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+e accelerated growth of the percentage of elder people and persons with brain injury-related conditions and who are
intellectually challenged are some of the main concerns of the developed countries. +ese persons often require special cares
and even almost permanent overseers that help them to carry out diary tasks. With this issue in mind, we propose an automated
schedule system which is deployed on a social robot. +e robot keeps track of the tasks that the patient has to fulfill in a diary
basis. When a task is triggered, the robot guides the patient through its completion. +e system is also able to detect if the steps
are being properly carried out or not, issuing alerts in that case. To do so, an ensemble of deep learning techniques is used. +e
schedule is customizable by the carers and authorized relatives. Our system could enhance the quality of life of the patients and
improve their self-autonomy. +e experimentation, which was supervised by the ADACEA foundation, validates the
achievement of these goals.

1. Introduction

+e increment of life expectancy and the low mortality rates
in developed countries are bringing an accelerated growth of
the percentage of elder people. As remarked by the United
Nations (https://population.un.org/ProfilesOfAgeing2017/
index.html), currently, 12.74% of the population is above
the threshold of 65-year-old, but as for 2050, this is expected
to grow up to 27.04% of the global population. +is quick
population aging is one of the principal concerns of de-
veloped countries and one of the priority lines of research. In
addition to the elder people, thousands of people worldwide
are affected by brain-related injuries nowadays. +ese dis-
eases can be caused by different situations such as trauma,
accident, or even by genetic affections. +e alterations that
can arise after an acquired brain injury with increasing age
include the loss of intellectual abilities of different severity.
+ese disabilities interfere with social or occupational

functioning, memory, or abstract thinking disorders, the
inability to find similarities and differences between related
words, or the difficulty to perform common domestic tasks,
among others. Specifically, one of the most common con-
ditions is the omission of the natural order to perform a task.
For instance, the affected people for this condition would
brush their teeth before applying the toothpaste or take the
toothbrush but eventually forget what comes next.

One of the worst outcomes of being part of these col-
lectives is the reduced personal autonomy. Elder and in-
tellectually challenged people often require the special
attention of a therapist that helps them to perform diary tasks
such as tying the shoelaces, taking a shower, or having the
meals.

In this context, we propose the implementation of an
automated schedule system on a social robot that would
assist the patients in their daily tasks at home. +e system
will notify the programmed tasks to the patients on a
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scheduled time and will also help to achieve the actions by
walking the patient through them. It will detect if the user is
doing well and give feedback if not.

+e implementation of the proposed system would
improve the personal autonomy and enhance the quality of
life of elderly and intellectually challenged people.

So, the main contributions of this work are

(i) A programmable schedule system deployed on a
social robot

(ii) An integration of different methods in order to
monitor if the patient is performing the actions he is
intended to perform

(iii) A navigation system which consists of a mix of
semantic localization methods and the traditional
SLAM

+e rest of the paper is structured as follows. First, the
state of the art is reviewed in Section 2. In Section 3, our
proposal is thoroughly explained by giving an overview and
then focusing on each piece of the system. +en, the ex-
perimentation is detailed in Section 4. Finally, the conclu-
sions and limitations of this work are discussed in Section 5.

2. Related Works

+e growing number of elder people is being increasingly
important to promote the role and technological advance of
social and assistive robotics. Speaking about Social Robotics
creates the necessity to actually define what a social robot is.
According to [1], it is defined as “A physical entity embodied
in a complex, dynamic, and social environment sufficiently
empowered to behave in a manner conducive to its own goals
and those of its community.”

In this specific field, we have to divide the different works
based on their application. +ere are projects for assistance
in medical environments [2, 3], whilst some others are
focused on the emotional and cognitive tasks [4, 5], and
there also are projects for a social assistive task in different
environments. +is state of art is focused on this last issue.

In 1998, PAM-AID (Personal AdaptiveMobility Aid) [6]
was created. +is system aims to provide both physical
support during walking and obstacle avoidance. It used
sonar, infrared proximity sensors, and bumpers switches to
get information from the environment.

One-year later, the system proposed in [7] emerged. It
described the implementation of a control architecture for
robots designed to combine a manipulation task with a
motion controller that used the operational space formu-
lation to define and implement arm trajectories and object
manipulation.

+e same year appeared the first so-called intelligent
wheelchair [8]. +e system provided different functions:
from fully autonomous navigation in an unknown crowded
environment to partially autonomous local maneuvers. Two
years later, on the same topic, the study [9] was created,
which described the mounting of a robotic arm to a powered
wheelchair to assist disabled users in daily activities.

In 2003, three different types of work appeared. First,
Falcone et al. [10] describe the efforts to design, prototype,
and test a low-cost, highly competent personal rover for the
domestic environment. +en, Pineau et al. [11] describe a
mobile robotic assistant developed to assist elderly in-
dividuals with mild cognitive and physical impairments, as
well as support nurses in their daily activities. +ey used
three software modules: an automated reminder system,
people tracking and detection system, and a high-level robot
controller. Finally, Pollack et al. [12] use AI techniques to
model an individual’s daily plans, observe and reason about
the execution, and make decisions about whether and when
it is most appropriate to issue reminders.

Years later, it appeared the PAMM [13] project, which is
a system for support and guidance. +e PAMM detects and
maneuvers away from obstacles, and it uses an upward
looking camera for localization and also can communicate
with a central computer. +e central computer provides the
system with a map of the facility including the location. In
turn, the system provides the central computer with the
user’s location, health status, and requests.

In 2010, the system described in [14] was proposed. It
aims at designing a socially assistive robot to monitor the
performance of the user during a seated arm exercise sce-
nario, and the main purpose was to provide motivation to
the user to complete the task and to improve performance.

Also this year, “the home exploring robotic butler”
(HERB) [15] was published. It can efficiently perform map-
ping tasks, searching, and navigation through indoor envi-
ronments, recognize and localize several common household
objects, and perform complex manipulation tasks.

In 2011, the system described in [16] appeared. It was an
indoor mobile robot for taking care of the elderly. It has a
human physiological parameters monitor system, which can
take care up to six nursed persons by using a variety of
sensors.

+e ASIBOT [17] was published one-year later. It helps
users to perform a variety of tasks in common living en-
vironments. +e robot is able to autonomously climb from
one surface to another, fixing itself to the best place to
perform each task. It also can be attached to a wheelchair,
giving the user the possibility to move along with it as a
bundle.

A new iteration of the aforementioned HERB [15]
system emerged in 2012. +e HERB 2.0 [18] consists of a
two-handed mobile manipulator that can perform useful
tasks for and with people in human environments.

In 2014, it was created as a multiuser human-robot
interaction (HRI) [19] system architecture to allow the
social robot Tangy to autonomously plan, schedule, and
facilitate multiuser activities that consider the users’ ne-
cessities. During the activities, the robot was able to interact
with a group of users providing group-based and in-
dividualized assistance based on the needs of the individual.
+e same year, the robotic nursing assistant (RoNA) was
created [20], which would assist nurses while performing
intensive tasks and prevent musculoskeletal injuries among
health care workers.
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+e robotic exercise tutor [21] was published in 2017.
+e created humanoid robot learns exercise routines from a
human trainer and performs them in front of the elderly. Its
main task was to monitor the performance of the patients
and provide feedback.

In 2018, deep learning (DL) algorithms were introduced
into assistive robot systems. For instance, a remote health
care system based on moving robots intended for the elderly
at home was proposed in [22]. +e robot is able to perform
different kind of tasks. +e user can control the robot and
call it using voice commands or with a phone, and it also
performs object detection and pose estimation. It even can
monitor the posture of the elderly and collect and transmit
the data recorded by a set of sensors connected to the robot
to the cloud for further analysis. On its behalf, PHAROS, a
robotic assistant for assisting elderly in their daily physical
activities at home, was proposed in [23]. +is interactive
robot platform is divided into two modules: the recom-
mender (recommends activities at a scheduled time) and the
human exercise recogniser (as its name implies, it is the
identifier of the human pose). +is system works in real time
and uses deep learning methods to properly recognize the
performed physical exercises.

3. Proposal

In this work, we propose a robotic system for monitoring
and interacting with people affected by cognitive disabilities
and elder people. +e system will guide the patient through
their daily tasks helping, guiding, and encouraging them to
follow a preset schedule. +e ultimate goal of the proposed
system is to improve the quality of life of dependent people
and their self autonomy.

+e system is composed of a programmable schedule
and a contextual schedule. +e programmable schedule is
composed of a list of tasks that the patient must perform at a
certain time.+is kind of tasks could be delayed if the patient
is authorized to do so. On the contrary, the contextual
schedule is composed of a list of tasks that the patient is
authorized to perform on demand, and it will depend on the
room the user is located.

As shown in Figure 1, when the patient is notified to
complete a task of the programmable schedule, the patient
could try to complete it now or delay it. If the patient chooses
to perform it upon requirement, the robot will first guide the
patient to the appropriate room, and then, it will provide
instructions in order to perform the required task. If the
patient delayed a task, the system will ask him to complete it
later.

Whether the tasks come from the programmed or the
contextual schedule, each one is composed of a list of ac-
tions, which are goals the patient must accomplish to
complete a task. +e tasks are assigned and setup by the
therapist in charge of the patient or authorized relatives.
Currently, our system comprehends four main different
types of actions: object recognition, behavior recognition,
QR recognition, and spend time action. As aforementioned,
the person in charge of the patient can combine these actions
to construct high-level tasks. For instance, the task “pour a

glass of water” would be composed of three different actions.
First, the robot would ask the patient to get a glass and show
it, and then, it would ask to show the bottle of water. Both
actions would use the object recognition engine in order to
detect a glass and a bottle. Finally, the behavior recognition
engine would be setup to detect the actual action of pouring.
If the user consistently fails to complete an action, the task is
automatically aborted (and delayed if it was configured like
so). In addition, the carers could be notified of this event if
they choose to. Similarly, the task “take the medicine A”
would involve two tasks. First, the robot would ask to show
the medicine A package, which would be labeled with a QR
code. +e action in this case would use the QR recognition
engine to check if the object showed by the patient is correct.
+en, it would spend some time idle waiting for the patient
to take the medicines by making use of a spend time action.
+rough the achievement of the tasks, the robot is con-
tinually providing both visual and speech feedback to inform
and encourage the patient upon the completion of the task.

It is worth noting that the system is intended to be
deployed in a social robot that will follow the patient
wherever he goes.

3.1.-e Social Robot. A Pepper robot was chosen in order to
develop the proposed system. As shown in Figure 2, the
Pepper robot is a human-shaped robot manufactured by
Softbank Robotics. It features a variety of sensors such as
radar, laser, RGB-D cameras, and microphones among
others.

We adopted it for two main reasons: first, its appearance
is familiar and engaging so the users feel comfortable when
interacting with it. On the contrary, its features suit perfectly
the requirements of our proposal. +e requirements are a
mobile base and size that allow the robot to easily move in
indoor environments in order to guide the patient to the
desired room and to follow him and a microphone that
enables speech and voice recognition capabilities. +ey
provide a natural interaction mechanism; a tablet to display
relevant information and feedback and to offer an alternative
interaction method; a camera to monitor the patient and
detect if the given directions are being followed; and a front
laser which is in charge of detecting obstacles and provide
local localization capabilities.

It is worth noting that any other robot that meets the
aforementioned requirements can be used to deploy the
proposed system.

3.2. Object Recognition Engine. As aforementioned, there
exist actions in the tasks that are about detecting a certain
object, for instance, the detection of a glass in the task, “pour
a glass of water.”

To do so, we implemented an object recognition engine
(ORE). +e ORE is based on the InceptionResNetV2 [24]
architecture.+is DL-basedmethod is proven to provide one
of the lowest Top-1 and Top-5 errors on the ImageNet
ILSVRC 2012 [25] challenge. +is architecture takes ad-
vantage of the inception concept and residual connections in
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order to obtain high accuracy rates while maintaining the
computational cost at bay.

We adopted a classic convolutional neural network
(CNN) scheme over region-based convolutional neural
network (R-CNN) architectures to avoid false detections.
For instance, when the robot asks for a glass, it is intended
that the patient looked for the object and held it in front of
the robot. Nonetheless, if the patient is in the kitchen, it is
likely that there were glasses on the counter or on a table that
a R-CNN would detect. Given this case, it is difficult to
differentiate whether the patient is holding the object or it
appeared in the background of the scene. On the contrary,
taking advantage of a classic CNN approach, the object is
correctly detected if only the object is depicted in the input
image. +is way, we force the patient to look for the desired
object and to show it on purpose to the robot.

When the ORE is used by the system, it first captures an
image using the camera of the robot. +e image is classified
by the ORE and if the returned label matches the desired
object, the action is considered fulfilled. If not, the process is
repeated up to a preestablished number of trials. If the object
is not correctly detected, the whole task is aborted. We
consider detection if any of the scores assigned to a label is
above a certain threshold. If no label is above this threshold,
no object is considered as detected.

Note that the ORE must be used when high general-
ization capabilities are required. As aforementioned, when
asking for a glass, any glass would work. So, we need the
classifier to recognize any kind of glass.

3.3. BehaviorRecognitionEngine. Once the necessary objects
to carry out the requested action are identified, the next step
is to properly recognize the user’s behavior. For that, the first
step is to robustly detect the person(s) within the image.
However, this is not a straightforward task due to the re-
quired generality of the system. So, the designed behavior
recognition engine (BRE) should be able to properly rec-
ognize the user’s behaviors in different rooms and in dif-
ferent houses. +erefore, background subtraction
techniques are discarded. In addition, no requirements
about patient’s appearance can be established. As a conse-
quence, an abstraction mechanism is required. In particular,
the skeleton-based representation Openpose [26, 27, 28] is
used. Basically, this two-branch multistage convolutional
neural network (CNN) outputs a 18-keypoint body skeleton
for all the people in the image, independent on the back-
ground or the person, as illustrated in Figure 3.

From this body keypoint information, a new image
focused on the human skeletons is generated. In this way, the

1196.9
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Figure 2:+e proposed system is intended to be deployed on a Pepper robot, but it can be deployed in any robot that meets the requirements
of our system. (a) Some physical features of the Pepper robot, whilst the (b) depicts its visual appearance.
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Figure 1: Diagram of the proposal.
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behavior recognition is reduced to a human pose classifi-
cation.+at is, each behavior can be defined as a sequence of
several human poses such that their classification allows the
system to recognize the represented behavior (see Figure 4
for example).

As a classification problem, a CNN architecture could fit.
Particularly, in this paper, a ResNet50 [29] was used.
ResNet50 is a deep residual network of 50 layers that have
been trained to the task at hand.

+us, the BRE flowchart can be described as follows: the
robot RGB camera takes an image, from which a 224 × 224 ×

3 image with human skeletons is generated. +is skeleton-
based image feeds the pretrained ResNet50 that outputs the
observed behavior (Figure 5).

3.4. QR Recognition Engine. +ere are actions in the tasks
that require a much finer detection, meaning, a certain
instance of an object. For example, in the action “show the
medicine A,” the robot is asking for a particular medicine.
+e ORE cannot be used in this case because the requested
object is very specific, and its main goal is to provide high
generalization capabilities. So, the QR recognition engine
(QRRE) is intended to be used when the required specificity
of the requested object is critical.

To do so, we implemented a QR code detector. +e
QRRE is based on Zbar [30], which is an open-source
barcode and QR codes scanner. As expected, the objects
must be manually tagged with the correspondent QR code,
so the QRRE could be used to recognize them.We chose this
method over the traditional object recognition pipeline
[31, 32, 33, 34] because it is much faster and reliable.

When the QRRE is used by the system, first it captures an
image using the camera of the robot. +e image is fed to the
QRRE, and if the returned label matches the desired object,
the action is considered fulfilled. If no object is correctly
detected within the preestablished number of trials, the
whole task is aborted.

3.5. Speech Recognition Capabilities. In order to allow a
natural way of interaction with the robot, our system takes
advantage of the built-in speech recognition capabilities

offered by the Pepper robot. +e speech recognition engine
is provided by Nuance [35], which is a company experienced
in this area.+is company is in charge of developing top-tier
commercial speech recognition software.

+e speech recognition engine is able to identify pre-
defined words and statements configured by the user. We
adopted it as one of the main interaction methods our
system offers and is used when the robot asks a question. For
instance, the robot expects a “yes” or “ok” or a “no” when it
asks the user if he would like to perform a programmed task
now. +e tablet of the robot displays a “listening” message,
and the robot makes an acoustic alert whenever the speech
recognition engine is expecting an answer from the patient,
so he would know that he can interact with the robot using
this method.

3.6. Semantic Localization System. +e aim of the semantic
localization system (SLS) is to compute the location at the
semantic level. To do this, the work based the SLS on was
presented [36]. In this work, an optimal methodology for a
mobile robot to adapt its knowledge to new environments
was proposed. +is module works in the following way.

First, the robot captures images of the environment and
tries to classify them using an initial pretrained model. +e
images used to train this model come from unknown and
different homes. As it is deployed in a new environment, it is
likely that the system obtains low accuracy rates. +is is due
to the different visual features of the new environment and
the environments in which the model was trained in the first
place. In this case, we can provide information to the robot
to collect data and reidentify the locations. In case the
category provided by the user is not considered so far by the
model, it will be added as a new category.+is way, the robot
can easily increase and fit its knowledge to the new
environment.

It is worth noting that the model fitting of the SLS is
performed before the robot is actually deployed, so it can
precisely localize itself once deployed without the in-
terference of the patient.

To achieve this goal, we use the architecture showed in
Figure 6. +is works as follows: an input image is forwarded

(a) (b) (c) (d)

Figure 3: Human skeleton detection of several people in different bathrooms by using Openpose [26, 27, 28].
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to the ResLoc CNN architecture. +is is a classic CNN
architecture which lasts until the fully convolutional layer
was removed, so the output is the visual features descriptor
for the input image. As a result, the output of ResLoc CNN is
a 2, 048 dimensions feature vector.

+e visual features and the correspondent categories of
each image of the training dataset are extracted using the
ResLoc CNN part of the architecture and inserted on the
features database. +is features database is a model that
stores the learned data, which are the features of the training
samples. +is model is used during the inference stage.

On the inference stage, the unknown image is forwarded
to ResLoc CNN in order to extract the visual feature vector.
+en, a K-nearest neighbors (KNN) classifier performs a
query on the feature database using the recently computed
feature vector. Next, a polling is carried out among the
categories of the neighbors, and the most voted category is
returned as the final classification of the unknown image.

+e performance of the KNN is highly dependent on the
k parameter (number of neighbors). Experimentation on

this matter is carried out to set the best performing k. We
used the Annoy [37] implementation of the (approximate)
KNN classifier.

+en, the model is specialized even more with samples
that come for the actual house in which it is deployed. +e
new samples are inserted only if the localization fails in a
certain room.

As a consequence of this method, the SLS is always
updating its model to prevent loosing performance, thus,
adapting it as the time goes past.+is is specially useful as the
appearance of the environment is inevitably going to change.
For instance, the furniture is eventually being changed or
rearranged, the walls are being painted of another color, or
the home appliances are being replaced.

3.7. Motion Planning System. When a new location goal is
determined as a consequence of triggering a task that must
be performed on another room, we need a system that
calculates the path from the current room to the target. +is

Raise armsRasnet50

Openpose

Figure 5: Flowchart corresponding to the implemented behavior recognition engine (BRE): the top Pepper’s RGB camera captures an image
that is processed by Openpose to get a skeleton-focused image. +is image feeds the trained ResNet50 to properly recognize the observed
behavior.

(a) (b) (c)

(d) (e) (f)

Figure 4: Human poses representing the brushing teeth behavior. (a)–(c) depicts images as captured by the robot, whilst (d)–(f) shows the
corresponding estimated skeleton.
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task can be done using a simplified map of the environment
and an expert system that computes all the paths between the
actual location room and the destination room using some
connection rules and facts. We named this system the
motion planning system (MPS).

+e map is modeled as a graph where the nodes are
rooms, doors, and intersections between location access, and
the edges are the connection between these places. +ese
connections have an associated direction of movement for
the transition (north, east, south, and west) and a travel cost
that represents the distance between the nodes. Also, we
define the transition matrix between node types, where we
represent the action that must be performed going from the
node type A to B, as shown in Table 1. Cross type is a node
outside a tagged room where various ways join. Interior type
is a node inside a tagged room where various ways join. +e
actions are cross the door (cd), follow the corridor (fc), and
ND (not defined).

+e expert system that computes the paths between
nodes has been developed in Prolog, a logic programming
language that provides great tools for this kind of task, such
as declarative rules and unification (for restrictions man-
agement) and backtracking (for graph exploration).

+e knowledge is divided into two separated files: facts
and rules. +e facts are specific to the concrete environment
that is being modeled. +ey contain the definition of the
nodes with their types (rooms, doors, cross, and interiors),
the connection between nodes with the direction and the
associated movement cost, and a dynamic predicate that
indicates if a door is closed, which can be modified at
runtime with the information provided by the robot sensors.

+e rules are common to every environment modeled in
this way. +ey check the connectivity between the nodes
(direct or indirect) and calculate the path, set of directions,
set of actions, and the cost from nodeA to B. In facts files, the
direct connectivity between nodes is represented only in one
direction, so we have defined rules that allow the reverse

computation of this connectivity, looking for connections
from node A to B and from node B to A reversing the di-
rection of the movement, as shown in Sourcecode 1. +e
same principle has been applied to the computation of the
actions, as shown in Sourcecode 2. +e predicate action/3 is
the Prolog representation of the transition matrix shown in
Table 1.

For the building of the paths between the nodes, we
recursively search for those that are directly connected to the
current one until we reach the final node. We have to notice
that we are looking for paths without loops (trees), so we do
not allow the repetition of any node in them. Without this
restriction, the computation of this exploration would hang
and enter an infinite loop.

Due to the flexibility of the Prolog module, we cannot
only calculate the paths between the defined nodes A and B,
but we can make much more queries, like discovering all the
accessible nodes from every node, using the same facts and
rules knowledge.

3.8. Navigation and Mapping. We also relied on the ROS
framework for the complete control of the movement of the
robot. +is framework provides utilities to interact with the
robot and the mapping and navigation methods we adopted
for our system.

+e task of moving the robot from its current location to
another part of the house requires a list of waypoints, which
correspond to the labels (one per room) that are used by the

Input image

300 × 300 × 3
Resloc
CNN

Feature
vector

Feature
database

New
knowledge

Hypothesis
testing

Category

User
feedback

K nearest
neighbor
classifier

2048 × 1

Figure 6: +is architecture uses the features of a ResLoc CNN with a vector of 2, 048 features as the output. +e training samples are
forwarded to the ResLoc CNN in order to extract their feature vectors. +e feature vectors construct the model of a KNN classifier.

Table 1: Transition matrix between node types.

From/to Room Door Cross Interior
Room cd cd ND fc
Door cd fc fc cd
Cross ND fc fc ND
Interior fc cd ND fc

Computational Intelligence and Neuroscience 7



SLS and the MPS and the correspondent locations in the
robot coordinate frame. When a task is triggered in a dif-
ferent location in which it is intended to be carried out, the
robot guides the patient to the intended location. To do so,
the robot localizes itself using the SLS. As a result, a semantic
label is obtained. +en, the semantic label is looked up in the
waypoints list.+is way the robot is approximately localized.
Next, the MPS is used to build a plan from the current
location to the final destination. +is plan is a list of way-
points, and the robot will try to reach one by one.

We relied in the gmapping ROS package to create the
MPS waypoint list. +is method reads the data provided by
the laser and creates an occupancy grid map using it. +e
algorithms that comprehend gmapping are thoroughly
explained in [38]. Despite being intended to be used by a
laser sensor, we have not used the integrated laser sensors of

Pepper because of the lack of resolution, so we adopted the
depth image to fake laser readings, as stated in [39].

+e output of this step is a static 2D map that defines the
limits where the robot can move through the walls, the
doors, and the architectural barriers, but not the moving
obstacles. In this map, we define the pose of the waypoints of
the MPS, so we can translate the semantic locations to
physical positions.

Once we have build the map of the environment, we can
load and use it to perform the navigation. +en, we need to
determine the position and the orientation of the robot
within the map every time it moves. To do this, we used the
Monte Carlo localization implemented in the adaptive
Monte Carlo localization (AMCL) ROS package, which is
explained in [40]. +is method samples a set of particles in
each iteration that represents a set of probable current poses

(1) %Directions
(2) dir (north).
(3) dir (south).
(4) dir (east).
(5) dir (west).
(6) %Reversibility of orientations
(7) revDir (east, west).
(8) revDir (north, south).
(9) %Revert orientations
(10) isRevDir (X, Y):- revDir (X, Y).
(11) isRevDir (X, Y):- revDir (Y, X).
(12) % Look for direct connections
(13) hasConnection (X, X, none, 0).
(14) hasConnection (X, Y, Direction, Cost):- dir (Direction), connection (X, Y, Direction, Cost).
(15) hasConnection (X, Y, Direction, Cost):- dir (Direction), isRevDir (Direction, Reversed),
(16) connection (Y, X, Reversed, Cost).

SOURCECODE 1: Definition of connection rules.

(1) %Action definition
(2) action (X, X, none):- isPlace (X).
(3) action (X, Y, cd):- room (X), room (Y), X\ � Y.
(4) action (X, Y, fc):- cross (X), cross (Y), X\ � Y.
(5) action (X, Y, fc):- door (X), door (Y), X\ � Y.
(6) action (X, Y, fc):- interior (X), interior (Y), X\ � Y.
(7) action (X, Y, cd):- room (X), door (Y), not (closed (Y)), X\ � Y.
(8) action (X, Y, fc):- room (X), interior (Y), X\ � Y.
(9) action (X, Y, fc):- cross (X), door (Y), X\ � Y.
(10) action (X, Y, cd):- door (X), not (closed (X)), interior (Y), X\ � Y.
(11) %Know if X is an existing place
(12) isPlace (X):- room (X).
(13) isPlace (X):- door (X).
(14) isPlace (X):- interior (X).
(15) isPlace (X):- cross (X).
(16) %Action rules than ensures reversibility
(17) isAction (X, X, Action):- action (X, X, Action).
(18) isAction (X, Y, Action):- action (X, Y, Action), X\ � Y, !.
(19) isAction (X, Y, Action):- action (Y, X, Action), X\ � Y, !.

SOURCECODE 2: Definition of action rules.
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of the robot. It uses the information provided by the sensors
to determine the validity of that prediction and concentrates
the next predictions around the older most probably ones.

Finally, we have to resolve the path planning between the
current pose of the robot and the target position and move
the robot to the goal. +is task is done using the ROS
move_base package, one of the main elements in the ROS
navigation stack. It receives a goal pose as input and then
communicates with components such as the global and local
planners, recovery behaviors, and costmaps and generates a
velocity command for the base of the robot until it reaches
the desired position. +e components used by this node are
explained in [41] and in the related links of that page
(Figure 7).

Finally, it is worth noting that we used this mix of se-
mantic localization and traditional mapping and navigation
systems because the pure SLAM techniques tend to loose
performance on the long term. It is very likely that the robot
will not recover the localization once lost despite the ac-
curate state-of-the-art SLAM methods. However, SLS pro-
vides an even more accurate localization method because it
is based on visual features instead of laser features or
odometry, which are often insufficient to provide a robust
localization over time.

3.9. People Tracking and following Behavior. As aforemen-
tioned, the robot is intended to always stay by the patient in
order to be noticed when it announces a scheduled task. To
implement this behavior, we modeled it as a finite state
machine as it is shown in Figure 8.

In the initial state, it starts by waiting for the patient to
show in front of the robot and saying a customizable trigger
statement. If the robot detects that statement using its speech
recognition system explained in Section 3.5, then it tries to
detect a person. To do so, we relied in YOLOv3-320 [42].
+is is a region convolutional neural network architecture
that is able to detect the position of the objects in the image
plane, the label of those objects, and the correspondent
detection score. +is architecture achieved 0.51mAP
(measured over the intersection over union) over the test set
of the COCO MS dataset. It is currently a state-of-the-art
method on object detection and recognition providing a
decent accuracy with low computation cost.

So, the robot uses its camera to forward the color data to
this architecture in order to detect a person. If only one
person is detected, the robot tries to maintain it in the center
of its sight within a threshold by moving its base left or right.
+e robot also keeps a clear distance between itself and the
patient of a customizable distance.+is distance is computed
using the front laser sensor of the robot. If the patient walks
away, the robot must follow him by setting new goals to its
navigation system, which is explained in Section 3.8, but
always keeping the patient in the center of its sight and at the
preset distance. It is worth noting that it will not move away
when the patient approaches the robot. If the robot looses
track of the person, it will be announced with a speech
notification, and then, it will proceed to halt and try to detect
a person one more time.

+is behavior is kept until a programmed or contextual
task is triggered, and navigation to a goal is required. In this
case, the robot takes a role in which it is in charge of leading
the patient to a destination room in order to perform the
requested task. When the destination room is reached, the
robot turns around (it assumes the patient is following it)
and changes to the person detection role once again.

+is simple yet effective tracking and the following
system enables the robot to stay besides the patient at all
times allowing a natural and fluent interaction.

4. Experimentation, Results, and Discussion

Before the deployment of our system in an actual scenario,
the therapists and the persons in charge of the patient must
define the tasks that the patient is able to perform. +e tasks
defined for this pilot experience are shown in Table 2. +ese
tasks were suggested by therapists of ADACEA, which is a
foundation for the acquired brain injured people.

+en, it is required to build the initial model of the SLS
and the corresponding map for the MPS. Figure 9 shows the
plan of the test house with their rooms. Note that the
navigation systemwill not use the full map but the waypoints
in order to set the next navigation goal. +e SLS subsystem
will provide a good approximate localization for the navi-
gation step.

+e BRE and ORE models were also trained beforehand.
Our approach assumes that this step is already done and it
can use the aforementioned maps and trained models.

In the following subsections, we provide experimenta-
tion of each piece that compose the system.

It is also worth noting that some of the experiments
involved actual patients and their homes, but in some others,
the patient had to be simulated by fellow research mates.
+is is due to lack of authorization from the patients.

Finally, as the computation power of Pepper robot’s
integrated processor is quite limited, the computation of the
ORE, the BRE, and the execution of the YOLO architecture
are performed in an additional computer equipped with a
Nvidia GTX 1080Ti GPU. +e robot and the additional
computer are interconnected using the ROS framework.+e
neural architectures were developed using the Darknet and
Keras frameworks.

4.1. Object Recognition Engine Experimentation. +e archi-
tecture was trained ad-hoc for the ORE. In order to build the
dataset, we downloaded the first 400 most relevant images
with a public domain license from Google images for each
object intended to be detected. +ese objects are those re-
quired by the tasks the patient must perform. So, the objects
covered by the ORE are toothbrush, remote, bowl, tooth-
paste, bottle, egg, skillet, glass, and razor. +e images were
distributed in the training, validation, and test splits at 70%,
20%, and 10% each.+e optimizer of choice was Adam, with
a learning rate of 0.0001. +e architecture was initialized
with the ILSVRC 2012 model and trained for 10 epochs
reaching a validation accuracy of 92.75% and a test accuracy
of 92.61%. It is worth noting that the detection threshold was
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empirically set to 0.6. Figure 10 depicts the accuracy per class
of the test split. Figure 11 depicts some samples of these
objects correctly detected by the robot in the context of
different task guidance.

4.2. Behavior Recognition Engine Experimentation. With the
aim of evaluating the BRE’s performance, several subjects
(nine in total; four women and five men) were recorded
carrying out the five considered behaviors (i.e., shave, pour,

brush teeth, beat, and rise arms) in different scenarios. So, all
the video sequences captured by the top Pepper’s RGB
camera were divided into frames and manually labeled with
the observed behavior.+en, these images were processed by
Openpose [26, 27, 28]. After that, data augmentation was
applied in order to properly identify left- and right-handed
behaviors. +e total of 25, 286 images was used to train and
test the classification ResNet50 [29] network. In particular,
75% of images were for the training and 25% of them were
for the test. +e optimizer choice was Adam, and the model

Provided node
Optional provided node
Platform-specific node

amcl

Sensor transforms

Odometry source “Odom”
Nav_msgs/odometry

tf/tfMessage
“/tf”

Local_planner Local_costmap

Recovery_behaviors

Global_costmapGlobal_planner

Internal
nav_msgs/path

Move_base

“Move_base_simple/goal”
Geometry_msgs/posestamped

“/Map”
Nav_msgs/getmap Map_server

Navigation stack setup

Sensor sources
Sensor topics

“Cmd_vel” Geometry_msgs/twist

Base controller

Sensor_msgs/laserscan
Sensor_msgs/pointcloud

Figure 7: Global scheme of the navigation stack. Extracted from [41].

Speech trigger

Detect a person

Keep the person
in the center

Navigation triggered
by a task

NavigationDestination
room reached

Person detected

Lost sight
of the person

Figure 8: Finite states machine that models the people tracking and following behavior of the robot.

Table 2: Defined tasks for a test patient. Note that those tasks with no deadline in the scheduled column are contextual.+eORE goals define
the objects that must be detected by the ORE. BRE goals define the behaviors that must be detected by the BRE. QRRE goals are the QR labels
needed for that action.

Task Location Scheduled ORE goals BRE goals QREE goals
Shave Bathroom — Razor and bottle Shave —
Drink a glass of water Kitchen — Glass and bottle Pour —
Brush teeth Bathroom 9:30 Toothbrush and toothpaste Brush teeth —
Water the plant of the bedroom Bedroom 10:30 Plant and water Pour —
Cook scrambled eggs Kitchen 12:30 Eggs, skillet, and bowl Pour and beat —
Turn the AC on Living room — Remote — —
Workout: rise the arms Bedroom 15:00 — Rise arm —
Take a painkiller Bathroom 15:30 — — Painkiller
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was trained for 150 epochs reaching a test accuracy of
99.98%. Figure 12 shows the confusion matrices obtained for
the training and test.

4.3. Semantic Localization System Experimentation. As
aforementioned, the objective of this module is to help the

robot get to know the location of places in houses. With this,
the robot will be able to identify the place where it is.

In order to train the base model, we took video sequences
from different residences and then randomly shuffled and
distributed them into 70% training and 30% test splits.
Table 3 shows the final number of samples per category. We
use only RGB frames.

Kitchen

Bathroom Bedroom

Living room

Corridor

Figure 9: +e actual plan of a test house.

Bowl Egg Skillet Razor Bottle Glass Toothpaste Toothbrush Remote Plant
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Figure 10: Accuracy per class distribution of the test split obtained by the object recognition engine.

(a) (b) (c) (d) (e)

Figure 11: Samples of objects correctly detected by the object recognition engine. Note that these samples do not belong to any train,
validation, or test split.
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+e experimentation described in this section was
carried out using our own dataset which provides a se-
mantic category for each RGB image. It is important to
state that the base model was built with images from four
different residences. +e categories come from the location
in which the images were acquired. Figure 13 shows rep-
resentative images for the 5 categories available in the
dataset.

+e experiments consist of measuring the performance
of an already trained model with images from the house
presented in Figure 9. It is worth noting that the cited model
was trained on the dataset we described earlier.

For experiments in which new knowledge was in-
cluded, we used images that were captured in the above-
mentioned house. In this house, we have the same semantic
categories but different visual appearances. +e robot then
proceeded to capture new information about the envi-
ronment that the system had failed to identify. Sub-
sequently, the new information was added to the current
learned model.

First, we comment on the experiments carried out in the
different rooms using only the base model, and then we
discuss what happened when the system had flaws in the
classification and we capture information from the new
environment. A summary of the results for the experiments
performed can be found in Figure 14.

Experiment 1 establishes the baseline we use to compare
the following experiments. +e total accuracy of the test is
94.91%. +is represents the starting line, as no new
knowledge was added.

Experiments from 2 to 6 were performed in above-
mentioned house, obtaining results of (corridor ⟶
61.27%), (living ⟶ 75.30%), (bathroom ⟶ 36.61%),
(kitchen ⟶ 60.54%), and (bedroom ⟶ 43.63%) when
the robot did not know the environment and 100% in all the
places once it had added information about these places.

+e experimentation confirms the accuracy of the system
and validates it for its deployment for semantic localization
uses.

4.4. Motion Planning System Experimentation. For the ex-
perimentation of the motion planning system, we are using
the concrete example of the house described in Figure 9, with
the numerated nodes shown in Figure 15. We have defined
the node types of every point in Sourcecode 3, so that every
line number between 1 and 12 corresponds to the definition
of the same numerated node. We have defined the con-
nection between nodes in Sourcecode 4 with the associated
cost and the direction that the robot must take to go from
node A to B. As stated in Section 3.7, the definition of the
connection between nodes is only made one-sided.

First of all, we calculate the paths from the kitchen to the
others rooms, covering all the existing nodes in the graph.
+e results indicate that every node can be reached. To
ensure the reliability of the rules that grant reverse con-
nections, we calculate the reverse paths of the previous
queries too.

Once we have checked that this system calculates all the
paths and their reverses, we test the functionality of the
dynamic predicate closed/1, so we cannot reach a goal
following a path if there is some door closed.

We have covered all the possible paths between nodes in
our experimentation. Due to space constraints, we only show
as example the Execution Result 1.

4.5. Navigation and Mapping Experimentation. As stated in
Section 3.8, we have used the gmapping algorithm in order to
build the 2D static map of the environment, using a fake
laser read from the depth sensor of Pepper. +e results are
shown in Figure 16. Additionally to the generated map, we
have defined the position of the MPS nodes in order to

Brush teeth Beat Pour Shave Rise arms
0

50

100 100 100 99.93 100 100

%
 ac

cu
ra

cy
Figure 12: Accuracy corresponding to the test set of the behavior recognition engine after 150 epochs of training.

Table 3: Images distribution per category.

Cat. ID Category Training Test
1 Corridor 4,747 2,037
2 Living room 6,205 2,661
3 Bathroom 3,299 1,415
4 Kitchen 4,878 1,616
5 Bedroom 6,205 3,216
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associate a physical location to the semantic ones, so the
robot can perform the navigation between the nodes.

Using this map, Pepper can perform the localization
using the aforementioned adaptive Monte Carlo localization
with its laser reads. As depicted in Figure 17, we can see the
particles sampled by this algorithm with the most probable
poses of the robot. When a well-identifiable location is
captured by the laser, the density of the particles concen-
trates over its actual position.

+e navigation has been successfully performed with the
ROS move_base package. +e costmaps generated by the
planners according to the laser reads locate the dynamic
obstacles and let them to compute the optimal path between
the current pose and the goal. Additionally, Pepper in-
corporates an extra level of collision avoiding that blocks the
movement of its base when the sonar detects an obstacle.

+is security margin from the Pepper-integrated system
makes door crossing difficult when the door is not quite big.

4.6. People Tracking and following Behavior Experimentation.
In this case, the architecture of choice was not trained from
scratch, but we adopted an already trained model. +is
model was trained on the COCOMS dataset which is able to
accurately detect persons among other objects.+e detection
of the rest of the objects is ignored, so we only retrieve the
detection of the label person. +is model is accurate enough

(a) (b) (c) (d) (e)

Figure 13: Sample images for each category of our home dataset: (a) corridor; (b) living room; (c) bathroom; (d) kitchen; (e) bedroom.
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% accuracy w/o retraining
% accuracy with retraining

Figure 14: Accuracy of the SLS before and after applying the retraining process.

1 6 10 2 11
7

4

12

98

53

Figure 15: Numbered nodes of the house’s graph representation.

(1) %Type definitions
(2) room (kitchen).
(3) room (corridor).
(4) room (bathroom).
(5) room (living_room).
(6) room (bedroom).
(7) door (door_one).
(8) door (door_two).
(9) door (door_three).
(10) door (door_four).
(11) interior (interior_corridor_one).
(12) interior (interior_corridor_two).
(13) interior (interior_corridor_three).
(14) %Types without examples
(15) :-dynamic
(16) cross/1.
(17) %Dynamic predicate to indicate closed doors
(18) :-dynamic
(19) closed/1.

SOURCECODE 3: Definition of node types facts.
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to detect persons in a variety of poses, even when the person
is facing backwards the camera, sitting or lying in a bed or
couch, or even if they are using a wheelchair as depicted in
Figure 18. +e accuracy of the architecture in these cases is
specially important for our system because the patients are
highly likely to often render these poses.

+e tracking method tries to maintain the patient al-
ways in the center of the robot’s sight within a threshold
and a preset distance. In the experiments, the centering
threshold was set to 70 px. +is threshold enables a fine
centering process while avoiding excessive movement of
the robot due to little displacements of the patient or
flickering in the detected area of the person. Figure 19
depicts the people tracking method. +e clear space

between the patient and the robot was set to 70 cm, which
places the robot far enough to enable the free movement of
both robot and patient, while being closer enough to assure
a fluent interaction. +ere is also a 10 cm threshold for the
same reason we mentioned earlier. +e speed of the linear
movement is set to 0.3m/s and the speed of self-rotation to
0.3 rad/s. We noticed that this method is highly dependent
of the response time. In our test setup, the mean image
acquisition time is 126ms, whilst the person detection
takes 301ms mean. Both measures include the inter-
communication overhead.

+e people tracking and following behavior performed
robustly. +e robot only lost track of the patient when he
moved unusually fast, so it completely fell out of sight of the

(1) % Connection between nodes
(2) connection (kitchen,door_one, east, 100).
(3) connection (door_one, interior_corridor_one, east, 100).
(4) connection (interior_corridor_one, door_three,south, 100).
(5) connection (door_three,bathroom, south, 100).
(6) connection (interior_corridor_one, corridor,east, 100).
(7) connection (corridor,interior_corridor_two, east, 100).
(8) connection (interior_corridor_two, door_two, north, 100).
(9) connection (door_two, living_room,north, 100).
(10) connection (interior_corridor_two, interior_corridor_three,east, 100).
(11) connection (interior_corridor_three,door_four, south, 100).
(12) connection (door_four,bedroom,south, 100).

SOURCECODE 4: Definition of node connections facts.

?- goToFrom (kitchen, bedroom, Path, Actions, Directions, Cost).
Path � [kitchen, door_one, interior_corridor_one, corridor, interior_corridor_two, interior_corridor_three, door_four, bedroom],
Actions � [cd, cd, fc, fc, fc, cd, cd],
Directions � [east, east, east, east, east, south, south],
Cost � 700.

EXECUTION RESULT 1: Execution result from kitchen to bedroom.

Kitchen Living room

Corridor

BedroomBathroom

Figure 16: +e image shows the actual map generated for the MPS with the correspondent graph superimposed. +e room names
correspond to the semantic labels used by the SLS. +e map was iteratively generated by gmapping.
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robot. In this case, the robot asked the patient to position
himself in front of it, and the tracking resumed properly.

5. Conclusions and Limitations

A robotic system for monitoring and interacting with people
affected by cognitive diseases is proposed in this paper. +e

system successfully integrates object recognition, activity
recognition, localization, and navigation methods to re-
member and help the patients to perform their daily tasks.

Nonetheless, the system has some limitations. First, the
initial stage where the map is created and the models are
trained is mandatory and must be carried out by experts. In
addition, the models for ORE and BRE have to be rebuilt if

(a) (b)

Figure 17: Adaptive Monte Carlo localization running. Every arrow represents a particle with an estimated 2D pose of the robot. (a) High
uncertainty so there are multiple plausible poses of the robot (depicted as a big cloud of red arrows around the robot). (b) +e robot saw a
feature that helped to reduce the uncertainty, so the plausible poses are significantly reduced (shown as small clusters of red arrows around
the robot).

(a) (b) (c) (d) (e)

Figure 18: Some samples of the architecture performance, which is part of the people tracking subsystem.+e robustness of the architecture
is critical given the depicted cases, since the patients are highly likely to often render these poses.

(a) (b) (c) (d) (e)

Figure 19: +e robot tracks the person and always have him in the center of its sight by moving its base. +e vertical blue line shows the
center of the sight of the robot, whilst the red one depicts the center of the person. Both lines are aligned within a threshold.
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new objects are required, as they are needed for so far
unconsidered tasks that we would like to add to the patient’s
schedule. +is issue could be mitigated by creating a proper
plan that considers the long-term evolution of the patient on
the first place.

+e system was supervised by ADACEA, which is a
foundation for the acquired brain injured people, that en-
sured it effectively may help the patients to improve their
self-autonomy and quality of life.

Finally, it is worth noting that there is a video in the
supplementary materials that depict the different subsystems
running in test environments.
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Supplementary Materials

Alongside the paper is attached a video demonstration of our
proposal. In this video, the different pieces that integrate the
system are depicted. First, the people tracking and following
behavior is shown (Section 3.9). In this segment, a video
from the point of view of the robot can be seen. +e blue
vertical line marks the center of the image, whilst the red one
shows the center of the person, which is remarked in a green
box. +e characters in the left bottom corner represent the
left, front, back, and right movement commands the system
is issuing to the robot. Red is disabled, and green means the
command is being sent. +e user is wandering in a room,
and the robot successfully tracks and follows the patient.+e
following segment shows the implementation of the pro-
grammed schedule and the context schedule. Both systems
are explained in Section 3. +e colors in the programmed
schedule shows delayed or aborted tasks in red, imminent
tasks in yellow, and the remaining tasks in blue. In this
experiment, the localizations are being simulated by shuf-
fling different locations. +is is done to show the contextual
schedule. Finally, two complete tasks are shown. First, a
“take medicine A” task is due, so the robot asks the patient if
he wants to attend the task. +e user answers “OK,” so the

robot uses its speech recognition capabilities (Section 3.5) to
start the task. +en, the robot asks the patient to show the
“medicine A.” In this case, the QRRE is used (Section 3.4) to
properly recognize the QR code of that medicine.+e second
task is “pour a glass of water.” Once again the robot an-
nounces the task is due, and the patient triggers the task by
answering “yes.” +e robot asks the user to show a glass and
the water, which are being recognized properly by the ORE
(Section 3.2).+en, the pour action is detected using the BRE
(Section 3.3). +e detection scores are superimposed in the
top left corner.+is video feed comes from the camera of the
robot. Note that the robot detects that it is not the proper
room to perform the task (kitchen), but the navigation
(Section 3.8) is disabled as the testing environment does not
feature a kitchen. (Supplementary Materials)
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