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20 Abstract

21 This work describes the synthesis and characterization of new poly(o-phenylenediamine 

22 (PoPD)/modified-clay nanocomposite materials. For the synthesis, the raw clay (named as 

23 Mag) used in this study was from Maghnia (west Algeria), (Mag) clay was ion-exchanged with 

24 cobalt(II) sulfate hydrate and copper sulfate. The modified-clays were then dispersed in a oPD 

25 monomer-containing acidic solution to carry out in-situ intercalative oxidative polymerization 

26 by ammonium persulfate. XRF and XRD characterization reveal the success of ion-exchange to 

27 form highly intercalated Mag-Co and Mag-Cu clays. After polymerization, the disappearance 

28 of the interlayer-spacing diffraction peak for the PoPD-Mag-Cu and PoPD-Mag-Co 

29 nanocomposites points out fully exfoliation of the clay structure. The formation of intercalated 

30 PoPD into modified-clay nanocomposites was confirmed by XRD, TEM, TG analysis, FTIR 

31 spectroscopy and UV-vis studies. The nanocomposites show optical properties and the redox 

32 processes observed by cyclic voltammetry indicate that the reported polymerization into 

33 modified-clays leads to electroactive hybrid materials. All these properties make these 

34 polymer/clay nanocomposites attractive materials for multiple applications.

35

36

37 Keywords: Conjugated polymer; poly(orthophenylenediamine); Modifed-clay, 

38 Electrochemical properties.

39

40

41
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42 1. Introduction

43 Conducting polymers generally show highly reversible redox behavior with a noticeable 

44 chemical memory and, hence, they have been considered as prominent new materials for the 

45 fabrication of sensors, organic batteries, diodes, electrocatalysts [1-3]. The properties of these 

46 materials strongly depend on the doping level, protonation level, size of ion dopant, and water 

47 content. Among a wide variety of conducting polymers, polyaniline (PANI) is one of the most 

48 attractive, and can be easily synthesized, without any special equipment or precautions, either 

49 by the electrochemical or the chemical oxidative polymerization methods. Moreover, the 

50 properties of this polymer can be further enhanced by derivation and hybridization with other 

51 materials.

52 Poly (p-phenylenedi-amine) (PpPDA) is an electroactive polymer of the aromatic 

53 diamines family. PoPD with a novel structure has stimulated increasing interest because of its 

54 variable conductivity, strong electroactivity, good optical and magnetic activity, and high 

55 environmental and thermal stability [4], which could extend the applications of the conducting 

56 polymers. This polymer is usually prepared by electrochemical polymerization [5, 6] with an 

57 irregular morphology as compared to that obtained by the chemical polymerization method [7, 

58 8].

59 Inorganic-organic hybrid materials have become a field of intensive interest due to their 

60 multifaceted properties [9, 10]. These materials have given manifold high-tech applications on 

61 electrorheological fluids, anti-corrosion materials, molecular wires, sensor devices, smart 

62 windows, electrochemical devices, etc [11]. Layered phyllosilicates, such as smectite clays, 

63 stand out as the most commonly used materials to get PANI/Clay nanocomposites, being 

64 montmorillonite the most popular one because of its small particle size, large surface area, 
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65 cation exchange properties and swelling capability [12, 13] and also due to its low cost and 

66 natural abundance [14-16]. Intercalated and/or exfoliated nanocomposites can be prepared by 

67 intercalation polymerization depending on the monomer/clay ratio. In the past, PANI/Clay 

68 nanocomposites were synthesized by emulsion intercalation [17-19], electrochemical [20, 21], 

69 inverse emulsion polymerization [22], in situ intercalation [23-27], and mechanochemical 

70 intercalation method [28, 29]. A higher intercalation level of PANI inside the clay gallery was 

71 achieved when the clay was chemically modified by various organic molecules before the 

72 polymerization [30, 31]. Despite the potential interest on the hybridization of PoPD, there are 

73 few works reporting the preparation and properties of PoPD/Clay nanocomposites.

74 In this paper, a novel material has been synthetized by oPDT with modified-clay at 

75 room temperature. The PoPDT/modified-Clay were characterized by UV-vis, FTIR, DRX, TG 

76 and TEM studies; their electrochemical behavior were investigated by cyclic voltammetry

77 2. Experimental

78 2.1. Materials

79 The monomer ortho-phenylenediamine (oPD) (C6H8N2) (CAS No. 95-54-5) (Aldrich) was 

80 distilled under vacuum prior to use. Ammonium persulfate (APS) [(NH4)2S2O8] (CAS No. 7727-54-0), 

81 N-methyl-2-pyrrolidone (NMP) (CAS No. 872-50-4), ammonia solution (NH4OH) (CAS No. 7664-41-7), 

82 CoSO4 (CAS No. 60459-08-7), NaCl (CAS No. 7647-14-5) and CuSO4 (CAS No. 7758-99-8) were of analytical 

83 purity and used without further purification.

84 2.2. Preparation of Maghnite (Mag)

85 The clay was obtained from Maghnia west of Algeria (named as raw-Mag). The clay 

86 sample was washed with distilled water to remove impurities; the raw-Mag (20 g) was crushed 
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87 for 20 min using a Prolabo ceramic balls grinder. The sample was treated with a 2 M NaCl 

88 solution under continuous stirring, and washed several times with bi-distilled water, to remove 

89 chloride [27]. The absence of chloride was confirmed using silver nitrate. Then, the solid (Mag) 

90 was recovered by centrifugation, washed with abundant water, and finally dried at 105 ºC to be 

91 stored in tightly stoppered glass bottles for later use. The Mag-Co was prepared by the addition 

92 of 5 mmol of the solid Cobalt(II) sulfate hydrate to 1 L of a 1 % (w/v) aqueous dispersion of 

93 Mag under stirring for 24h. The Mag-Co was separated by centrifugation. The sediment was 

94 washed three times with distilled water. By the same protocol we prepared the Mag-Cu, using 

95 copper sulfate instead. The chemical composition obtained by X-ray fluorescence spectroscopy 

96 (XRF) for the three different clays is included in Table 1. Careful investigation reveals that the 

97 three samples were composed essentially of SiO2, Al2O3, Fe2O3 and to very limited extent of 

98 K2O and MgO. Some other oxides were also present but in very negligible proportions. The 

99 CuO content of Mag-Cu (3.58 wt%) are higher than those of the Mag-Co, while for the CoO 

100 content, the values are higher in the Mag-Co sample.

101 2.3. Preparation of the hybrid nanocomposites

102 PoPD-Mag-Co and PoPD-Mag-Cu nanocomposites were prepared by in-situ 

103 polymerization of oPD 0.22mol in acidic (HCl) dispersions of the modified clays. Firstly, the 

104 Mag was dried at 110 ºC for 24 h to remove moisture. Next, 1.0g of Mag was added to a 1M 

105 HCl solution and sonicated for 30 min with the assistance of an ultrasound probe. 

106 Subsequently, the monomer was added, and the solution was sonicated for another 30 min to 

107 promote the replacement of inorganic ions by molecules of oPD between the sheets of the clay. 

108 Finally, a 1M HCl solution containing the oxidizing agent (APS) was added dropwise to the 

109 solution containing the monomer and the clay under constant stirring (the molar of APS to oPD 
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110 was 1:1). The polymerization of oPD was carried out at ambient temperature for 24h. The 

111 nanocomposites obtained were filtered, washed with distilled water and finally dried in oven at 

112 50 ºC for 24 h.

113 2.4. Physicochemical Characterization

114 The X-ray diffraction was performed at a wavelength of 1.549 Å, at 40 kV and 40 mA 

115 using a Bruker CCD-Apex equipment with a X-ray generator (Cu Kα and Ni filter). UV-Vis 

116 spectra were obtained with Hitachi U-3000 model spectrometer in the 200-800 nm. The PoPD 

117 was separated from the clay using NMP as solvent. A Fourier transform infrared (FT-IR) 

118 spectrum was recorded using a Bruker Alpha in transmission mode. 

119 Table 1. Composition (wt%) of Mag, Mag-Co and Mag-Cu obtained from XRF.

Composition 
(wt%)

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 CoO CuO SO3

Mag 76.70 18.03 0.71 0.28 0.80 0.21 0.77 0.15 0.00 0.00 0.34

Mag-Co 73.41 18.82 1.79 0.68 1.05 0.31 1.11 0.13 2.38 0.01 0.21

Mag-Cu 75.55 14.51 1.08 0.72 0.95 0.25 1.09 0.12 0.00 3.58 0.15

120

121 Table 2. Peak maximum and d-spacing of Mag, Mag-Co, Mag-Cu and nanocomposites

Samples Peak maximum, 
2θ max (º)

Basal spacing, 
d(001) (Å)

Mag 6.92 12.77

Mag-Co 4.09 21.59

Mag-Cu 4.86 18.16

PoPD-Mag-Co // Exfoliated

PoPD-Mag-Cu // Exfoliated

122
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123

124 Fig. 1. XRD diffraction patterns of Mag, Mag-Co, Mag-Cu, PoPD, PoPD-Mag-Co and PoPD-

125 Mag-Cu.
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126

127 Fig. 2. TEM images of Mag-Cu, Mag-Co, PoPD-Mag-Co and PoPD-Mag-Cu.

128 Transmission Electron Microscopy (TEM) analyses were carried out using a JEOL 

129 microscope, model (JEM-2010) 200 kV. Thermogravimetric analyses (TGA) were conducted 

130 with a Du Pont thermogravimetric analyzer, with 10 mg samples from room temperature to 900 

131 °C at a heating rate of 10 °C min-1 under a nitrogen atmosphere.

132 X-ray fluorescence spectroscopy of the powder clay was made using a Philips PW1480 

133 equipment with a UNIQUANT II software to determine the elementary composition and the 

134 mass concentrations in elements. We use this method to analyze our samples.

135 2.5. Electrochemical characterization

136 The electrochemical characterization was performed using a conventional three-

137 electrode electrochemical cell and a Bio-logic potentiostat/galvanostat SP-150. The electrolyte 

138 used was 1 M perchloric acid. The glassy carbon electrode (working electrode) was polished 

139 with BASi® polishing kit followed by washing with ultrapure water. A platinum wire was used 

140 as counter electrode and a reversible hydrogen electrode immersed in the same working 

141 electrolyte as reference electrode. The cyclic voltammetry was recorded at a scan rate of 50 

142 mV.s−1 using a potential range of -0.10 V at 1.00 V.
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143 For the fabrication of working electrodes, the PoPD were first an amount of material is 

144 treated inN-methyl-2-pyrrolidone (NMP) as solvent [23]. Then, a drop of the resulting solution 

145 was placed on the glassy carbon electrode (0.07 cm2 of geometrical area) and dried in air under 

146 an infrared lamp to remove the solvent.

147 3. Results and discussion

148 3.1. X-ray diffraction (XRD) studies

149 The XRD patterns of Mag, Mag-Cu, Mag-Co, PoPD-Mag-Cu and PoPD-Mag-Co are 

150 compared in Fig. 1. and in Table 2. The XRD patterns show that there was a shift of the 2θ 

151 angle of 6.92° for Mag (d001 = 12.77 Å) to 4.86° for Mag-Cu (d001 = 18.16 Å) and to 4.09° for 

152 Mag-Co (d001 = 21.59 Å) The shifting to smaller angles and, consequently, the increase in the 

153 basal spacing indicates the typical intercalation of the metal cation (cobalt or copper) in the 

154 clay [27]. The PoPD shows two sharp peaks at 16.47º and 17.38º individually, and a broad band 

155 centered at 25–36º, which reveal the polymer are partially crystallized [32]

156 In the PoPD-Mag-Cu and PoPD-Mag-Co nanocomposites, the characteristic peaks at 

157 low diffraction angles disappear, indicating the exfoliation of the clays. This result clearly 

158 reflects the formation of an intercalated polymer/clay nanocomposite. Furthermore, the 

159 diffraction peaks at 18º and 25º of Mag-Co remain in the pattern of PoPD-Mag-Co, but they 

160 became smaller and poorer. However, in the region between 13° and 21° five sharp crystalline 

161 peaks  are observed  at 14.06°, 14.52°, 16.25°, 16.61° and 17.36° that correspond to the 

162 periodicity d = 6.29, 6.09, 5.45, 5.33 and 5.10 nm. These peaks correspond to the crystal 

163 structure of PoPD [32, 33]. 
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164 In the case of PoPD-Mag-Cu, the peak at 4.86º of Mag-Cu were disappeared, suggesting 

165 a high degree of exfoliation. Moreover, a group of the Mag-Cu characteristic diffraction peaks 

166 shifts to a higher angle at 19.12º, 20.07º, 22.90º, 25.86º and 27.21º indicating that there are 

167 obvious changes in the sample

168 3.2. Transmission Electron Microscopy (TEM)

169 The TEM was used to analyze the morphology of the nanocomposites and to confirm 

170 the X-ray diffraction results. Fig. 2. shows representative images obtained for Mag-Cu, Mag-

171 Co, PoPD-Mag-Co and PoPD-Mag-Cu. Mag-Cu and Mag-Co present morphologies composed 

172 of Intercalated clay lamellae by cations (Cu+2 and Co+2, respectively).

173 The dark zones observed in the images of PoPD-Mag-Cu and of PoPD-Mag-Co are 

174 attributed to PoPD matrix dispersed on the Clay surface. It is possible to observe that most of 

175 these PoPD are mainly concentrated at the Mag-Co surface compared with Mag-Cu, indicating 

176 a good compatibility between the inorganic and organic phases.

177 3.3. Fourier-transform infrared spectra (FTIR)

178 The FT-IR spectra of the four samples Mag-Co, Mag-Cu, PoPD-Mag-Co and PoPD-

179 Mag-Cu are presented in Fig. 3. The spectra of the Mag-Cu and Mag-Co clays present three 

180 bands at 997-1000, 793-795 and 510-470 cm−1. These features are attributed to the stretching 

181 vibration of Si−O bonds, the bending vibration of Al−OH bonds and the stretching vibration of 

182 Si−O−Al groups, respectively [34, 35]. All these features agree with the characteristic mineral 

183 structure of clays. The band at 3617-3626 cm−1 is assigned to the stretching mode of an inner 

184 hydroxyl group (In −OH), which are in the plane common to both the tetrahedral and 

185 octahedral sheets and this band which is typical of the stretching of the internal −OH groups in 
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186 the kaolinite structure, Their movement is restricted as a result of chemical bonding between 

187 the silica and alumina sheets. Usually, this internal hydroxyl group is not significantly affected 

188 by inter lamellar modifications, and do not participate to the establishment of hydrogen bonds 

189 with the inserted molecules [36, 37].

190 Apart from these clay-characteristic features, the spectrum of the PoPD-Mag-Co 

191 nanocomposite showed additional bands. The broad one centered at around 3393 cm−1 can be 

192 associated to the N–H stretching vibration of secondary amine group in the PoPD chain. The 

193 bands at 1617 and 1524 cm−1 are assigned to the C=N and C=C stretching vibrations in quinoid 

194 and benzenoid rings, respectively. The small band at about 1366 cm−1 may be an indication of 

195 the imine C–N stretching vibration. Finally, the band at 801 cm−1 can be attributed to the out-

196 of-plane bending vibration of benzene ring [38]. On the other hand, for the PoPD-Mag-Cu 

197 nanocomposite the N–H stretching is observed at 3244 cm−1, the C=N stretching in quinoid 

198 ring at 1626 cm−1 and the C=C stretching in benzenoid ring at 1540 cm−1 and the band value 

199 Si–O of modified-clay shifted to higher value (997 cm−1) by formacing the nanocomposites.

200 3.4. UV-Vis spectroscopy

201 The Fig. 4. shows the UV-vis absorption spectra of PoPD-Mag-Co and PoPD-Mag-Cu. 

202 In both cases, the absorption bands observed at 256 nm are assigned to the π-π* transition in 

203 aromatic heterocycles. These bands appeared also in the spectrum of the precursor (figure not 

204 shown). On the other hand, the bands at 408 nm suggest the existence of quinoid imine units (–

205 C=N–) [39-41]. From this spectroscopic analysis, it can be concluded that the synthesized 

206 PoPD with modified-clay (Mag-Cu and Mag-Co) has a head-to-tail type arrangement with the 

207 benzenoid and quinoid structures in the phenazine-like backbone [40-42]. No differences in the 

208 synthesized polymer are observed with the two clays.
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209

210 Fig. 3. IR absorption spectra of Mag-Co, Mag-Cu, PoPD-Mag-Co and PoPD-Mag-Cu.

211  

212 Fig. 4. UV-vis spectra of PoPD-Mag-Co and PoPD-Mag-Cu nanocomposites.
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213

214 Fig. 5. TGA of Mag-Co, Mag-Cu, PoPD, PoPD-Mag-Co and PoPD-Mag-Cu obtained in 

215 nitrogen atmosphere at heating rate of 10°C/min.

216

217 Fig. 6. Cyclic voltammograms recorded for a graphite carbon electrode covered by pure 

218 PoPD, PoPD-Mag-Co and PoPD-Mag-Cu in 1 M HClO4 solution. Scan rate 100 mV.s-1.
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219 3.5. Thermal stability characteristics

220 Fig. 5. shows the thermogravimetric curves (TGA) plots of Mag-Cu, Mag-Co, PoPD-

221 Mag-Cu and PoPD-Mag-Co. The TGA curves of Mag-Cu and Mag-Co presents a weight loss 

222 in the temperature range of 25 ºC to 220 ºC, which can be assigned to the removal of the 

223 physically adsorbed water located in the sheets [23-27]. In the following temperature range, the 

224 weight loss refers to the removal of the coordinated water and the structural water released 

225 from the clay framework [24-26]. For PoPD curve then shows stability up to 220°C, this 

226 sample displayed an accelerated weight loss at 250-600 °C due to the pyrolysis of the polymer, 

227 similar to the previously reported results [32]. The two nanocomposites thermogram shows that 

228 the decomposition of PoPD backbone chains is initiated at 440 ºC. Therefore, the content of 

229 PoPD in the PoPD-Mag-Cu and PoPD-Mag-Co nanocomposites can be calculated to be 11.09 

230 % and 13.14 %, respectively. It can be inferred that the content of PoPD in the PoPD-Mag-Co 

231 is higher than in the case of PoPD-Mag-Cu nanocomposite, which is also consistent with the 

232 results of XRD.

233 3.5. Electrochemical properties

234 Fig. 6. shows the voltammograms of the different nanocomposites and the PoPD 

235 polymer. The pure polymer shows two main oxidation peaks at 210 mV and 400 mV in the 

236 forward scan; however, three distinguish cathodic peaks are observed in the reverse scan 

237 indicating that three redox processes are produced in the polymer [41, 43]. Fig. 5 shows the 

238 voltammogram of the PoPD-Mag-Co which is similar to that of pure PoPD; however, only two 

239 redox processes are presented. In addition, the main difference between these two materials is  

240 the shifting of the potential redox processes which in the case of PoPD-Mag-Co appear to more 

241 negative values. In the case of PoPD-Mag-Cu nanocomposite, the voltammetric profile shows 
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242 the first main redox process at 443/366 mV and the shoulder at lower potentials. Moreover, a 

243 clear oxidation peak is observed at higher potential values (around 608 mV). These differences 

244 in electrochemical behaviour are thought to be due only to the structural differences in the 

245 PoPD systems, the PoPD obtained by in-situ polymerization of monomers within the interlayer 

246 of Mag-Co and Mag-Cu are electroactives

247 4. Conclusions

248 In conclusion, it was shown that PoPD/modified-clay nanocomposites can be 

249 synthesized via in situ oxidative polymerization methods. Structural and physico-chemical 

250 characterizations by using various techniques have revealed that the Mag clays can be ion-

251 exchanged to incorporate Co and Cu, first, and can be exfoliated during polymerization by 

252 triggering PoPD chain growth within the modified-clay sheets. Apart from optical properties, 

253 the good electrochemical response and the observed redox processes indicate that the 

254 polymerization into modified-clay produces electroactive polymer/clay nanocomposites with 

255 great potential for multiple applications.
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Highlights

1- A simple and facile method was used to synthesize prepared a PoPD/Modified-clay

2- The presence of PoPD in intercalated modified-clay (by Cu+2 and Co+2) is observed in all 

nanocomposites.

3- Characterizations confirm the presence of PoPD with modified-clay.

4- The nanocomposites is more thermal stability than the PoPD

5- Good electrochemical response has been observed for all samples.




