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Abstract 
Glycerol electrooxidation reaction (GEOR) in alkaline media was studied on the Pt(111) 

electrode with in situ FTIR and electrochemical methods. Cyclic voltammogram profiles 

display strong electrode deactivation after the first potential scan. Chronoamperometric 

pulses demonstrate that the deactivation is a result of the reaction intermediates yielded 

during the faradaic process. In situ FTIR shows evidence that the strongly adsorbed 

intermediate formed during GEOR is an acyl species which remains present on the surface 

within the potential window studied. 
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1 INTRODUCTION 

The understanding of catalytical oxidation mechanism of glycerol on metal surfaces 

and its transformation into value-added chemicals has become economic and 

environmentally interesting since the glycerol market has been flooded by glycerol arising 

from the growing biodiesel production [1]. 

On Pt surfaces [2–6], as well as on other metal catalysts [7–10], the electrooxidation 

of glycerol has shown a propensity to formation of diverse products such as glyceric acid, 

glycolic acid, glyoxylic acid, oxalic acid, tartronic acid, dihydroxyacetone, glyceraldehyde, 

among others. However, fundamental studies of glycerol electrooxidation onto Pt electrodes 

were mainly performed in acidic media, despite the higher electrooxidation rates when 

employing alkaline electrolyte [9,11,12]. Consequently, there is still no clear understanding of 

the mechanism of the glycerol oxidation reaction in this medium. Conventional spectroscopic 
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techniques such as in situ FTIR are commonly employed to gather information about the 

nature and the bonding site of adsorbates formed during the glycerol electrooxidation 

reaction (GEOR), which can contribute significantly to elucidate the reaction mechanisms 

[13]. 

In this work, the reaction intermediates of GEOR on the Pt(111) electrode are 

analyzed by using electrochemical and FTIR techniques. The results may contribute 

towards a fundamental understanding of the mechanism of degradation of platinum 

electrocatalysts. 

2 EXPERIMENTAL 

Electrochemical and spectroscopic techniques are described elsewhere [14]. Briefly, 

spectroelectrochemical experiments were performed with a Nicolet Magna 850 spectrometer 

equipped with a MCT detector. The potential dependent set of spectra was acquired by 

increasing the potential in steps of 0.1 V. Spectra shown are composed of 100 interferograms 

collected with a resolution of 8 cm-1. The reference spectrum was taken at 0.05 V. Single 

crystal preparation and surface treatments are described in [15]. Special care was taken in 

the stability of the voltammograms in the blank solution, which guarantees the cleanliness of 

the experimental system. 

3. RESULTS AND DISCUSSION 

Figure 1 displays the cyclic voltammogram of Pt(111) in 0.1 M NaOH in the presence 

and absence (inset) of glycerol. In the presence of glycerol, a high current density peak 

related to GEOR centered at 0.83 V is present during the positive and negative scans. It must 

be highlighted that there is a significant difference in peak currents for the positive and 

negative scan directions in the first scan (ca. 25 and 6 mAcm-2, respectively) and that the 

currents for the subsequent cycles are significantly lower and show low hysteresis, as well as 

a slight decrease in the electrode activity. 

The dramatic electrode deactivation after the first sweep, and the steady 

electroactivity decrease cycle after cycle has an amazing similarity with the results reported 

for ethanol electrooxidation reaction on the same surface and experimental conditions [16]. 

Busó-Rogero et al. [16] have suggested that acetaldehyde polymerization on the electrode 

surface causes its progressive deactivation upon cycling, whereas the negligible currents 

recorded at E > 0.9 V are related to the formation of an adsorbed OH layer. In fact, the 

results displayed in Figure 1 can open a new subject of discussion in electrocatalysis of 

alcohols in alkaline media since the previous published behavior leads us to suggest that it is 

not a particular characteristic of one oxidation mechanism reaction but a general behavior of 

small alcohol molecules. 
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Fig.1-here 

Figure 1: Voltammetric profile of glycerol electrooxidation on Pt(111) in 0.1 M glycerol + 

0.1 M NaOH: scan rate: 10 mVs-1. Inset: 0.1 M NaOH; scan rate: 50 mVs−1. 

 

 

Regarding the remarkable electrode deactivation, the effect of different adsorption 

times at 0.1 V on the first sweep are shown in Figure 2(a). Only small differences are 

observed in the intensity of the peak current density at 0.83 V. The small loss of the electrode 

activity as a function of adsorption time does not follow that observed when the electrode is 

subjected to successive potential scans. Even at potentials lower than those in which alcohol 

oxidation takes place, the interaction of small organic molecules with platinum surfaces can 

lead to dehydrogenation and/or cleavage of the C–C bond, producing strongly adsorbed 

species [13]. The results suggest that, despite the decrease in current density, the species 

which are formed at 0.1 V remain on the surface (at least) until the electrode reaches a 

suitable potential to start GEOR. These species have minor influence on the decrease of 

peak intensity. This contrasts with the effect of the species which are formed in the positive 

scan of the first cycle, which are probably responsible for the electrocatalytic activity 

decrease.  

In order to evaluate the former assumption, we performed a cyclic potential step 

experiment by pulsing the potential between 0.1 and 0.83 V successively. The potential 

signal perturbation and the current-time transient response can be visualized in Figure 2(b) 

and (c), respectively. The current-time transient curves decay rapidly in the first few seconds, 

regardless of the time of adsorption at low potentials. As observed for the cyclic 

voltammogram results, the strong electrode deactivation behavior is also present in the 

subsequent potential step cycles. The intense decrease of the transient current density from 

the first to second cycle can be related to the formation of strongly adsorbed species which 

are formed only during GEOR [16,17]. These species hinder, significantly, the overall 

oxidation [18] by the blockage of platinum surface [16]. 

 

 

Fig.2-here 

Figure 2: (a) Positive scan (1st cycle) of electrooxidation of 0.1 M glycerol + 0.1 M NaOH for 

different adsorption times at 0.1 V on Pt (111); scan rate: 50 mV s-1; (b) potential signal 
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protocol used in chronoamperometric experiments; (c) transient current response recorded 

from signal perturbation illustrated in (b). 

 

 

With the aid of in situ FTIR, we scrutinized the GEOR mechanism. Figure 3(a) 

displays the potential-dependent set of spectra for GEOR. In general, the spectra follow the 

potential-current profile as seen in Fig. 1. At low potentials, no characteristic spectral features 

are observed until ca. 0.5 V, where two dominant broad positive bands roughly centered at 

1600 cm-1 and 1400 cm-1 appear and remain present during the negative scan. The 

assignment of those peaks to a single adsorbate or product is not straightforward because 

the number of species that can be formed from GEOR is quite high [9,19]. The glycerol 

molecule can be analyzed as having at least two active centers for coordination to metal 

surface sites: the oxygen of an alcohol group and its -carbon. In this sense, glycerol can 

initially adsorb through the coordination of one lone pair oxygen orbital or through the -

carbon atom. Both possibilities can yield many possible surface bonding configuration as 

GEOR intermediates, namely: 1(O)-aldehyde, 2(C,O)-aldehyde, acyl, alkoxyde, -oxo 


2(C,O)-aldehyde, bidentate carboxylate, among others [20,21], whose vibrational spectra lie 

in the range of 1100-1750 cm-1 and are representative of final products, for instance, of 

glyceric acid, glycolic acid, glyoxilic acid, oxalic acid, tartronic acid, dihydroxyacetone, 

glyceraldehyde, etc. [9,10]. 

In relation to the lack of strong adsorbates at low potentials, it is evidenced the 

absence of CO stretching modes (ν(CO)) which would be expected to appear at ca. 2040 cm-

1 and 1880 cm-1 [3,5,22]. Carbon monoxide is generally accepted as the main poisoning 

species formed in acidic media at potentials as low as 0.1 V from dissociative alcohol 

adsorption and during the oxidation process at higher potentials [5,22,23]. Our data show that 

the CO stretching mode displays a weak feature when the reaction reaches the highest 

reaction rate (at 0.85 V) and remains until 0.5 V in the negative sweep, justifying the higher 

activity when results are compared with those obtained in acidic media [2,5,19,24]. Moreover, 

the concomitant presence of the band in 2345 cm-1 with the ν(CO) stretching mode at high 

potentials support the ability of Pt(111) to oxidize glycerol to CO2 from adsorbed CO, but to a 

lesser extent than observed in acidic media [4]. The appearance of ν(CO2) stretching mode in 

alkaline media is indicative of the strong change in the interface pH since the carbonate 

species (CO3
2-) cannot be further produced due to the depletion of OH- in the thin layer 

configuration [25]. 

It is clear that the reason why the strong Pt(111) surface deactivation occurs after the 

first positive potential excursion resides on the formation of strongly adsorbed glycerol 
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residues other than CO, the latter responsible for the main bands seen in Fig.3(a). We can 

observe that the bands at 1585 cm−1 and 1400 cm-1 begin to appear approximately at the 

same potential (ca. 0.5 V), corresponding to the reaction onset. Concomitantly, the negative 

featured bands at 2720 cm-1 and 1895 cm-1, attributed to OH− species in solution [16], are the 

consequence of their consumption – and not readily replenished due to the thin layer 

configuration – as adsorbed OH reactant-pair of GEOR. 

 

 

Fig.3-here 

Figure 3: (a) FTIR-in situ potential-dependent spectra of 0.5 M glycerol in 0.1 M NaOH on 

Pt(111) as function of the increasing potential steps from 0.05 to 0.9 V; (b) contour plot built 

from (a); FTIR spectrum for 0.9 V (c) and intensity band profile of chosen wavenumbers (d). 

The reference spectrum was collected at 0.05 V vs. RHE. 

 

At first glance, the appearance of the 1400 and 1585 cm-1 bands together could be 

correlated with the formation of carboxylate-containing species whose bands are attributed to 

the asymmetric and symmetric carboxylate ν(OCO) stretching modes, respectively [10,26]. In 

fact, the band at 1400 cm-1 is assigned to symmetric stretch ν(OCO)s of twofold carboxylate 

species coordinated to the surface [27]. However, the 1585 cm-1 band could not be assigned 

to the asymmetric stretching mode of the bidentate carboxylate species since it would be 

forbidden by the surface selection rule [26–28]. This would suggest that both bands can be 

originated from different adsorbed species. With the aid of a contour plot, a selected 

spectrum at 0.9 V and the intensity band profile of chosen wavenumbers (Fig.3b-d, 

respectively), we can observe that as the potential is made more positive, the signal of the 

1400 cm-1 band vanishes in a potential region where the GEOR reaches its maximum current 

density (ca. 0.8V) and a new band at 1360 cm-1 emerges apparently at the expense of the 

1400 cm-1 band, while the 1585 cm-1 band does not alter its intensity over the negative scan, 

regardless the applied potential. The appearance of the 1585 cm-1 band during polyol 

adsorption under aqueous environment was not reported previously and a clear-cut 

assignment about its origin is not straightforward. 

Under UHV environment, spectroscopic studies of decomposition of small aldehydes 

and alcohols showed that the process can occur through the formation of acyl intermediates 

which were identified by the loss feature of the ν(C=O)acyl stretch mode at ca.1565–1575 cm-1 

[29,30]. The acyl intermediate species corresponds to the coordination to the metal through 

the carbon of the carbonyl group. McManus et al. [21] observed a similar behavior when 

glyceraldehyde thermally decomposed on a Pt(111) surface, with a ν(C=O)acyl stretch mode 
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centered at 1595 cm-1. Thus, we attribute the 1585 cm-1 band to the origin of the strong 

electrode deactivation as a result of acyl intermediate species that are stable within the range 

of the studied potential. Gomes et al. [20] using the SFG technique proposed the formation of 

acetyl as one of the intermediates of ethanol electrooxidation on Pt in acidic media, featured 

by the ν(C=O)acyl stretch mode at 1546 cm-1. Additionally, we should take into account that 

the glycerol molecule has multiple reactive centers to interact with metal sites and in the case 

of adsorption through the carbonylic group without C–C bond cleavage, the resulting 

adsorbed acyl can still interact with the surface by means of the oxygen lone pair of the 

hydroxyl group from the C2 carbon, named as glyceroyl by Schnaidt et al. [31] and correlated 

with the presence of a band centered at 1640 cm-1. Despite the differences, we tentatively 

assign the frequency mode observed at 1585 cm-1 to the C=O stretch mode of adsorbed acyl 

species. 

Other features of the spectra consist of bands at 1722 cm-1, indicating the presence of 

the C=O stretching of carbonyl groups from non-adsorbed carboxylic acids and aldehydes 

namely: glyceraldehyde, dihydroxyacetone, glyceric acid, among others [9,12]. 

In summary, a general mechanism can be proposed for the electrocatalytic oxidation 

of glycerol on Pt(111) in alkali media: considering the high pH adsorption of glycerol, the 

interaction of the molecule with the electrode surface seems to occur, initially, through an 

alkoxyde molecule [8,11,32] by dehydrogenation of a primary hydroxyl group to yield an 

aldose adsorbate which undergoes dehydrogenation of the C–H bond to form an acyl 

intermediate that keeps adsorbed regardless the applied potential. The strong surface 

interaction of acyl species with the electrode surface and its stability over a wide potential 

window suggests the GEOR on Pt(111) in alkaline media occurs mainly through surface 

intermediates that weakly coordinate to the surface, for instance by the oxygen lone pair 

(from alkoxides, aldehydes or carboxylates) which can be further oxidized within the studied 

potential window. Thus, the low hysteresis observed in alkaline media suggests that the acyl 

species are stable within the studied potential with minor contribution to the overall reaction 

rate.  

4. Conclusions 

The electrochemical studies of GEOR in alkaline media show that the Pt(111) 

electrode suffers strong deactivation once the surface attains potentials higher than 0.8 V. In 

situ FTIR shows evidence that carboxylates and acyl are the main intermediates formed 

during the GEOR. Moreover, the acyl species represents the main intermediate that remains 

stable on the surface, even at potentials where the surface oxide formation is highly favored, 

while the carboxylates are the reactive intermediates.  
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Highlights 
 

 Pt(111) surface is strongly deactivated during glycerol electrooxidation in 

alkaline media; 

 In situ FTIR results show evidence of a stable adsorbate; 

 At low potentials glycerol does not adsorb on Pt(111) surface through strong 

adsorbates. 
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