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Abstract

The seagrass Posidonia oceanica is considered one of the oldest and largest living organ-

isms on Earth. Notwithstanding, given the difficulty of monitoring its fruits and seeds in the

field, the development of P. oceanica during its sexual recruitment is not completely under-

stood. We studied the stages of development of P. oceanica seeds from their dispersion in

the fruit interior to their settlement in sediment through histological, ultrastructural and meso-

cosm experiments. P. oceanica sexual recruitment can be divided into three main stages

that focus on maximising photosynthesis and anchoring the seedlings to the sediment. In

the first stage (fruit dispersion), seeds perform photosynthesis while being transported

inside the fruit along the sea surface. In the second stage (seed adhesion), seeds develop

adhesive microscopic hairs that cover the primary and secondary roots and favour seed

adhesion to the substrate. In the last stage (seedling anchorage), roots attach the seedlings

to the substrate by orienting them towards the direction of light to maximise photosynthesis.

The adaptations observed in P. oceanica are similar to those in other seagrasses with non-

dormant seeds and fruits with membranous pericarps, such as Thalassia sp. and Enhalus

sp. These common strategies suggest a convergent evolution in such seagrasses in terms

of sexual recruitment. Understanding the sexual recruitment of habitat-forming species such

as seagrasses is necessary to adequately manage the ecosystems that they inhabit.

Introduction

Seagrasses are formed by a polyphyletic group of monocotyledons (order Alismatales), which

recolonised marine environments 80 million years ago [1]. Seagrasses are habitat-forming spe-

cies because they are a source of food and shelter for a wide variety of fish and invertebrates,

and they perform relevant ecosystems services [2,3]. Despite their importance, seagrass popu-

lations are currently threatened by a variety of anthropogenic stressors [4,5]. The ability of sea-

grasses to cope with environmental perturbations depends, to some extent, on genetic

variability, which is obtained through sexual recruitment [6–8]. By forming new individuals,

seagrasses increase their genetic diversity and thus their ability to colonise new areas and to

adapt to environmental changes [9–13].
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Seagrasses have contrasting colonisation strategies [14]. Some seagrasses form seed banks

of small seeds with hard pericarps that can remain in the dormancy stage for several months.

These seagrasses are generally short-lived and can recover quickly from disturbances by not

germinating far away from parent meadows (e.g., Halophyla sp., Halodule sp., Cymodocea sp.,

Zostera sp. and Heterozostera sp. [14,15]). In contrast, other seagrasses form dispersal propa-

gules. This strategy is typical of long-lived seagrasses that can form buoyant fruits with inner

large non-dormant seeds, such as the genera Posidonia sp., Enhalus sp. and Thalassia sp.

[14,16]. Accordingly, the seeds of long-lived seagrasses have a large dispersal capacity com-

pared to the seeds of the short-lived type [17,18], which permits the evolution of species

beyond unfavourable light conditions by the seedling development of parent meadows.

The seagrass Posidonia oceanica (L.) Delile is considered one of the oldest and largest spe-

cies on Earth. An individual can form meadows measuring nearly 15 km wide and can be as

much as 100,000 years old [19]. P. oceanica meadows play important roles in the maintenance

of the geomorphology of Mediterranean coasts, which, among others, makes this seagrass a

priority habitat of conservation [20]. Currently, the flowering and recruitment of P. oceanica
seems to be more frequent than that expected in the past [21–25]. Furthermore, this seagrass

has singular adaptations to increase its survival during recruitment. The large amounts of

nutrient reserves contained in the seeds of this seagrass support shoot and root growth, even

up to the first year of seedling development [26]. In the first months of germination, when leaf

development is scarce, P. oceanica seeds perform photosynthetic activity, which increases their

photosynthetic rates and thus maximises seedling establishment success [27,28]. Seedlings also

show high morphology plasticity during their root system development [29,30] by forming

adhesive root hairs to help anchor themselves to rocky sediments [21,31,32]. However, many

factors about P. oceanica sexual recruitment remain unknown, such as when photosynthesis in

seeds is active or how seeds can remain anchored to and persist on substrate until their root

systems have completely developed. Increasing our knowledge about P. oceanica adaptations

during sexual recruitment is essential to design environmental policies that conserve threat-

ened habitat-forming seagrasses with similar characteristics.

The objective of this study was to increase our understanding of the morphological and

physiological adaptations involved in the dispersion and settlement of seagrasses that form

non-dormant seeds and buoyant fruits. Using P. oceanica as a model of this type of seagrass,

we performed a histological analysis and mesocosm experiments to evaluate the importance of

light and substrata type in the first weeks of sexual recruitment.

Materials and methods

Fruit collection and seed germination

Posidonia oceanica sexual recruitment was studied by defining the dispersion and settlement

stages and analysing the fruit pericarp, newly released and 1-week-old seeds (S1 Fig). Seed

development in the dispersion stage was evaluated by performing histological and light-trans-

mission analyses in the fruit pericarps and by testing photosynthetic activity in the newly

released seeds. The settlement stage was evaluated by performing ultrastructural analyses in

the primary system of seed adherence, and two mesocosm experiments in which the influences

of light and type of substrata on the development of the 1-week-old seeds were tested. Finally,

the primary root system morphology and the process of anchorage in the seedlings were ana-

lysed after two months of development.

Posidonia oceanica fruits were collected on beaches in the Murcia Region (Spain) in May

2016 under the authorisation of the Autonomous Spanish Community of the Murcia Region.

In this area, P. oceanica meadows are mainly found on the sandy beaches between 1 and 25 m

The sexual recruitment of seagrasses that form non-dormant seeds
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depth [33]. Exceptionally, flowering and seed production have occurred in this area during the

last four years. To ensure that the fruits used in the experiments were floating for a similar

period of time, only immature and healthy fruits (with closed and dark green pericarps) were

collected. The fruits were ovoid (2.54±0.21 cm long and 1.60±0.05 cm wide), and their peri-

carps resembled a membranous coating over the seeds (Fig 1A). The fruits were immediately

transported to the laboratory to avoid pericarps degradation and were placed inside aquaria

filled with artificial seawater and sufficient aeration to continuously maintain an oxygen con-

centration above 5.5 mg O2/l-1. Then, fruits were separated from the seeds and selected for the

experiments. To check the buoyancy of the fruit pericarps and seeds, their density was mea-

sured by calculating their wet weight and the volume they occupied in seawater.

Seeds were extracted from the fruits by longitudinally cutting the pericarp with a scalpel

(newly released seed). The newly released seeds were 1.65±0.05, 0.98±0.03 and 0.57±0.02 cm

in length, width and thickness, respectively, and they weighed 0.77±0.04 g (DW). The seeds

were green, ovoid and, on occasion, presented a short leaf and root primordial on the apical

extreme (Fig 1A). Considering that fruits with the seeds of P. oceanica can float for one to two

weeks [34,35], 75 seeds were germinated for 1 week in individual glass jars filled with aerated

artificial seawater to study the settlement stage (1-week-old seed, Fig 1B). The 1-week-old

seeds had 3–7 leaves measuring 1.68±0.12 cm long and 0.002–0.003 cm wide. The primary

root of the 1-week-old seeds ranged from 0.001 cm to 0.005 cm in length. Prior to primary

root development, the base of the posterior extreme of the 1-week-old seeds developed a dense

material of adhesive hairs that covered the primary root (Fig 1B).

The temperature and salinity of the seawater used in all experiments were 21˚C and 36,

respectively. Temperature was monitored by dataloggers (HOBO, Bourne, MA, USA). Artifi-

cial seawater was prepared with bidistilled water and marine salt (Ocean Fish, PRODAC Inter-

national, Cittadella, Italy). Aeration was provided by a system of tubes and capillaries

connected to an air pump. In the experiments that lasted more than 1 month, a 14:10 (light:

dark) photoperiod was applied in the environmental chambers. In all the other experiments,

no photoperiod was applied because the experiments lasted for less than 1 day.

Histology analyses and light-transmission tests in the fruit pericarp

First, to analyse the cellular structures of the P. oceanica fruits, the layers that composed the

fruit pericarp were observed by optical microscopy (n = 3). The fruit pericarp pieces were

Fig 1. Newly released and 1-week-old seeds of P. oceanica. (A) Newly released seeds inside a fruit and (B) 1-week-old

seeds of Posidonia oceanica. FP, fruit pericarp; NRS, newly released seeds; WS, 1-week-old seeds; H, adhesive hairs; S,

seed; R1, primary root; Rh, rhizome; L, leaves.

https://doi.org/10.1371/journal.pone.0207345.g001
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previously cut with a microtome (RM 2155 Leica, Leica Biosystems, Wetzlar, Germany) in

10 μm-thick sections. These sections were stained with 0.05% toluidine blue and mounted in

DPX medium (Agar Scientific, Stansted, UK). The sections were observed under an optical

microscope (Leica DMLB; Leica Biosistems, Wetzlar, Germany), and photographs were taken

(Leica DC500, Leica Biosistems, Wetzlar, Germany).

Subsequently, to test the light that was transmitted through the pericarp to the seed, the

fruit pericarp fragments were exposed to a gradient of light irradiance (from 10 to 1,000 μE�

m-2 � s-1, n = 18). The light intensity capable of penetrating the pericarp was determined by

placing pericarp segments (1.5 cm2) over the photoradiometer datalogger probe (DO 9721,

Delta OHM, Padova, Italy). Then, pericarps were exposed to eight light intensities (10, 30, 50,

150, 300, 500, 750 and 1,000 μE�m-2 � s-1) by varying the distance from pericarp to the light

source (LED: 20 W, 6,400 K and 1,600 lumens daylight; Electro DH, Barcelona, Spain). To

ensure a similar area of light availability in all the measurements, the probe was covered by a

handmade mould made of dark plasticine with a 1 cm-diameter gap left in the middle (S2 Fig).

The employed light intensities were based on the average solar light radiation recorded in the

month of fruit dispersion (May) on the Murcia Region coast (1,035.6±23.79 μE�m-2 � s-1; data

download from the Agricultural Information System of the Murcia Institute for Agricultural

and Food Research and Development, IMIDA; http://siam.imida.es/).

Photosynthetic activity tests

Photosynthetic activity was tested in the fruits and seeds with their corresponding light inten-

sities. Light-adapted yield and rapid light curves (RLCs) were also measured in the fruit peri-

carps and in both seed development stages by PAM fluorometry (MINI-PAM, Waltz,

Effeltrich, Germany).

Net primary production (NPP) and respiration rates were tested by measuring the oxygen

concentration (optical electrode; Portable Meter Hach HQ30d, HACH, Loveland, Colorado,

USA) in the dark and light incubations of the fruit pericarps, newly released and 1-week-old

seeds separately (n = 5). Then, gross primary production rates (GPP) were calculated by sub-

tracting the respiration from the NPP rates. Incubations were carried out in airtight glass jars

filled with artificial seawater at the average light intensities obtained during the P. oceanica
fruit dispersion period (~1,000 μE�m-2 � s-1) and at the average light radiation that seeds

reached after passing through the pericarp (~10 μE�m-2 � s-1).

RLCs were performed in the fruit pericarps and seeds using a range of light intensities from

10 to 1,000 μE�m-2 � s-1 (n = 5). Each light intensity was applied for 10 s, which was followed

by a saturating pulse of 0.2 s. The rETR values against light irradiances were fit to the exponen-

tial model proposed by Platt et al. 1980 [36]. The derived parameters of RLCs, including photo-

synthetic efficiency (α), photoinhibition parameter (β), maximum electron transport rate

(rETRmax) and saturation irradiance (Ek), were calculated following the equation of Ralph &

Gademann 2005 [37]. Additionally, light-adapted yields were tested in the seeds (n = 5) to ver-

ify whether photosynthesis efficiency depended on the prior adaptation to light [38].

Influence of light on the seed settlement stage

To evaluate the influence of the direction of light on the settlement stage, the 1-week-old seeds

(n = 8) were incubated according to three different directions of light with respect to the longi-

tudinal seed axis (top, right or left) for 2 months. To determine if the grain size of the substrata

and the light direction had interactive effects on seedling responses, two types of substrata

(sand and pebble) were used in the experiment.

The sexual recruitment of seagrasses that form non-dormant seeds
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The three directions of light were applied by using three environmental chambers: an envi-

ronmental chamber with the light bulbs placed on the roof and two environmental chambers

with the light bulbs positioned on walls. The seeds were placed individually in autoclaved glass

jars filled with artificial seawater and substrate (2 cm). The seeds were oriented with the apical

extreme so that leaves emerged and faced the back of the environmental chamber. The sand

used in the experiments was collected at the same beach as the fruits. The pebble was a steri-

lised substrate for aquariums (Akvastabil, Haderslev, Denmark). The grain size of the sand was

0.03% gravel, 1.46% very coarse sand, 85.1% coarse sand, 13.4% medium sand and 0.01% fine

sand. The grain size of the pebble substrate was 80.8% pebble and 19.2% gravel [39]. The light

intensity on the seeds was 100 μE�m-2 � s-1.

After 2 months, the angle of orientation of the seeds was measured in regard to the light

direction: above (π/2 radians), right (2π radians) and left (π radians). Then, the final angle of

seed rotation obtained in each treatment was subtracted from the initial angle of seed orienta-

tion (π/2 radians).

Ultrastructure of the adhesive hairs

Prior to primary root development, the morphology of the adhesive hairs in the 1-week-old

seeds (n = 3) was analysed by transmission and scanning electron microscopy.

For transmission electron microscopy (JSM 6100, Jeol, MA, USA), pieces of the basal sur-

face of the 1-week-old seeds and primary roots were fixed in 2.5% Milloning´s phosphate-buff-

ered glutaraldehyde (pH 7.2–8.2) for 1 h. These pieces were washed in 2.5% NaHCO3 (60 min

at 25˚C) and post-fixed in a solution of 2% OsO4 and 1.25% NaHCO3 for 1 h. Subsequently,

the pieces were dehydrated in an ethanol series and embedded in an epoxy resin solution

(Epon). Then, ultra-thin transverse sections were cut with glass and diamond knives. Sections

were stained in a solution of uranyl acetate and lead citrate before being observed under a

microscope.

For the scanning electron microscope observations (JEOL-6100 Scanning Microscope;

Oxford Instrument, Abingdon, UK), the pieces of the basal surface of the seeds and the pieces

of their primary roots were previously dehydrated in 96% absolute ethanol and then point-

dried and sputter-coated with gold.

Influence of substrata type on the seed settlement stage

To evaluate the influence of substrata type on the success of anchorage and the ultrastructure of

the root system, 1-week-old seeds were individually placed into glass jars filled with artificial

seawater and substrata (sand, pebble, sand+pebble and fibreglass; n = 8). The sand and pebble

treatments comprised the substrata used in the previous experiment. The sand+pebble treat-

ment involved mixing 50% of the sand and 50% of the pebble from the previous treatment. The

fibreglass treatment was used to evaluate the effects of a fibrous substrate on the root system

morphology, such as a canopy of algae or a surface composed of seagrass beach-casts with no

organic matter decomposition. The light intensity was 50 μE�m-2 � s-1 during daylight hours.

After the first month of the experiment, the success of the root system anchorage and the

presence of adhesive hairs were estimated by ranking them into percentages depending on the

number of roots anchored and hair density, respectively (S1 Table). Finally, after 2 months,

the root system of three samples per treatment was observed by scanning electron microscopy.

Data analysis

The gradient of light transmitted through the fruit pericarp was fitted to a regression model,

which was chosen with the correlated Akaike information criterion test (AICc).

The sexual recruitment of seagrasses that form non-dormant seeds
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One-way ANOVAs were used to test the differences between the treatments in photophy-

siological parameters (α, β, rETRmax, EK and light-adapted yield) and photosynthetic activity

(NPP, GPP and respiration). Prior to ANOVA, data were tested for normality and homosce-

dasticity of variances by the Shapiro and Bartlett tests, respectively. Transformations were

applied if data did not meet the assumptions. Statistical tests were conducted with a signifi-

cance level of α = 0.05. In those cases in which data did not meet the assumptions after being

transformed, the significance level was lowered to α = 0.01 [40]. Tukey’s test was used to exam-

ine the pairwise differences among levels when the main effects showed significant differences.

The influence of the substrata type on the seed anchorage success and the density of adhesive

root hairs were tested by applying Kruskal-Wallis and Kramer (Nemenyi) tests.

To test the influence of the direction of light during seedling settlement, a Watson–Wil-

liam’s test was used to determine whether the mean of the angles obtained in the seeds cultured

under lateral light (right and left) differed from the mean of the angles obtained in the seeds

grown with overhead light in both substrata types used in the experiment (sand and pebble).

Rayleigh’s tests for circular uniformity were previously tested to determine that data were

unimodal and not diametrically bidirectional.

Statistical analyses were performed with the R statistical software (v. 3.2.5) using the pack-

ages “AICcmodavg”, “GAD”, "PMCMR" and “CircStats” [41]. The data results are reported

throughout the manuscript as the mean ± standard error (SE).

Results

External morphology and the fruit pericarp ultrastructure

The histological analyses showed that the P. oceanica fruit pericarps displayed the typical fruit

covering structure formed by an initial layer of epidermis and a subsequent layer of mesophyll

(Fig 2A). The epidermis consisted of a single layer of thick-walled, rounded and relatively large

epidermal cells (4,023.3±219.3 μm) covered by a cuticle (523.3±83.5 μm), with the cytoplasm

showing numerous chloroplasts. The mesophyll consisted of two layers of different cell types,

the hypodermis and the spongy mesophyll. The hypodermis (11,502.6 ± 1,990.5 μm) consisted

of a compact coat of hexagonal-shaped cells with electro-dense material, and chloroplasts

were distributed in the cytoplasm periphery (Fig 2A). The spongy mesophyll (149,987.7±
3,400.8 μm) comprised large cells containing central vacuoles or air lacunae that occupied the

main cellular volume (Fig 2A). The volume of the central vacuoles or air lacunae increased

toward the internal mesophyll (from 1 to 3.5 mm in diameter). The fruit pericarp and the

newly released seed densities were 716.9±64.1 and 1,073.0±18.9 kg-1 �m-3, showing positive

and negative buoyancies in seawater, respectively (density of the seawater ~ 1,025 kg-1 �m-3).

Light transmission in the fruit pericarps

The light transmission through the pericarps followed a significant linear trend according to

the light intensity exposure (Fig 3A). The light transmission in the pericarps ranged between

0.14±0.01 and 10.50±1.56 μE�m-2 � s-1 for light exposures of 10 to 1,000 μE�m-2 � s-1, respec-

tively (Fig 3A).

Photosynthetic activity in the fruits and seeds during dispersion

The RLCs showed significant differences in the parameters of α and rETRmax among the fruit

pericarps, the newly released seeds and the 1-week-old seeds (Table 1 and Fig 3B). The highest

α values were found for the 1-week-old seeds (0.048 ± 0.005), while the fruit pericarps and the

newly released seeds gave similar values (0.016±0.001 and 0.017±0.002 in the fruit pericarps
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and the newly released seeds, respectively; Table 1 and Fig 3B). The newly released seeds and

the 1-week-old seeds had significantly higher rETRmax values (6.207±1.484 and 10.41±1.64,

respectively) than the seeds obtained in the fruit pericarps (2.905±0.496; Table 1 and Fig 3B).

Notwithstanding, the β and EK values between treatments were similar (Table 1).

The light-adapted yield in the fruit pericarps was significantly lower than that in the newly

released and 1-week-old seeds (Fig 3C). At a light intensity of 1,000 μE �m-2�s-1, the fruit

Fig 2. Details of the histology, ultrastructure and morphology of the fruit pericarp and 1-week-old seeds of Posidonia oceanica.

Images show (A) the histological fruit pericarp sections and (B and C) the ultrastructure of the adhesive basal hairs of a 1-week-old

seed. Green arrows indicate chloroplasts, while blue arrows denote air lacunae. Ed, epidermis; Hd, hypodermis; M, mesophyll; H,

adhesive hairs; S, seed.

https://doi.org/10.1371/journal.pone.0207345.g002
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Fig 3. Influence of light on the sexual recruitment of P. oceanica. The graphs show the results obtained in the

experiments performed to test the influence of light on the sexual recruitment of Posidonia oceanica (mean±SE; n = 5):

(A) light transmitted by the fruit pericarps in a gradient of light irradiance; (B) RLCs; (C) light-adapted yields of the

fruit pericarp and seeds; (D) GPP; (E) NPP; and (F) respiration obtained in newly released (NRS) and 1-week-old seeds

(WS) at a light intensity of 10 μE �m-2 � s-1. Lines indicate significant regressions (p< 0.01) in the fruit pericarps (black

lines; R2 = 0.98), newly released seeds (dotted black lines; R2 = 0.96) and 1-week-old seeds (dotted grey lines; R2 =

0.97). Letters indicate significant pairwise differences between the treatments.

https://doi.org/10.1371/journal.pone.0207345.g003
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pericarps obtained negative values for NPP (-0.272±0.014 mg O2 � g
-1� h-1) and respiration rates

(-0.234±0.007 mg O2 � g
-1� h-1), which gave a negative GPP rate (-0.039 ± 0.017 mg O2� g

-1� h-1).

At 10 μE �m-2�s-1 of light intensity, the seeds had similar positive GPP values (p = 0.437; Fig 3D).

In contrast, the newly released seeds showed significantly lower values for respiration and NPP

than the 1-week-old seeds (p< 0.05; Fig 3E and 3F).

Influence of the direction of light on the seed orientation

The 1-week-old seeds showed a positive phototropism to the direction of light (S3 Fig). The

angles of orientation of the seeds grown with light on the walls significantly differed from the

angles of the seeds that developed with light that came from overhead (p< 0.01). When light

came from overhead, seeds turned an average of 0.061±0.019 radians in relation to the initial

position. Seeds rotated an average of 0.878±0.046 radians when the light came from the right

and 2.242±0.041 radians when the light came from the left (S3 Fig). However, the phototro-

pism of seeds was not influenced by the sediment type in which the seedlings were grown

(sand and pebble; S3 Fig).

Primary system of seed adherence

After approximately 1 week of development, a matrix of adhesive hairs appeared on the basal

surface of the seeds (Fig 2B and 2C). In subsequent weeks, the adhesive hairs concentrated on

the most posterior seed part, covering the primary root (Fig 1B). After 1 month of develop-

ment, all the seeds, primary roots and secondary roots had adhesive hairs over their entire

surfaces. The adhesive hairs disappeared from the surface of seeds after 2 months of develop-

ment but persisted in the primary and secondary roots for the rest of the experimental period

(Fig 4).

The adhesive hairs of the seeds had the same structure as the adhesive hairs of the primary

and secondary roots of the seedlings (Fig 2B and Fig 4). On both primary and secondary roots,

the adhesive hairs came from hypodermis cells, were tubular-shaped, and covered a seed

length from 5 to 10 μm and a seed width from 0.5 to 1 μm (Fig 2B and 2C). The lengths of the

root hairs were not measured, as they were too entangled. The root hairs were highly branched

(Fig 4D) and produced microtrichomes over their lateral sides (Fig 4F).

Influence of substrata type on the root system morphology

The root system anchoring success was not significantly different between the substrata types

(Table 1). Nevertheless, the lowest anchorage success was seen in the sand treatment (45.0

Table 1. Summary of the results obtained by one-way ANOVA and Tukey’s HSD test of the photophysiology

parameters (α, β, rETRmax, EK and light-adapted yield) of the fruit pericarps (FP), newly released (NRS) and

1-week-old seeds (WS) of Posidonia oceanica (n = 5). The numbers in bold indicate significant effects (p<0.01). An

asterisk over the response variable indicates that the data did not meet the assumptions, and a significance level of α =

0.01 was applied.

One-way ANOVA Pairwise comparisons

Response variable p FP vs. NRS FP vs. WS NRS vs. WS

p p p
α < 0.01 0.998 < 0.01 < 0.01

β 0.078 0.065 0.425 0.460

rETRmax < 0.01 0.216 0.099 < 0.01

EK 0.077 0.088 0.155 0.938

Light-adapted yield < 0.01 < 0.01 < 0.01 0.943

https://doi.org/10.1371/journal.pone.0207345.t001
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±14.6%), while the highest successes were seen in the fibreglass, pebble and sand+pebble treat-

ments (100±0.0%, 95.0±5.0% and 90.0±6.1%, respectively).

Substrate type did not influence the production of adhesive hairs in either seeds or roots

(Table 2). The presence of hairs was clearly noted, and hairs formed a layer over the seeds and

primary roots, which was slightly greater in the roots (56.0±6.1%) than that in the seeds (48.0

Fig 4. Root hair ultrastructure of P. oceanica. Images obtained by scanning electron microscopy of the root hairs of the Posidonia oceanica seedlings grown in different

types of sediment treatments: (A) root hairs adhered by their basal extreme in the pebble treatment, (B) root hairs surrounding grains of sand in the sand treatment, (C)

root hairs that interwove a fibre in the fibreglass treatment, (D) the branched edges of root hairs, (E) the basal extreme of a root hair anchored to the pebble treatment

and (F) the microvillus of the lateral surface of root hairs.

https://doi.org/10.1371/journal.pone.0207345.g004

Table 2. Summary of the statistical results obtained by the Kruskal-Wallis and Kramer (Nemenyi) tests on the effect of the substrata type on the root system mor-

phology of Posidonia oceanica (n = 5). The numbers in bold indicate significant effects (p< 0.01). S: sand treatment, S+P: sand+pebble treatment, P: pebble treatment

and F: fibreglass treatment.

FPairwise comparisons

S vs. S+P S vs. P S vs. F S+P vs. P S+P vs. F P vs.

p p p p p p p
Anchorage success 0.02 0.38 0.18 0.07 0.97 0.83 0.97

Seed adhesive hairs 0.48 0.79 0.99 0.99 0.61 0.59 1

Root hairs 0.86 0.94 1 1 0.88 0.94 1

https://doi.org/10.1371/journal.pone.0207345.t002
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±11.4%). Hair length was not measured in this experiment because the hairs were completely

incrusted or wrapped in sediment (see Fig 4A, 4B and 4C). The root hairs of the seedlings in

the sand or fibreglass treatments were enmeshed with their respective substrata (Fig 4B and

4C). In contrast, in the seeds grown in pebbles, the root hair edges were anchored to the sur-

face of the pebbles to form an amorphous adhesive matrix (Fig 4A and 4E). The seedling root

system formed a tripod-like structure made up of elongated secondary roots, even in the seed-

lings that were not completely anchored to the substrata (S4 Fig)

Discussion

Our results shed light on the development of P. oceanica seeds during sexual recruitment.

Based on this and previous knowledge, we divided the process into three stages (Fig 5): (I) fruit
dispersion, where the seeds displayed relevant photosynthetic activity inside the fruits; (II) seed
adhesion, where the seeds developed adhesive hairs on their basal surfaces and primary roots;

and (III) seedling anchorage, where the seeds produced a tripod-like form with their primary

and secondary roots and oriented themselves to face light. These three developmental stages of

sexual recruitment focus on two common colonisation strategies: maximisation of the photo-

synthesis of the seeds and enhanced seed anchorage to the substrate.

Stage I: Fruit dispersion

Posidonia oceanica seeds are formed inside large ovoid fruits consisting of a spongy pericarp.

The fruit pericarp confers buoyancy while favouring light transmission to seeds. The seeds are

also capable of performing relevant photosynthetic activity while being transported to the fruit

interior (Fig 5).

The chloroplasts in P. oceanica fruits are mainly distributed on the outermost pericarp lay-

ers. These chloroplasts obtained high electron transport rates at the expected light intensities

on the Mediterranean Sea surface during the fruit dispersion period of P. oceanica. This find-

ing suggests that the fruits can use light that reaches the surface of the sea to produce oxygen.

In other plants, whose seeds are also dispersed by floating in aquatic environments, the oxygen

produced by pericarps in the dispersion stage is essential to maintain healthy fruit tissue by

maximising buoyancy in water and thus favouring dispersion [42]. The respiration rates of the

P. oceanica fruits were very high, causing negative values of GPP. This fact was also reflected

by the low light-adapted yield values obtained in the fruit pericarps and indicates poor photo-

synthesis efficiency in the photosystems. In contrast, the seeds were able to produce a positive

GPP while showing high light-adapted yield values at low light intensities. In addition, the air

lacunae of the pericarp (located near the seed position) increased in size in the innermost

mesophyll areas. Therefore, the seeds’ efficient photosynthesis activity, despite the low light

intensity, indicated that the seeds were the main contributors to pericarp oxygenation.

In this stage, the newly released seeds displayed a similar photosynthetic efficiency to that

in fruits for 1 week. However, at the same light intensities, the younger seeds had lower elec-

tron transport rates than the older seeds. The respiration rates were higher in the newly

released seeds than those in the 1-week-old seeds, probably due to the low light intensity inside

the fruit. High respiration rates resulted in negative NPP rates, despite the seeds producing

positive GPP rates in both seed development stages. Therefore, the benefits of a positive GPP

in seeds can be 2-fold, i.e., slowing down pericarp degradation and favouring seed dispersion,

but a positive GPP can also enhance initial seed development inside the fruit. Part of the

energy that seeds obtain through photosynthesis is invested in root and leaf development in at

least the first month of germination [28]. Thus, the ability of P. oceanica seeds to use low light

intensities for photosynthesis could be a strategy to enhance seed development during
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Fig 5. Schematic representation of the three sexual recruitment stages of P. oceanica, including dispersion and settlement.

https://doi.org/10.1371/journal.pone.0207345.g005
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dispersion. This strategy could explain the advanced state of germination of the seeds when

released from the fruit.

Stage II: Seed adhesion

When fruits open, seeds are released and fall to the seabed, aided by the geotropism that pro-

motes early primary root formation. The seed forms adhesive hairs on its basal surface and pri-

mary roots, which improve adherence to the substrate. In addition, seeds increase their range

of light tolerance for photosynthesis by enhancing their photosynthetic activity (Fig 5).

The high electron transport rates obtained in the RLCs of the 1-week-old seeds compared

to those in the newly released seeds indicated a clear photoacclimation in the P. oceanica seeds

over time [43]. Inside fruits, light intensity is low, and the newly released seeds do not need to

adapt to high light intensities. In contrast, the 1-week-old seeds need to adapt to new light

intensities once released. Adult P. oceanica meadows also show marked adaptations to light

according to their depth [44]. Similar to adult plants, P. oceanica seeds adapt their light toler-

ance range to optimise photosynthesis performance during different seed development stages

by enhancing their germination during settlement.

Regarding settlement, P. oceanica seeds developed adhesive hairs on their basal surfaces.

The formation of adhesive hairs also occurs in other seagrasses of genera Thalassia and Enha-
lus but seems scarce in species of the genus Posidonia [45,46]. The production of adhesive

hairs helps seeds and primary roots come into contact with sediment and increases the possi-

bilities of adhesion to the substrate [47–49]. Adhesive hair formation also occurs in seagrasses

that form dormant seeds and helps these seeds bury under sediment and form seed banks [50–

52]. In freshwater macrophytes, such as wetland plants, adhesive basal hairs also perform

important functions during seed development and water uptake before primary roots

completely develop [53–55]. Hence, the formation of the adhesive hairs in seagrasses does not

seem directly related to the seed dormancy type but appears to play a key role in the initial

seed adherence in aquatic environments prior to full primary root development.

The histological structure of the initially formed adhesive hairs in the P. oceanica seeds is

similar to that observed on the primary and secondary roots of the seedlings after 1 month of

development. In both cases, the adhesive hairs were long, tubular and immersed in a gelati-

nous matrix. The adhesive hairs of both seeds and roots were formed from the differentiation

of hypodermic cells, which also occurs in the genus Thalassia [48]. Therefore, the formation of

the adhesive hairs on the basal surface of P. oceanica seeds and roots could be an adaptation to

overcome seedling anchorage difficulties in the first weeks of development. By forming adhe-

sive hairs on the basal surface, seeds establish contact between their primary roots and the sedi-

ment and thus maximise the anchorage capacity of the seedlings to the seabed and facilitate

their geotropism.

Stage III: Seedling anchorage

During the first month of development, seeds develop secondary roots on their apical

extremes, which are later covered by adhesive root hairs. As secondary roots elongate with the

primary root, they form a tripod-like structure with a two-fold function of favouring the

anchorage success of seedlings to substrate and orientating seeds towards the light source (S3

and S4 Figs). This formation is linked to the presence of substrata. Increasing the light expo-

sure of P. oceanica seeds while seedlings are anchored to a substrate could increase photosyn-

thesis rates in the seeds by accelerating the seedling development and, thus, lead to settlement

(Fig 5).
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In our experiment, the secondary roots that developed in the seedlings grown in sand did

not completely enter the substrate. In the other tested substrata (pebble, sand+pebble and

fibreglass treatments), most seedlings anchored themselves by introducing most of their roots

into the substrata. These results coincide with the good adherence capacity shown by the P.

oceanica root system to rocks and substrata covered by algae [31,32,56,57]. The anchorage

capacity of the seeds grown in sand could be related to the different adherence strategies

observed in the root hairs. Our experiments showed that adhesive root hairs were produced in

all tested substrata types. However, the root hairs seemed to use different anchorage strategies

depending on the substrata type. In agreement with the results of other studies [31,58], the

adhesive root hairs of the seedlings grown in pebbles adhered through their edges to the sub-

strate and formed a kind of adhesive buttons, even when pebbles were mixed with sand. How-

ever, when the substrata were only sand or fibreglass, the root hairs did not show these

adhesive buttons but embraced substrate particles instead. These different adherence mecha-

nisms seem to be related to the presence of microtrichomes on the sides of adhesive root hairs,

which could act as small hooks by sticking to grains of sand and fibres. However, the images

obtained from the microtrichomes of the root hairs in this study were not sufficient to clearly

understand the mechanism of adherence of the root hairs to sand and fibres. Future research

in this area is needed to increase the knowledge of the functionality and mechanisms of adher-

ence of P. oceanica root hairs in different substrata types.

Regardless of adhesion type, the P. oceanica root system seemed more stable in hard and

coarse substrata than in a fine type. This coincides with P. oceanica greater sexual recruitment

success on sheltered and rocky surfaces than on sand [21, 56, 57]. The high branching that

showed root hairs in all sediment types could also reinforce this hypothesis. Branching

increased the number of edges and the possibilities of root hairs adhering to a hard, stable sub-

strate. In contrast, a coarse sand composition could cause grains of sand to move while roots

penetrate the substrata, which would increase the possibility of uprooting seedlings during dis-

turbance events. The seedlings of the seagrass P. australis, which usually recruits in sand, show

high mortality rates during the first months of development due to grazing and bioturbation

[59,60]. This phenomenon indicates that despite developing a well-adapted root system, the

seagrasses of the genus Posidonia are very vulnerable to disturbance events when grown in

substrata with a fine particle size. Thus, the high plasticity of roots to different substrata types

suggests that seedling colonisation success depends more on the stability that the substrate

provides to roots rather than the seedling adherence capacity.

Posidonia oceanica seed development strategies during sexual recruitment observed here

revealed great similarity with other seagrasses that form non-dormant seeds and buoyant

fruits, such as the species of genera Thalassia and Enhalus. Similar to P. oceanica, the seeds of

these seagrasses are large and contain many nutrients [26,61,62], which, along with their

expected photosynthetic capacity, can explain the advanced state of germination of these seeds

when released from their fruits [17,47,49,63–66]. Seed photosynthetic activity has been dem-

onstrated only in P. oceanica and Thalassia testudinum [27,67], but the fruits and seeds of the

other species of these genera display a bright green colour on the surface, which indicates high

levels of chloroplasts [48,62,68,69]. These three seagrass genera also form microscopic adhesive

root hairs that enhance the anchorage of the seeds and the primary root system to substrata

[31,48,58,70]. These seagrass genera also share a similar life history strategy by forming persis-

tent extensive meadows with sporadic sexual reproduction [25]. Thus, the numerous coinci-

dences in the adaptations of such seagrasses indicate similar sexual recruitment strategies and

seem to suggest convergent evolution. Accordingly, these facts allowed us to hypothesise that

this type of seagrass can have similar development stages for sexual recruitment as those
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described in the present study in P. oceanica. These strategies seem to be common for this type

of seagrass to maximise its dispersal capacity.

The importance of light and substrate type during P. oceanica sexual recruitment demon-

strated herein are important factors that need to be taken into account for the environmental

management of long-lived seagrass meadows. Management decisions, such as fishing and

coastal construction activities, can affect the survival of long-lived meadows, and care should

be taken to not affect the sexual reproduction of seagrass meadows, especially during disper-

sion and settlement periods. The protection of possible recruitment areas with the necessary

requirements for successful species colonisation for seagrasses is essential for the resilience of

seagrass populations against present and future anthropogenic stressors. The future indicates

an environmental restoration of seagrasses by way of seeds, which should take into account

species substrate and environmental condition preferences during sexual recruitment. In P.

oceanica, despite the growth of seeds in hard substrata providing shorter root development

than the growth in sand [30], seedling anchorage success appears higher in the presence of

pebbles or fibres. Such substrata types favour the adhesion and establishment of root hairs.

Thus, the addition of fibrous, coarse or hard substrata to the sandy substrate generally used for

in vitro germination, such as filamentous algae, seagrass dead matte and fragments of rocks or

pebbles, could enhance the seedling anchorage success of restoration projects. Although exper-

imental testing is needed, these environmental management recommendations could be

extended to other seagrasses that form fruits with membranous pericarps and non-dormant

seeds.

According to our results, P. oceanica sexual recruitment can be divided into three stages:

fruit dispersion, seed adhesion and seedling anchorage. These three stages aim to maximise

the recruitment success of this seagrass by promoting photosynthetic activity in the seeds and

enhancing the seedling anchorage capacity to the seabed. These results also revealed the

importance of environmental conditions, such as light and substrata type, for the sexual

recruitment of seagrasses that form fruits with membranous pericarps and non-dormant

seeds, such as P. oceanica. This knowledge should be taken into account when selecting con-

servation and protection areas to ensure the successful colonisation of seagrass populations.

Conducting more research on the mechanisms of the adherence of P. oceanica root hairs to

different substrata types and the sexual recruitment of this seagrass is absolutely necessary to

improve the connectivity, genetic variability and recruitment of these important habitat-form-

ing species.

Supporting information

S1 Fig. Schematic representation of the experimental setup used in this study. The scheme

indicates the recruitment stages of the Posidonia oceanica seeds (seed inside fruit pericarp,

newly-released and 1-week-old seeds) and the tests used in each experiment.

(TIF)

S2 Fig. Photoradiometer probe covered with the handmade mould used to evaluate the

light transmitted by the fruit pericarp of Posidonia oceanica within the gradient of light

intensity. In this image, the probe, with the fruit pericarp coupled inside it, was situated 20 cm

from the light source.

(TIF)

S3 Fig. Test of phototropism in the Posidonia oceanica seeds (n = 5) grown in sand (grey

circles) and pebble (white circles). Dashed lines indicate the angle of the orientation of the

seeds obtained when light came from the top. Solid lines indicate the average angle of
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orientation of the seeds obtained in each treatment in the seedlings cultured with lateral

lights (right: 180˚; left: 0˚). Black points indicate the angle of orientation obtained in each sam-

ple. Significant differences between the top and lateral lights (right and left) were indicated as

p<0.01 in each treatment.

(TIF)

S4 Fig. Tripod-like formation of the roots of the Posidonia oceanica seedlings on a sand+-

pebble substrate 1 month after settlement.

(TIF)

S1 Table. Ranges of % used in the experiment of sediment type influence on the root sys-

tem morphology to determine anchorage success and the density of adhesive hairs

obtained after 1 month of seedling development.

(DOCX)

S1 Data. Data set used in the experiments.

(XLSX)
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de las provincias de Granada, Almerı́a y Murcia. 2009. Available from: http://www.mapama.gob.es/es/

costas/temas/proteccion-costa/ecocartografias/ecocartografia-murcia.asp

34. Buia MC, Mazzella L. Reproductive phenology of the Mediterranean seagrasses Posidonia oceanica

(L.) Delile, Cymodocea nodosa (Ucria) Aschers., and Zostera noltii Hornem. Aquat. Bot. 40, 343–362.

35. Aliani S, Gasparini GP, Micheli C, Molcard A, Peirano A. Can southern meadows of the mediterranean

seagrass Posidonia oceanica (L.) Delile supply northern ones? A multidisciplinary approach in Ligurian

Sea. Biol Mar Mediterr. 2006; 13: 14–18.

36. Platt T, Gallegos CL, Harrison WG. Photoinibition of photosynthesis in natural assemblages of marine

phytoplankton. Journal of Marine Research (USA). 1980. 687–701.

37. Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat

Bot. 2005; 82: 222–237. https://doi.org/10.1016/j.aquabot.2005.02.006

38. Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic elec-

tron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta—Gen Subj. Elsevier

Science Publishers B.V. (Biomedical Division); 1989; 990: 87–92. https://doi.org/10.1016/S0304-4165

(89)80016-9

39. Wentworth CK. A scale of grade and class terms for clastic sediments. J Geol. 1922; 30: 377–392.

https://doi.org/10.1086/622910

40. Underwood AJ. Experiments in Ecology: their logical design and interpretation using analysis of vari-

ance. Cambridge: Cambridge University Press; 1997.

41. R Core Team. R: A Language and Environment for Statistical Computing. 2016. Available from: https://

www.r-project.org/

42. Spence DHN, Milburn TR, Ndawula-Senyimba M, Roberts E. Fruit biology and germination of two tropi-

cal Potamogeton species. New Phytol. 1971; 70: 197–212. https://doi.org/10.1111/j.1469-8137.1971.

tb02524.x
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