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In a data mining process, outlier detection aims to use the high marginality of these elements to identify them by measuring their
degree of deviation from representative patterns, thereby yielding relevant knowledge. Whereas rough sets (RS) theory has been
applied to the field of knowledge discovery in databases (KDD) since its formulation in the 1980s; in recent years, outlier
detection has been increasingly regarded as a KDD process with its own usefulness. The application of RS theory as a basis to
characterise and detect outliers is a novel approach with great theoretical relevance and practical applicability. However,
algorithms whose spatial and temporal complexity allows their application to realistic scenarios involving vast amounts of data
and requiring very fast responses are difficult to develop. This study presents a theoretical framework based on a generalisation
of RS theory, termed the variable precision rough sets model (VPRS), which allows the establishment of a stochastic approach to
solving the problem of assessing whether a given element is an outlier within a specific universe of data. An algorithm derived
from quasi-linearisation is developed based on this theoretical framework, thus enabling its application to large volumes of data.
The experiments conducted demonstrate the feasibility of the proposed algorithm, whose usefulness is contextualised by
comparison to different algorithms analysed in the literature.

1. Introduction

Outlier detection is an area of increasing relevance within the
more general data mining process. Outliers may highlight
extremely important findings in a wide range of applications:
fraud detection, detection of illegal access to corporate net-
works, and detection of errors in input data, among others.

The rough sets basic model created by Pawlak [1] is a
model with a simple and solid mathematical basis: the
equivalence relation theory, which enables the description
of partitions consisting of classes of indiscernible objects.
The rough sets (RS) rationale consists of approximating a
set using a pair of sets, termed lower and upper approxima-
tions. In general, the RS approach is based on the ability to
classify data collected through various means. In recent years,
this model has been successfully applied in various contexts

[2–4]. Therefore, its study has attracted the attention of
the international scientific community, especially regarding
solving problems that involve establishing relationships
between data.

An outlier detection method is proposed in [5], which
is the first Pawlak rough sets application to this problem.
However, its computational implementation is complicated
by its exponential order. An extension of the theoretical
framework of the previous proposition is presented in
[6], in which an outlier detection algorithm is imple-
mented based on Pawlak rough sets—the Pawlak rough
sets algorithm—with a nonexponential order of temporal
and spatial complexity. In [6], a method for the detection
of outliers has been proposed with a simple and rigorous
theoretical setup, starting from a definition of outliers that
is simple, intuitive, and computationally viable for large
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datasets. From this method, an efficient algorithm for outlier
mining has been developed, conceptually based on a novel
and original approach using rough set theory, which has
not been applied in any previous category of classification
for the methods of rough set detection. The proposed
algorithm is linear with respect to the cardinality of the data
universe over which it is applied, and it is quadratic with
respect to the number of equivalence relations used to
describe the universe. However, this number of relations
merely represents a constant, as it is usually significantly
smaller than the cardinality of the universe in question. In
contrast to many other methods that present difficulties in
their application depending on the nature of the data to be
analyzed, our proposal is applicable to both continuous and
discrete data. The possibility that the datasets may contain
a mix of attribute types (e.g., a mix of continuous and
categorical attributes) does not present a limitation for
the applicability of the proposed algorithm. Nevertheless,
this result has the drawback for our purposes of inheriting
the deterministic nature of the Pawlak rough sets regarding
the classification.

The variable precision rough sets model (VPRS) [7] is a
generalisation of the Pawlak rough sets that rectifies its
deterministic nature through a new concept of inclusion of
standard sets: the inclusion of majority sets [8, 9], which
makes it possible to incorporate user-defined thresholds. A
computationally viable algorithm for the nondeterministic
detection of outliers, termed the VPRS algorithm, based
on the VPRS, which was in turn based on the theoretical
framework provided by Pawlak rough sets and VPRS,

termed nondeterministic outlier detection-Pawlak rough sets
(Figure 1), is presented in [10]. Figure 1 shows a global
view of the theoretical framework for the formalisation
of a computationally viable algorithm for unsupervised
probabilistic estimation of the outlier condition of each
element of a given universe of data used in this paper.

The Pawlak rough sets and VPRS algorithms solve the
following problem: “to determine the set of outliers of a given
universe of data from a preset exceptionality threshold (μ)
defined in [6] at a given allowed classification error (β)
defined by [7].”

In this paper, a new approach to the problem of outlier
detection that solves the limitations of the aforementioned
results is proposed: to preset the thresholds and to develop
scalable algorithms independent of the context and nature
of the problem. Therefore, the aim of this research may be
summarised as follows: “to create a computationally viable
method that calculates the outlier probability of each element
from a given universe of data without the need to establish
preconditions—that is, the determination of the thresholds
(μ, β) of the analysis—that depend on each specific context
to which the algorithm is applied.”

The starting hypothesis is summarised as follows: “a new
theory may be developed by extending the basic concepts and
the formal tools provided by RS theory [1, 11] and VPRS [7],
applied to the outlier detection problem, which allows the
unsupervised determination, for each element of a universe
of data, of the region of threshold values (μ, β) in which such
element is an outlier.” Based on this approach, which was
termed the βμMethod (see Figure 1), “the outlier probability
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Figure 1: Global view of the theoretical framework.
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of each element from the universe of data can be deter-
mined.” This new method is termed the Probabilistic βμ
Method (see Figure 1).

To develop the method proposed in the research
objective as a solution (see Figure 2), the theoretical
framework developed in [6, 10] is expanded based on
conceptual elements of the Pawlak rough sets and VPRS
and on the theoretical proposition of [5]. Combined, they
make it possible to formally demonstrate the theoretical
elements proposed in the new concept of the method
and serve as a reference framework to design and implement
a computationally viable algorithm that validates the starting
hypothesis. This algorithm has been termed the βμ_PROB
algorithm, as can be seen in Figure 2. This figure shows a
general outline of the proposed solution, specified in the
implementation of a computationally viable algorithm
(βμ_PROB Algorithm) for the unsupervised probabilistic
estimation of the outlier condition of each element from a
universe of data, entirely based on the development of the
theoretical framework created in this research study.

Based on the above, the text below is divided into four
sections. In Section 2, a theoretical framework termed βμ
Method (Figure 1) is proposed alongside an algorithm that
determines the outlier region of each element from the
universe of data, termed the FIND_OUTLIER_REGION
Algorithm (Figure 2). In Section 3, new theoretical elements
collected using a method termed Probabilistic βμ Method
(Figure 1) are proposed, and statistical techniques that make
it possible to solve the problem posed are applied by propos-
ing the βμ_PROB algorithm (Figure 2), which determines
the outlier probability of each element from the universe of
data within such universe. In Section 4, the experiments that
validate the proposed solution are designed, the findings are
analysed, and the algorithms based on RS and the classical
algorithms, in addition to the different RS algorithms that
have been developed to achieve the final solution, are com-
pared. In Section 5, the conclusions from this research study

are presented, and some perspectives and future studies
continuing this research are considered.

2. Outlier Region

In essence, the entire proposal in this article is summarized in
the following two phases:

(i) In the first, it is determined for each element e of the
finite universe U, under what conditions (threshold
of exceptionality μ and classification error allowed
β) that element behaves as an exceptional element
(outlier). These conditions (μ and β) establish an R
region within which the element is considered outlier

(ii) In the second phase, taking into account the
determined R region, for each element of the finite
universe U, the probability of each of them being an
outlier in U is calculated using statistical techniques

To solve the problem, first, we expanded the theoretical
framework defined in [6, 10] (Section 2.1). This frame-
work is based on a method that we have termed the βμ
Method. The method provides the formal tools that, sec-
ond, make it possible to develop a computationally efficient
algorithm to solve the problem, which we have termed the
FIND_OUTLIER_REGION algorithm (Section 2.2).

2.1. Theoretical Framework: βμ Method. The βμ Method
consists of three main tasks that can be easily differentiated:
(a) to determine the outlier region in relation to threshold
β, which makes it possible to calculate the allowable classifi-
cation error, (b) to determine the outlier region in relation to
threshold μ, that is, to calculate the preset outlier threshold,
and (c) to integrate both specific solutions to determine the
outlier region (β, μ) of each element from the universe of
data. Below, we detail each of these tasks.
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Figure 2: General outline of the proposed solution.
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2.1.1. Outlier Region in Relation to β. To determine the
outlier region in relation to the set of values of β (referred
to as the allowable β-error in the classification), three specific
subproblems are solved.

Subproblem 1: to determine the range of β values for
which Bi ⊆ Bj, i ≠ j, 1 ≤ i, j ≤m. Bi, Bj: internal borders with
respect to equivalence relations i and j, where m is the total
number of equivalence relations taken into account in the
analysis. Based on the theoretical framework described in
[6], it is known that if no internal border Bi is a subset
of another internal border Bj, then all Bj elements are
candidates for outliers in the dataset or universe of data,
U. Therefore, the problem is restated as follows: to determine
the set of β values for which an internal border Bi, i ≠ j, is a
subset of the internal border Bj, that is, Bi ⊆ Bj. After calculat-
ing this set, ∀i ≠ j, 1 ≤ i ≤m, then the complement of the
union of all ranges of β values calculated will be the set of
values, in relation to such threshold, for which all Bj elements
are candidates for outliers.

Subproblem 2: to determine the range of β values for
which a given internal border is null. Similarly, in the
theoretical framework on which the detection method is
based, it is assumed that the internal borders considered in
the analysis are not null. Accordingly, the β values for which
this condition is met are determined. The analysis is per-
formed for any internal border Bi, and subsequently, this
result is generalised to any other internal border through a
similar analysis.

Subproblem 3: to determine the set of β values for which
Bi = Bj, i ≠ j, 1 ≤ i, j ≤m. In the theoretical framework on
which the detection method is based, the existence of two
equal internal borders is not considered either, thereby
requiring determining the set of β values for which this
condition is met. In this case, the problem consists of
determining the set of β values for which Bi = Bj, i ≠ j,
1 ≤ i, j ≤m, which is easily deduced through the following
sequence of equivalences: Bi = Bj⇔Bi ⊆ Bj∧Bj ⊆ Bi⇔β ∈
Iij∧β ∈ I ji⇔β ∈ Iij ∩ I ji. From these, we can conclude that
the set of β values for which Bi = Bj, i ≠ j, 1 ≤ i, j ≤m, is
EQij = β β ∈ Iij ∩ I ji , in which Iij is the set of β values
for which Bi ⊆ Bj. i ≠ j, 1 ≤ i, j ≤m.

After concluding the analysis of the three proposed
subproblems, from the sequence of sets, a general criterion
can be established defining when an internal border is a
subset of another.

A: set of β values for which a nonempty internal
border exits, which is a specific subset of the internal
border j. I1j – EQ1j –N1 ∪ I2j – EQ2j –N2 ∪⋯ ∪ Imj –
EQmj –Nm = A, where Ni: set of β values for which Bi = ϕ,
1 ≤ i ≤m.

Ac: set of β values for which no nonempty internal border
is a specific subset of the internal border j.

Sj: set of β values for which no nonempty internal border
is a specific subset of the internal border j excluding the
values for which such border is empty. Sj = Ac –Nj.

Considering that for all Bj elements to be outliers, the
condition that no other internal border is a subset of this

border must be met; the previous results suggest that this
only occurs when β ∈ Sj. Therefore, Sj is the range of β values
for which an element e from the universe of data U, e ∈ Bj,
belongs to some nonredundant outlier set, and thus e is a
possible outlier.

2.1.2. Outlier Region in Relation to μ. The next step is to
perform a similar analysis to determine the set of outlier
threshold values μ for which each element from the universe
of data may be considered an outlier. The problem is now the
following: given an element e ∈U , to determine the range of
values of the threshold μ for which the outlier degree of e is
higher than that of μ. The theoretical elements necessary to
solve this problem are presented below according to the
following logical sequence:

(i) To define the set of values of β for which ∀e e ∈U
belongs to internal border Bi, 1 ≤ i ≤m

(ii) To establish a new definition of outlier degree
∀e e ∈U , in a new interpretation of the values
of β: ExcepDegree(e,β)

(iii) To determine ∀e ∈U the range of values of μ for
which ExcepDegree(e,β)≥μ for a given β value

Following this sequence, first, the set of β values for
which e ∈U belongs to the internal border Bi, 1 ≤ i ≤m,
is defined.

Definition 1. Let U be a universe of data, X the subset of
values of U that meet a specific concept, ∀e ∈U , 1 ≤ i ≤m,
and EC an equivalence class of the partition induced by the
equivalence relation ri inU such that e ∈ EC. The set of values
of β for which e belongs to the internal border Bi is
defined as follows:

Mi e =
β β < c EC, X < 1 − β, if e ∈ X,

∅, if e ∉ X,
1

wherein c A, B is the measure of the degree of declassifi-
cation of set A in relation to set B, that is, the relative
error of classification of a set of objects, defined in the
VPRS [7] as follows:

c A, B =
1 −

A ∩ B
A

, if A ≠ 0,

0, if A = 0
2

As established by Mi e , the values of parameter β
must meet the following restrictions to ensure that e
belongs to the internal border Bi β < c EC, X < 1 − β⇒
β < 1 − c EC, X ∧ β < c EC, X . Therefore, the following
range of β values within which e ∈ Bi ∀β β ∈ 0, min
−c EC, X , 1 − c EC, X can be established from Mi e .
This result satisfies the criterion required to state that an
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element e ∈U may be an outlier candidate. In this case,
this means that it belongs to some internal border.
Accordingly, below, a new definition of outlier degree of
an element e ∈U is established, with a new interpretation:
its dependence on the values of β. Preliminarily, a new
definition and a new proposition must be established
based on that dependence.

Definition 2. ∀e ∈U , 1 ≤ i ≤m

λi e =
Sup Mi e , if Mi e ≠∅,

0, another case,
3

wherein Sup Mi e is the lowest value of β that is higher
than all values of the Mi e range. For all β < λi e , the
element e belongs to the internal border Bi. Thus,

Proposition 1. ∀e ∈U , 1 ≤ i ≠ j ≤m, if λi e ≤ λ j e ⇒∀β
β < λi e , e ∈ Bi∧e ∈ Bj. Based on the analysis performed,
a specific sequence of the supremum λi e , 1 ≤ i ≤m can
be obtained for each element e ∈U associated with each
internal border Bi, Zi e . Being Z1 e ,… , Zm e , such that
λZ1 e e ≤⋯ ≤ λZm e e a permutation of indices that
order the λi e .

Definition 3. With e ∈U , β ∈ 0 ; 0, 5 and m the number of
internal borders considered in the analysis, the Total number
of internal borders to which element e belongs at a given β
value is defined as follows:

Total e, β =

m, if β < λZl e e ,

0, if β ≥ λZm e e ,

m −maxk β ≥ λZk e e , in another case

4

The first two parts of Definition 3 are established to
ensure that when the max function is evaluated, a defined
result is always established (especially when the condition
established in the predicate λZk e e is not satisfied). The
graphical interpretation of the Total e, β function is illus-
trated in Figure 3. In this figure, v =maxk β ≥ λZk e e . This
value is the highest value of k such that (β≥λZk(e)(e)), that is,
is exactly the number of internal borders to which e does not
belong. Furthermore, from k′ = k + 1, β < λZk′ e e will be
fulfilled and therefore e belongs to the internal borders
BZk′ e ,… , BZm e , by Proposition 1 and does not belong
to the internal borders BZ1 e ,… , BZk e .

As a function of Definitions 2 and 3 and Proposition 1,
the concept of the outlier degree of an element e ∈U is
defined as a function of the β values.

Definition 4. With e ∈U a value β ∈ 0, 0 5 and m the
number of internal borders considered in the analysis, the
outlier degree of element e at a given β value is defined as
follows: ExcepDegree e, β = Total e, β /m.

This definition does not contradict the proposition
presented in [6]. Based on this proposition, ∀e ∈U , the out-
lier degree of such element can be assessed for any β value
and therefore the μ values for which ExcepDegree(e,β)≥μ.

2.1.3. Integrating Regions. The definitions above enable us to
establish the following general method for determining the
values of β and μ for which the element e ∈U is an outlier
in U.

(1) To determine Mi e : β values for which the element
e ∈ Bi

(2) To determine Si: β values for which there is no inter-
nal border that is a subset of the internal border Bi

(3) To determine Di e =Mi e ∩ Si: β values for which
the element e belongs to Bi and there is no internal
border that is a subset of the internal border Bi

For values of β ∈Di e , the element e belongs to some
nonredundant outlier set and is the only representa-
tive of the internal border Bi in such set, that is, for
β values in Di e , e ∈ Ei

(4) ∀βo, μo: βo ∈ ∪
m
k=1Dk e ∧μo ≤ ExcepDegree e, βo ,

then: e is an outlier in U. A βo ∈ ∪
m
k=1Dk e represents

a value for which the element e belongs to some
internal border of which no other internal border is
a subset, and in such a case, μo must be lower than
or equal to ExcepDegree(e, βo)

Figure 4 shows the range of β-μ values for which any
element e of the universe is an outlier in U. In this case, the
following was assumed:

range 1 ∪ range 2 = ∪m
k=1Dk e 5

2.2. Computational Implementation: FIND_OUTLIER_REGION
Algorithm. In this section, the FIND_OUTLIER_REGION
algorithm is developed. This algorithm enables the unsu-
pervised calculation of the range of values of the thresholds
β-μ in which each element of the universe is an outlier.

0
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Figure 3: Graphic view of the Total e, β function.
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This algorithm validates the β-μ method defined in the
previous section and proceeds in three key steps.

(a) Calculation of the dependences between internal
borders, or calculation of the inclusion relation-
ship between them:BUILD_β_OUTILIER_REGION
algorithm (see Algorithm 1)

(b) Calculation of the outlier region in relation to
the threshold μ: BUILD_μ_OUTILIER_REGION
algorithm (see Algorithm 2)

(c) Integration of both regions to obtain, for each ele-
ment of the universe, the regions of β-μ values in
which the element would be an outlier: OUTLIERS
set and FIND_OUTLIER_REGIONS algorithm (see
Algorithm 3)

All these algorithms contain the inputs universe U
(dataset), U = n, and concept X ⊆U ≠∅ and the equiva-
lence relationships R = r1, r2,… , rn .

The output of the BUILD_β_OUTILIER_REGION algo-
rithm (Algorithm 1) is set S with the dependences between
internal borders or the inclusion relationship between them.
The output of the BUILD_μ_OUTILIER_REGION algorithm
(Algorithm 2) consists of a tuple with two values: the outlier
region ExcepDegree in relation to the outlier threshold μ and
the set of classification errors β for which each element
belongs to each equivalence relation ri ∈ R.

Finally, the output of the FIND_OUTLIER_REGION
algorithm (Algorithm 3) is the set of OUTLIERS with the
regions of the β-μ values in which every element would be
an outlier.

2.3. Analysis of the Complexity of the Method and the
Algorithm. The temporal complexity of the algorithms
depends on the number of ranges in the sets of specific
ranges. Table 1 outlines the costs of each structure calcu-
lated for each algorithm. Based on these calculations, the
temporal complexity of the FIND_OUTLIER_REGION
algorithm is then determined, which, in the worst case,

will be equal to the maximum of each of its three main
tasks: O n2 ×m2 × log m .

The most original aspect of the FIND_OUTLIER_
REGION algorithm is that it enables the unsupervised calcu-
lation of the range of threshold values (parameters β and μ)
in which each element of the universe will be considered an
outlier. However, the temporal and spatial complexity of
the algorithm is of a higher order than that those of the algo-
rithms Pawlak rough sets and VPRS [1, 7] because the
result from the FIND_OUTLIER_REGION algorithm is
more general.

When executing the algorithm once for a given data
universe, the specific outputs of the previous algorithms
can be obtained for any value of (β, μ). Determining, for
each element of the universe, the total region of values
of such thresholds in which such element is an outlier
ensures that the entire universe can be subsequently
searched for specific pairs of values of the thresholds
(β, μ) belonging to the outlier region of any element.
Thus, the usefulness of the FIND_OUTLIER_REGION
algorithm becomes clear when seeking to assess the outlier
condition of the elements of the universe for a given set of
threshold values.

In summary, the result from the execution of the algo-
rithm contains any particular result that could be obtained
from the execution of the algorithms Pawlak rough sets and
VPRS. This is the main advantage of the algorithm, com-
pared with the expected advantage from increasing its
temporal and spatial complexity when used only to calculate
the regions of a single element of the universe.

Nevertheless, despite the high order of temporal com-
plexity identified in the worst case, the algorithm can reach
an order of temporal complexity similar to that of the algo-
rithms Pawlak rough sets and VPRS, almost linear for the
best case Ω n ×m2 × c .

The OUTLIERS region obtained allows a stochastic
approximation to the solution of the problem of determin-
ing whether a given element is an outlier within a given
universe of data (to establish a probabilistic criterion on
such condition).
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Figure 4: Range of β-μ values for which any element of the universe is an outlier in U.
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BUILD_β_OUTLIER_REGION (U, X, R): S
Pseudo-code Comments

1 for each r ∈ R
2 for each q ∈ R – r
3 S1[r][q] = {[0, 0.5)} Start solving Sub-problem No. 1
4 S3[r][q] = {[0, 0.5)} Start solving Sub-problem No. 3
5 S2[r] = {[0, 0.5)} Start solving Sub-problem No. 2
6 for each r ∈ R
7 Pr =CLASSIFY-ELEMENTS (U, r) Partition induced by the equiv. relation r
8 class-max = 0 starting the null minimum value [r]
9 for each class ∈ Pr
10 case1[r][class] = {[min(c(class, X), 1 - c(class, X)), 0.5)} Obtain the solution for the

equivalence class for Case1
11 class-max =max(class-max, c(class, X), 1 - c(class, X)) Update the null minimum value[r]
12 for each q ∈ R – r Searching the solution for the equiv. class of case2
13 q-min =min(c(class, X), 1 - c(class, X)) Minimum error of the equiv. classes according to

q with elements of the equiv. class according to i
14 for each e ∈ class For each class element
15 q-class =CLASSIFY-ELEMENT(U, q, e) Obtain equiv. class to which it belongs

according to q
16 q-min =min(q-min, c(q-class, X), 1– c(q-class, X)) Update the minimum value
17 case2[r][q][class] = [0, q-min)} Obtain the solution of the equiv. class for Case 2
18 S1[r][q] = S1[r][q] ∩ (case1[r][class] ∪ case2[r][q][class]) Update S1 with new ranges of

the equiv. class
19 S2[r] = S2[r] ∩ {[class-max, 0.5)} Update S2 with new ranges of the equiv. class
20 for each r ∈ R Update S3 from the S1 values
21 for each q ∈ R – r
22 S3[q][r] = S1[r][q] ∩ S1[q][r] Obtain the solution for which the internal border r is

equal to q
23 for each r ∈ R Calculate the outlier region for each internal border
24 A= {} β for which the internal border r contains the other internal border
25 for each q ∈ R – r
26 A=A ∪ (S1[q][r]–S3[q][r]–S2[q]) Update set A
27 S[r] = {[0, 0.5)} - A− S2[r] Values for which the internal border r has no internal border
28 return S Return the solution

Algorithm 1: Pseudo-code of the BUILD_β_OUTLIER_REGION algorithm.

BUILD_μ_OUTLIER_REGION (U, X, R): {M, ExcepDegree}
Pseudo-code Comments

1 for each e ∈U For each element of the universe
2 for each r ∈ R For each equiv. relation
3 class =CLASSIFY-ELEMENT(U, r, e) o Obtain the equiv. class of the element
4 λ[e][r] =min(c(class, X), 1-c(class, X)) Obtain the lowest β higher than all values of M[e][r]
5 M[e][r] = {[0, λ[e][r])} Obtain the β for which the element belongs to r
6 h = 1.0
7 prev = 0.0
8 for each inf ∈ SORT(λ[e]) For each infimum in the order
9 base = {} Obtain β ranges of height m
10 ExcepDegree[e] = ExcepDegree [e] ∪ {[prev, inf)× [0, h]} Obtain the outlier rectangle
11 prev = inf Save the value to form the next rectangle
12 h = h – 1/ R Reduce the outlier rectangle height
13 return <M, ExcepDegree> Return M and ExcepDegree

Algorithm 2: Pseudo-code of the BUILD_μ_OUTLIER_REGION algorithm.
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3. Estimation of the Outlier Probability of
Each Element

In the previous section, a theoretical framework was defined
by expanding [1, 7], based on which the FIND_OUTLIER_
REGION algorithm was constructed. This algorithm enables
us to calculate all outlier regions for each element of the
universe, and the complexity of this algorithm is almost
linear. Ultimately, these results enable us to develop the
solution proposed in this study (Figure 2): a computationally
viable algorithm, valid for environments of large volumes of
data, able to provide the outlier probability of each element
of the universe. This algorithm was termed the βμ_PROB
algorithm. Following a pattern similar to that followed in
the previous section, first, a theoretical framework will be
developed by expanding [1, 7], which will provide the

mathematical tools we need to build the solution.
Subsequently, the spatial and temporal complexity of the
algorithm will be analysed.

3.1. Theoretical Framework: Probabilistic βμ Method. As
mentioned above, the results from the previous section
enable us to assess, for each e ∈U , the region of β and μ
values in which such element is an outlier. Let us call
OUTLIERSe the region found for a given element, e ∈U .

Considering β and μ two random variables, let us call
φ β, μ the probability density function of the random vector
β, μ . Then, the distribution function of β, μ would be

P β ≤ i, μ ≤ j =
i

−∞

j

−∞
φ β, μ dβdμ 6

FIND_OUTLIER_REGION (U, X, R): OUTLIERS
Pseudo-code Comments

1 S =BUILD_β_OUTLIER_REGION (U, X, R) Step 1: calculation of the dependences between
internal borders

2 <M, ExcepDegree>=BUILD_μ_OUTLIER_REGION (U, X, R) Step 2: calculation of the
outlier region

Integration of the regions
3 for each e ∈U For each element of the universe
4 D[e] = {}
5 for each r ∈ R Values where e belongs to an internal border with no other internal border
6 D[e] =D[e] ∪ M[e][r] ∩ S[r]
7 OUTLIERS[e] = ExcepDegree[e] ∩ {D[e]× [0, 1]} Intersection between the outlier regions

β and μ
8 return OUTLIERS Return all regions

Algorithm 3: Pseudo-code of the FIND_OUTLIER_REGION algorithm.

Table 1: Calculation of the spatial and temporal complexity of the FIND_OUTLIER_REGION algorithm by calculating the complexities of
each structure of each component algorithm.

Algorithm Data structure Spatial complexity (worst case) Temporal complexity (worst case)

BUILD_β_OUTLIER_REGION

Case1[i][ec] O n ×m O n ×m × c

Case2[i][j][ec] O n ×m2 O n ×m2 × c

S1[i][j] O n ×m2 O n ×m × log n

S2[i] O m O n ×m

S3[i][j] O n ×m2 O n ×m2

S[i] O n ×m2 O n ×m2 × log m

O n2 ×m2 O n ×m2 × log m

BUILD_μ_OUTLlER_REGION

λ[e][i] O n ×m O n ×m × c

M[e][i] O n ×m O n ×m × c

ExcepDegree[e] O n ×m O n ×m × log m

O n ×m O n ×m × log m

FIND_OUTLIER_REGION

D[e] O n2 ×m2 O n2 ×m2 × log m

OUTLIERS[e] O n2 ×m2 O n2 ×m2

O n2 ×m2 O n2 ×m2 × log m
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Then, the probability that we are interested in calculat-
ing, Pe, that is, the probability that e ∈U is an outlier
knowing OUTLIERSe can be calculated from (6) using
the following formula:

Pe = P β, μ ∈OUTLIERSe =
OUTLIERSe

φ β, μ dβdμ 7

Considering that e is an outlier of β and μ values
belonging to OUTLIERSe.

Because β and μ are two independent random variables,
then: φ β, μ = f β g μ , where f β and g μ are the prob-
ability density functions of β and μ, respectively. Therefore,

Pe =
OUTLIERSe

f β ⋅ g μ dβdμ 8

We only have to replace the probability density functions
of the parameters β and μ in (8) to calculate Pe and then
calculate the resulting integral. In practice, most commonly,
no information about the distribution of the parameters β
and μ is available. Therefore, they will be both assumed to
be uniformly distributed. If, in any context, this distribution
is different from the expected, it is sufficient to calculate Pe
with new functions, using some numerical method to calcu-
late the integral if necessary. Based on this assumption, the
resulting integral is easily calculated. Because 0 ≤ β < 0 5
and 0 ≤ μ ≤ 1, based on the Uniformity hypothesis for the
values of these thresholds, its probability density function
would be

f β =
1

0 5 − 0
= 2,

g μ = 1
1 − 0

= 1
9

Replacing these values in (8), we have

Pe = 2
OUTLIERSe

dβdμ 10

And because OUTLIERSe
dβdμ is the area of the

OUTLIERSe region,

Pe = 2Area OUTLIERSe 11

This result may be interpreted as

Pe =
Area OUTLIERSe

0 5
12

This is precisely the quotient between the area of the
favourable region (the region of values (β, μ) for which e is
an outlier) and the total area (the rectangle that defines the
domain of the values (β, μ) on the plane).

3.2. Computational Implementation: βμ_PROB Algorithm.
The Βμ_PROB algorithm input consists of the following: a
universe U (dataset) U = n, a concept X ⊆U ≠∅, equiva-
lence relations R = r1, r2,… , rn , and a probability distribu-
tion function PDF(). Its output consists of estimating the
probability P for each element of U in terms of their outlier
status in the universe. Because the FIND_OUTLIER_
REGION algorithm calculates the outlier region OUTLIERS,
the probability is calculated using the formula shown in
(12). A description in pseudo-code of the algorithm
that implements the aforementioned aspects is presented
in Algorithm 4.

The temporal complexity of the βμ_PROB algorithm is
affected by the temporal complexity of the process for deter-
mining the outlier region:

(i) Cost of determining the outlier region: temporal
complexity FIND-OUTLIER-REGION:O n2 × m2 ×
log m

(ii) Cost of determining the probability: (dataset)×
(total number of rectangles region β-μ) = (n)×
(n×m2)➔O(n2×m2)

Therefore, the temporal complexity of the algorithm
βμ_PROB, in the worst case, is O n2 ×m2 × log m .

The βμ_PROB algorithm solves two key problems: the
lack of a specific algorithm to perform this calculation
and the complexity of the calculation performed by com-
bining existing algorithms [1, 7]; the resultant reduction

βμ_PROB (U, X, R, PDF()): P
Pseudo-code Comments

1 OUTLIERS = FIND_OUTLIER_REGION (U, Apply probability distribution PDF for each
X, R) region

2 for each e ∈U For every element of the universe
P[e] = 0 Initial probability

3 for each rect ∈OUTLIERS e For each rectangle of exceptionality
4 P[e] = P[e] + PDF(rect) Accumulate the probability of each rectangle
5 return P Return P

Algorithm 4: Pseudo-code of the βμ_PROB algorithm.

9Complexity



in complexity allows application of the algorithm to environ-
ments with large volumes of information.

4. Validation of the Results

The algorithm validation tests have primarily focused on
two aspects: comparing its run-times to those of the VPRS
algorithm to obtain a realistic reference and assessing the
detection quality of the βμ_PROB algorithm. For such
purposes, automatically generated random datasets and
real-world datasets were used. Although performing quan-
titative comparisons to all algorithms identified in the state
of the art is usually senseless due to the different nature of
their application and usefulness, a comparison that allows
us to contextualise each of them can be very interesting.
Accordingly, the rest of the section is structured as follows:
(1) evaluation of the algorithm run-times and comparison
to the VPRS case, (2) evaluation of the detection quality,
which is also compared to that of the VPRS, and (3) compar-
ison of all RS-based methods to algorithms based on conven-
tional methods and comparison to the advantages and
drawbacks of each RS-based method of the study.

4.1. Run-Time Study. The Βμ_PROB algorithm run-time val-
idation tests—compared to the VPRS algorithm [10]—are
performed with large datasets having high dimensionality.
Because similar results have been found in all the experi-
ments, in this study, we show a specific example that is fully
representative: multivariate synthetic data (random dataset
automatically generated using statistical techniques that
ensure a uniform distribution, among other aspects) with
categorical and continuous attributes, with 500,000 records
and with 100 columns. The number of equivalence relations
covered is 100. The computing device used has the following
characteristics: Intel(R) Core(TM)2 Quad processor CPU
Q6600 @ 2.40GHz, with 3.25GB of memory running the
Windows 7 Ultimate operating system.

Figure 5 shows the run-times assessed both for the
βμ_PROB and the VPRS algorithms. The equivalence
relations and the number of columns remain fixed for the
comparison, varying the number of records.

The curves show that both algorithms behave similarly—
regarding the run-time—and that they are computationally
efficient when analysing a large dataset with high dimension-
ality. Furthermore, the run-times are linear and advanta-
geously require no preset thresholds.

This finding shows that although the order of tempo-
ral complexity for the BM_PROB algorithm is quadratic
in the worst case, it may reach an almost linear order
of temporal complexity when analysing datasets that are
normally distributed.

4.2. Detection Quality Validation. Again, all experiments
conducted yielded similar results; therefore, in this study,
one of them is shown as a representative example. In this
case, the dataset used was the Arrhythmia Data Set (data
of patients with cardiovascular problems) from the UCI
Machine Learning Data Repository [12]. These are multivar-
iate data with real, complete, and categorical attributes. Here,
452 records from 279 fields were employed. The computing
device used was an Intel(R) Core(TM) 2 Duo, CPU T5450
@ 1.66GHz (with 2 CPUs), and 2046MB of RAM running
Windows Vista.

The concept C defined people with weight ≤40 kg,
that is, low-weight people, and the following equivalence
relations R:

(i) r1: was established from the attribute heart rate:
mean number of heart beats per minute of each
person. The equivalence relation partitions the
dataset into two equivalence classes: [44, 61] and
[62, 163]

(ii) r2: was established from the attribute number of
intrinsic deflections: number of arterial bypasses of
each person. The equivalence relation partitions
the dataset into two equivalence classes: [0, 59] and
[60, 100]

(iii) r3: was established from the attribute height: height
of a person expressed in centimetres. The equiva-
lence relation partitions the dataset into two equiva-
lence classes: [60, 175] and [176, 190]
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Figure 5: Comparison of run-times between the VPRS and βμ_PROB algorithms.
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Here, 12 outliers with contradictory values for low-
weight people were intentionally injected into the dataset.
The normal values of the attributes considered in the equiv-
alence relations for low-weight people are as follows: heart
rate >65, intrinsic deflections <50, and height <170 cm.
Table 2 describes the outliers injected. The values in bold
and italics represent contradictory values.

In the test, the following μ values were analysed: 0.2, 0.4,
0.6, 0.8, and 1. For each μ value, βwas varied according to the
following sequence of values: 0, 0.1, 0.2, and 0.3. The values
0.4 and 0.5 are not mentioned because the number of outliers
detected remained 0 beyond β = 0 3. After applying the
βμ_PROB algorithm, different subsets formed by k elements,
with k ϵ (5, 10, 15, 20), are taken from the dataset with the
highest outlier probability. Then, the number of injected
outliers found in each of these subsets is analysed. Figure 6
shows the results achieved on this occasion.

The number of most likely elements (k) considered in
each case shows that when k = 5, the 5 elements with the
highest outlier probability are the 5 most contradictory
elements of the dataset; when k = 10, the 10 elements with
the highest outlier probability introduced in the dataset
and, when k = 15 and k = 20, the 12 outliers intentionally
injected already appeared among the most likely k. In
summary, the 12 injected elements were always found among
those with the highest outlier probability after applying the
βμ_PROB algorithm.

Table 3 presents the probability values determined
using the βμ_PROB algorithm for outliers injected into
the dataset.

4.3. Comparison of the Outlier Detection Algorithms. Most
outlier detection techniques and algorithms analysed are
designed, to a greater or lesser extent, to solve a specific type
of problem, even in a specific case. Valid comparisons
between these algorithms are difficult to perform because
they will considerably depend on the search target. However,
it is interesting to perform a comparative study of the
different existing methods highlighting the advantages
from the current proposal in its field—the unsupervised
provision of general results regarding all elements of the
data universe by establishing specific initial conditions:
concept and equivalence relations. Considering the above,
Table 4 details how the βμ_PROB algorithm may help to
overcome the limitations of the methods studied when
requiring generalisation.

The main advantage of RS-based proposals and, particu-
larly, of the βμ_PROB algorithm relative to conventional
methods lies in its generalist character. Unsurprisingly, an
algorithm specially designed to detect a specific type of out-
liers is usually better, both in terms of detection quality and
spatial and temporal complexity. However, having a generic
algorithm that is capable of addressing different types of
problems, with different types of data, and able to behave
reasonably with large volumes of data is a very interesting
option that avoids having to design different algorithms
each time new problems emerge or when the conditions
of previously solved problems change.

After comparing algorithms based on conventional
techniques and algorithms based on the RS model, a sum-
mary of the comparative study conducted between different
RS algorithms and the proposed βμ_PROB algorithm is
presented in Table 5, outlining the advantages and disadvan-
tages of each algorithm and highlighting the usefulness of the
proposed algorithm.

5. Conclusions

Whereas VPRS has been applied to problems in multiple
fields [13–16], particularly in the field of statistics [17], this
study aimed to develop a new application of this model to
the outlier detection problem, breaking with the traditional
scheme followed by most existing detection methods. By
defining the desired concept and equivalence relations, the
algorithm provides unsupervised—and without needing to
define neither the outlier threshold nor the classification
error, which are both dependent on the problem—general
results regarding all elements of the dataset. More specifi-
cally, it provides the outlier probability of each element from
such universe. Therefore, this result is transcendent and
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Figure 6: Number of injected outliers found between the k elements
with the highest outlier probability.

Table 2: Outliers injected into the test dataset.

ID Weight (kg) Heart rate # intrinsic deflections Height (cm)

1 15 60 17 180

2 31 93 68 178

3 39 50 82 130

4 10 53 16 188

5 19 45 90 190

6 20 48 86 183

7 25 50 71 180

8 29 55 75 179

9 33 90 60 176

10 40 61 20 186

11 26 50 99 180

12 38 92 100 178
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original because it paves the way for the analysis and solution
of other particular problems. It allows us to have an overview
of the data and thus to test its representativeness.

The algorithms presented demonstrate the computa-
tional feasibility of the proposed methods. Furthermore, they
provide efficient computational solutions—in terms of
temporal and spatial complexity—to the problems for which
they were conceived.

The method proposed solved, in addition, other limita-
tions of several detection methods: it may be applied to
datasets with a mixture of types of attributes (continuous
and discrete); its application requires no prior knowledge
about the data distribution; within the scope of its applica-
tion, the size and dimensionality of the dataset do not limit
its correct operation; and no distance or density criteria must
be established for the dataset to apply this algorithm.

Table 4: Characteristics of the RS-based methods compared to the limitations of conventional methods.

Comparison to STATISTICAL and DISTANCE-BASED METHODS

(i) Applicability to datasets with a mixture of continuous and discrete attributes. Equivalence relationships are a natural way to discretise
continuous data.

(ii) Neither knowing the data distribution nor establishing data distance criteria is required.

(iii) Specifically, for β = 0, the quadratic temporal complexity problem of most distance-based methods is solved.

(iv) The dimensionality and dataset size do not limit the execution of the algorithms.

Comparison to DENSITY- and DEPTH-BASED METHODS

(i) There is no need to establish data density criteria in the dataset.

(ii) The dimensionality of the dataset does not limit the execution of the algorithm.

(iii) No time-consuming calculations are necessary, including calculating the convex wrap, which is required in most depth-based methods.

(iv) FIND_OUTLIER_REGION and βμ_PROB provide unsupervised results without requiring the user to preset, before running the
algorithm, the value of specific analysis parameters, which is necessary in density-based methods, such as DBSCAN.

(v) Pawlak rough sets and VPRS improve the temporal complexity compared to depth-based methods.

Comparison to METHODS BASED ON NEURAL NETWORKS

(i) No time-consuming processes must be previously established, for example, network training, required in some neuronal network
models to ensure their learning.

(ii) The dimensionality of the dataset does not limit the execution of the algorithms.

(iii) The functionality of the algorithms does not depend on data density criteria, in contrast to some supervised models.

(iv) There is no need to model the data distribution, in contrast to some supervised models.

(v) Some approaches based on supervised networks establish the use of thresholds for various purposes in the outlier detection process. This
is solved in the concept of the FIND_OUTLIER_REGION and βμ_PROB algorithms.

Comparison to GENERAL OUTLIER DETECTION METHODS

(i) In contrast to most detection methods, which require successive executions of the algorithm until obtaining the set of outliers that
actually meets the analysis criteria, β. PROB algorithm performs the single-run, unsupervised determination of the outlier probability of
each element form a specific universe of data.

Table 3: Outlier probability of the 12 elements injected into the dataset.

ID Weight (Kg) Heart rate # of intrinsic deflections Height (cm) Outlier probability

1 15 60 17 180 0.61884

2 31 93 68 178 0.7557252

3 39 50 82 130 0.6151009

4 10 53 16 188 0.61884

5 19 45 90 190 0.8779342

6 20 48 86 183 0.8779342

7 25 50 71 180 0.8779342

8 29 55 75 179 0.8779342

9 33 90 60 176 0.7557252

10 40 61 20 186 0.61884

11 26 50 99 180 0.8779342

12 38 92 100 178 0.7557252
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The results reported in the present study are the
beginning of an in-depth study in the context of the general
problem of outlier detection based on the RS model. There-
fore, several problems that have not yet been solved may be
identified and may be the next objectives of this on-going
study. Accordingly, the following objectives have been
identified: (a) to further improve the run-time of the algo-
rithms by creating a distributed execution mechanism to
use the computational power of several machines in one
domain. In the current version of the algorithms, the user
has to execute them on a single personal computer (PC),
and (b) in the current version of the βμ_PROB algorithm,
the β threshold domain is [0; 0,5]. However, the establish-
ment of a new upper bound could allow us to gain precision
in the probability calculation, especially in the case of very
contradictory elements for few β values. Accordingly, the
BM/probabilistic algorithm should be modified to automati-
cally determine the most appropriate value for a given level.
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