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ABSTRACT

Perylenediimide (PDI) dyes dispersed in polymer films have demonstrated great success as 

active materials in thin film organic lasers (TFOLs). The type of matrix used to host the dye 

and the dye doping rate are both crucial parameters to optimize laser performance. This 

work reports the study of two soluble PDIs, the comercial derivative perylene orange (PDI-

O)   emitting at around 580 nm    , and a new dye (b-PDI-A) with subsituents at the 1,7 bay 

positions of the PDI core   emitting at around 620 nm    , dispersed at different doping 

levels (up to 8 wt% and 50 wt%, for PDI-O and b-PDI-A, respectively) in two widely used 

polymers for optoelectronics     polystyrene (PS) and poly(methyl methacrylate) (PMMA)  . 

The main goal is to determine which of these two polymers, and at which dye 

concentration, provides the best results for their use in TFOLs. The assessment of the active 

materials has been carried out through the analysis of their absorption, photoluminescence 

and amplified spontaneous emission (ASE) properties. Their capability to form high quality 

optical waveguides has also been studied by determining gain coefficients and waveguide 

losses. Results have shown that for both types of PDI derivatives PS is better than PMMA 

at any concentration, that means larger photoluminescence efficiency, lower ASE 

thresholds, longer ASE operational lifetimes, larger gain and lower propagation waveguide 

losses. In addition, the onset concentration at which dye aggregation becomes significant as 

to negatively affect the optical properties is lower in PMMA than in PS, thus the larger the 

blending ratio, the larger the superiority of PS with respect to PMMA. 
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INTRODUCTION

Optically pumped thin film organic lasers (TFOLs) have been investigated for more than 

a decade.1,2  Still today, great effort is devoted to the search for high performance materials, 

that is, with low pump threshold, high efficiency, high photostability, and tunable color 

emission. Besides, it is also important that the material can be easily processed as a high 

quality optical waveguide with low propagation losses, by means of solution-based 

methods. 

Inert solid matrixes, among which thermoplastic polymers are the most convenient for 

thin film processing, serving to host efficient laser dyes dispersed typically at low doping 

rates (i.e. 1-3 wt%), have shown excellent performances as active materials in TFOLs with 

distributed feedback (DFB) resonators.1,3-5 Indeed, thermoplastics, such as polystyrene (PS) 

or polymethylmethacrylate (PMMA), (see chemical structures in Figure 1) offer several 

advantages with respect to other materials. They are commercially available, cheap and can 

be processed in the form of thin films by solution-based techniques such as spin-coating, 

dip-coating, doctor blading or printing over any substrate.1 Furthermore, they can be 

imprinted with relief gratings with techniques such as nanoimprint lithography (NIL), 

which is very attractive for the fabrication of DFB resonators integrated in the active film 

itself.6-9 The matrix plays an important role in the optical and laser performance of the 

material. Ideally, the matrix should be inert and also provide good dispersion of the dye in 

order to avoid photoluminescence (PL) quenching and to obtain the maximum possible PL 

quantum yield (PLQY). Moreover, it should properly isolate the dye and efficiently 

dissipate heat, which are crucial aspects to avoid photodegradation, and therefore to obtain 

a long operational durability of the laser device. Many efforts have been devoted to design 

materials with optimal properties to serve as host matrices for laser dyes used in organic 
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solid-state lasers (OSLs).10 This includes a wide variety of organic and inorganic materials, 

such as glasses, polymers, mesostructured materials, etc., generally prepared in the form of 

monoliths of several centimetres envisaged to be used with external laser cavities and to be 

pumped with similar configurations to those used with liquid dye lasers. Some materials 

have demonstrated great success for such purposes, but often their preparation is 

complicated and they cannot be processed as good quality optical waveguides, thus limiting 

their implementation in TFOLs. Interestingly, PMMA (probably the most widely used 

thermoplastic polymer in optoelectronics) has often been used for OSLs, but less frequently 

in TFOLs.4,6,11 The reason for this is PMMA’s relatively low refractive index (n = 1.49, at  

= 600 nm), which restricts the selection of an appropriate substrate and film thickness to 

obtain a low-loss optical waveguide (i.e. with good mode confinement).4 Actually, there are 

few studies on the optimization of the matrix, considering not only the emission properties, 

but also its proccessability as a high quality low-loss optical waveguide.12,13,14 

With regards to the laser dye, among a wide variety of compounds used, certain highly-

efficient soluble perylenediimide (PDI) derivatives have shown great success (dispersed in 

different types of matrixes) as active materials for both, OSLs and DFBs.3,4,11,15,16 Up to 

now, the best performing PDIs for TFOLs have been those with substitutions (needed to 

provide solubility and therefore film preparation by solution-based methods) at the imide 

Nitrogen positions of the PDI core. Among them, the one showing the lowest threshold and 

largest photostability has been the commercial derivative known as perylene orange (PDI-

O, see chemical structure in Figure 1).4,16 DFB lasers based on this dye dispersed in PS 

have demonstrated applicability for sensors of various kinds.17-19 In comparison to other 

dye-doped materials, PDI-O dispersed at 1 wt % in PS has shown very high photostability 
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(DFB half-life values of 8 × 105 pump pulses, under excitation at two times above threshold 

with 10 ns pulses at a 10 Hz repetition rate)3,4,20  and very low thresholds for amplified 

spontaneous emission (ASE) and DFB lasing (3 kW/cm2 and 1.7 kW/cm2, respectively).4,15 

Generally, for most laser dyes, typical doping rates are in the 1-3 wt% range because at 

higher concentrations, the PL quenches due to molecular interaction and/or the formation of 

aggregated species. This concentration-dependent PL quenching effect has been the subject 

of many investigations towards the development of materials with high PLQY at high 

doping concentrations, or even prepared as neat (undiluted) films or grown as single 

crystals.1,2,21 Moreover, this issue reflects the importance of performing concentration-

dependent studies when the PL and ASE performance of a given material is to be 

optimized. 4,5,22-26   The ASE properties of PDI-O dispersed in PS as a function of the dye 

doping rate (up to 5 wt%) in PS were previously investigated.4 It was found that the ASE 

threshold was kept at a low level (below 5 kW/cm2) up to concentrations of around 3 wt%. 

The effect of replacing PS by PMMA was also studied, but only at concentrations of 1 wt% 

and below. It was concluded that within that regime of concentrations, both matrixes 

behave similarly in terms of photostability and threshold (whenever the film thickness was 

properly chosen as to obtain a good waveguide mode confinement, that is, ~600 nm and 

1000 nm for PS and PMMA, respectively). Within this context, there are several open 

questions and issues not explored yet, which are important for the optimization of lasers 

based on PDI-O and PMMA: Is the performance of PMMA similar to that of PS at any dye 

doping rate? If not, which one is better? Interestingly, in previous work dealing with the 

optical properties of PDI-O doped PMMA films, it was observed (through changes in the 

shape of the PL spectrum) that an excimer species formed for dye doping rates of 2 wt% 

and above.27  On the other hand, such an excimer is not observed when the matrix is PS 
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6

instead of PMMA, even up to concentrations of 5 wt%.4 These interesting and preliminary 

results suggest that concentration-dependent studies in both PMMA and PS should be 

carried out, up to the dye solubility limit and/or onset of aggregation and PL quenching. 

Also important would be to meausure the PLQY for those films. Surprisingly, there is 

practically no PLQY data in the literature for these materials.28 It is also worth mentioning 

that, in spite of the various ASE studies perfomed with PDI-O dispersed in PS, the gain 

coefficients and the losses, which are also important parameters to describe the 

performance, have not been previouly determined.

Within the context of designing compounds with proper characteristics to avoid PL 

quenching as a result of molecular aggregation, an important landmark was a report of a 

novel PDI derivative (b-PDI-1) that allowed the dye doping rate to be increased ~40 times 

with respect to previously reported PDIs (up to 27 wt%, limited by the dye solubility in the 

solvent).15 At the highest possible concentrations, the films showed ASE emission and 

rather large PLQY values (~31%), close to values reported in the solid state.21 Importantly, 

the b-PDI-1 derivative belongs to a class of PDI derivatives characterized for having 

substitutions at the bay positions (bay-substituted PDIs, b-PDIs) whose major interest 

resides in fact on the possibility to expand the range of emission wavelengths of PDIs to 

values around 620 nm (PDIs substituted at N positions, such us PDI-O, emit always at 

around 580 nm, independently on the type of substituent). Actually, many efforts have been 

devoted to designing PDIs emitting at wavelengths longer than 580 nm and showing good 

laser characteristics. Prior to the report of b-PDI-1, most investigated b-PDIs had shown a 

rather poor ASE performance because the substitutions at the bay distorted the PDI core, 

which resulted in a low PL quantum yield and therefore a high threshold and poor 

photostability.29,30 
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The key aspect of b-PDI-1 was, besides the fact that emits at around 620 nm, its 

particular chemical structure, with two sterically hindering diphenylphenoxy groups at the 

1,7 bay positions , which do not distort the planarity of the PDI core (important to preserve 

a very high PLQY for the isolated molecule) and, in addition, they induce a molecular 

conformation that prevents molecular aggregation. Remarkably, there are no studies of b-

PDI-1 or other related b-PDIs in other matrixes different than PS. There are just few studies 

of PMMA used as a matrix for any type of PDI in TFOL devices.4,11,28 Moreover, important 

aspects such as the waveguide properties of the films and the effect of the dye doping rate 

have not been previously analysed. It should be noted that in previous works related to PDI-

based TFOLs, PS was the preferred matrix compared to PMMA because of the larger 

refractive index of the former (values of 1.59 and 1.49, at  = 600 nm, for PS and PMMA, 

respectively), which improves the waveguide mode confinement (important to obtain low 

loss waveguides) and has less limitations for substrate selection.4,12 

In this work, we perform a systematic study of the optical and ASE properties of 

waveguide films of both polymers, PS and PMMA, doped with two different PDI dyes, 

PDI-O and a b-PDI derivative, called b-PDI-A with similar chemical structure (see Figure 

1) to that of the previsouly studied b-PDI-1, but with improved solubility. Dye 

concentration dependence studies, up to 8 wt% for PDI-O, and up to 50 wt% for b-PDI-A, 

are carried out. The dependence of various properties, such as absorption and PL (at room 

and low temperature), PLQY, ASE threshold and photostability, and gain coefficients and 

losses, on dye concentration is analysed and compared for PMMA and PS matrices.
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Figure 1. Chemical structures of thermoplastic polymers polystyrene, PS, and poly(methyl 

methacrylate), PMMA, used as hosting matrixes (a); and perylenediimide, PDI, laser dyes 

PDI-O and b-PDI-A (b).

EXPERIMENTAL SECTION

Materials

Chemicals were purchased from commercial sources and used without further purification. 

PS (M = 35000 g mol-1), PMMA (M = 15000 g mol-1), tetrahydrofuran (THF) and 

dichloromethane (DCM) were purchased from Sigma-Aldrich. PDI-O (M = 711 g mol-1) 

was purchased from Phiton with a purity higher than 99.5% and b-PDI-A was synthesized 

following methods previously reported. 

Synthesis of N,N’-di-(1’-hexylheptyl)-1,7-bis-2,4-diphenylphenoxyperylene-3,4:9,10-

tetracarboxydiimide (b-PDI-A)
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9

A mixture of 356 mg (1.45 mmol) of 2,4-diphenylphenol, 281 mg (1.8 mmol) of CsF and 

1.95 g (7.4 mmol) of 18-crown-6 were added to a solution of 335 mg (0.37 mmol) of N,N’-

di-(1’-hexylheptyl)-1,7(6)-dibromoperylene-3,4:9,10-tetracarboxydiimide in dry THF (2 

mL). The reaction was refluxed 8 h under argon atmosphere and, after cooling, it was 

extracted with DCM and washed with water. The organic layer was dried over anhydrous 

sodium sulfate, filtered and evaporated. Purification was carried out by silica gel column 

chromatography using CH2Cl2:hexane 1:1 as eluent yielding 440 mg (96%) of a pink 

powder.

1H-NMR (CDCl3)  0.85 (t, 12H), 1.25 (br, 32H), 1.82 (m, 4H), 2.18 (m, 4H), 5.09 (m, 

2H), 7.02 (m, 10H), 7.39 (m, 10H), 7.74 (m, 6H), 8.37 (br, 2H), 8.58 (br, 2H), 9.20 (d, 2H). 

13C-NMR (CDCl3) δ 164.25, 155.01, 147.39, 137.44, 137.36, 136.05, 133.10, 131.23, 

131.16, 129.95, 129.34, 128.90, 128.83, 128.61, 128.29, 127.93, 127.86, 127.64, 127.41, 

127.35, 126.63, 123.96, 120.68, 54.53, 32.32, 31.78, 29.18, 26.86, 22.58, 14.05. HR-MS 

MALDI-TOF m/z: [M+] calc. for C86H86N2O6 1242.6490, found 1242.6017. IR (KBr): 

2925, 2855, 1694, 1655, 1594, 1418, 1405, 1330, 1262, 1186, 754, 699 cm-1. UV-vis 

(CH2Cl2), max/nm (log ): 478 (3.9), 515 (4.5), 556 (4.7).

Sample preparation

The organic thin films were prepared by the spin-coating technique. Solutions 

containing the thermoplastic polymer (PS or PMMA) and a varying amount of PDI-O (up 

to 8 wt% with respect to the polymer) or b-PDI-A (up to around 50 wt% with respect to the 

polymer), were prepared and cast over SiO2 substrates. After deposition, films were heated 

(at 90 °C and 150 °C for PS and PMMA, respectively) for 2 hours in order to eliminate the 

residual solvent. The amount of polymer with respect to the solvent (THF for PDI-O and 
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10

DCM for b-PDI-A) was adjusted in order to obtain film thickness (h) of around 600 nm and 

1000 nm for PS and PMMA, respectively. Such h values (determined from the fringe 

pattern of the absorption spectrum)31 were selected to ensure that the waveguides support 

only one transversal electric mode (TE0) which propagates with a high confinement factor, 

i.e.   90 % (for details on the calculation of this parameter, see supporting information, 

section S1) thus minimizing losses and optimizing the ASE performance.4,12,32,33

Optical experiments

Absorption and room temperature PL measurements were performed in a Jasco V-650 

spectrophotometer and a Jasco FP-6500/6600 fluorimeter, respectively. The absorption 

coefficient (α) was obtained from the optical density (OD) spectrum using the expression α 

=ln(10)OD/h. The excitation wavelength used in the PL measurement was 490 nm and 

532 nm, for PDI-O and b-PDI-A respectively. The PLQY was measured using an 

integrating sphere attached to the fluorimeter. For low-temperature PL (LT-PL), samples 

were cooled to 13 K in a custom-built, closed-cycle helium refrigerator and excited via 

fiber with 488 or 514 nm light (200-275 mW) from a Coherent I-90 Ar+ laser. Sample PL 

was collected using a 0.42NA, 50X long working distance objective and fiber-coupled to a 

0.5 m Ebert monochromator with Hamamatsu R928 PMT; the light entering the 

monochromator was chopped at ~200 Hz and the PMT analog output was synchronously 

detected using an SRS 830 lockin amplifier. The detection system wavelength sensitivity 

was calibrated and removed from LT-PL data using a NIST-traceable blackbody source 

(Ocean Optics LS-1) for reference.

The ASE properties of the films were investigated by optical excitation with a 

frequency-doubled Nd:YAG laser (10 ns, 10 Hz) operating at 532 nm. Details of the 
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11

experimental setup can be found elsewhere.4,5 Pulse energy was varied using neutral 

density filters. The pump laser beam was expanded, collimated and only the central part 

was selected to ensure uniform intensity. A cylindrical lens and an adjustable slit were then 

used to shape the beam into a stripe of 3.5 mm by 0.5 mm. The stripe was placed right up to 

the edge of the film, from where PL emission was collected with an Ocean Optics 

USB2000-UV-VIS fiber spectrometer with 600 grooves/mm grating, giving a spectral 

resolution of 1.3 nm. The precision in measuring the emission wavelength was around half 

of this value. The presence of ASE in a given material reflects in the observation of spectral 

gain narrowing and a sudden increase of the output intensity at a given pump intensity 

called the ASE threshold. The ASE threshold parameter obtained in the present work refers 

to the incident pump power density, which is calculated by dividing the incident pump 

pulse energy by the excitation area over the sample and by the pulse width. The ASE 

photostability was determined by studying the time evolution of the ASE intensity, while 

the sample was excited in the same region at constant pump intensity and under ambient 

conditions. The parameter used to characterize this property has been the same used in 

previous studies by our group,3-5 the photostability half-life (τ1/2), defined as the time (or 

the number of pump pulses) at which the ASE intensity decays to half of its initial value.

For the PDI-O doped films, the gain coefficients at different pump intensities and the 

propagation waveguide losses, were determined using the variable stripe length (VSL) 

method.5,34 We used the same setup as for the ASE characterization, but using an adjustable 

slit, which enabled changing the excitation stripe length, l, from 0.01 cm to 0.3 cm, the 

value at which saturation at the intensity output appeared. When ASE is present, the output 

intensity at the end of the excitation stripe (I) should follow the expression:34
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(1)𝐼(𝜆) =  
𝐴(𝜆)𝐼pump

𝑔𝑛𝑒𝑡(𝜆) (𝑒𝑔𝑛𝑒𝑡(𝜆)𝑙 ― 1)

where A is a wavelength () dependent constant, related to the cross section for 

spontaneous emission; Ipump is the pump intensity and gnet is the net gain coefficient, which 

depends on , and is related to the gain, g, through gnet = g - k, where k is a coefficient 

accounting for the total waveguide loss. The gnet coefficient at a given Ipump  value was 

determined by fitting the corresponding I versus l curve to equation (1). Then, the loss (i.e. 

the coefficient k), which is independent of Ipump, was obtained by representing gnet as a 

function of Ipump and extrapolating the gnet value at Ipump = 0, at which gnet = -k .35

RESULTS AND DISCUSION 

Results are organized in two subsections, related to each of the PDI compounds 

investigated, PDI-O and b-PDI-A. The various film optical and ASE parameters determined 

and their dependence on concentration for each of the polymer matrixes used, PS and 

PMMA, are analysed through Figures 2-4 and Figures 5-7, for PDI-O and b-PDI-A films, 

respectively. All the relevant parameters for all the films, together with additional 

secondary information are listed in Table S1 in the Supporting information.

PDI-O dispersed in PS and PMMA films

Optical properties: absorption and photoluminescence

Absorption and PL spectra and PLQY data for PS and PMMA films doped with PDI-O 

at different concentrations (up to 8 wt%, limited by materials solubility) were obtained for 

both matrixes. The absorption coefficient increases linearly with dye concentration and the 

absorption spectral shape remains unaltered (see Figure S2, supporting information). No 
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significant differences are found between PS and PMMA, except for a 3 nm difference in 

the peak wavelengths. On the other hand, important features are observed in the PL spectra 

(Figure 2a), which have been normalized by dividing by the film optical density at the 

excitation wavelength, to facilitate comparison. For both matrixes, the spectral shape 

changes significantly and the PLQY decreases as the doping rate increases (see Figure 2b). 

Both features are signs of aggregation and excimer formation.27,36,37 Remarkably, for the 

PMMA films, the spectral changes start appearing at concentrations of around 2.5 wt%; this 

value is much lower than that observed for PS ( 5 wt% ), indicating that PDI-O has better 

dispersion in PS. This is also in accordance with the PLQY values, which are higher in PS 

than in PMMA at each concentration.

The observation of PDI-O excimers in PMMA at concentrations of 2.5 wt% and its 

negative effect on the PL efficacy, was previously reported,27 although in that work, ASE 

and PLQY data were not provided. In fact, PLQY data for PDI-O in PMMA have been 

scarcely reported.28 

Low temperature photoluminescence (LT-PL, 13K) measurements of PDI-O in both 

PMMA and PS matrices at blending ratios of 1, 2.5 and 8 wt% are shown in Figure S3 (see 

Supplementary Information). For the lowest blending ratio (1 wt%) in both polymers, PDI-

O PL emission has molecule-like character, with a clear 00, 01, and 02 vibronic progression 

[S0S1(=0,1,2)] of the -* transition, indicative of isolated chromophores. However, as 

blending ratio increases, PMMA is seen to more quickly disrupt the 00/01 vibronic 

progression compared to PS, suggesting that the onset of aggregation occurs more easily in 

PMMA. The latter is echoed in both, the room temperature PL and the quicker falloff of 

PLQY for PMMA. The striking similarity of RT and LT-PL results, namely the well-
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resolved vibronic progression, is indicative that non-radiative losses associated with 

scattering with lattice phonons and/or thermally activated emission from excitons above the 

bottom of the S1(v=0) band are not significant,38 in contrast to many other systems.39 In 

addition, the lower 00/01 vibronic peak ratio at low temperature may indicate that 

aggregates may act in a more ordered fashion, as the 00 transition is forbidden in a 

perfectly ordered H-aggregate.40
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Figure 2. Photoluminescence properties of PDI-O dispersed in PS and PMMA films. 

(a) Normalized photoluminescence (PL) intensity, i.e. PL intensity divided by the optical 
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density at the excitation wavelength, both versus wavelength for PDI-O dispersed at 

various doping rates in PS and PMMA films (top and bottom of the panels, respectively). 

Labels 1, 2, 3 and 4 in the figures correspond to dye concentrations of 1, 2.5,5 and 8 wt%, 

equivalent to 1.4, 3.6, 7.5 and 12.3 ( 10-5 mol/g). The wavelength of the maximum 

intensity peak for the film with highest doping rate is indicated next to its corresponding 

spectrum; (b) PL quantum yield (PLQY) versus dye concentration for PDI-O dispersed in 

either PS (squares) or PMMA (circles). Full lines are guides to the eye.

ASE properties: spectra, thresholds and operational lifetimes

The ASE properties of the films were investigated for all the films. ASE emission 

appears at around 580 nm, close to the first vibrational PL peak, as illustrated in Figure 3a, 

in which ASE spectra for various PS and PMMA films are shown, particularly for low and 

high concentrations (the highest for each polymer at which ASE is observed). 

The ASE threshold, Ith-ASE, for each film was determined from the plot of the emission 

linewidth (defined as the full width at half of the maximum intensity, FWHM) versus the 

pump intensity, Ipump (see illustrative example in Figure S4 in the Supplementary 

Information), as the Ipump value at which the FWHM decreases to half of its initial value and 

approximately coincident with a sudden increase in emission intensity. Ith-ASE values for all 

the films which show ASE are represented in Figure 3b as a function of the dye 

concentration in the films. For the PS films, results are in agreement with previous 

measurements:4 the lowest Ith-ASE values (3 kW/cm2) are obtained for concentrations 

between 1 wt% and 3 wt%; for higher concentrations Ith-ASE  increases rapidly. For the 

PMMA films, the lowest Ith-ASE value (12 kW/cm2) is also obtained at a low concentration 

Page 15 of 42

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

(1 wt%) and gets larger as the concentration increases, although in this case, the increase in 

Ith-ASE occurs at lower concentrations. Remarkably, at a given concentration, Ith-ASE for PS is 

in all cases lower than for PMMA, and the difference is larger at high concentrations. The 

observed detriment on the ASE performance is attributed to the formation of a PDI-O-

based excimer species.23,27,36,37

The ASE photostability of PDI-O at concentrations of ≤ 1 wt% in PS and PMMA has 

been previously studied.4 Within that concentration regime, these materials show very long 

ASE half-lives (of the order of 105 pump pulses, with Ipump two times above threshold) and 

no significant differences were found between PS and PMMA. In the present work, we 

performed experiments at higher concentrations and found, as expected,5,15 a decrease of 

the ASE half-life as the doping rate increases (see data in Table S1, supporting 

information). For the range of concentrations at which no aggregation occurs, and 

thresholds are low (up to 3 wt% in PS), the decrease in lifetime is simply due to more 

photobleaching because the film absorbs more light. On the other hand, for higher 

concentrations, at which the threshold increases due to the formation of excimers, the half-

life decreases more rapidly, mainly because the Ipump needed to obtain ASE is larger and the 

lifetime is highly dependent on the Ipump used. 3,20 With regards to highly doped PMMA 

films, the photostability is significantly worse, in accordance with the fact that excimer 

formation appears at lower concentrations than in PS. 
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Figure 3. Amplified spontaneous emission (ASE) properties of PDI-O dispersed in PS 

and PMMA films. (a) Normalized ASE spectra, i.e. ASE intensity divided by its maximum 

value for PS and PMMA films (top and bottom of the panel, respectively) doped with PDI-

O at concentrations of 1 and 8 wt% (labels 1 and 4, respectively); (b) ASE threshold as a 

function of dye concentration for PS (squares) and PMMA (circles) films doped with PDI-

O. The full lines are guides to the eye.

Gain coefficients and propagation losses
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Net gain coefficients (gnet) were determined by fitting to equation (1), as explained in the 

experimental section, data from plots of the output intensity versus the excitation length, at 

a given Ipump. Examples of such plots are shown in Figure S5 of the Supplementary 

information. The gnet values obtained at different Ipump values are represented in Figures 4a 

and 4b for PS and PMMA films, respectively, at two dye concentrations (1 and 5 wt%)

For the 1 wt% PDI-O-doped PS film, a gnet value of 38.8 cm-1 at Ipump = 14.6 kW/cm2 

was obtained. Remarkably, this value is higher than that of other PDI derivatives (gnet = 2 

cm-1, at Ipump. = 26 kW/cm2)23 and comparable to values obtained with other state-of-the-art 

dye-doped polymers,  i.e. gnet of 60 and 6 cm-1 at Ipump of 43.3 and 11.5 kW/cm2, 

respectively, for a carbon-bridged oligo(p-phenylenevinylene) derivative dispersed at 8 

wt% in PS.5  The 1 wt% PDI-O doped PMMA film also shows a rather large gain (gnet = 

26.8 cm-1, at Ipump. = 19.9 kW/cm2), although somewhat inferior to that obtained with PS. 

This is in accordance with the ASE threshold, which is a bit higher in PMMA. On the other 

hand, the differences between PS and PMMA are very significant at high dye doping rates 

(much larger gain with PS), also in accordance with the ASE threshold results.

The plots of gnet as a function of Ipump (Figures 4a and 4b) were used to determine the 

loss (k), which is independent of Ipump, by extrapolating the gnet to Ipump = 0. As observed, at 

low dye concentration (1 wt%), k of the PS film (6 ± 1 cm-1) is around half of that of the 

PMMA film (15 ± 3 cm-1). This might explain the slightly higher ASE threshold of the 

latter. On the other hand, at high dye concentration (5 wt%), the PS film shows a value (k = 

8 ± 1 cm-1), similar to that obtained at low concentration, while the PMMA one shows a 

value almost two times larger (25 ± 3 cm-1) than the one at low concentration. The fact that 

the loss for the PS film is the same for both concentrations indicates that film optical 
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quality is similar, which means that the dispersion of PDI-O in the film is good. It is also 

indicative that the observed increase in the ASE threshold (Figure 3b), and the decrease in 

the net gain coefficient (Figure 4a) when increasing dye concentration from 1 wt% to 5 

wt%, is not because of an increase in k. Thus, the apparent existence of molecular 

aggregation (evidenced by excimer formation) which is responsible for the observed PLQY 

decrease and which negatively affects the threshold and gain performance, does not 

apparently affect the optical film quality. On the other hand, in the case of PMMA, results 

seem to indicate that the formation of the excimer not only affects the PLQY, but also film 

optical quality. 
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Figure 4. Net gain and loss coefficients of PDI-O dispersed in PS and PMMA films. 

Net gain coefficient versus the pump intensity for PDI-O dispersed in PS and PMMA films 

(a and b, respectively) for dye concentrations of 1 and 5 wt% (circles and squares, 

respectively). Full lines are guides to the eye and their intersection with the Y axis 

correspond to the loss coefficient, k (values in legend).

b-PDI-A dispersed in PS and PMMA films

Synthesis of b-PDI-A

The synthesis of the b-PDI-A derivative has been carried out for the first time in almost 

quantitative yield by substitution of the dibromoperylene derivative with diphenylphenol in 

the presence of CsF and 18-crown-6, using our previously described method (Scheme 1).41 

b-PDI-A was characterized by standard techniques such as 1H-NMR, 13C-NMR (See Figure 

S6 in the Supporting Information) and UV-vis spectroscopies, and high resolution MALDI-

TOF spectrometry.
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Scheme 1. Synthesis of b-PDI-A.

Optical properties of films: absorption and photoluminescence

Absorption and PL spectra and PLQY data for PS and PMMA films doped with b-PDI-

A at different concentrations were obtained. Absorption and PL spectra are significantly 

red-shifted with respect to those of PDI-O (see Figure S7 in Supporting information and 

Figure 5a, respectively). This is a consequence of the presence in b-PDI-A of electron-rich 

substituents in the bay positions of the PDI core. It should also be noted that in this case, 

the range of dye concentrations in the film (up to around 47 wt%) is much larger than those 

explored in section 3.1 for PDI-O (up to 8 wt%), mainly because aggregation occurs at 

larger concentrations as discussed in detail below. It should also be remarked that b-PDI-A 

has very good solvent solubility to prepare films of proper thickness. This fact is the reason 

why the concentration range used now is larger than the one explored in a previous work 

with a similar b-PDI derivative (called b-PDI-1) dispersed in PS (in that case the maximum 

concentration was 27 wt%).15 The b-PDI-A compound used here has longer aliphatic chains 

attached to the N positions than those of b-PDI-1, which provide the improved solubility. 

The general behavior of the absorption properties as a function of dye concentration is 

similar to that observed with PDI-O. For both matrixes, the absorption coefficient increases 

linearly with dye concentration and the absorption spectral shape is practically unaltered 

(see Figure S7, supporting information), except for a slight red shift from the film with the 

lowest concentration to the one with the highest one (1 nm and 4 nm in the PS and PMMA 

films, respectively). No significant differences are found between PS and PMMA, except 

for the peak wavelengths which are slightly lower in PMMA (4 nm for the film with lowest 

concentration and only 1 nm with the one with highest concentration).
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With regards to the PL properties, in contrast to PDI-O, the spectral shape does not 

change significantly (Figure 5a) when concentration increases. No additional peaks, such as 

the one observed with PDI-O at long wavelengths above certain concentrations, and 

ascribed to the existence of an excimer species, can be seen in this case. As expected, the 

PL peaks red-shift when the concentration increases. Importantly, the PL efficiency clearly 

decreases with concentration (see PLQY data in Figure 5b), indicative of some kind of 

aggregation or molecular interaction. Similar to PDI-O, the PL efficiency is better in PS 

than in PMMA for b-PDI-A. Moreover, it is seen that in PS, the PL quenching effect 

becomes more significant for concentrations above 10 wt%, while in PMMA, this occurs 

above 5 wt%. These results indicate, as in the case of PDI-O, that for this b-PDI-A 

derivative, the dispersion in the matrix is better in PS than in PMMA. LT-PL measurements 

in Figure S8 (Supplementary Information) also clearly demonstrate that the 00, 01, 02 

vibronic progression for b-PDI-A is well maintained at high blending fractions (up to 47 

wt%) in PS, but a shift from 00 to 01 preferentially occurs in PMMA between 10 and 47 

wt%. Moreover, the similar PL spectra for b-PDI-A in PS, up to very high blending ratio as 

compared to PDI-O, demonstrate the efficacy of functionalizing the PDI core at the 1,7 bay 

positions with diphenylphenoxy groups significantly disrupt molecular packing, 

aggregation, and/or crystallization, which would otherwise lead to PL quenching.
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Figure 5. Photoluminescence properties of b-PDI-A dispersed in PS and PMMA films. 

Normalized photoluminescence (PL) intensity, i.e. PL intensity divided by the optical 

density at the excitation wavelength  versus wavelength for b-PDI-A dispersed at various 

doping rates in PS and PMMA films (top and bottom of the panels, respectively). Labels 1, 

2, 3 and 4 in the figures correspond to dye concentrations of 5.9, 11, 33.2 and 46.9 wt%, 

equivalent to 5, 10, 40 and 70 ( 10-5 mol/g). The wavelength of the maximum intensity 

peak for the film with highest doping rate is indicated next to its corresponding spectrum; 
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(b) PL quantum yield (PLQY) versus dye concentration for b-PDI-A dispersed in either PS 

(squares) or PMMA (circles). Full lines are guides to the eye.

ASE properties: spectra, thresholds and operational lifetimes

ASE emission appears at a wavelength (ASE) close to the first vibrational PL peak, as it 

occurs with PDI-O. While ASE emission in the films containing PDI-O occurs at around 

580 nm, with b-PDI-A, ASE appears at longer wavelengths, particularly in the range 615-

628 nm (see Figure 6a). This is because the PL spectrum is red-shifted with respect to that 

of PDI-O due to the substituents in the bay positions of the PDI core of b-PDI-A, as already 

discussed previously.15 Another important feature is the wide range of emission 

wavelengths available in this case, which is a consequence of the capacity of this dye to be 

doped at high rates in the film with no significant PL quenching. The observed shifts for 

each polymer are in accordance with the shifts observed in the PL peaks.
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Figure 6. Amplified spontaneous emission (ASE) properties of b-PDI-A dispersed in 

PS and PMMA films. (a) Normalized ASE spectra, i.e. spectra divided by its maxima for 

PS and PMMA films (top and bottom of the panel, respectively) doped with b-PDI-A at 

concentrations of 5.9, 11, 33.2 and 46.9 wt%, equivalent to 5, 10, 40 and 70 ( 10-5 mol/g) 

(labels 1, 2, 3 and 4, respectively); (b) ASE threshold as a function of dye concentration for 

PS (squares) and PMMA (circles) films doped with b-PDI-A. The full lines are guides to 

the eye; (c) Output intensity versus pump intensity for a PS film doped with 11 wt% of b-

PDI-A at various pump wavelengths (see inset). Dashed lines are guides to the eye; (d) 

Normalized ASE intensity at the peak wavelength versus irradiation time (bottom axis) and 

versus the number of pump pulses (10 ns, 10 Hz; top axis) for films of 11 wt% b-PDI-A 
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dispersed in PS (red line) and PMMA (blue line) excited at 60 kW/cm2 (four and two times 

above their threshold, respectively).

The ASE thresholds for the various films were determined as in the case of PDI-O, i.e. 

from plots of the FWHM and of the output intensity versus Ipump. The obtained Ith-ASE 

values are represented in Figure 6b as a function of the dye concentration in the films. For 

both, PS and PMMA, the type of dependence of Ith-ASE on the dye concentration in the film 

is in agreement with previous results with PS films doped with a similar b-PDI 

compound:15  Ith-ASE decreases as the concentration increases, up to a certain concentration 

(here around 10 wt%), at which the lowest Ith-ASE values are obtained (10 and 32 kW/cm2 

for PS and PMMA films respectively); for higher concentrations, Ith-ASE  increases rapidly. 

As it occurs with PDI-O, at a given concentration, Ith-ASE for PS is in all cases lower than 

for PMMA, indicating that also for this PDI derivative, the ASE performance, in terms of 

threshold, is better (lower threshold at a given concentration and larger doping rate at which 

the ASE threshold starts increasing) in PS than in PMMA. 

If we compare the threshold performance of the b-PDI-A-based films (Figure 6b) to that 

of the PDI-O-based films (Figure 3b), it is seen that the lowest threshold obtained with b-

PDI-A (Ith-ASE = 10 kW/cm2, for the 10 wt% doped PS film) is larger than the one obtained 

with PDI-O (Ith-ASE = 3 kW/cm2, for the 1 wt% doped PS film). This difference is somewhat 

unexpected, taking into account that the PLQY in liquid solution of both PDI derivatives is 

similar (close to 100%).4,15  So we considered that this might be because the pump 

wavelength used in the ASE experiments (pump = 532 nm) does not match the absorption 

Page 27 of 42

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28

peaks in the case of b-PDI-A. In order to clarify this aspect, we carried out  ASE 

experiments with the best performing b-PDI-A film (the 10 wt% doped PS one) at two 

additional pump wavelengths, 558 nm and 518 nm, which match the most intense 

absorption peaks (see Figure 6c). As observed, for pump = 558 nm, at which the absorbance 

is maximum, Ith-ASE is around 5 kW/cm2. This value is similar to that obtained for the best-

performing PDI-O film (the 1 wt% doped PS one) indicating, that both PDIs behave 

similarly in terms of threshold whenever the concentration and the pump wavelength are 

optimized. Importantly, the fact that same threshold can be achieved with both molecules 

(b-PDI-A and PDI-O) does not mean that they are equally efficient at a molecular level. 

Note that in order to obtain the optimum threshold, a larger doping ratio (expressed in 

number of mols of dye per gram of polymer), which implies a larger absorption coefficient 

at the excitation wavelength, is needed (see data in Table 1, supporting information). This 

means that at the same concentration (considering the pump wavelength is optimized), PDI-

O has a better performance than b-PDI-A, but for practical purposes the same threshold can 

be achieved with both by properly adjusting the dye content. In any case, the Ith-ASE 

obtained for b-PDI-A is the lowest reported to date for a b-PDI derivative. This can be 

considered an excellent result in a general context taking into account that b-PDIs emit in a 

wavelength range around of 620 nm, which is not accessible by PDI-O or any other PDI 

derivative with no substitutions at the bay. 

The photostability of the b-PDI-A-based films was also investigated. Focusing on the 

comparison between PS and PMMA, we represent in Figure 6d the evolution of the ASE 

intensity versus time for the PS and PMMA films with lowest threshold (the ones with 10 

wt% of b-PDI-A). The experiments were done at the same pump intensity for both films 
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(Ipump = 60 kW/cm2), this value being several times above their corresponding ASE 

thresholds (10 and 32 kW/cm2, for PS and PMMA, respectively). It is seen that the 

operational lifetime of the PS film is many times longer than that of PMMA, even at the 

same pump intensity. Note that the threshold of the PS film is lower, so if the films were 

pumped at the most possible moderate conditions (i.e. Ipump ~ 2 × Ith-ASE), the difference 

between both would be much more significant.

In comparison to PDI-O, the photostability performance of b-PDI-A is inferior, in 

agreement with the results obtained previously with b-PDI-1 in PS. We are currently 

working on the design of b-PDIs with improved photostability.

Gain coefficients and propagation losses

Net gain coefficients (gnet) and propagation losses for b-PDI-A films were determined 

following the same method as for PDI-O. The gnet values obtained at different Ipump values 

are represented in Figure 7 for the film with lowest threshold (PS with around 10 wt% of b-

PDI-A). For PMMA, the photostability was rather poor, so it was not possible to obtain 

reliable data for the gain and loss coefficients. Nevertheless, according to their thresholds, 

which are higher than those in PS, they are also expected to be worse. Focusing on the 

results for PS, in comparison to the best performing PDI-O film (PS with 1 wt %, see 

Figure 4c), the gnet values for b-PDI-A (at similar pump intensities) are somewhat lower, 

which is in agreement with the threshold results. Nevertheless, as already discussed through 

the results of Figure 6c, this difference can be eliminated by optimizing the pump 

wavelength. With respect to the losses, a value of 8 cm-1 has been obtained with b-PDI-A, 

similar to that obtained with the 5 wt% PDI-O film. This indicates that the waveguide 

quality does not seem to be negatively affected by aggregation effects. In other words, the 
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variations of threshold and net gain observed upon changing the dye concentration seem to 

be due mainly to changes in PL efficiency rather than in the waveguide losses.
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Figure 7. Net gain and loss coefficients of b-PDI-A dispersed in PS films. Net gain 

coefficients, obtained from plots such as those of Figure 4a, versus the pump intensity for a 

11 wt% b-PDI-A-doped PS film. The full line is a guide to the eye and its intersection with 

the Y axis corresponds to the loss coefficient (k = 8  1 cm-1).

Discussion about the different performance of PMMA and PS

Results presented in previous sections indicate that for the two PDI compounds 

investigated, PS appears to be a better matrix than PMMA. For both polymers, there are 

clear signs (i.e. changes in PL spectral shape, PLQY decrease and ASE threshold increase) 

of the existence of processes leading to PL quenching (excimer formation, aggregation, 

interaction, etc). We have performed some experiments to characterize film surface using 

field-effect scanning electron microscopy (FE-SEM) and confocal microscopy, aiming to 

directly see aggregates.13 The FE-SEM images obtained on samples with different dye 

concentrations did not show signs of irregularity or the presence of aggregates or phase 

separation. Similarly, preliminary studies with confocal microscopy on samples of both, PS 
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and PMMA, with low and high dye contents, have not provided useful results: apparently, 

the fluorescence is uniform across the film and aggregation or phase separation was not 

observed. Further work with these or other techniques would be needed in order to reach 

conclusions about the presence of aggregated species. In any case, whatever the type of 

mechanism responsible for the observation of PL quenching, an important feature is that the 

dye concentration above which these processes become significant is lower in PMMA than 

in PS. A possible explanation for this might be based on conformational effects and/or 

electronic interactions between the dye and the polymer, which depend on the electron-

donor character of the substituents. The two PDI derivatives under study present a quite 

hydrophobic character while the two polymers show certain polarity, which is higher in 

PMMA than in PS (monomeric dipole moments of 1.67 D and 0.123 D, respectively)42 as a 

consequence of the higher electron-donor character of its substituent groups ( –COO–, 

versus phenyl  in PS). In previous work dealing with photostability,4,43 the different 

electron-donor character of the polymer substituents was used to discuss the photostability 

performance of PS and PMMA with PDI-O.  In those studies, dye photodegradation was 

attributed to two mechanisms: (i) type II photooxidation, which would predominate under 

aerobic conditions, and (ii) partially reversible photoreduction, which would prevail under 

anaerobic conditions. While a key parameter for the first of these mechanisms would be the 

oxygen permeability of the matrix, the type and strength of the dye–polymer interaction 

would play a role for the second. Thus, the lower electron-donor character of PS would 

justify less photoreduction of the PDI-O in PS than in PMMA. On the other hand, oxygen 

permeability of PMMA is lower than that of PS, so less photooxidation would be expected 

in the former. Based on this discussion, if the electron-donor character of the polymer 

substituents seems to play a role in the photodegradation mechanisms, it is reasonable to 
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think that the molecular conformation of the PDIs would be different in PS and in PMMA. 

Another study that supports the hypothesis of the importance of the electronic interaction 

between the dye and the polymer is the work of Priimagi et al.44 They investigated 

aggregation effects of the polar molecule azo-dye Red 1 in various polymers with different 

polarity. They found drastic differences among them and concluded that, using the polarity 

character of the constituents of the film, it is possible to control the amount of aggregation, 

which plays a very important role in the film optical properties. In order to clarify this 

issue, further work using a larger set of PDI dyes and host polymers of different polarities 

is currently underway.

CONCLUSIONS AND PERSPECTIVES

The optical (absorption and photoluminescence, including PLQY), ASE (threshold, 

operational lifetime and gain) and waveguide losses of films of two polymers widely used 

in optoelectronic applications - polystyrene (PS) and poly(methyl methacrylate) (PMMA)- 

hosting two soluble PDI derivatives - PDI-O (commercial derivative) and b-PDI-A 

(synthesis reported in this work)- have been investigated. The influence on the properties of 

the dye concentration in the film (up to 8 wt% and 50 wt%, for PDI-O and b-PDI-A, 

respectively)  has been analyzed.  

For the PDI-O-based films, PL data, at both room and low temperature, show that the PL 

vibronic progression is disrupted at lower concentrations in PMMA than in PS, suggesting 

that the onset of aggregation occurs more easily in the former (2.5 and 5 wt%, for PMMA 

and PS respectively). The latter is also supported by the observation of a quicker falloff of 

PLQY for PMMA. For both polymers, the optimal ASE performance is found at low 

concentrations (1-3 wt% and 1 wt%, for PS and PMMA, respectively) with values slightly 
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better with PS (Ith-ASE = 3 kW/cm2; gnet = 38.8 cm-1 at Ipump. = 14.6 kW kW/cm2) in 

comparison to PMMA (Ith-ASE =12 kW/cm2; gnet = 26.8 cm-1, at Ipump. = 19.9 kW/cm2). For 

larger concentrations the ASE parameters get worse for both polymers, but much quicker 

upon the dye concentration increase in the case of  PMMA. In PS, similar loss coefficients 

(k = 6-8 cm-1) are found at any concentration between 1 and 5 wt%, indicating that film 

quality seems not to be affected by the excimer formation. On the other hand, in PMMA the 

loss, which is larger than in PS, rises significantly (from 15 to 25 cm-1) with increasing 

concentration within the same range. 

For the b-PDI-A-based films, the behavior is similar to that observed with PDI-O in 

various general aspects: (i) PS is better than PMMA; (ii) there is a dye concentration at 

which the ASE performance is optimal (in this case 10 wt% and 5 wt%, for PS and PMMA 

respectively), approximately coincident with the onset concentration at which aggregation 

appears; (iii) its ASE threshold at the optimal concentration is similar to that of PDI-O 

whenever the pump wavelength is optimized. On the other hand, distinct features of b-PDI-

A with respect to PDI-O are: (i) a much larger dye blending ratio in the film is possible (up 

to around 50 wt%); (ii) the PL spectral shape does not practically change as the 

concentration increases (except for a red-shift of the PL peaks), while as it occurs with PDI-

O, the PL efficiency decreases with concentration; (iii) ASE emission occurs at longer 

wavelengths (around 620 nm) with respect to PDI-O (580 nm), and a wider range of 

wavelengths is possible with b-PDI-A thanks to the larger doping rates available; (iv) the 

ASE photostability is inferior.

The better properties of both PDIs in PS than in PMMA, apparently due to a better dye 

dispersion in the former, are most likely due to conformational effects and/or electronic 

interactions between the dye and the polymer, which depend on the electron-donor 
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character of the substituents. Therefore, although the matrix is meant to be an inert host for 

the dyes, results indicate that its interaction (conformational and/or electronic) with the dye 

affects the optical properties. Further work towards a detailed understanding of these 

processes is of great interest because this would allow to properly choose a matrix for a 

given dye as to control the macroscopic organization, which is crucial to optimize the 

performance. 
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