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ABSTRACT
We study the coupling of the force-free magnetosphere to the long-term internal evolution of
a magnetar. We allow the relation between the poloidal and toroidal stream functions – that
characterizes the magnetosphere – to evolve freely without constraining its particular form. We
find that, on time-scales of the order of kyr, the energy stored in the magnetosphere gradually
increases, as the toroidal region grows and the field lines expand outwards. This continues
until a critical point is reached beyond which force-free solutions for the magnetosphere can
no longer be constructed, likely leading to some large-scale magnetospheric reorganization.
The energy budget available for such events can be as high as several 1045 erg for fields of
1014 G. Subsequently, starting from the new initial conditions, the evolution proceeds in a
similar manner. The time-scale to reach the critical point scales inversely with the magnetic
field amplitude. Allowing currents to pass through the last few metres below the surface, where
the magnetic diffusivity is orders of magnitude larger than in the crust, should give rise to a
considerable amount of energy deposition through Joule heating. We estimate that the effective
surface temperature could increase locally from ∼0.1 keV to ∼0.3–0.6 keV, in good agreement
with observations. Similarly, the power input from the interior into the magnetosphere could
be as high as 1035–1036 erg s−1, which is consistent with peak luminosities observed during
magnetar outbursts. Therefore, a detailed treatment of currents flowing through the envelope
may be needed to explain the thermal properties of magnetars.
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1 IN T RO D U C T I O N

Magnetars display a wealth of distinctive highly energetic transient
events, including recurrent short-duration bursts, long-duration out-
bursts accompanied by extended X-ray emission lasting several
years, and giant flares (Mereghetti, Pons & Melatos 2015; Kaspi &
Beloborodov 2017). This activity is linked to the presence of strong
magnetic fields, typically exceeding 1014 G, and slowly evolving
due to the Hall drift and Ohmic dissipation in the crust (Jones 1988;
Goldreich & Reisenegger 1992; Pons, Miralles & Geppert 2009;
Gourgouliatos, Wood & Hollerbach 2016). Typical magnetar tem-
peratures in quiescence are ∼0.2–0.3 keV, with an emitting area of
∼1 km2. During an outburst, the peak temperature can be several
times higher, gradually recovering the quiescence state, or some-
times even a somewhat higher value (Rea & Esposito 2011; Coti
Zelati et al. 2018). The high temperatures must be maintained by
some mechanism involving rapid dissipation of the magnetic field
in a localized region, but the details are not fully understood.

� E-mail: akgun@astro.cornell.edu

Whatever the eventual triggering mechanism of these violent
events be, they are thought to occur as a result of the gradual build-
up of energy, helicity, and twist in the magnetosphere driven by the
long-term evolution of the internal magnetic field (Thompson &
Duncan 1996; Perna & Pons 2011; Beloborodov & Levin 2014;
Thompson, Yang & Ortiz 2017). All models coincide in the ex-
pectation that when a sufficiently large twist is reached (typically
� 1 rad) some kind of large-scale reorganization of the field struc-
ture must take place in an extremely short time (of the order of
the Alfvén time-scale) (Lyutikov 2003; Gill & Heyl 2010; Parfrey,
Beloborodov & Hui 2012, 2013; Akgün et al. 2017; Chen & Be-
loborodov 2017). Studying the equilibrium, stability, and evolution
of the magnetosphere is pivotal in understanding the processes that
give rise to the X-ray activity of magnetars.

The equilibrium structure of a non-rotating axisymmetric magne-
tosphere is given by the Grad–Shafranov equation, which in general
requires numerical solutions (see, for example Fujisawa & Kisaka
2014; Glampedakis, Lander & Andersson 2014; Pili, Bucciantini &
Del Zanna 2015; Akgün et al. 2016, 2018; Kojima 2017, 2018;
Kojima & Okamoto 2018). In Akgün et al. (2016) and Akgün et al.
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(2018), we constructed magnetospheric models with toroidal fields
confined within a magnetic surface in the vicinity of the equator and
smoothly joining to vacuum fields at large distances. We found that a
force-free magnetosphere is able to store more energy than the vac-
uum (current-free) one, in some cases reaching up to ∼80 per cent
more energy. However, almost invariably, the largest values of these
energies correspond to configurations with field lines disconnected
from the surface, which would likely be unstable as also argued
by Kojima & Okamoto (2018) and Kojima (2018). Therefore, such
magnetospheres may not be realizable under normal conditions in
magnetars. We also showed that for nearly all cases with discon-
nected field lines, lower energy configurations exist for the same
parameters of the toroidal field, with field lines connected to the in-
terior. In other words, the solutions of the Grad–Shafranov equation
are degenerate, and the lower energy solutions correspond to the
likely stable configurations. The maximum energy stored in such
magnetospheres represents a moderate ∼25 per cent increase with
respect to the vacuum case. This excess defines the energy budget
available in the event of fast, global magnetospheric reorganizations
of the field structure such as those associated with magnetar flares.

The energy stored in the magnetosphere (from the stellar surface
all the way up to infinity) for a vacuum dipole field with an amplitude
Bpole at the pole and a stellar radius R� is

Evac = B2
poleR

3
�

12
≈ 8.33 × 1044B2

14R
3
6 erg. (1)

Here, B14 = Bpole/1014 G and R6 = R�/106 cm. Thus, for typical
magnetar field strengths of the order of 1014 G, the excess energy
stored in the magnetosphere would be of the order of a few 1044 erg,
consistent with observations of energetic events in magnetars.

We noted that lower energy (connected) field configurations are
possible up to a maximum twist of ϕmax ∼ 1.5 rad, in agreement
with other authors (Mikic & Linker 1994; Thompson, Lyutikov &
Kulkarni 2002; Parfrey et al. 2012, 2013; Kojima 2017). A signifi-
cant fraction of the polar cap flux is already open when ϕ ≈ 2, and it
is reasonable to expect that increasing the twist further would lead
to the sudden disruption of magnetospheric loops.

In Akgün et al. (2017), we investigated the coupling of such
magnetospheric models to the long-term evolution of the interior
computed by the code described in Viganò, Pons & Miralles (2012).
We found that the magnetospheric currents can be maintained on
time-scales of the order of hundreds or thousands of years depending
on the field amplitude, while the energy stored in the magnetosphere
gradually increases (as well as helicity and twist). This continues up
to a critical point beyond which no realistic force-free solutions can
be constructed for the magnetosphere. At this point, we conjecture
that some large-scale magnetospheric rearrangement must occur,
releasing a large fraction of the stored energy. Subsequently, the
quasi-steady evolution should proceed in a similar way from the
new starting conditions. We also found that the spin-down rate
increases due to the gradual enhancement of the effective surface
dipole strength, resulting in a braking index of n < 3 for most
part of the evolution, consistent with measurements for pulsars
and estimates for magnetars (Lyne et al. 2015; Espinoza, Lyne &
Stappers 2017).

In this paper, we aim at understanding in greater detail how
energy is transferred from the neutron star crust to the exterior, de-
pending on the initial structure of the magnetic field, and to what
extent such a transfer can proceed while maintaining force-free (but
not current-free) magnetospheric equilibrium before some global
reorganization (a burst or a flare) becomes inevitable. In contrast to
Akgün et al. (2017), where we determined the dependence between

the toroidal and poloidal stream functions in the magnetosphere
through a best fit using a prescribed functional form with several
free parameters, here we allow for a greater degree of freedom
by considering the symmetric and antisymmetric modes driven by
the internal evolution. We are primarily concerned with magnetars,
where rotation can be safely neglected as their periods are relatively
long (typically of the order of 10 s), with corresponding light cylin-
der radii of over 105 km – well beyond the region of interest of a
few stellar radii (� 100 km).

The structure of this paper is as follows: in Section 2 we give a
technical overview of our model; in Section 3 we present sample
simulations for the external field evolution coupled to the interior; in
Section 4 we consider the likely effects of our force-free model on
the surface temperature; and in Section 5 we discuss the implications
of our results.

2 TE C H N I C A L OV E RV I E W

2.1 Internal evolution

In the neutron star crust, the magnetic field evolution is given by
the induction equation,

∂t B = −c∇ × E

= −∇ ×
[
fH (∇ × B) × B + η∇ × B

]
.

(2)

The two terms correspond to the Hall effect and Ohmic dissipation,
respectively. The Hall coefficient is defined as fH = c/4πene, where
ne is the electron number density and e is the elementary charge,
and η is the magnetic diffusivity and is related to the electrical
conductivity σ through η = c2/4πσ .

In this work, we do not consider the evolution in the stellar core,
which is dominated by the highly non-linear ambipolar diffusion,
and is further complicated by the presence of neutron superfluid-
ity and proton superconductivity (Goldreich & Reisenegger 1992;
Castillo, Reisenegger & Valdivia 2017; Passamonti et al. 2017). We
use the numerical code presented in Viganò et al. (2012) to model
the evolution in the crust. Relevant time-scales and observational
implications are discussed in greater detail in Viganò et al. (2013).
Throughout this work, we use a neutron star model of mass M� =
1.4M� and radius R� = 11.6 km.

Most previous works on magnetic field evolution (e.g. Viganò
et al. 2012, 2013) employ vacuum boundary conditions at the sur-
face, where, given the radial component of the magnetic field (Br),
the tangential component (Bθ ) is calculated consistently with the
boundary condition. In this work, as in Akgün et al. (2017), we
generalize this to allow for the presence of currents and twist in
the magnetosphere, while still neglecting the pressure and inertia
of the plasma. The magnetosphere is assumed to adjust instanta-
neously to a new equilibrium at each time step, rapidly dissipating
any transient perturbations.

2.2 Magnetosphere

An axisymmetric magnetic field can be represented in terms of the
poloidal and toroidal stream functions (P and T, respectively) or,
alternatively, in terms of the azimuthal (φ) components of the vector
potential A and the magnetic field B as

B = ∇P × ∇φ + T ∇φ

= ∇ × (Aφ φ̂) + Bφ φ̂
(3)
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in spherical coordinates (r, θ , φ). Note that P = Aφrsin θ and T =
Bφrsin θ . Magnetic field lines are contours of constant P, with P =
0 corresponding to the magnetic axis. In a static axisymmetric fluid,
the Lorentz force cannot have an azimuthal component, implying
that T must be a function of P. The equilibrium structure of a
force-free magnetosphere is described by the corresponding Grad–
Shafranov equation (see Akgün et al. 2016, and references therein),

�GSP + T T ′ = 0. (4)

Here, the prime denotes derivative with respect to P, and the Grad–
Shafranov operator is given through

�GS = ∂2
r + 1 − μ2

r2
∂2

μ , (5)

where μ = cos θ . Current-free further requires T = 0. The force-free
condition implies that the currents, where present, must be parallel
to the magnetic field,

4π J
c

= T ′(P )B. (6)

We require the magnetospheric toroidal field to be confined within
a magnetic surface near the equator, while near the poles, where the
field lines extend to very large distances, the field is current-free.
This ensures smooth matching with a vacuum field at sufficiently
large distances (typically 10 stellar radii). Our magnetosphere model
is scalable, i.e. it does not depend on the overall amplitude of the
magnetic field, but only on the functional relation between P and T
and their relative amplitudes.

2.3 Matching the interior to the magnetosphere

At each time step, the poloidal function P(R�, θ ) is calculated from
the radial component of the magnetic field, while the toroidal func-
tion T(R�, θ ) is derived from the azimuthal component. In the mag-
netosphere, T and P must be functions of one another, which is not
necessarily satisfied by the interior solution, where the Hall term
creates deviations from such a functional relation.

The fact that T is a function of P implies that the solutions of the
Grad–Shafranov equation must satisfy a certain symmetry, in the
sense that T must have the same value along a field line defined by
some P, including at its footprints at the surface, which we can label
as θ1 and θ2, so that P(θ1) = P(θ2). A general (unconstrained) T can
then be written as the sum of a symmetric part TS(θ1) = TS(θ2) and
an antisymmetric part TA(θ1) = −TA(θ2). The antisymmetric part
cannot propagate into the magnetosphere, and is reflected back into
the interior (see the discussion in Akgün et al. 2017). Such behaviour
has been observed in ideal MHD simulations of the propagation of
internal torsional oscillations (Gabler et al. 2014).

To address this problem, in Akgün et al. (2017), we specified
a particular functional form for T(P) and determined the free pa-
rameters that fitted best the values at the surface. Here, we now
improve this method by allowing for a more general form of T(P)
by decomposing the possibly multivalued toroidal function into its
symmetric and antisymmetric parts (with respect to P). Then, the
symmetric part is used as T(P) while the antisymmetric part is set
to zero. Effectively, this procedure allows only the symmetric part
to propagate into the magnetosphere, while the antisymmetric part
must be reflected back into the interior.

For practical purposes, we eliminate small perturbations by set-
ting a cut-off value for T (typically set at the level of 0.1 per cent of
the maximum toroidal amplitude at the surface), below which we
set it to zero. This cut-off value corresponds to a critical Pc below

which there is no toroidal field, confining the currents into a finite
region close to the neutron star.

The resulting function T(P) has no fixed form and can evolve
over time. In particular, it is possible to have a situation where it has
a maximum somewhere in the interval Pc < P < Pmax, with Pmax

being the maximum value of the poloidal function at the surface. In
this case, T

′
(P) = 0 at that point, implying zero current at the corre-

sponding magnetic surface (as follows from equation 6). Therefore,
the new generalized method allows for current reversals within the
toroidal region. These reversals may happen multiple times if T(P)
has multiple extrema. Although this effect by itself should not cause
any problems in the computation of the Grad–Shafranov equation,
its implications for the stability of the resulting configuration are
unclear.

Using the magnetospheric solution for P, we can calculate the
resulting meridional component of the magnetic field (Bθ ) at the
surface. Our more general force-free matching condition allows
currents to flow through the surface, thus permitting the transfer of
energy, helicity, and twist between the interior and exterior.

2.4 Initial magnetic field

We use an initial magnetic field configuration of the form described
in Akgün et al. (2017). In the interior, the poloidal component con-
sists of a dipolar field constructed analytically for a non-barotropic
background (Akgün et al. 2013). To this, we superimpose a toroidal
component confined within the magnetic surface defined by the
critical field line P = Pc,

T (P ) ∝
{

(P − Pc)2 for P � Pc

0 for P < Pc .
(7)

The quadratic form ensures smoothness of the currents at the
toroidal field boundary at the start of the simulations. Pc can take
values in the interval from 0 (corresponding to the pole) up to Pmax

(initially at the equator). We typically take Pc = Pmax/2, so that the
toroidal field already extends into the magnetosphere at the start of
the simulation. The initial exterior field is computed as a solution of
the non-linear Grad–Shafranov equation using this T(P). The start-
ing configuration contains a discontinuity in Bθ at the surface (but
not in Br and Bφ), which results in a surface current. As the internal
field evolves, the function T(P) adapts to the interior and the surface
current is rapidly redistributed in a transient phase lasting a few tens
of time steps, smoothing out discontinuities.

In this paper, we use the magnetic field strength at the pole Bpole

≡ Br(R�, 0) in order to define the initial poloidal field amplitude,
while the corresponding starting toroidal field amplitude is defined
by its largest value Bφ,max. We employ the same notation and di-
mensionless units as in our previous work (see table 1 in Akgün
et al. 2016). We typically use an evenly spaced angular grid of 100
points, while the radial grid has 50 evenly spaced points in the crust
and 100 unevenly spaced points in the magnetosphere (distributed
as a geometric series with a higher concentration near the surface).

3 R ESULTS

3.1 Sample evolution

In Fig. 1, we show the initial and final magnetic fields in a refer-
ence simulation for a starting configuration of the form described
in Section 2.4, with poloidal and toroidal fields of strength 1014 G.
The star is shown as a circle, and the initial and final configurations
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5334 T. Akgün et al.

Figure 1. Initial and final magnetic field structures for a sample run with
poloidal and toroidal components of strength 1014 G. The configuration at
the start (at t = 0) is shown on the left hemisphere and the final configuration
at the end of the evolution (at t = 2150 yr) is shown on the right hemisphere.
For reference, the initial field configuration is also shown in thin lines in the
background on the right. The crust–core boundary and the stellar surface
are indicated by two circles. The grey scale represents the intensity of the
toroidal function T (related to Bφ through equation 3), from white (no field)
to black (strongest).

are then shown on the left and right hemispheres, respectively. The
inner circle indicates the crust–core boundary. During the evolu-
tion, the toroidal amplitude near the equator remains more or less
constant or decreases, but it increases towards the border of the
confining surface, resulting in a gradual inflation of the force-free
region and the poloidal field lines. This proceeds until a critical
point is reached, beyond which no force-free solutions with con-
nected field lines exist, implying that some other process (such as
a reconnection event on a dynamical time-scale) must take place.
For the case shown here, the magnetosphere reaches this point in
∼2150 yr. In Fig. 2, the same final magnetic field configuration
is shown in a Cartesian projection as a function of the co-latitude
θ (horizontal axis) and the radius (vertical axis) in order to reveal
more detail. The effect of the Hall term on the crustal field is now
evident, where a quadrupolar (antisymmetric) component is grow-
ing, while the core field does not evolve. Throughout the evolution,
the function T(P) in the magnetosphere must remain single-valued,
and any waves generated in the crust through departure from this
constraint (i.e. different values of T connected by the same poloidal
field line defined by some P) are reflected back at the surface (as
discused in Section 2.3). Our results are qualitatively in line with
those presented in Akgün et al. (2017), although we have now al-
lowed for a considerably larger degree of freedom in the relation
T(P) by removing constraints on its functional form.

Snapshots of the evolution of T(P) for the magnetosphere are
shown on the top panel of Fig. 3. Note that the equatorial torus con-
taining currents widens over time, and the maximum value slightly
decreases. Since the derivative T

′
(P) relates the current to the mag-

netic field (through equation 6), the existence of a local maximum or
minimum of T(P) marks the transition from a region with currents
circulating along the magnetic field to a region with counter-flowing
currents. The lower panel of Fig. 3 shows T

′
(P), where we clearly

see the change of sign in a narrow equatorial ring. Another impor-
tant detail is that T

′
(P) sets the inverse length scale of the dissipation

of the magnetic field in the nearly force-free region just below the
stellar surface. Defining L−1 ≡ T

′
(P), and using equation (6), the

corresponding Joule heating rate becomes

QJ = J 2

σ
= η

4π
B2L−2 , (8)

where η = c2/4πσ is the magnetic diffusivity. From Fig. 3, we
can see that L ≈ 10 km (i.e. T ′ ≈ 0.1 km−1) in most of the region
where currents exist. This is a consequence of having imposed
similar strengths for the toroidal and poloidal fields, and for the
size of the neutron star being R� ≈ 10 km. However, there are
localized regions, especially when we approach the critical point,
where L ≈ 1 km. This has important implications as we will discuss
in the next section.

The evolution of the total magnetic energy stored in the entire
magnetosphere (all the way to infinity) is shown on the top panel in
Fig. 4. Near the critical point the energy (for both the poloidal and
toroidal components) increases rapidly. Note that, while the initial
toroidal energy is rather low (Etor,0 ≈ 8.22 × 1043 erg) compared
to the poloidal energy (Epol,0 ≈ 1.30 × 1045 erg), by the end of the
simulation the toroidal energy has increased by a larger amount
than the poloidal energy. If we were to compare the percentage
of this increase relative to the initial poloidal and toroidal ener-
gies, we find that while the poloidal energy increases by a meager
∼10 per cent (with respect to Epol,0), the toroidal energy increases
by nearly ∼200 per cent (with respect to Etor,0). The corresponding
power input into the magnetosphere is shown on the bottom panel
of Fig. 4, and illustrates the rapid gain of energy in the final stages
of the evolution. In other words, while the field evolution proceeds
gradually for most of the simulation, near the critical point it pro-
gresses substantially faster. Interestingly, we find that the order of
magnitude of the rate at which energy is transferred from the in-
terior to the magnetosphere, driven only by the Hall drift in the
crust, is of the order of the quiescence luminosities of magnetars
(1033–1034 erg s−1), reaching a maximum peak of �1035 erg s−1,
similar to those observed during magnetar outbursts. It remains to
be studied what fraction of this power can actually be released as
electromagnetic radiation, and what part would get stored in the
magnetosphere until it undergoes a global reconfiguration.

3.2 Dependence on the magnetic field amplitude

We next consider the dependence on the amplitudes of the poloidal
and toroidal fields. In Fig. 5, we show the initial and final surface
profiles of Bφ for various cases. We take an initial magnetic field
configuration of the same form as in the previous section, and
vary the toroidal field amplitude from 1013 G up to 1014 G, while
maintaining the poloidal field amplitude fixed at 1014 G. In all
cases, the critical point appears to be reached when the border
of the toroidal region shows a steep gradient (which corresponds
to a large radial current). The multipeaked form of the azimuthal
component implies that multiple domains form in the vicinity of the
equator where currents reverse direction (as T

′
changes sign).

In Fig. 6, we show the time dependence of the power input into the
magnetosphere keeping fixed the ratio of the poloidal and toroidal
components (in this case unity), but varying the overall field ampli-
tude from 5 × 1013 G to 2 × 1014 G. Thus, structurally, the initial
magnetic field is the same and only the overall amplitude changes.
As in Fig. 4, we note that while throughout most of the evolution the
power input is relatively low and constant (proportional to the field
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Crust–magnetosphere coupling during evolution 5335

Figure 2. Details of the field structure in the crust and near the surface for the last snapshot of the simulation shown in Fig. 1 (at t = 2150 yr). The plot is
shown as a function of the angle θ (in radians, horizontal axis) and radial distance (in km, vertical axis). The crust is located between the two thick horizontal
lines – the lower line corresponds to the crust–core boundary (at ≈10.8 km) and the upper line to the stellar surface (at 11.6 km). As in Fig. 1, the grey scale
represents the intensity of the toroidal function T.

Figure 3. Top: Snapshots of the toroidal function T(P) for the magneto-
sphere as a function of P for the same model as in Figs 1 and 2. Note that
the units of P and T differ by a factor of length. Bottom: Snapshots for the
resulting derivative T

′
(P). A change of sign in T

′
(P) implies reversal in the

direction of currents.

amplitude), near the respective critical points it surges by several
orders of magnitude to 1035–1036 erg s−1.

The critical time (i.e. the time-scale to reach the critical point)
decreases monotonically with increasing field amplitude as shown
in Fig. 7. Here, we show the time-scales for the two cases discussed
above: the variable ratio case of fixed poloidal and variable toroidal
amplitude (dotted line), and the fixed ratio case, where the poloidal
and toroidal amplitudes are changed simultaneously (solid line).
The latter case is well approximated by a power law (shown in grey)

tc ≈ 2.10 × 103B−1.29
14 yr , (9)

where B14 is the field amplitude in units of 1014 G.

Figure 4. Top: Evolution of the energy stored in the magnetosphere. We
show the total magnetic energy (Etot), the energy of the poloidal component
(Epol), and the energy of the toroidal component (Etor). As the toroidal
energy is substantially lower than the poloidal energy, in order to reveal
detail, we plot the changes in the energies relative to their starting values
(	E = E − E0), which in this case are: Etot,0 ≈ 1.38 × 1045 erg, Epol,0 ≈
1.30 × 1045 erg, and Etor,0 ≈ 8.22 × 1043 erg. Bottom: Total power input
into the magnetosphere (dEtot/dt) as a function of time.

4 O BSERVATI ONA L IMPLI CATI ONS:
S U R FAC E T E M P E R AT U R E S O F MAG N E TA R S

An important implication of the existence of a long-lived force-
free magnetosphere is the presence of currents flowing through
the outermost ∼100 m of the neutron star (the envelope), where
Ohmic dissipation may be more effective. Due to the very dif-
ferent thermal relaxation time-scales of the envelope and the
crust, both regions cannot be followed simultaneously in cooling
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5336 T. Akgün et al.

Figure 5. Bφ at the stellar surface as a function of angle (in radians) for various toroidal field amplitudes, at the start of the simulations (left) and at the end
of the simulations (right). The initial toroidal field is of the form defined by equation (7). In these runs, the poloidal amplitude is fixed at Bpol = 1014 G at the
pole, and the maximum value of Bφ varies from 1013 G up to 1014 G, in increments of 1013 G. The lines are shown in alternating dotted and solid lines for
clarity. The dotted lines correspond to odd amplitudes – in units of 1013 G – and solid lines, to even amplitudes.

Figure 6. Evolution of the power input into the magnetosphere for various
models of different magnetic field strength. Here, the ratio of the poloidal
and toroidal components is maintained the same (in this case unity), while
the overall field amplitude is varied. The labels of the curves indicate the
field strengths in units of 1014 G. In all cases, the energy increases sharply
near the critical point.

Figure 7. Scaling of the evolution time-scale (critical time) as a function of
the amplitude of the toroidal field. The black dots (dotted line) correspond
to runs where the poloidal field amplitude is fixed at 1014 G and the toroidal
field amplitude is varied from 1013 G to 1014 G (as in Fig. 5). The white
circles (solid line) correspond to the case where the poloidal and toroidal
fields have equal amplitudes, and are varied simultaneously, i.e. their ratio
is maintained fixed (as in Fig. 6). The grey line in the background is a fit
to the latter case, which exhibits a more linear dependence on the log–log
scale.

Figure 8. Magnetic diffusivity η as a function of depth below the surface
(R� − r).

simulations. The usual approach is to employ a phenomenological
fit that relates the temperature at the bottom of the envelope Tb with
the surface temperature Ts, in order to implement boundary con-
ditions at the base of the envelope, typically at ρ = 1010 g cm−3.
Examples of such Tb(Ts) relations for magnetized envelopes can
be found in Potekhin & Yakovlev (2001), Potekhin, Chabrier &
Yakovlev (2007), and Pons et al. (2009). We refer the reader to sub-
section 5.1 of the recent review by Potekhin, Pons & Page (2015)
for a detailed discussion of blanketing envelopes and the calculation
of transport properties under typical magnetar conditions.

In Fig. 8, we show a profile of the magnetic diffusivity η in
a neutron star envelope. In this particular case, we have adopted
Tb = 2 × 108 K and B = 1014 G. The spikes are due to quantiz-
ing effects, when successive Landau levels are being filled (see
Potekhin et al. 2015).1 As discussed above, the Joule heating rate
can be calculated from equation (8), where L typically varies in the
range 1–10 km. We also note that the Ohmic dissipation time-scale
is given by τOhm = L2/η, which can be as short as a month in the last
metre below the surface, but is of the order of years for most of the
envelope. Thus, there is a crucial difference with respect to a vac-
uum (current-free) boundary condition: there will be a significant

1Fortran routines for these calculations are available at: http://www.io
ffe.ru/astro/conduct/
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Figure 9. Temperature as a function of length scale L for various magnetic
field amplitudes.

release of heat in the envelope that can be efficiently transported
outwards, resulting in an increase of the star’s surface temperature.
More importantly, this can be maintained on time-scales of years
(or longer, since the interior evolution may maintain the current
system). The effect on the surface temperature can be estimated
simply by assuming that all heat released in a volume of area S
and thickness 	r is radiated as blackbody radiation. Thus, using
equation (8), we have

S	r
η

4π
B2L−2 = SσT 4

eff , (10)

where σ is the Stefan–Boltzmann constant, so that

Teff ≈ 0.3 keV

[
	r

1 m

] 1
4 [ η

103 cm2 s−1

] 1
4
[

B

1014 G

] 1
2
[

1 km

L

] 1
2

.(11)

To better quantify this effect, we have recalculated 2D envelope
models (Pons et al. 2009; Kaminker et al. 2014; Potekhin et al.
2015), but including the effect of the heat released (QJ). We as-
sumed a typical temperature of Tb = 2 × 108 K at the base of the
envelope and varied Bpole and the parameter L. The results are shown
in Fig. 9, where we compare the effective temperature for three cases
with Bpole = 1013, 1014, and 3.16 × 1014 G. The dotted line refers
to the result in the absence of currents (QJ = 0). For the expected
range of L when a force-free exterior solution is allowed, tempera-
tures of neutron stars with relatively weak fields (B = 1013 G) are
barely affected, due to the B2 dependence of QJ. However, under
magnetar conditions, the typical surface temperatures can be raised
from 0.1 keV to 0.3–0.6 keV, in good agreement with observations
(Coti Zelati et al. 2017). Therefore, we conclude that the observed
flux and temperature evolution during magnetar outbursts are con-
sistent with the expected heat release by a current system extending
from the crust to the magnetosphere. This heat released would be
concentrated in the outermost few metres, which turns out to be
very effective in increasing the surface temperature. Obviously, our
2D models are limited by axial symmetry, our hotspots are actually
hot rings, and we do not allow for currents near the pole, which will
concentrate this effect in a smaller area. In a realistic 3D case, one
may expect that the magnetic field evolution driven by the Hall drift
in the crust would occasionally result in a flare, creating a coronal-
like magnetic loop affecting a typical area of 1–10 km2 which may
be maintaned for a relatively long time-scale (of the order of years).

A more detailed quantitative study requires 3D simulations that are
not yet available.

5 C O N C L U S I O N S

In this paper, we have continued and extended our previous work on
force-free magnetospheres, focusing on the effect of the coupling
with the internal magneto–thermal evolution. The main technical
improvement here is that the construction of the function T(P) for
the magnetosphere at the stellar surface has been generalized. While
in Akgün et al. (2017) we carried out a quadratic best fit to deter-
mine the relation T(P), here we separate it into symmetric and
antisymmetric parts (with respect to P), allowing the symmetric
part to propagate into the magnetosphere, while reflecting the anti-
symmetric part back into the interior (as required by the force-free
condition). Thus, the toroidal function is allowed to evolve freely
(though consistently with the interior) without any imposed pre-
scriptions on its particular form. This larger freedom in the choice
of T(P) allows for the formation of regions in the magnetosphere
with current reversal, whenever T

′
(P) changes sign. This also allows

us to handle higher values for the toroidal to poloidal field ratio.
We find that, qualitatively, the field evolution follows the same

stages as in Akgün et al. (2017): for most part of the evolution, the
toroidal region in the magnetosphere gradually grows, while the in-
terior field evolves under the dominant Hall term. The growth of the
magnetospheric currents proceeds until a critical point is reached
beyond which force-free solutions for the magnetosphere (given as
solutions of the Grad–Shafranov equation) cannot be constructed,
likely leading to some large-scale magnetospheric reorganization
such as a burst or a flare. The energy budget available for a magne-
tospheric event can now be as high as several 1045 erg (Fig. 4).

The critical time (i.e. the time it takes to reach the critical
point) is typically in the range of a few thousand years and is
inversely related to the magnetic field amplitude (Fig. 7 and equa-
tion 9). Near this critical point the power input from the interior
into the magnetosphere increases by several orders of magnitude to
1035–1036 erg s−1 (Fig. 6), which is consistent with peak luminosi-
ties during magnetar outbursts, and also suggests that some kind of
precursor activity of an outburst could be potentially observed.

We also comment on an observationally relevant property of our
force-free magnetosphere model: allowing currents to flow through
the surface has important implications for the local temperature.
In particular, strong currents passing through the last hundred me-
tres of the surface (the envelope), especially in the last few metres
where the magnetic diffusivity is orders of magnitude larger (Fig. 8),
should give rise to a considerable amount of energy being deposited
very close to the stellar surface through Joule heating. We estimate
that when a magnetosphere is established, the effective surface tem-
perature could increase locally from ∼0.1 keV to ∼0.3–0.6 keV
(Fig. 9), in good agreement with observations. Therefore, a care-
ful and detailed treatment of currents flowing through the envelope
may be a key ingredient, although often overlooked, to explain the
thermal properties of magnetars. More detailed calculations, partic-
ularly 3D models, therefore seem necessary.

In addition, it is conceivable that there is a threshold value below
which the magnetic field is too weak for the continuous replenish-
ment of currents in the magnetosphere. To precisely determine this
value, one must consider the balance between the rate at which en-
ergy is transferred into the magnetosphere and the local dissipation
rate in the last few metres of the star, coupled with the temperature
evolution. Such a high-resolution study has not yet been possible
with present numerical cooling codes, which usually evolve only the
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crust and the core and consider the outer layers through a boundary
condition, given the vastly different (by many orders of magnitude)
thermal relaxation times. In light of our results, some effort must
be put in this direction to better understand the magnetar emission
properties.
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We thank Daniele Viganò for useful comments. This work is sup-
ported in part by the Spanish MINECO/FEDER grants AYA2015-
66899-C2-1-P, AYA2015-66899-C2-2-P, the grant of Generalitat
Valenciana PROMETEOII-2014-069, and by the PHAROS COST
action CA16214. PC acknowledges the support from the Ramón y
Cajal program of the Spanish MINECO (RYC-2015-19074).

RE F EREN C ES

Akgün T., Reisenegger A., Mastrano A., Marchant P., 2013, MNRAS, 433,
2445

Akgün T., Miralles J. A., Pons J. A., Cerdá-Durán P., 2016, MNRAS, 462,
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