjects of the experiment, who kindly agreed to par-
ticipate in our study. Also, many thanks to the reviewers who, with their
suggestions, greatly contributed to improving the quality of this paper.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] K. Siau, Informational and computational equivalence in comparing infor-
mation modeling methods, Journal of Database Management 15 (1) (2004)
73.

[2] K. N. Whitley, Visual programming languages and the empirical evidence
for and against, Journal of Visual Languages & Computing 8 (1) (1997)
109–142.

[3] M. Petre, Why looking isn’t always seeing: readership skills and graphical
programming, Communications of the ACM 38 (6) (1995) 33–44.

[4] R. N. Taylor, A. van der Hoek, Software design and architecture. the once
and future focus of software engineering, in: Future of Software Engineer-
ing, 2007, pp. 226–243. doi:10.1109/FOSE.2007.21.

[5] D. L. Moody, The ”physics” of notations: a scientific approach to de-
signing visual notations in software engineering, in: ACM/IEEE Inter-
national Conference on Software Engineering, Vol. 2, 2010, pp. 485–486.
doi:10.1145/1810295.1810442.

[6] A. Barǐsić, V. Amaral, M. Goulao, Usability driven DSL development with
USE-ME, Computer Languages, Systems & Structures 51 (2018) 118–157.

[7] A. F. Blackwell, Metacognitive theories of visual programming: what do
we think we are doing?, in: IEEE Symposium on Visual Languages, 1996,
pp. 240–246. doi:10.1109/VL.1996.545293.

[8] K. Siau, Y. Wand, I. Benbasat, The relative importance of structural con-
straints and surface semantics in information modeling, Information Sys-
tems 22 (2-3) (1997) 155–170.

[9] T. Kosar, S. Gaberc, J. C. Carver, M. Mernik, Program comprehension of
domain-specific and general-purpose languages: replication of a family of
experiments using integrated development environments, Empirical Soft-
ware Engineering (2018) 1–30.

[10] A. R. da Silva, Model-driven engineering: A survey supported by the unified
conceptual model, Computer Languages, Systems & Structures 43 (2015)
139 – 155. doi:https://doi.org/10.1016/j.cl.2015.06.001.

[11] P. Mohagheghi, W. Gilani, A. Stefanescu, M. Fernandez, An empirical
study of the state of the practice and acceptance of model-driven engineer-
ing in four industrial cases, Empirical Software Engineering 18 (1) (2013)
89–116.

[12] J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical as-
sessment of MDE in industry, in: International Conference on Software
Engineering, 2011, pp. 471–480. doi:10.1145/1985793.1985858.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[13] T. R. G. Green, M. Petre, When visual programs are harder to read than
textual programs, in: European Conference on Cognitive Ergonomics),
1992, pp. 167–180.

[14] S. Meliá, J. Gómez, S. Pérez, O. Dı́az, A model-driven devel-
opment for GWT-based rich internet applications with OOH4RIA,
in: International Conference on Web Engineering, 2008, pp. 13–23.
doi:10.1109/ICWE.2008.36.

[15] J. H. Larkin, H. A. Simon, Why a diagram is (sometimes) worth ten thou-
sand words, Cognitive science 11 (1) (1987) 65–100.

[16] A. Ottensooser, A. Fekete, H. A. Reijers, J. Mendling, C. Menictas, Mak-
ing sense of business process descriptions: An experimental comparison of
graphical and textual notations, Journal of Systems and Software 85 (3)
(2012) 596–606.

[17] T. R. G. Green, M. Petre, R. K. E. Bellamy, Comprehensibility of visual
and textual programs: A test of superlativism against the match-mismatch
conjecture, in: Empirical Studies of Programmers, 1991, pp. 121–146.

[18] S. M. Kosslyn, J. R. Pomerantz, Imagery, propositions, and the form of
internal representations, Cognitive psychology 9 (1) (1977) 52–76.

[19] B. A. Myers, Taxonomies of visual programming and program visualization,
Journal of Visual Languages & Computing 1 (1) (1990) 97–123.

[20] J. C. Spohrer, E. Soloway, Novice mistakes: Are the folk wisdoms correct?,
Communications of the ACM 29 (7) (1986) 624–632.

[21] H. Krahn, B. Rumpe, S. Völkel, Monticore: Modular development of tex-
tual domain specific languages, in: Objects, Components, Models and Pat-
terns, Springer Berlin Heidelberg, 2008, pp. 297–315.

[22] T. Kosar, S. Bohra, M. Mernik, Domain-specific languages: A systematic
mapping study, Information and Software Technology 71 (2016) 77 – 91.
doi:https://doi.org/10.1016/j.infsof.2015.11.001.

[23] P. Caire, N. Genon, P. Heymans, D. L. Moody, Visual notation design
2.0: Towards user comprehensible requirements engineering notations, in:
IEEE International Requirements Engineering Conference, 2013, pp. 115–
124. doi:10.1109/RE.2013.6636711.

[24] OMG, UML Human-Usable Textual Notation, Tech. rep., The Object Man-
agement Group (2004).
URL http://www.omg.org/spec/HUTN/1.0/

[25] O. Hazzan, J. Kramer, Abstraction in computer science & software engi-
neering: A pedagogical perspective, System Design Frontier Journal 4 (1)
(2007) 6 – 14.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[26] B. Liskov, J. Guttag, Program Development in Java. Abstraction, Specifi-
cation and Object-Oriented Design, Addison-Wesley, 2000.

[27] R. Brooks, A. Tobias, Choosing the best model: Level of detail, complexity,
and model performance, Mathematical and Computer Modelling 24 (4)
(1996) 1 – 14. doi:https://doi.org/10.1016/0895-7177(96)00103-3.

[28] B. Hoisl, S. Sobernig, M. Strembeck, Comparing three notations for defin-
ing scenario-based model tests: A controlled experiment, in: Quality of
Information and Communications Technology, IEEE, 2014, pp. 180–189.

[29] S. Meliá, C. Cachero, J. M. Hermida, E. Aparicio, Comparison of a textual
versus a graphical notation for the maintainability of MDE domain models:
an empirical pilot study, Software Quality Journal 24 (3) (2016) 709–735.

[30] D. Jackson, A comparison of object modelling notations: Alloy, UML and
Z, Tech. rep., MIT Lab for Computer Science (1999).

[31] D. Birkmeier, S. Kloeckner, S. Overhage, An empirical comparison of the
usability of BPMN and UML activity diagrams for business users, in: Eu-
ropean Conference on Information Services, 2010, p. 2.
URL https://aisel.aisnet.org/ecis2010/51

[32] H. C. Purchase, R. Welland, M. McGill, L. Colpoys, Comprehension of
diagram syntax: an empirical study of entity relationship notations, Inter-
national Journal of Human-Computer Studies 61 (2) (2004) 187–203.

[33] F. Häser, M. Felderer, R. Breu, Is business domain language support ben-
eficial for creating test case specifications: a controlled experiment, Infor-
mation and software technology 79 (2016) 52–62.

[34] G. Scanniello, C. Gravino, M. Genero, J. Cruz-Lemus, G. Tortora, On
the impact of UML analysis models on source-code comprehensibility and
modifiability, ACM Transactions on Software Engineering and Methodol-
ogy 23 (2) (2014) 13.

[35] A. Barǐsić, V. Amaral, M. Goulão, B. Barroca, Quality in use of domain-
specific languages: a case study, in: ACM SIGPLAN workshop on Evalu-
ation and usability of programming languages and tools, ACM, 2011, pp.
65–72.

[36] Y. Mart́ınez, C. Cachero, S. Meliá, Empirical study on the maintainability
of web applications: Model-driven engineering vs code-centric, Empirical
Software Engineering 19 (6) (2014) 1887–1920.

[37] T. Kosar, M. Mernik, J. C. Carver, Program comprehension of domain-
specific and general-purpose languages: comparison using a family of ex-
periments, Empirical Software Engineering 17 (3) (2012) 276–304.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[38] A. N. Johanson, W. Hasselbring, Effectiveness and efficiency of a domain-
specific language for high-performance marine ecosystem simulation: a con-
trolled experiment, Empirical Software Engineering 22 (4) (2017) 2206–
2236.

[39] T. R. G. Green, M. Petre, Usability analysis of visual programming envi-
ronments: a cognitive dimensions framework, Journal of Visual Languages
& Computing 7 (2) (1996) 131–174.

[40] T. Kosar, N. Oliveira, M. Mernik, V. J. M. Pereira, M. Črepinšek,
D. Da Cruz, R. P. Henriques, Comparing general-purpose and domain-
specific languages: An empirical study, Computer Science and Information
Systems 7 (2) (2010) 247–264.

[41] T. R. G. Green, Cognitive dimensions of notations, in: Conference of the
Human-Computer Interaction Specialist Group on People and Computers,
Cambridge University Press, 1989, pp. 443–460.

[42] F. Modugno, T. R. G. Green, B. A. Myers, Visual programming in a vi-
sual domain: a case study of cognitive dimensions, in: Conference of the
Human-Computer Interaction Specialist Group on People and Computers,
Cambridge University Press, 1994, pp. 91–108.

[43] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda,
M. S. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe,
A. Wong, R. M. Young, Cognitive dimensions of notations: Design tools
for cognitive technology, in: Cognitive Technology: Instruments of Mind,
Springer Berlin Heidelberg, 2001, pp. 325–341.

[44] T. R. G. Green, A. E. Blandford, L. Church, C. R. Roast, S. Clarke, Cogni-
tive dimensions: Achievements, new directions, and open questions, Jour-
nal of Visual Languages & Computing 17 (4) (2006) 328–365.

[45] A. F. Blackwell, Cognitive dimensions of notations: Understanding the er-
gonomics of diagram use, in: Diagrammatic Representation and Inference,
Springer Berlin Heidelberg, 2008, pp. 5–8.

[46] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede,
N. Russell, Pattern-based analysis of the control-flow perspective of UML
activity diagrams, in: Conceptual Modeling, Springer Berlin Heidelberg,
2005, pp. 63–78.

[47] A. Lauder, S. Kent, Precise visual specification of design patterns, in: Eu-
ropean Conference on Object-Oriented Programming, Springer Berlin Hei-
delberg, 1998, pp. 114–134.

[48] S. Taylor, Extreme terseness: Some languages are more agile than others,
Extreme Programming and Agile Processes in Software Engineering (2003)
1013–1013.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[49] W. Huang, P. Eades, S.-H. Hong, Measuring effectiveness of graph visu-
alizations: A cognitive load perspective, Information Visualization 8 (3)
(2009) 139–152.

[50] C. Ware, H. Purchase, L. Colpoys, M. McGill, Cognitive measurements of
graph aesthetics, Information Visualization 1 (2) (2002) 103–110.

[51] K. Figl, J. Mendling, M. Strembeck, J. Recker, On the cognitive effec-
tiveness of routing symbols in process modeling languages, in: Business
Information Systems, Springer Berlin Heidelberg, 2010, pp. 230–241.

[52] H. Störrle, A. Fish, Towards an operationalization of the “physics of nota-
tions” for the analysis of visual languages, in: Model-Driven Engineering
Languages and Systems, Springer Berlin Heidelberg, 2013, pp. 104–120.

[53] T. Green, A. Blackwell, Cognitive dimensions of information artefacts: a
tutorial, in: BCS HCI Conference, Vol. 98, 1998, pp. 1–75.

[54] ISO, ISO 9241-11: Ergonomic requirements for office work with visual dis-
play terminals (VDTs) - Part 11 : Guidance on usability, Tech. rep., The
International Organization for Standardization (ISO) (1998).
URL https://www.iso.org/standard/16883.html

[55] A. F. Blackwell, T. R. G. Green, A cognitive dimensions questionnaire
optimised for users, in: Psychology of Programming Interest Group, 2000,
pp. 137–152.

[56] G. Kahraman, S. Bilgen, A framework for qualitative assessment of domain-
specific languages, Software & Systems Modeling 14 (4) (2015) 1505–1526.

[57] S. Clarke, Describing and measuring API usability with the cognitive di-
mensions, in: Cognitive Dimensions of Notations Workshop, 2005, p. 131.

[58] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic,
N.-K. Liborg, A. C. Rekdal, A survey of controlled experiments in software
engineering, IEEE transactions on software engineering 31 (9) (2005) 733–
753.

[59] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, D. I. K. Sjøberg, A systematic
review of effect size in software engineering experiments, Information and
Software Technology 49 (11) (2007) 1073–1086.

[60] D. E. Perry, A. A. Porter, L. G. Votta, Empirical studies of software engi-
neering: A roadmap, in: Future Of Software Engineering, ACM, 2000, pp.
345–355.
URL http://doi.acm.org/10.1145/336512.336586

[61] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer Berlin Heidelberg,
2012. doi:10.1007/978-3-642-29044-2.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[62] J. Cohen, Statistical power analysis, Current Directions in Psychological
Sciences 1 (3) (1992) 98–101.

[63] J. F. Hair, W. C. Black, B. J. Babin, R. E. Anderson, Multivariate data
analysis, Prentice Hall Upper Saddle River, NJ, 2009.

[64] J. Osborne, Notes on the use of data transformations, Practical Assessment,
Research and Evaluation 9 (1) (2005) 42–50.

[65] M. Kutar, C. Britton, T. Barker, A comparison of empirical study and
cognitive dimensions analysis in the evaluation of UML diagrams, in: Psy-
chology of Programming Interest Group, 2002, pp. 1–14.

[66] D. L. Moody, G. Sindre, T. Brasethvik, A. Solvberg, Evaluating the quality
of information models: empirical testing of a conceptual model quality
framework, in: International Conference on Software Engineering, IEEE
Computer Society, 2003, pp. 295–305. doi:10.1109/ICSE.2003.1201209.

[67] I.-L. Huang, An empirical analysis of students difficulties on learning con-
ceptual data modeling, Academy of Information and Management Sciences
Journal 15 (2) (2012) 73.

[68] S. Hitchman, The details of conceptual modelling notations are important-
a comparison of relationship normative language, Communications of the
Association for Information Systems 9 (1) (2002) 10.

26

