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Abstract: Haloferax mediterranei produces C50 carotenoids that have strong antioxidant properties.
The response surface methodology (RSM) tool helps to accurately analyze the most suitable conditions
to maximize C50 carotenoids production by haloarchaea. The effects of temperature (15–50 ◦C),
pH (4−10), and salinity (5–28% NaCl (w/v)) on the growth and carotenoid content of H. mediterranei
were analyzed using the RSM approach. Growth was determined by measuring the turbidity
at 600 nm. To determine the carotenoid content, harvested cells were lysed by freeze/thawing,
then re-suspended in acetone and the total carotenoid content determined by measuring the
absorbance at 494 nm. The analysis of carotenoids was performed by an HPLC system coupled with
mass spectrometry. The results indicated the theoretical optimal conditions of 36.51 or 36.81 ◦C, pH of
8.20 or 8.96, and 15.01% or 12.03% (w/v) salinity for the growth of haloarchaea (OD600 = 12.5 ± 0.64)
and production of total carotenoids (3.34 ± 0.29 mg/L), respectively. These conditions were validated
experimentally for growth (OD600 = 13.72 ± 0.98) and carotenoid production (3.74 ± 0.20 mg/L).
The carotenoid profile showed four isomers of bacterioruberin (89.13%). Our findings suggest that
the RSM approach is highly useful for determining optimal conditions for large-scale production of
bacterioruberin by haloarchaea.

Keywords: bacterioruberin; Haloferax mediterranei; response surface methodology (RSM); central
composite design (CCD)

1. Introduction

Carotenoids (carotenes and xanthophylls) are pigments present in all living organisms; however,
they are synthesized only by bacteria, algae, fungi, and plants. They comprise a large family of
over 700 naturally-occurring pigments characteristically present in leaves, flowers, and fruits of
plants, where they play various roles. In plants and algae, they utilize light energy to support the
chlorophyll-dependent photosynthetic electron flow inside the chloroplasts. In addition, carotenoids
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dissipate excess light energy and owing to their antioxidant activity, protect the photosynthetic
machinery against photoinhibition caused by free oxygen radicals [1].

Carotenoids also play an important role in human health by acting as provitamin A, which protects
against macular degenerative disease and cancer. These effects, coupled with the fact that humans
use carotenoids from their diet, make these pigments highly valuable for foods, pharmaceutics,
and cosmetics industries. Although they are usually commercially produced by chemical synthesis,
microorganisms can also be important alternative sources of carotenoids and their active isomers.
β-Carotene, astaxanthin, lutein, and canthaxanthin are C40 carotenoids, which are highly valuable for
biotechnological purposes [2,3].

Halophilic archaea include microorganisms that grow optimally in culture media with high salt
concentrations of up to 4 M. The family Haloferacaceae comprise non-photosynthetic and largely
aerobic heterotrophs, which produce carotenoids as components of their cytoplasmic membranes,
especially under conditions of low salinity in the medium [4]. Apart from carotenoids, haloarchaea
also produce high-added-value products of biotechnological interest, such as enzymes capable
of being active at high temperature and high ionic strength, polysaccharides, polyalkanoates,
and polyhydroxybutyrate [5]. In addition, Haloferax mediterranei excretes halocins capable of killing
other archaea. Halocin H4 is a protein of mass 34.9 kDa that targets the plasma membrane of
microorganisms, effecting change in permeability and causing ionic imbalance [6].

Usually, the C50 carotenoid bacterioruberin and its derivatives monoanhydrobacterioruberin
and bisanhydrobacterioruberin are the major carotenoids produced by halophilic archaea.
These carotenoids may be found as trans and cis isomers [7]. They improve the rigidity and fluidity
of the cell membrane [8], and, owing to their strong antioxidant properties, protect the cells from the
harmful effects of radiation energy as well as from osmotic stress produced by low salinity in the
medium [9,10]. Several halophilic bacteria also produce other carotenoids such as β-carotene, lycopene,
and canthaxanthin [11,12]. C50 carotenoids produced by haloarchaea possess higher antioxidant
capacity than C40 carotenoids produced by most photosynthetic organisms, due to the higher number
of pairs of conjugated double bonds. C50 carotenoids are therefore interesting in food applications and
for the pharmaceutical industry. The relative proportion of bacterioruberin content in cells depends on
the strain of haloarchaea and the culture conditions used, particularly temperature, pH, and salinity.
Other factors such as the addition of selected organic compounds to the culture medium also influences
the carotenoid production of halophilic archaea [12]. The culture conditions should be set beforehand
to maximize biomass yield and carotenoid production, thereby improving yield and reducing costs [5].

Studies on the biotechnological use of halophilic archaea are scarce, despite the widespread
interest in C50 carotenoids, and H. mediterranei can be a good candidate due to its ability of growth in a
wide range of temperatures, pH, and salinity. Generally, the approach to standardize and optimize the
conditions of growth and carotenoid production simultaneously, particularly at large-scale production,
is complicated [7,13]. Statistical experimental methods such as central composite design (CCD) and
response surface methodology (RSM) can be used in microbial processes to determine the conditions
for optimal productivity [14]. We demonstrate that RSM is useful for optimization of conditions for
growth rate and carotenoid production by H. mediterranei at the laboratory scale. This approach will be
valuable for carotenoid production at the industrial scale.

2. Results and Discussion

2.1. Effect of Air Volume inside the Culture Flasks and Speed of Agitation on the Growth Rate of
H. mediterranei

Oxygen supply is essential for optimal growth and carotenoid production in haloarchaea [15].
The influence of air volume inside the culture flasks on the growth rate of H. mediterranei was evaluated
while all the other culture conditions were kept constant. This study was not aimed at determining the
optimal air phase volume for production of H. mediterranei as it depends on the cultivation system
design and parameters specifically selected in each production process. However, an air phase volume
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was used in this study so that the oxygen availability allowed H. mediterranei to complete growth
until the stationary phase. Air occupying 20%, 40%, or 60% of the culture flask volume was kept in
contact with the cell culture in liquid medium and agitated at 100 rpm. In the growth conditions
and cultivation system used in this study (see Materials and Methods), the optimal growth rate for
H. mediterranei was observed in the culture with 60% air phase in the flask, thus emphasizing the
importance of oxygen for this haloarchaeon (Figure 1A). Experiments with 80% air phase in the flask
did not suppose a significant improvement of the harchaeal productivity (data not shown).

The effect of culture agitation speed on the growth rate of H. mediterranei was also evaluated
using three different conditions: no agitation (0 rpm), 100 rpm, or 150 rpm, at 60% air phase. Figure 1B
shows that an optimal growth rate of the haloarchaeon was obtained in cultures agitated at 150 rpm,
but significant growth was also observed at 100 rpm. No growth was observed in non-gitated cultures
(0 rpm), thus confirming that good aeration is absolutely essential to sustain the haloarchaeal growth.
These findings are consistent with those reported for H. alexandrinus, the optimal growth of which was
obtained in 100 mL culture medium in 500 mL flasks (80% air phase) [16], and Halorubrum sp. SHI,
which required agitation at 550 rpm for optimal growth in 50 mL of culture medium in 250 mL flasks
(80% air phase) [17].
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Figure 1. Effect of air phase (A) and shaker speed (B) of cultures on the growth of H. mediterranei.
Cells were grown under standard conditions, as stated in Materials and Methods, and using the
indicated air phase and shaker speed. When indicated, the turbidity of the culture was determined at
600 nm.

For the operation, we used conditions of agitation speed of 150 rpm and 60% air phase in
the culture flasks. Under these conditions, H. mediterranei showed a generation time of 33.6 h and
maximum productivity of 22.16 g dry weight/L. This yield is significantly better than that obtained
previously, not only with H. mediterranei [13], but also other aerobic haloarchaea [14]. Apart from the
availability of oxygen, growth of H. mediterranei also depends on salinity, pH, and temperature of the
culture medium [18]. According to Schneegurt (2012) [19], a 10% increase in salinity reduces oxygen
solubility in the culture by approximately 50%, which might have an impact on the availability of
oxygen for the haloarchaea cells. Oxygen solubility also decreases as the temperature increases or pH
decreases, thus indicating that salinity, temperature, and pH have a complex influence on the growth
rate of H. mediterranei cultures.

Light is usually important for the regulation of carotenoid synthesis in many types of
microorganisms. However, we found no differences either in pigmentation or in biomass concentration
of H. mediterranei when cultivated in absence or presence of light (data not shown). The effect of
light on pigmentation of halophilic archaea greatly depends on species and strains. For instance,
strains Hbt. salinarum ATCC 33170, Hbt. salinarum ATCC 43214 and Hfx. alexandrinus TM (JCM 10717T),
showed no difference in pigmentation when cultivated in the absence or in the presence of light.
However, the pigment composition of Hbt. salinarum JCM 10927 alters according to light conditions,
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particularly by increasing the bacterioruberin content and decreasing the content of C40 carotenoids [7].
Thus, the effect of light should be studied for each specific halophilic microorganism.

2.2. Use of RSM to Optimize Culture Conditions for Growth and Carotenoid Production by H. mediterranei

Central composite design (CCD) was used to define the experimental growth conditions,
which should obtain the predictive model for optimal growth and carotenoids production by
H. mediterranei. As can be seen in Figure 1B, the culture at 60% air phase and an agitation rate
of 150 rpm is at the late logarithmic phase on day 4, which seems adequate for measurements in the
CCD experiments. Accordingly, 20 cultivation experiments were run on an orbital shaker using the
parameters of agitation speed and air volume fraction defined above (150 rpm and 60%, respectively).
The CCD and yield parameters are summarized in Table 1, which determined the response models in
three-dimensional surfaces for the variables of haloarchaea growth (Figure 2A–C) and total carotenoid
content (Figure 2D–F). According to the model, optimal growth of H. mediterranei should be obtained
at 36.51 ◦C, pH of 8.20, and 15.01% (w/v) NaCl.

Table 1. Central composite design (CCD) matrix and the responses of growth and total carotenoid
content at different temperature, pH, and salinity levels. Std Order: Standard Order.

Independent Variables
Responses

Coded Levels

Std Order Temperature (◦C) pH Salinity
(NaCl% w/v)

Turbidity
(O.D.600 nm)

Total Carotenoids
(mg/L)

1 −1 23.8 −1 5.5 −1 9.8 2.53 0.28
2 1 23.8 −1 8.5 −1 9.8 3.09 1.61
3 −1 41.3 1 5.5 −1 9.8 7.88 0.80
4 1 41.3 1 8.5 −1 9.8 11.79 3.12
5 −1 23.8 −1 5.5 1 23.3 0.88 1.34
6 1 23.8 −1 8.5 1 23.3 5.31 1.05
7 −1 41.3 1 5.5 1 23.3 2.04 0.24
8 1 41.3 1 8.5 1 23.3 7.25 0.78
9 −1.68 32.5 0 4.5 0 16.5 1.01 0.19

10 1.68 32.5 0 9.5 0 16.5 11.51 2.85
11 0 17.8 1.68 7.0 0 16.5 0.29 0.13
12 0 47.2 1.68 7.0 0 16.5 5.14 0.85
13 0 32.5 0 7.0 −1.68 5.1 5.22 0.66
14 0 32.5 0 7.0 1.68 27.9 3.82 0.37

15 * 0 32.5 0 7.0 0 16.5 10.93 3.34
16 * 0 32.5 0 7.0 0 16.5 11.25 3.13
17 * 0 32.5 0 7.0 0 16.5 10.78 2.40
18 * 0 32.5 0 7.0 0 16.5 10.62 2.71
19 * 0 32.5 0 7.0 0 16.5 11.21 2.50
20 * 0 32.5 0 7.0 0 16.5 12.34 3.07

* Central point values contributing to the degree of freedom for pure error calculation.
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Figure 2. The 3-D-surface and contour response plots generated from a quadratic model representing
the combined effects of temperature, pH, and salinity on the growth rate (A–C) and carotenoids content
(D–F) by liquid cultures of Hfx. mediterranei. The interactions between salinity and temperature (A)
and (D); pH and temperature (B) and (E), and pH and salinity (C) and (F) were analyzed. Other details
of experimental conditions are stated in the Materials and Methods section.

The following equation could be used to predict the O.D. at 600 nm under different conditions:

O.D.600 nm = −85.1 + 8.74·X2 + 2.681·X1 + 1.729·X3 − 0.681·X2
2 − 0.03635·X2

1
−0.04710 X2

3 + 0.0394 X2·X1 + 0.0639 X2·X3 − 0.02318 X1·X3
(1)

where X1, X2, X3 denote temperature, pH, and salinity, respectively (see Table 3).



Mar. Drugs 2018, 16, 372 6 of 12

On the other hand, the maximum total carotenoid content in cultures of H. mediterranei cells
should be observed at 36.81 ◦C, pH of 8.96, and 12.03% of NaCl. The carotenoid content at any point
during the culture and different conditions could be predicted according to the following equation:

Carotenoids
(mg

L
)
= −27.78 + 2.913·X2 + 0.647·X1 + 1.027·X3

−0.1692·X2
2 − 0.00974·X2

1 − 0.01612·X2
3 + 0.0171 X2·X1 − 0.0419 X2 − X3 − 0.00718 X1 − X3

(2)

Using the one-factor-at-a-time approach, optimal conditions to produce carotenoids (2.06 mg/g
dry weight of cells) by H. alexandrinus were 37 ◦C, pH of 7.2, and 25% NaCl [16], which are considerably
different to this study, thus reiterating the importance of the haloarchaea species used and the
interactions between factors.

2.3. Validation of the Optimal Conditions for Growth and Total Carotenoid Production by H. mediterranei

The accuracy of the model was verified by analyzing the predicted and observed experimental
results. Three experiments were carried out to determine the reliability of optimal conditions predicted
by the models of Equations (1) and (2), using the data obtained for biomass and total carotenoid
content, respectively. Figure 3 shows that high values of R2 (93.1%) and adjusted R2 (92.7%) highlight
the agreement between predicted and observed experimental values. Hence, an acceptable relationship
between independent variables (temperature, pH, and salinity) and response variables (growth and
total carotenoids) was proved. The highest biomass production (21.95 ± 1.57 g dry weight/L) and
total carotenoid content (3.74 ± 0.20 mg/L) were very close to the values estimated using RSM at the
optimal conditions (20.18 ± 1.02 g dry weight/L, and 3.34 ± 0.29 mg/L, respectively) indicating that
RSM is effective in fixing culture conditions where several variables could influence the final result.
It can also predict results for other potential culture conditions of the haloarchaea, as reported by the
authors of Reference [14], in similar studies on Halorubrum sp. TZB126.
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Figure 3. Theoretical values of response variables predicted from the respective models and observed
values of the experimental design with a p-value < 0.05 for the growth rate and total intracellular
carotenoids by Hfx. mediterranei. The growth and carotenoids content are as described in Materials and
Methods. CI = reliable interval and PI = predicted interval.

The data demonstrates for the first time in H. mediterranei that the RSM approach might be used
to predict optimal conditions for large scale carotenoid production.

2.4. Carotenoid Profile Obtained from H. mediterranei

Bacterioruberin is the major C50 carotenoid in all the archaeal strains, however, β-carotene,
lycopene, astaxanthin, and canthaxanthin were also found in these organisms [3,20]. The profile of
the carotenoid obtained from H. mediterranei was analyzed using HPLC, and the results revealed a
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chromatogram with 10 peaks where bacterioruberin (89.13%) was the major compound produced
under the optimal conditions used for carotenoid production (Figure 4A). Peaks 1–4 had the same
molecular weight (Table 2). Figure 4B shows a similar 3-finger type absorption spectrum for these
carotenoid fractions with typical bacterioruberin absorption maxima at 468, 495, and 530 nm, thereby
indicating that they were isomers of the main carotenoid, probably 13-cis-bacterioruberin and
9-cis-bacterioruberin, respectively [9]. However, the definitive structures of peaks 1-4 cannot be
elucidated until further studies are done.
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5 MABR 3.021 470, 500, 534 737.7 725.6, 709.6, 699.7 
6 BABR 3.168 460, 488, 520 705.7 681.6, 669.7, 579.7, 522.7 
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8 BABR 3.508 472, 498, 532 705.7 699.7, 687.7, 671.7, 653.8, 607.6 
9 BABR 3.620 468, 490, 520 705.7 699.7, 671.7, 653.8, 550.6 

Figure 4. HPLC analysis of the carotenoids present in Hfx. mediterranei (A) and the absorption spectrum
of isolated bacterioruberin (B). Peaks 1–4 are the isomers of bacterioruberin, peaks 5, 6, 7, 8, 9, and 10
are C50 carotenoid derivatives from bacterioruberin. Further experimental conditions are indicated in
the Materials and Methods.

Figure 4A also reveals other minor peaks corresponding to chemically modified
bacterioruberin-derived compounds such as monoanhydrobacterioruberin and
bisanhydrobacterioruberin [13], the molecular weights differed from bacterioruberin (Table 2).
The other peaks observed in the chromatogram corresponded to unknown carotenoids.
Calo et al. (1995) [21] reported 3-hydroxyechinenone as a major carotenoid of H. mediterranei.
However, the existence of 3-hydroxyechinenone in H. mediterranei has not been referred to in any
other paper after 1995. Other studies on H. mediterranei reported 70% and 52.4% bacterioruberin in
the carotenoid fraction [8,13], respectively, indicating the influence of the culture conditions on the
yields of carotenoids and composition of the haloarchaea. By increasing the amount of magnesium
sulfate in the medium, the relative ratio of bacterioruberin was increased, reaching a constant level at
8% (w/v) of magnesium [13]. In our study, 2% magnesium sulfate was used in the culture medium
for H. mediterranei. The bacterioruberin content obtained from other haloarchaea is highly variable,
as shown in Reference [14], (98.1% in Halorubrum sp.); [10], (68.1% in Haloarcula japonica); and [22],
(49.2% in Halobacterium SP–2 and 55.3% in Halorubrum SP–4). These data show that H. mediterranei
grown under the conditions stated in this work contains high levels of bacterioruberin compared with
other haloarchaea.
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Table 2. Tentative identification of carotenoids present in Haloferax mediterranei. BR: bacterioruberin;
MABR: monoanhydrobacterioruberin; BABR: bisanhydrobacterioruberin.

Peak Carotenoid Retention
Time (min) λmax (nm) Molecular Ion

(m/z) M+ Fragments Profile

1 BR 2.325 468, 496, 530 740.7 723.7, 705.7, 687.7, 666.7, 561.5, 515,1
2 BR 2.553 468, 494, 528 740.7 723.7, 705.7, 681,6, 666.8, 655.6, 627.6
3 BR 2.740 468, 496, 528 740.7 723.7, 705.7, 682.6, 669.6, 665.6
4 BR 2.816 464, 494, 524 740.7 723.7, 705.7, 682.6, 665.6
5 MABR 3.021 470, 500, 534 737.7 725.6, 709.6, 699.7
6 BABR 3.168 460, 488, 520 705.7 681.6, 669.7, 579.7, 522.7
7 BABR 3.233 456, 485, 526 705.7 699.7, 671.7, 668.7, 647.6, 579.6
8 BABR 3.508 472, 498, 532 705.7 699.7, 687.7, 671.7, 653.8, 607.6
9 BABR 3.620 468, 490, 520 705.7 699.7, 671.7, 653.8, 550.6

2.5. Bacterioruberin Production by H. mediterranei

The maximum carotenoid yield in our experiments was 3.74 mg/L (equivalent to 23.51 mg/g
dry weight), which is different from that reported in other haloarchaea. The yield of carotenoids in
haloarchaea mainly depended on the strain and on the culture conditions used. H. alexandrinus
accumulates 2.6 mg/g dry weight [16]; Halobacterium salinarum, 45 µg/g dry weight and
Halococcus morrhuae, 89 µg/g dry weight [9], Halobacterium halobium, 7.63 mg/L [23], Halorubrum sp.,
10.78 mg/L [14], H. mediterranei, 125 mg/L [8], Haloarcula japonica, 335 µg/g dry weight [10];
Halorubrum sp. SH1, 25 mg/L [17], and Haloterrigena turkmenica, 32 µg/g dry weight [24]. However,
in most cases, the corresponding information concerning biomass production and/or cell viability,
under the conditions used for carotenoid production are absent, which makes it difficult to select one
strain of haloarchaea for large-scale production of carotenoids.

The chosen strategy significantly affects the final costs, as the following options indicate:
(i) one-step production under optimal growth conditions, in which the carotenoid production is
directly linked to the biomass production of the cultures, or (ii) a two-step system, whereby the first
step of biomass production under optimal growth conditions is followed by the second phase of
cultivation under stress to promote biosynthesis and accumulation of carotenoids. In our study,
the salt content in the culture medium seemed to establish the best conditions for carotenoid
production. According to literature, haloarchaea require high salt concentration for optimal growth,
while maximum carotenoid production is achieved when cells are under stress produced by low
external salinity. Chen et al. (2015) [8] showed that H. mediterranei growing at 40 S/m conductivity
(a measurement of salt concentration) in saline medium accumulated 125 mg/L of total carotenoids;
however, if the conductivity of the medium was decreased to 25 S/m, the pigments could be increased
to a maximum value of 555.6 mg/L. From Equations (2) and (3), we estimated that H. mediterranei can
produce 3.34 mg/L of carotenoids, while the theoretical value for the growth of haloarchaea under
such conditions is 18.51 g dry weight/L, which corresponds to a loss of about 7.5% of the biomass
productivity. Thus, the option of a one-step process is adequate for the high-scale bacterioruberin
production by H. mediterranei. Fixing the optimal conditions for carotenoid production increases the
biotechnological value of this halophilic microorganism.

Calegari-Santos et al. (2016) [7] reviewed the effect of different stress conditions on carotenoids
production in halophilic archaea. In addition to the variables considered in this work, the C-source
and the presence or absence of metals is also relevant. However, the effect of N-starvation and other
nutritional stress factors remain to be examined.

3. Materials and Methods

3.1. Microorganism

The highly halophilic archaeon Haloferax mediterranei, strain R4 (ATCC 33500T), used in this
study, was provided by Dr. Rosa María Martínez from the Department of Agrochemistry and
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Biochemistry, University of Alicante, Spain. This archaeon was first isolated and reported by the
authors of Reference [25], from saline water at Santa Pola in Alicante (Spain).

3.2. Growth Conditions and Biomass Quantification

The haloarchaea were grown in a basal culture medium as formulated in Reference [13], containing
(per liter): Glucose, 10 g; NaCl, 156 g; MgCl2·6H2O, 13 g; MgSO4·7H2O, 20 g; CaCl2·6H2O, 1 g; KCl,
4 g; NaHCO3, 0.2 g; NaBr, 0.5 g; yeast extract, 5 g; and the pH was adjusted to 7.0 by addition of
diluted KOH or HCl. The mother culture was prepared in 100 mL of liquid medium contained in a
250 mL flask and incubated at 37 ◦C and 150 rpm on an orbital shaker until the exponential phase of
growth was achieved (standard conditions). This culture was used as inoculum at 10% (v/v), in all the
experiments. The growth was determined by measuring the turbidity of the culture at 600 nm using a
UV-Vis spectrophotometer (Thermo Spectronic, Genesis, Waltham, MA, USA). The dry weight was
determined using 1 mL sample of the corresponding culture, which was filtered through a pre-weighed
membrane (φ = 0.2 µm) and the retained cells were washed on the filter using 5 mL of 1% NaCl (w/v)
solution. The membrane was then dried at 80 ◦C until a constant weight was reached. A control with
1 mL of uninoculated culture medium was run in parallel. The weight was later deducted from the
sample. Culture with OD of 1.0 at 600 nm had a dry weight of 1.60 g/L.

3.3. Extraction, Quantification, and Analysis of Pigments

For extraction of carotenoids, the culture samples (10 mL) were centrifuged at 3500× g for 45 min,
the harvested cells were lysed by freeze/thawing, and finally, the biological material was resuspended
in 1 mL of pure acetone and kept overnight at 4 ◦C. The suspension was centrifuged at 3500× g for
5 min. The total carotenoid content of the supernatant was determined by measuring the absorbance
at 494 nm and calculated using an extinction coefficient, ε (1%), of 2540, according to the following
expression: mg/L = (OD494/2540) × 104.

The HPLC analysis of carotenoids in acetone was performed using a Poroshell 120-C18
column (Agilent, Santa Clara, CA, USA) (3 × 50 mm, 2.7 µm) on an Agilent 1200 series system
(Santa Clara, CA, USA) equipped with a diode array detector scanning from 400 to 690 nm.
To determine the mass spectra of the different compounds, a 6410 Triple Quad LC/MS system (Agilent,
Santa Clara, CA, USA) was used equipped with an electrospray ionization source (ESI) operating
in positive scan mode (m/z range of 300–900), with ±0.1 u.m.a. precision, and controlled by Mass
Hunter Workstation Software (Agilent, B.05.00, Santa Clara, CA, USA). The following specific working
conditions were used: capillary voltage 4000 V, gas flow rate 10 L m−1, gas temperature 300 ◦C,
and nebulizer pressure 35 psi [17].

3.4. Response Surface Methodology Experimental Design

The one-factor-at-a-time approach used to analyze a problem based on three or more parameters
overlooks the interactions between different factors [26]. To address these issues, RSM was used to
identify the optimal value to be applied in order to determine the main effect as well as any significant
interactions between factors that may exert important effects on response variables [14,27,28]. A central
and axial points design (CCD) approach was used to optimize the culture conditions for both cell
growth (O.D. at 600 nm) and total carotenoid content (mg/L) by H. mediterranei. In this study,
temperature, salinity, and pH were considered for the CCD analysis. They were investigated at
five different levels within the following ranges: temperature (15–50 ◦C), pH (4−10), and NaCl
concentration (5–28%, w/v) in order to deduce the optimum values of growth and carotenoid content.
The code and actual values of the variables are presented in Table 3.
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Table 3. The coded and actual values of experimental variables used in the central composite
design (CCD).

Independent Variables Symbols
Levels

−1.68 * −1 0 1 1.68 *

Temperature (◦C) X1 17.8 23.8 32.5 41.3 47.2
pH X2 4.5 5.5 7.0 8.5 9.5

[NaCl]% (w/v) X3 5.15 9.75 16.50 23.25 27.85

* Alpha values used for axial points in this study.

A 23 full-factorial experimental design with six-axial points and six central points was chosen [29].
The relationship between the response variable and the independent variables was fitted by a predictive
quadratic polynomial equation. The quality of fit for the second-order model equation was expressed
by the coefficient of determination (R2) and its statistical significance was determined using the p-value.
To provide an adequate degree of freedom (df = 5) for estimation of pure error, calculations at the
central point were repeated six times. The regression equation used is described as follows:

y = β0 +
3

∑
i=1

βixi +
3

∑
i=1

βiix2
i +

3

∑
i,j=1

βijxixj (3)

where y represents the predicted response variables (growth or total carotenoid); β0 is a constant,
βi is the linear coefficient, βii is the quadratic coefficient, βij is the interaction coefficient of the model,
respectively, and xi and xj (i = 1, 3; j = 1, 3; i 6= j) represent the non-coded independent variables
(temperature, pH, and salinity).

3.5. Statistical Analysis

The data analysis for model construction was performed using Minitab 17.1.0.0 software
(Minitab Inc., State College, PA, USA), based on the response surface methodology. The model
was statistically tested using analysis of variance (ANOVA) to test the significance and adequacy of the
model. Regression analysis was used to obtain the coefficients of a second order polynomial. Data are
presented as the average of three independent experiments. Statistical significance was determined by
p-value at p < 0.05. The three-dimensional surface plot and contour plot performed by the regression
model were drawn using the Statistica software package (version 11.0, StatSoft, Palo Alto, CA, USA) to
highlight the effects on the independent variables and corresponding effects on the response variables.

4. Conclusions

Temperature (36.51 ◦C or 36.81 ◦C), pH (8.20 or 8.96), and salinity (15.01 or 12.03%, w/v) are
the optimal conditions for the H. mediterranei biomass and carotenoid production. Bacterioruberin,
a carotenoid of high antioxidant capacity, is the major C50 carotenoid of H. mediterranei. RMS approach
serves to accurately predict both the biomass and carotenoid production by the haloarchaeon at
any temperature, pH, and salinity of the media, which is valuable for performing C50 carotenoid
production—particularly bacterioruberin—by H. mediterranei in a one-step process.
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